Chapter 1 Subconstituent Algebra of a Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair \(\Gamma = (X, E)\), where

\[\begin{eqnarray*} X &=& \textrm{finite set (of vertices)}\\ E &=& \textrm{set of (distinct) 2-element subsets of }X \textrm{ (= edges of ) }\Gamma. \end{eqnarray*}\]

The vertices \(x\) and \(y\in X\) are adjacent if and only if \(xy\in E\).

Example 1.1 Let \(\Gamma\) be a graph. \(X = \{a, b, c, d\}\), \(E = \{ab, ac, bc, bd\}\).

Set \(n = |X|\), the order of \(\Gamma\).

Pick a field \(K\) (\(=\mathbb{R}\) or \(\mathbb{C}\)). Then \(\mathrm{Mat}_X(K)\) denotes the \(K\) algebra of all \(n\times n\) matrices with entries in \(K\). (rows and columns are indexed by \(X\))

Adjacency matrix \(A\in \mathrm{Mat}_X(K)\) is defined by \[\begin{align} A_{xy} & = \left\{\begin{array}{cl} 1 & \textrm{ if } \; xy\in E,\\ 0 & \textrm{ else.} \end{array}\right. \end{align}\]

Example 1.2 Let \(a, b, c, d\) be labels of rows and columns. Then \[A = \begin{matrix} \\ a\\ b\\c\\d\end{matrix}\begin{matrix}\begin{matrix} a & b & c & d \end{matrix}\\\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}\end{matrix}\]

The subalgebra \(M\) of \(\mathrm{Mat}_X(K)\) generated by \(A\) is called the Bose-Mesner algebra of \(\Gamma\).

Set \(V = K^n\), the set of \(n\)-dimensional column vectors, the coordinates are indexed by \(X\).

Let \(\langle\; , \;\rangle\) denote the Hermitean inner product: \[\langle u, v\rangle = u^\top\cdot \bar{v} \quad (u, v\in V)\] \(V\) with \(\langle\; , \;\rangle\) is the standard module of \(\Gamma\).

\(M\) acts on \(V\): For every \(x\in X\), write \[\hat{x} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}\begin{matrix} \\ \\ \leftarrow x \\ \\ \\ \end{matrix}\] where \(1\) is at the \(x\) position.

Then \[A\hat{x} = \sum_{y\in X, xy\in E}\hat{y}.\] Since \(A\) is a real symmetrix matrix, \[V = V_0 + V_1 + \cdots + V_r \quad \textrm{ some } r\in \mathbb{Z}^{\geq0},\] the orthogonal direct sum of maximal \(A\)-eigenspaces.

Let \(E_i\in\mathrm{Mat}_X(K)\) denote the orthogonal projection, \[E_i: V \longrightarrow V_i.\] Then \(E_0, \ldots, E_r\) are the primitive idempotents of \(M\). \[M = \mathrm{Span}_K(E_0, \ldots, E_r),\] \[E_iE_j = \delta_{ij}E_i \quad \textrm{for all }\; i, j, \quad E_0 + \cdots + E_r = I.\] Let \(\theta_i\) denote the eigenvalue of \(A\) for \(V_i\) in \(\mathbb{R}\). Without loss of generality we may assume that \[\theta_0 > \theta_1 > \cdots > \theta_r.\] Let \[m_i = \textrm{the multiplicity of }\: \theta_i = \mathrm{dim} V_i = \mathrm{rank} E_i.\] Set \[\mathrm{Spec}(\Gamma) = \begin{pmatrix} \theta_0, & \theta_1, & \ldots, & \theta_r\\m_0, & m_1, & \ldots, & m_r\end{pmatrix}.\] Problem. What can we say about \(\Gamma\) when \(\mathrm{Spec}(\Gamma)\) is given?

The following Lemma 1.1, is an example of Problem.

For every \(x\in X\), \[k(x) \equiv \textrm{ valency of }x \equiv \textrm{ degree of }x \equiv |\{y\mid y\in X, \: xy\in E\}|.\]

Definition 1.1 The graph \(\Gamma\) is regular of valency \(k\) if \(k = k(x)\) for every \(x\in X\).

Lemma 1.1 With the above notation,

\((i)\) \(\theta_0\leq \max\{k(x) \mid x\in X\} = k^{\max}\).
\((ii)\) If \(\Gamma\) is regular of valency \(k\), then \(\theta_0 = k\).

Proof. \((i)\) Without loss of generality we may assume that \(\theta_0>0\), else done. Let \(v:=\sum_{x\in X}\alpha_x\hat{x}\) denote the eivenvector for \(\theta_0\).

Pick \(x\in X\) with \(|\alpha_x|\) maximal. Then \(|\alpha_x|\neq 0\).

Since \(Av = \theta_0v\), \[\theta_0\alpha_x = \sum_{y\in X, xy\in E}\alpha_y.\] So, \[\theta_0 |\alpha_x| = |\theta_0\alpha_x| \leq \sum_{y\in X, xy\in E}|\alpha_y| \leq k(x)|\alpha_x| \leq k^{\max}|\alpha_x|.\]

\((ii)\) All 1’s vector \(v = \sum_{x\in X}\hat{x}\) satisfies \(Av = kv\).

Let \(x, y\in X\) and \(\ell \in \mathbb{Z}^{\geq 0}\).

Definition 1.2 A path of length \(\ell\) connecting \(x, y\) is a sequence \[x = x_0, x_1, \ldots, x_{\ell} = y, \quad x_i\in X \quad (0\leq i\leq \ell)\] such that \(x_ix_{i+1}\in E\) for all \(i\) \((0\leq i \leq \ell-1)\).

