Chapter 25 Balanced Conditions, II
Monday, March 29, 1993
Proof (Proof of Theorem 24.1 continued).
HS MEMO
The case \(D = 2\) should be treated somewhere, but the assumption \(D\geq 3\) is not used.
Fix \(w\in X\), and write \(E^*_i \equiv E^*_i(w)\), \(A^*_i\equiv A^*_i(w)\), \(A^*\equiv A^*_1\), and \(A_i\), \(i\)-th distance matrix. Set \[E \equiv E_1 = |X|^{-1}\sum_{i=0}^D \theta^*_i A_i.\] Since \((\rho, H)\) is nondegenerate, \[\theta^*_0 \neq \theta^*_h \; \text{for all }h\in \{1,2,\ldots, D\}\] See Lemma 23.1 \((iv)\).
Claim 1. Pick \(h\) \((1\leq h\leq D)\), and \(x,y\) with \((x,y)\in R_h\). Then \[\sum_{z\in X, (x,z)\in R_1, (y,z)\in R_2}\rho(z) - \sum_{z'\in X, (x,z')\in R_2, (y,z')\in R_1}\rho(z') = r^h_{12}(\rho(x)-\rho(y)),\] where \[r^h_{12} = p^h_{12}\frac{\theta_1^* - \theta^*_2}{\theta^*_0-\theta^*_h}.\]
Proof of Claim 1. By our assumption, \[\sum_{z\in X, (x,z)\in R_1, (y,z)\in R_2}\rho(z) - \sum_{z'\in X, (x,z')\in R_2, (y,z')\in R_1}\rho(z') = \alpha(\rho(x)-\rho(y)).\] Hence, \[\begin{align} |X|^{-1}p^h_{12}(\theta^*_1-\theta^*_2) & = \left\langle \sum_{z\in X, (x,z)\in R_1, (y,z)\in R_2}\rho(z) - \sum_{z'\in X, (x,z')\in R_2, (y,z')\in R_1}\rho(z'), \rho(x)\right\rangle \\ & = \alpha\langle \rho(x)-\rho(y), \rho(x)\rangle\\ & = \alpha |X|^{-1}(\theta_0^*-\theta^*_h). \end{align}\] We have \[\alpha = p^h_{12}\frac{\theta_1^* - \theta^*_2}{\theta^*_0-\theta^*_h}.\]
Claim 2. \({\displaystyle A_1A^*A_2 - A_2A^*A_1 = \sum_{h=1}^D r^h_{12}(A^*A_h - A_hA^*).}\)
Proof of Claim 2. The \(xy\) entry of the \(\mathrm{LHS} - \mathrm{RHS}\) is \[|X|\left\langle \sum_{z\in X, (x,z)\in R_1, (y,z)\in R_2}\rho(z) - \sum_{z'\in X, (x,z')\in R_2, (y,z')\in R_1}\rho(z') - r^h_{12}(\rho(x)-\rho(y)),\rho(w)\right\rangle,\] where \((x,y)\in R_h\), \(h = 1, 2, \ldots, D\), and the \(xy\) entry of the \(\mathrm{LHS} - \mathrm{RHS}\) is \(0\) if \(x = y\).
But the vector on the left in the above inner product is \(0\) by Claim 1, so the inner product is \(0\).
Thus, the \(xy\) entry of the \(\mathrm{LHS} - \mathrm{RHS}\) is always \(0\), and we have Claim 2.
Claim 3. \(A^*A_3 - A_3A^* \in \mathrm{Span}(AA^*A_2 - A_2A^*A, A^*A_2 - A_2A^*, A^*A-AA^*).\)
Proof of Claim 3. Since \(p^h_{12} = 0\), if \(h>3\), and \(p^h_{12} \neq 0\), if \(h=3\), we have \(r^h_{12} = 0\) if \(h > 0\), and \(r^h_{12} \neq 0\), if \(h = 3\). Note that \(\theta^*_1\neq \theta^*_2\).
