Chapter 22 \(Q\)-Polynomial Schemes

Friday, March 19, 1993

Lemma 22.1 Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme.

\((i)\) \(p^h_{0j} = p^h_{j0} = \delta_{jh}\)..
\((ii)\) \(p^0_{ij} = \delta_{ij'}k_i\).
\((iii)\) \(q^h_{0j} = q^h_{j0} = \delta_{jh}\).
\((iv)\) \(q^0_{ij} = \delta_{i\hat{j}}m_i\).
\((v)\) \({\displaystyle \sum_{j=0}^D p^h_{ij} = k_i}.\)
\((vi)\) \({\displaystyle \sum_{j=0}^D q^h_{ij} = m_i}.\)

Proof.

\((i)\), \((ii)\) These are trivial.
\((iii)\) We have

\[|X|^{-1}\sum_{\ell = 0}^D q^\ell_{0j} E_\ell = E_0 \circ E_j = |X|^{-1}J\circ E_j = |X|^{-1}E_j.\]

\((iv)\) Recall from Lemma 20.2

\[|X|^{-1}m_h q^h_{ij} = \tau(E_i\circ E_j \circ E_{\hat{h}}),\] (where \(\tau(B)\) is the sum of entries in matrix \(B\).)

\[\begin{align} |X|^{-1}m_0q^0_{ij} & = \tau(E_i\circ E_j\circ E_0) \\ & = |X|^{-1}\tau(E_i\circ E_j) && (E_0 = |X|^{-1}J)\\ & = |X|^{-1}\mathrm{trace}(E_iE_{\hat{j}})\\ & = |X|^{-1}\delta_{i\hat{j}}\mathrm{trace}E_i\\ & = |X|^{-1}\delta_{i\hat{j}}m_i. \end{align}\]

\((v)\) Pick \(x,y\in X\) with \((x,y)\in R_h\). Then,

\[\begin{align} \sum_{j=0}^D p^h_{ij} & = |\{z\in X\mid (x,z)\in R_i, \; (z,y)\in R_j \; \text{for some $j$}\}|\\ & = |\{z\in X\mid (x,z)\in R_i\}|\\ & = k_i. \end{align}\]

\((vi)\)

\[E_i \circ E_j = |X|^{-1}\sum_{h=0}^D q^h_{ij}E_h.\] So, \[\begin{align} \sum_{j=0}^D E_i\circ E_j & = |X|^{-1}\sum_{h=0}^D \left(\sum_{j=0}^D q^h_{ij}\right) E_h\\ & = E_i \circ \sum_{j=0}^D E_j\\ & = E_i\circ I\\ & = |X|^{-1}(q_i(0)A_0 + q_i(1)A_1 + \cdots + q_i(0)A_D)\circ I\\ & = |X|^{-1}q_i(0)I\\ & = |X|^{-1}m_i(E_0 + E_1 + \cdots + E_D). \end{align}\] This proves the assertions.

Definition 22.1 Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme.

\(Y\) is \(Q\)-polynomial with respect to ordering \(E_0, E_1, \ldots, E_D\) of primitive idempotents, if \[q^h_{ij} \begin{cases} = 0 & \text{if one of $h, i, j$ is greater than the sum of the other two,}\\ \neq 0 & \text{if one of $h,i,j$ is equal to the sum of the other two.}\end{cases}\] In this case, set \[c^*_i = q^i_{1,i-1}, \; a^*_i = q^i_{1,i}, \; b^*_i = q^i_{1,i+1} \quad (0\leq i\leq D), \;(c^*_0= b^*_D = 0).\]

Observe: \(Q\)-polynomial \(\to\) \(Y\) is symmetric.

Suppose \(i\neq \hat{i}\) for some \(i\). Then, by the condition in Definition 22.1, \[0 = q^0_{i\hat{i}} = m_i \; (\neq 0)\] by Lemma 22.1 \((iv)\). This is a contradiction.

Hence, \({E_i}^\top = E_{\hat{i}} = E_i\) for all \(i\).

Therefore, \(M\) is symmetric and \(Y\) is symmetric.

Observe: If \(Y\) is \(Q\)-polynomial, \[c^*_i + a^*_i + b^*_i = m_1 \quad (0\leq i\leq D)\] (just as \(c_i + a_i + b_i = k\) for \(P\)-polynomial.)

By Lemma 22.1 \((iv)\), \[m_1 = q^i_{10} + q^i_{11} + \cdots + q^i_{1,i-1} + q^i_{1i} + q^i_{1,i+1} + \cdots \] and \(q^i_{10} = q^i_{11} = 0\), \(q^i_{1,i-1} = c^*_i\), \(q^i_{1i} = a^*_i\), and \(q^i_{1,i+1} = b^*_i\).

Lemma 22.2 Assume \(Y = (X, \{R_i\}_{0\leq i\leq D})\) is a symmetric scheme. Pick \(x\in X\), and set \(E^*_i\equiv E^*_i(x)\), \(A^*\equiv A^*(x)\). Then the following are equivalent.

