Chapter 36 Dual Endpoint
Wednesday, April 28, 1993
Let \(\Gamma = (X, E)\) be distance regular of diameter \(D\geq 3\), \(Q\)-polynomial with respect to \(E_0, E_1, \ldots, E_D\). Fix a vertex \(x\in X\), write \(E^*_i\equiv E^*_i(x)\), \(T\equiv T(x)\).
Let \(W\) be an irreducible \(T\)-module of diameter \(d\).
Recall that the endpoint \[r(W) = \min\{i\mid 0\leq i\leq D, E^*_iW \neq 0\}.\]
Definition 36.1 The dual endpoint (with respect to above ordering \(E_0, E_1, \ldots, E_D\)), \[r^*(W) = \min\{i\mid 0\leq i\leq D, E_iW \neq 0\}.\] \[r(W) = 0 \leftrightarrow r^*(W) = 0 \leftrightarrow W: \text{ trivial $T$-module},\] (by Lemma 10.1).
Suppose \(W\) is thin. Then \(W\) is dual thin. (See Corollary 9.1.)
Moreover, \(\{i\mid E_iW \neq 0\}\) is a subinterval of \(\{0, 1, \ldots, D\}\). (same proof as for distance regular)
HS MEMO
Dual version of Lemma 4.1.
Lemma 4.1’. Let \(A^* \equiv A^*_1(x)\), \(W\) an irreducible \(T\)-moduoe, and \(d^* = \{i\mid E_iW\neq 0\}|-1\).
\((ii)\) \(A^*E_jW \subseteq E_{j-1}W + E_jW + E_{j+1}W\), \(0\leq j \leq d^*(x)\). \((E_iW = 0 \; \text{ if } i<j\) or \(i > d^*(x)\).)
\((iii)\) \(E_jW \neq 0\) if \(r^*\leq j \leq r^*+d^*\), \(E_jW=0\) if \(0\leq j\leq r^*\) or \(r^*+d^* < j \leq d^*(x)\).
\((iv)\) \(E_iA^*E_jW \neq 0\), if \(|i-j| = 1\) \((r^* \leq i,j \leq r^*+d^*)\).
Proof of 4.1’
\[E_iA^*E_j = O \leftrightarrow q^j_{i1} = 0.\] By Lemma 22.2, \[\begin{align} \Gamma\text{: $Q$-polynomial} &\leftrightarrow q^j_{i1} \;\begin{cases} = 0 & \text{if }|j-i|>1,\\ \neq 0 & \text{if }|j-i|=1.\end{cases}\\ & \leftrightarrow E_iA^*E_j \;\begin{cases} = O & \text{if }|j-i|>1,\\ \neq O & \text{if }|j-i|=1.\end{cases} \end{align}\]
\[\begin{align} A^*E_jW & = \left(\sum_{i=0}^{D}E_i\right)A^*E_jW\\ & = E_{j-1}A^*E_jW + E_jA^*E_jW + E_{j+1}A^*E_jW\\ & \subseteq E_{j-1}W + E_jW + E_{j+1}W. \end{align}\]
\[\widetilde{W} = E_{r^*}W + E_{r^*+1}W + \cdots + E_{j-1}W.\] Observe \(0\subsetneq \widetilde{W} \subsetneq W\). Also \(A\widetilde{W} \subseteq \widetilde{W}\) by \((ii)\), and \(E_i^*\widetilde{W} \subseteq \widetilde{W}\) for every \(i\) by construction.
Thus, \(T\widetilde{W} \subseteq \widetilde{W}\), contradicting \(W\) being irreducible.
\[\widetilde{W} = E_{r^*}W + E_{r^*+1}W + \cdots + E_{j}W\] is \(T\)-invariant. If \(E_{j-1}A^*E_jW = 0\) for some \(j\in \{r^*+1, \ldots, r^*+d^*\}\), then \[\widetilde{W} = E_{j}W + E_{j+1}W + \cdots + E_{r^*+d^*}W\] is \(T\)-invariant. Moreover, \(0 \subsetneq \widetilde{W} \subsetneq W\) in both cases. A contradiction.