Now we are done by Claim 2.
Claim 4. There exist \(\beta, \gamma, \delta\in \mathbb{R}\) such that \[\begin{align} 0 & = [A, A^2A^*-\beta AA^*A + A^*A^2 - \gamma(AA^*+A^*A) - \delta A^*]\\ & = A^3A^* - A^*A^3 - (\beta+1)(A^2A^*A-AA^*A^2)-\gamma(A^2A^*-A^*A^2)-\delta(AA^*-A^*A). \end{align}\]
Proof of Claim 4. There exists \(f_i\in \mathbb{R}[\lambda]\), \(\deg f_i = i\) such that \(A_i = f_i(A_1)\).
Writing \(A_2\), \(A_3\) as polynomials in \(A\) in Claim 3 and simplifying, we find \[A^3A^*-A^*A^3 \in \mathrm{Span}(A^2A^*A-AA^*A^2, A^2A^*-A^*A^2, AA^*-A^*A).\]
HS MEMO
Let \(A_3 = \beta_3A^3 + \beta_2 A^2 + \beta_1 A + \beta_0 I\) with \(\beta_3\neq 0\), and \(A_2 = \gamma_2 A^2 + \gamma_1 A + \gamma_0 I\), with \(\gamma_2\neq 0\). Then \[\begin{align} A^*A_3-A_3A^* & = A^*(\beta_3 A^3 + \beta_2 A^2 + \beta_1 A + \beta_0 I) - (\beta_3 A^3 + \beta_2 A^2 + \beta_1 A + \beta_0 I)A^*.\\ A^3A^*-A^*A^3 & \in \mathrm{Span}(A^*A_3 - A_3A^*, A^2A^* - A^*A^2, AA^*-A^*A)\\ & \subseteq \mathrm{Span}(AA^*A_2 - A_2A^*A, A^*A_2-A_2A^*, A^2A^*-A^*A^2, AA^*-A^*A)\\ A^*A_2 - A_2A^* & = A^*(\gamma_2 A^2 + \gamma_1 A + \gamma_0 I) - (\gamma_2 A^2 + \gamma_1 A + \gamma_0 I)A^*\\ AA^*A_2 - A_2A^*A & = AA^*(\gamma_2 A^2 + \gamma_1 A + \gamma_0 I) - (\gamma_2 A^2 + \gamma_1 A + \gamma_0 I)A^*A\\ A^*A_2 - A_2A^* & \in \mathrm{Span}(A^2A^*-A^*A^2, AA^*-AA^*)\\ AA^*A_2 - A_2A^*A & \in \mathrm{Span}(A^2A^*A-AA^*A^2, AA^*-AA^*)\\ A^3A^*-A^*A^3 & \in \mathrm{Span}(A^2A^*A-AA^*A^2, A^2A^*-A^*A^2, AA^*-A^*A). \end{align}\]
Hence, we can find \(\delta, \gamma, \delta\) satisfying \[0 = A^3A^*-A^*A^3 - (\beta+1)(A^2A^*A-AA^*A^2)-\gamma(A^2A^*-A^*A^2)-\delta(AA^*-A^*A).\] On the other hand, \[\begin{align} & [A, A^2A^*-\beta AA^*A+A^*A^2-\gamma(AA^*+A^*A)-\delta A^*]\\ & \quad = A^3A^*-A^2A^*A-\beta A^2A^*A + \beta AA^*A^2 + AA^*A^2 - A^*A^3 \\ & \qquad\quad - \gamma A^2A^* - \gamma AA^*A + \gamma AA^*A + \gamma A^*A^2 - \delta AA^* + \delta A^*A\\ & \quad = A^3A^* - A^*A^3 - (\beta+1)(A^2A^*A-AA^*A^2)-\gamma(A^2A^*-A^*A^2)-\delta (AA^*-A^*A). \end{align}\] Thus we have \((i)\) and \((ii)\).