\((i)\) \(\Gamma\) is \(Q\)-polynomial with respect to \(E_0, \ldots, E_D\).
\((ii)\) The condition

\[q^h_{1j} \begin{cases} = 0 & \text{if $\; |h-j| > 0$} \\ \neq 0 & \text{if $\; |h-j| = 1$}. \end{cases} \quad (0\leq h,j\leq D).\]

\((iii)\) There exists \(f_i^*\in \mathbb{C}[\lambda]\), \(\deg f^*_i = i\), and

\[A^*_i = f^*_i(A^*_1) \quad (0\leq i\leq D).\]

\((iv)\) \(E^*_0V, \ldots, E^*_DV\) are maximal eigenspaces of \(A^*_1\), and

\[E_iA^*_1E_j = O \quad \text{if }\; |i-j|>0, \quad (0\leq i,j\leq D).\] (Compare \((iv)\) with the definition of \(Q\)-polynomial in Definition 6.2.)

Proof.

\((i)\to (ii)\) Clear.
\((ii)\to(iii)\) \(A^*_0 = I\),

\[\begin{align} A^*_iA^*_j & = \sum_{h=0}^D q^h_{ij} A^*_h,\\ A^*_1A^*_j & = q^{j-1}_{1j}A^*_{j-1} + q^j_{1j}A^*_j + q^{j+1}_{1j}A^*_{j+1} && (q^{j+1}_{1j}\neq 0, 1\leq j\leq D-1). \end{align}\] Hence \(A^*_j\) is a polynomial of degree exactly \(j\) in \(A^*_1\) by induction on \(j\). \[\lambda f^*_j(\lambda) = b^*_{j-1}f^*_{j-1}(\lambda) + a^*_jf^*_j(\lambda) + c^*_{j+1}f^*_{j+1}(\lambda) \quad \text{with $c^*_{j+1}\neq 0$,}\] and \(f^*_{-1} = 0\), \(f^*_0(\lambda) = 1\).

\((iii)\to(i)\) Pick \(i, j, h\) with \(0\leq i,j,h\leq D\) and \(h\geq i+j\). Since

\[m_hq^h_{ij} = m_jq^j_{ih} = m_iq^i_{hj}\] by Lemma 20.2, it suffices to show that \[q^h_{ij} \; \begin{cases} = 0 & \text{if }\; h> i+j\\ \neq 0 & \text{if }\; h = i+j. \end{cases}\] \[\begin{align} A^*_iA^*_j & = \sum_{h=0}^D q^h_{ij}A^*_h\\ f^*_i(A_1)f^*_j(A_1) & = \sum_{h=0}^D q^h_{ij}f^*_h(A_1^*). \end{align}\] Hence, \[f^*_i(\lambda)f^*_j(\lambda) = \sum_{h=0}^Dq^h_{ij}f^*_h(\lambda).\] Note that since \(A^*_0, A^*_1, \ldots, A^*_D\) are linearly independent, \(f(A^*_1) = 0\) implies \(\deg f > D\). \[\deg \mathrm{LHS} = i+j \to q^{i+j}_{ij}\neq 0, \; q^h_{ij} = 0, \text{ if } \; h> i+j.\]

\((iii)\to (iv)\) Recall

\[A^*_1 = q_1(0)E^*_0 + q_1(1)E_1^* + \cdots .\] Each \(A^*_i\) is a polynomial in \(A^*_1\). Then \(A^*_1\) generates the dual Bose-Mesner algebra. So, \(q_1(0), q_1(1), \ldots, q_1(D)\) are distinct.

So, \(E^*_0V, \ldots, E^*_DV\) are maximal eigenspaces.

Also, \(|i-j|>1\) implies \(q^j_{11} = 0\).

Thus, \(E_iA^*_1E_j = 0\) by Lemma 20.3 \((ii)\).

\((iv)\to (ii)\) \(q^i_{1j} = 0\) if \(|i-j| > 1\), since in this case,

\(E_iA^*_1E_j = O\) implies \(q^i_{1j} = 0\) by Lemma 20.3 \((ii)\).

Suppose \(q^{j+1}_{1j} = 0\) for some \(j\) \((0\leq j\leq D-1)\).

Without loss of generalith, choose \(j\) minimum. Then \(A^*_h\) is a polynomial of degree \(h\) in \(A^*_1\) \((0\leq h\leq j)\), and \[A^*_1A^*_j - q^{j-1}_{1j}A^*_{j-1} - q^j_{1j}A^*_j = O.\] the left hand side is a polynomial in \(A^*_1\) of degree \(j+1\).

Hence, the minimal polynomial of \(A^*_1\) has degree less than or equal to \(j+1 \leq D\). But \(A^*_1\) has \(D+1\) distince eigenvalues.

This is a contradiction.