Definition. Let \(W\) be an irreducible dual thin \(T\)-module with dual endpoint \(r^*\) and diameter \(d^*\).
Let \(a^*_i = a^*_i(W)\in\mathbb{C}\) satisfying \[E_{r^*+i}A^*E_{r^*+i}|_{E_{r^*+i}W} = a^*_i\cdot 1|_{E_{r^*+i}W}.\] Let \(x^*_i = x^*_i(W)\in \mathbb{C}\) satisfying \[E_{r^*+i-1}A^*E_{r^*+i}A^*E_{r^*+i-1}|_{E_{r^*+i-1}W} = x^*_i\cdot 1||_{E_{r^*+i-1}W}.\]
Lemma 9.1’. With above notation, the following hold.
\[p^*_0 = 1, \quad \lambda p^*_i = p^*_{i+1} + a^*_i p^*_i + x^*_i p^*_{i-1} \quad \text{ for all } i\in \{0, \ldots, d^*\}, \quad p^*_{-1} = 0.\]
Proof of Lemma 9.1’
\[A^* = \sum_{j=0}^D\theta^*_jE^*_j, \quad \theta^*_j = q_1(j) = |X|(E_1)_{xy}\in \mathbb{R}, \; \partial(x,y)=j.\] \(a_i^*\) is an eigenvalue of a real symmetric matrix \(E_{r^*+i}A^*E_{r^*+i}\).
Then, \(x^*_i\) is an eigenvalue of a real symmetrix matrix \(B^\top B\). Let \(\mathrm{Span}\{v_{i-1}\} = E_{r^*+i-1}W\), and \(Bv_{i-1}\neq 0\) by Lemma 4.1’ \((iv)\) for \(i\in \{1, \ldots, d^*\}\). So, \(x_i\in \mathbb{R}^{>0}\) for all \(i\in \{1, \ldots, d^*\}\).
\[w^*_i = E_{r^*+i}A^*E^*_{r^*+i-1}w^*_{i-1} \quad \text{ for all }i\in \{1, \ldots, d^*\}.\] So \(w^*_i \neq 0\) for all \(i\in \{1, \ldots, d^*\}\) by Lemma 4.1’ \((iv)\).
Hence, \[W = \mathrm{Span}(w^*_0, \ldots, w^*_d)\] by Lemma 4.1’ \((iii)\).
\((iiib)\) We have that \[\begin{align} A^*w^*_i & = E_{r^*+i+1}A^*w^*_i + E_{r^*+i}A^*w^*_i + E_{r^*+i-1}A^*w^*_i\\ & = w^*_{i+1} + E_{r^*+i}A^*E_{r^*+i}w^*_i + E_{r^*+i-1}A^*E_{r^*+i}A^*E_{r^*+i-1}w_{i-1}\\ & = w^*_{i+1} + a^*_iw^*_{i} + x^*_iw^*_{i-1}. \end{align}\]
\((iva)\) Clear for \(i=0\). Assume it is valid for \(0, \ldots, i\). \[p^*_{i+1}(A^*)w^*_0 = (A^*-a^*_iI)w^*_i - x^*_iw^*_{i-1} = w^*_{i+1}.\]
\((ivb)\) By definition, \[p^*_{d^*+1}(A^*)w^*_0 = 0.\] Since \(W = \{p(A^*)w^*_0\mid p\in \mathbb{C}[\lambda]\}\), \(p^*_{d^*+1}(A^*)W = 0\), and \(p^*_{d^*+1}\) is a minimal polynomial, as \(w^*_0, w^*_1, \ldots, w^*_{d^*}\) is a basis of \(W\).
Corollary 9.1’. With the notation above, let \(W\) be a dualthin irreducible \(T\)-module with dual endpoint \(r^*(W)\), and dual diameter \(d^*\). Then,
Proof of Corollary 9.1’
Set as in Lemma {4.1}’. \[w^*_i = p^*_i(A^*)w^*_0 \in E_{r^*+i}W.\] Then, \(w^*_0, w^*_1, \ldots, w^*_{d^*}\) is a basis for \(W\). We have \(W = M^*w^*_0\).