Define a diagram \(D_E\) on nodes \(0, 1, \ldots, D\).
Connect distinct nodes \(,\) by undirected arc if \(q^1_{ij}\neq 0\). (Note \(q^1_{ij} = q^1_{ji}\)).
Since \(q^1_{0j} = \delta_{1j}\), the \(0\)-node is adjacent to the \(1\)-node and no other node.
\(Y\) is \(Q\)-polynomial with respect to \(E\) if and only if \(D_E\) is a path.
Claim 5. \(D_E\) is connected.
Proof of Claim 5. Suppose there exists \(\Delta \subseteq \{0,1,\ldots, D\}\) such that \(i,j\) not connected for every \(i\in \Delta\) and \(j\in \{0,1,\ldots, D\}\setminus \Delta\).
Set \[f = \sum_{i\in \Delta}E_i.\] Observe \[\begin{align} fA^* & = \sum_{i\in \Delta} E_i A^* \left(\sum_{j=0}^D E_j\right)\\ & = \sum_{i\in \Delta, j\in \Delta}E_iA^*E_j \quad \text{(since $E_iA^*E_j=O$ if $q^1_{ij}=0$)}\\ & = fA^*f. \end{align}\] Also, \(A^*f = fA^*f\).
Hence, \(f\) commutes with \(A^*\).
But \(f\) is an element of the Bose-Mesner algebra \[f = \sum_{i=0}^D \alpha_i A_i \quad \text{for some $\alpha_0, \ldots, \alpha_D\in \mathbb{C}$}.\] We have \[0 = fA^*-A^*f = \sum_{i=1}^D \alpha_i(A_iA^*- A^*A_i).\] But \(\{A_hA^* - A^*A_h \mid 1\leq h\leq D\}\) are linearly independent. (The column \(w\) of \(A_hA^*-A^*A_h\) is \(\theta^*_h - \theta^*_0\) times the column \(w\) of \(A_h\).)
Hence, \(\alpha_1 = \cdots = \alpha_D = 0\), and \(f = \alpha_0 I\). Since \(f^2 = f\), \(\alpha_0\) or \(1\).
If \(\alpha_0 = 0\), \(f=O\) and \(\Delta = \emptyset\).
If \(\alpha_0 = 1\), \(f=I\) and \(\Delta = \{0, 1, \ldots, D\}\).
This proves Claim 5.
HS MEMO
Claim 5 proves the following in general.
Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a symmetric association scheme. Fix a vertex \(x\in X\), and let \[E = \frac{1}{|X|}\sum_{j=0}^D \theta^*_j A_j \quad (\theta^*_j = q_1(j) \; \text{ if $E = E_1$})\] be a primitive idempotent and \(E^*_j\equiv E^*_j(x)\). \[A^* = \sum_{j=0}^D \theta_j^*E^*_j.\] If \(\theta_0 = \theta^*_h\), \(h=1, \ldots, D\), then the following hold.
\[i\sim j \Leftrightarrow E(E_i\circ E_j)\neq O\] is connected.
Proof.
Let \(Y = (X, \{R_i\}_{0\leq i\leq 2})\) be a symmetric association scheme with \(D = 2\). Let \[E = \frac{1}{|X|}\sum_{j=0}^2\theta^*_j A_j\] be a primitive idempotent.
Suppose \(\theta^*_0\neq \theta_1^*, \theta^*_2\). Then \(Y\) is \(Q\)-polynomial with respect to \(E\).
Proof. By the previous lemma, \(D_E\) is connected.
Note. It seems \(\theta^*_1 \neq \theta^*_2\) is necessary. Clarify the condition \(\theta^*_1 = \theta^*_2\).
Terwilliger claims that \(\theta^*_1 = \theta^*_2\) does not occur under the assumption \((ic)\). (March 7, 1995)