Chapter 24 Balanced Conditions, I

Wednesday, March 23, 1993

No Class on Friday (another conference).

Proof (Proof of Lemma 23.1 continued). Let \(E_j\) be a primitive idempotent, \(H = E_jV\) and \[\rho: X\to H \quad (x\mapsto E_j\hat{x}).\]

\((v)\) Every representation \((\rho, H)\) of \(Y\) is equivalent to a representation of above type, for some \(j\) \((0\leq j\leq D)\) and \(j\) is unique.

Let \(E:=(\langle \rho(x), \rho(y))_{x,y\in X}\).

By \(\mathrm{R2}\), \[E = \sum_{i = 0}^D \sigma_i A_i, \quad \text{some}\; \sigma_0, \sigma_1, \ldots, \sigma_D\in \mathbb{C}.\] Hence, \(E\) belongs to the Bose-Mesner algebra \(M\) of \(Y\).

We want to show that \(E\) is a scalar multiple of a primitive idempotent.

Fix \(x\in X\) and fix \(i\) \((0\leq i\leq D)\).

By \(\mathrm{R3}\), \[\begin{equation} \sum_{y\in X, (y,x)\in R_i}\rho(y) = \alpha \rho(x), \quad \text{some }\; \alpha\in \mathbb{C}. \tag{24.1} \end{equation}\] So, \[k_i\overline{\sigma_i} = \left\langle \sum_{y\in X, (y,x)\in R_i}\rho(y),\rho(x)\right\rangle = \bar{\alpha}\langle \rho(x), \rho(x)\rangle = \bar{\alpha}\sigma_0.\] Hence, \(\alpha\) is independent of \(x\). In maatrix form (24.1) becomes \[EA_i\hat{x} = \alpha E\hat{x}.\]

HS MEMO

\[Eu = Ev \Leftrightarrow \langle z, Eu\rangle = \langle z, Ev\rangle \text{ for all }z\in X \Leftrightarrow (Eu)_z = (Ev)_z \text{ for all }z\in X.\] \[\begin{align} (EA_i\hat{x})_z & = \left\langle \rho(z), \sum_{y\in X, (y,x)\in R_i}\rho(y)\right\rangle\\ & = \alpha \langle \rho(z), \rho(x)\rangle\\ & = (\alpha E\hat{x})_z. \end{align}\] Hence, \[EA_i\hat{x} = \alpha E\hat{x}.\]

Since \(x\) is arbitrary, \[EA_i = \alpha E.\] So, \[EA_i \in \mathrm{Span} E\; \text{ and }\; EM = \mathrm{Span} E.\] We have \(E\in \mathrm{E_j}\) for unique \(j\) \((0\leq j\leq D)\).

HS MEMO

\[E = \tau_0 E_0 + \cdots + \tau_D E_D, \; \tau_j\in \mathbb{C}\quad (0\leq j\leq D).\] And, at least one of \(\tau_j\) is nonzero, and \[\tau_jE_j = EE_j \in \mathrm{Span}E.\] So, \[\tau_jE_j = E\] as \(E_0, \ldots, E_D\) are linearly independent.

Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a symmetric scheme, and let \(E\) be a primitive idempotent.

Definition 24.1 \(Y\) is \(Q\)-polynomial with respect to \(E\), if and only if \(Y\) is \(Q\)-polynomial with respect to some ordering \(E_0, E_1, \ldots, E_D\) of primitive idempotents, where \(E_0 = |X|^{-1}J\), and \(E_1 = E\).

Theorem 24.1 Assume \(Y = (X, \{R_i\}_{0\leq i\leq D})\) is \(P\)-polynomial (i.e., \((X, R_1)\) is distance-regular). Let \(E\) be any primitive idempotent of \(Y\). Let \((\rho, H)\) be the corresponding representation.