So, \(E^*_iW = E^*_iM^*w^*_0 = \mathrm{Span}(E^*_iw^*_0)\).
Thus, \(W\) is thin, and so, we have \((ii)\).
Suppose \(r(W) = 1\). Then \(d(W) = D-2\) or \(D-1\) by Lemma 14.1 \((iii)\). See also Lemma 14.2.
Case \(d(W) = D-2\). Then
\(\quad E_1W = 0\) implies \(r^*(W) = 2\).
\(\quad E_1W\neq 0\) implies \(r^*(W) = 1\).
Case \(d(W) = D-1\). Then
\(\quad r^*(W) = 1\).
Up to isomorphism,
there are at most \(3\) thin irreducible \(T\)-modules with \(r(W) =1\) and \(r^*(W)=1\),
there are at most \(1\) thin irreducible \(T\)-module with \(r(W) = 1\) and \(r^*(W)=2\),
there are none thin irreducible \(T\)-modules with \(r(W) = 1\) and \(r^*(W) > 2\).
By dual argument,
there are at most \(3\) thin irreducible \(T\)-modules with \(r^*(W) =1\) and \(r(W)=1\),
there are at most \(1\) thin irreducible \(T\)-module with \(r^*(W) = 1\) and \(r(W)=2\),
there are none thin irreducible \(T\)-modules with \(r%*(W) = 1\) and \(r(W) > 2\).
Conjecture 36.1 Let \(\Gamma = (X, E)\) be a thin distance regular graph of diameter \(D\geq 3\). Let \(E_1\) be any primitive idempotent not equal to \(E_0\).
Then the following are equivalent.
Conjecture 36.2 Let \(\Gamma = (X, E)\) be distance regular of diameter \(D\geq 3\), \(Q\)-polynomial with respect to \(E_0, E_1, \ldots, E_D\). Fix a vertex \(x\in X\), and write \(E^*_i\equiv E^*_i(x)\), \(T\equiv T(x)\). Let \(W\) denote an irreducible \(T\)-module with endpoint \(r\), dual endpoint \(r^*\), diameter \(d\) and dual diameter \(d^*\).
Then the following hold.
\[1 = \dim E^*_rW \leq \dim E^*_{r+1}W \leq \cdots \leq \dim E^*_sW \geq \cdots \geq \dim E^*_{r+d}W.\]
\[1 = \dim E_{r^*}W \leq \dim E_{r^*+1}W \leq \cdots \leq \dim E_{s^*}W \geq \cdots \geq \dim E_{r^*+d^*}W.\]
Let \(\Gamma = (X, E)\) be distance regular of diameter \(D\geq 3\), \(Q\)-polynomial with respect to \(E_0, E_1, \ldots, E_D\). Fix a vertex \(x\in X\), write \(E^*_i\equiv E^*_i(x)\) and \(T \equiv T(x)\). Let \(W\) denote an irreducible module with endpoint \(1\).
Conjecture 36.3 The following are equivalent.
\[1, 2, 2, \ldots, 2, 1.\]
\[0\neq v\in E^*_iW, \text{ and } v^* = |X|E_1v.\]
\[v^+_i = E^*_iA_{i-1}v, \quad v^-_i = E^*_iA_{i+1}v.\]
Problem. Let \(B\) denote the orthogonal basis for \(W\) obtained by applying the Gram-Schemidt procedure to be basis in \((iv)\).
Find the matrix representation \(A\) with respect to this basis.
I believe the entries are necely foctorable expressions in the basic variables, \[q, s, s^*, r_1, r_1.\] (Hint: use Theorem 35.1.)
If not, find some nice basis for \(W\), and find the matrices representing \(A\), \(A^*\) with respect to this basis.
Perhaps, some orthogonal basis based on \((iii)\).
Algebraically, everything is determined by the intersection numbers and \(a_0(W)\).
Combinatorically, certain quantities mulst be nonnegative integers. Does this give some new bounds, or other information on \(a_0(W)\)?