Definition 1.3 The distance \(\partial(x,y)\) is the length of a shortest path connecting \(x\) and \(y\). \[\partial(x,y) \in \mathbb{Z}^{\geq 0} \cup \{\infty\}.\]

Definition 1.4 The graph \(\Gamma\) is connected if and only if \(\partial(x,y) < \infty\) for all \(x, y\in X\).

From now on, assume that \(\Gamma\) is connected with \(|X|\geq 2\).

Set \[d_\Gamma = d = \max\{\partial(x,y)\mid x, y\in X\} \equiv \textit{the diameter of }\;\Gamma.\]

Definition 1.5 For each vertex \(x\in X\), \[d(x) = \textit{the diameter with respect to }\: x = \max\{\partial(x,y)\mid y\in X\} \leq d.\]

Fix a ‘base’ vertex \(x\in X\).

Observe that \[V = V_0^* + V_1^* + \cdots + V_{d(x)}^* \quad \textrm{(orthogonal direct sum)},\] where \[V_i^* = \mathrm{Span}_K(\hat{y}\mid \partial(x,y) = i) \equiv V_i^*(x)\] and \(V_i^* = V_i^*(x)\) is called the \(i\)-th subconstituent with respect to \(x\).

Let \(E_i^* = E_i^*(x)\) denote the orthogonal projection \[E_i^*: V \longrightarrow V_i^*(x).\] View \(E_i^*(x) \in \mathrm{Mat}_X(K)\). So, \(E_i^*(x)\) is diagonal with \(yy\) entry: \[(E_i^*(x))_{yy} = \begin{cases} 1 & \textrm{if } \: \partial(x,y) = i,\\ 0 & \textrm{else,}\end{cases} \quad \textrm{ for } y\in X.\] Set \[M^* = M^*(x) \equiv \textrm{Span}_K(E_0^*(x), \ldots, E_{d(x)}^*(x)).\] Then \(M^*(x)\) is a commutative subalgebra of \(\mathrm{Mat}_X(K)\) and is called the dual Bose-Mesner algbara with respect to \(x\).

Definition 1.6 (Subconstituent Algebra) Let \(\Gamma = (X, E)\), \(x\), \(M\), \(M^*(x)\) be as above. Let \(T = T(x)\) denote the subalgebra of \(\mathrm{Mat}_X(K)\) generated by \(M\) and \(M^*(x)\). \(T\) is the subconstituent algebra of \(\Gamma\) with respect to \(x\).

Definition 1.7 A \(T\)-module is any subspace \(W\subseteq V\) such that \(aw\in W\) for all \(a\in T\) and \(w\in W\).

\(T\)-module \(W\) is irreducible if and only if \(W\neq 0\) and \(W\) does not properly contain a nonzero \(T\)-module.

For any \(a\in \mathrm{Mat}_X(K)\), let \(a^*\) denbote the conjugate transpose of \(a\).

Observe that \[\langle au, v\rangle = \langle u, a^*v\rangle \quad \textrm{for all }\; a\in \mathrm{Mat}_X(K), \textrm{ and for all } \; u,v\in V.\]

Lemma 1.2 Let \(\Gamma = (X,E)\), \(x\in X\) and \(T \equiv T(x)\) be as above.

\((i)\) If \(a\in T\), then \(a^*\in T\).
\((ii)\) For any \(T\)-module \(W\subset V\),

\[W^\bot := \{v\in V\mid \langle w, v\rangle = 0, \textrm{ for all }w\in W\}\] is a \(T\)-module.

\((iii)\) \(V\) decomposes as an orthogonal direct sum of irreducible \(T\)-modules.

Proof. \((i)\) It is because \(T\) is generated by symmetric real matrices \[A, E^*_0(x), E^*_1(x), \ldots, E^*_{d(x)}(x).\]

\((ii)\) Pick \(v\in W^\bot\) and \(a\in T\), it suffices to show that \(av\in W^\bot\). For all \(w\in W\),

\[\langle w, av\rangle = \langle a^*w, v\rangle = 0\] as \(a^*\in T\).

\((iii)\) This is proved by the induction on the dimension of \(T\)-modules. If \(W\) is an irreducible \(T\)-module of \(V\), then

\[V = W + W^\bot \quad \textrm{(orthogonal direct sum)}.\]

Problem. What does the structure of the \(T(x)\)-module tell us about \(\Gamma\)?

Study those \(\Gamma\) whose modules take ‘simple’ form. The \(\Gamma\)’s involved are highly regular.

HS MEMO

  1. The subconstituent algebra \(T\) is semisimple as the left regular representation of \(T\) is completely reducible. See Curtis-Reiner 25.2 (Charles W. Curtis 2006).
  2. The inner product \(\langle a, b\rangle_T = \mathrm{tr}(a^\top\bar{b})\) is nondegenerate on \(T\).
  3. In general, \[\begin{align*} T\textrm{: Semisimple and Artinian} & \Leftrightarrow T\textrm{: Artinian with } J(T) = 0 \\ & \Leftarrow T\textrm{: Artinian with nonzero nilpotent element} \\ & \Leftarrow T \subset \mathrm{Mat}_X(K) \textrm{ such that for all } a\in T \textrm{ is normal.} \end{align*}\]

References

Charles W. Curtis, Irvin Reiner. 2006. Representation Theory of Finite Groups and Associative Algebras. UK. Chelsea Pub Co.