\((i)\) The following are equivalent.
\(\quad (ia)\) \(Y\) is \(Q\)-polyonimial with respect to \(E\).
\(\quad (ib)\) \((\rho, H)\) is nondegenerate and for all \(x,y\in X\), and for all \(i,j\) \((0\leq i,j\leq D)\),

\[\sum_{z\in X, (x,z)\in R_i, (y,z)\in R_j}\rho(z) - \sum_{z'\in X, (x,z')\in R_j, (y,z')\in R_i}\rho(z')\in \mathrm{Span}(\rho(x)-\rho(y)).\]

\(\quad (ic)\) \((\rho, H)\) is nondegenerate and for all \(x,y\in X\),

\[\sum_{z\in X, (x,z)\in R_1, (y,z)\in R_2}\rho(z) - \sum_{z'\in X, (x,z')\in R_2, (y,z')\in R_1}\rho(z')\in \mathrm{Span}(\rho(x)-\rho(y)).\]

\((ii)\) Write

\[E = |X|^{-1}\sum_{j=0}^D \theta^*_j A_j,\] and suppose \((ia)-(ic)\) hold. Then the coefficient in \((ib)\) is \[p^h_{ij}\frac{\theta_i^*-\theta_j^*}{\theta^*_0-\theta^*_h} \quad (1\leq h\leq D, 0\leq i,j\leq D).\]

Proof.

\((ia)\to(ib)\) Without loss of generality, assume \(E \equiv E_1\), and \(Y\) is \(Q\)-polynomial with respect to \(E\).

Then by Lemma 22.2, \(\theta_0^*, \ldots, \theta^*_D\) are distinct. So \(\theta^*_h\neq \theta^*_0\) for all \(h\in \{1,2\ldots, D\}\), and \((\rho, H)\) is nondegenerate.

Fix \(x\in X\), write \(E^*_i\equiv E^*_i(x)\), \(A^*_i \equiv A^*_i(x)\), \(A^* \equiv A_1^*\).

Let \(M\) be the Bose-Mesner algebra. Set \[L = \{mA^*n - nA^*m\mid m, n\in M\}.\]

Claim 1. \(\dim L \leq D\).

Proof of Claim 1. \[\begin{align} L & = \mathrm{Span}(E_iA^*E_j - E_jA^*E_i \mid 0\leq i<j\leq D)\\ & = \mathrm{Span}(E_iA^*E_{i+1} - E_{i+1}A^*E_i \mid 0\leq i\leq D-1). \end{align}\] Since \(E_iA^*E_j = 0\) if \(q^1_{ij} = 0\) by Lemma 20.2 and Lemma 20.3, and this occurs if \(|i-j|>1\) by \(Q\)-polynomial property.

Hence, \(\dim L \leq D\).

Claim 2. \((i)\) \(\{A^*A_h - A_hA^*\mid 1\leq h\leq D\}\) is a basis for \(L\). In particular,

\((ii)\) there exist \(r^h_{ij}\in \mathbb{C}\) \((1\leq h\leq D, 0\leq i,j\leq D)\) such that

\[A_iA^*A_j - A_jA^*A_i = \sum_{h=1}^D r^h_{ij}(A^*A_h - A_hA^*).\]

Proof of Claim 2.

\((i)\) The column \(x\) of \(A^*A_h - A_hA^*\) is a nonzero scalar \(\theta^*_h - \theta^*_0\) times the column \(x\) of \(A_h\).

HS MEMO

\[ ((A^*A_h - A_hA^*)\hat{x})_y = E_{xy}(A_h)_{yx}- (A_h)_{yx}E_{xx} = (\theta^*_h-\theta^*_0)(A_h)_{yz}.\]

Also the column \(x\) of \(A_0, A_1, \ldots, A_D\) are linearly independent.

Hence, the matrices given are linearly independent.

They are in \(L\) by construction, so they form a basis for \(L\) by Claim 1.

\((ii)\) This is immediate since

\[A_iA^*A_j - A_jA^*A_i\in L, \quad \text{for all $i,j$}.\]

Claim 3. \[r^\ell_{ij} = p^\ell_{ij}\left(\frac{\theta^*_i-\theta^*_j}{\theta^*_0 - \theta^*_\ell}\right)\quad (1\leq \ell\leq D, 0\leq i,j\leq D).\]

Proof of Claim 3. Fix \(i,j\), \[A_iA^*A_j - A_jA^*A_i - \sum_{h=1}^D r^h_{ij}(A^*A_h - A_hA^*) = 0.\] Pick \(\ell\) \((1\leq \ell \leq D)\). Pick \(y\in X\) such that \((x,y)\in R_\ell\). \[\begin{align} (A_iA^*A_j)_{xy} & = \sum_{z\in X}(A_i)_{xz}(A^*)_{zz}(A_j)_{zy}\\ & = \sum_{z\in X, (x,z)\in R_i, (y,z)\in R_j}(A^*)_{zz}\\ & = |X|^{-1}p^\ell_{ij}\theta^*_i. \end{align}\] Similarly, \[(A_jA^*A_i)_{xy} = |X|^{-1}p^\ell_{ij}\theta^*_j.\] \[\begin{align} (A^*A_h-A_hA^*)_{xy} & = (A_0A^*A_h - A_hA^*A_0)_{xy}\\ & = |X|^{-1}p^\ell_{0h}(\theta^*_0 - \theta^*_h)\\ & = \begin{cases} 0 & \text{ if }\; \ell \neq h\\ |X|^{-1}(\theta^*_0-\theta^*_h) & \text{ if } \ell = h. \end{cases} \end{align}\] Hence, \[\sum_{h=1}^D r^h_{ij}(A^*A_h - A_hA^*)_{xy} = |X|^{-1}r^\ell_{ij}(\theta^*_0-\theta^*_\ell).\] Comparing terms, we have \[p^\ell_{ij}(\theta^*_i-\theta^*_j) - r^\ell_{ij}(\theta^*_0-\theta^*_\ell) = 0.\]

Claim 4. For all \(h\) \((1\leq h\leq D)\), for all \(i,j\) \((0\leq i,j\leq D)\), for all \(w,y\in X\), \((w,y)\in R_h\), \[\begin{equation} \sum_{z\in X,(w,z)\in R_i, (y,z)\in R_j}\rho(z)-\sum_{z'\in X, (w,z')\in R_j, (y,z)\in R_i}\rho(z') - r^h_{ij}(\rho(w)-\rho(y))=0. \tag{24.2} \end{equation}\]

Proof of Claim 4. Set \(L = \langle \mathrm{LHS}\) of (24.2), \(\rho(x)\rangle\) It suffices to show that \(L = 0\).

Note that since \(x\) is arbitrary, if \(\mathrm{LHS}\) of (24.2) is zero. \[\begin{align} L & = \sum_{z\in X,(w,z)\in R_i, (y,z)\in R_j}\langle \rho(z), \rho(x)\rangle -\sum_{z'\in X, (w,z')\in R_j, (y,z)\in R_i}\langle\rho(z'),\rho(x)\rangle \\ & \qquad - r^h_{ij}\langle \rho(w)-\rho(y), \rho(x)\rangle\\ & = |X|^{-1}(A_iA^*A_j)_{wy} - |X|^{-1}(A_jA^*A_i)_{wy}-|X|^{-1}\sum_{\ell=1}^Dr^\ell_{ij}(A^*A_\ell - A_\ell A^*)_{wy}\\ & = |X|^{-1} \text{times $wy$ entry of a matrix known to be zero by Claim 2}\\ & = 0. \end{align}\] Thus we have the claim.

HS MEMO

\[\begin{align} |X|^{-1}\sum_{\ell=1}^D r^\ell_{ij}(A^*A_\ell - A_\ell A^*)_{wy} & = |X|^{-1}r^h_{ij}(A^*A_h- A_hA^*)_{wy}\\ & = r^h_{ij}(\langle \rho(x),\rho(w)\rangle - \langle \rho(x),\rho(y)\rangle) \end{align}\]