Chapter 3 Cayley Graphs

Monday, January 25, 1993

Given graphs Γ=(X,E) and Γ=(X,E).

Definition 3.1 A map σ:XX is an isomorphism of graphs whenever;

  1. σ is one-to-one and onto,
  2. xyE if and only if σxσyE for all x,yX.

We do not distinguish between isomorphic graphs.

Definition 3.2 Suppose Γ=Γ. Above isomorphism σ is called an automorphism of Γ. Then set Aut(Γ) of all automorphisms of Γ becomes a finite group under composition.

Definition 3.3 If Aut(Γ) acts transitive on X, Γ is called vertex transitive.

Definition 3.4 (Cayley Graphs) Let G be any finite group, and Δ any generating set for G such that 1GΔ and gΔg1Δ. Then Cayley graph Γ=Γ(G,Δ) is defined on the vetex set X=G with the edge set E define by the following.

E={(h1,h2)h1,h2G,h11h2Δ}={(h,hg)hG,gΔ}.

Example 3.1 G=aa6=1, Δ={a,a1}.

Example 3.2 G=aa6=1, Δ={a,a1,a2,a2}.

Example 3.3 G=a,ba6=1=b2,ab=ba, Δ={a,a1,b}.

HS MEMO

Aut(Γ)D6×Z2 contains two regular subgroups isomorphic to D6 and Z6×Z2 and Γ is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.

Theorem 3.1 The following hold.

(i) For any Cayley graph Γ=Γ(G,Δ), the map

GAut(Γ)(gˆg) is an injective homomorphism of groups, where ˆg(x)=gxfor all gG and for all xX(=G). Also, the image ˆG is regular on X. i.e., the image ˆG acts transitively on X with trivial vertex stabilizers.

(ii) For any graph Γ=(X,E), suppose there exists a subgroup GAut(Γ) that is regular on X. Pick xX, and let

Δ={gGx,g(x)E}. Then 1Δ, gΔg1Δ, and Δ generates G. Moreover, ΓΓ(G,Δ).

Proof. (i) Let gG. We want to show that ˆgAut(Γ). Let h1,h2X=G. Then, (h1,h2)Eh11h2Δ(gh1)1(gh2)Δ(gh1,gh2)E(ˆg(h1),ˆg(h2))E. Hence, ˆgAut(Γ).

Observe: gˆg is a homomorphism of groups: ˆ1G=1,^g1g2=^g1^g2.

Observe: gˆg is one-to-one: ^g1=^g2g1=^g1(1G)=^g2(1G)=g2.

Observe: ˆG is regular on X: Clear by construction.

(ii) 1GΔ: Since Γ has not loops, (x,1Gx)E.

gΔg1Δ: gΔ(x,g(x))EE(g1(x),g1(g(x)))=(g1(x),x).

Δ generates G: Suppose Δ. Let \hat{X} = \{g(x)\mid g\in \langle \Delta\rangle\} \subsetneq X. (\hat{X} \subsetneq X as G acts regularly on X.)

Since \Gamma is connected, there exists y\in \hat{X} and z\in X\setminus \hat{X} with yz\in E.

Let y = g(x), g\in \langle \Delta\rangle, z\in h(x), h\in G\setminus \langle \Delta\rangle. Then (y,z)=(g(x),h(x))\in E \to (x,g^{-1}h(x))\in E \to g^{-1}h\in \langle \Delta \rangle \to h\in \langle \Delta \rangle. This is a contradition. Therefore, \Delta generates G.

Let \Gamma' = (X', E') denote \Gamma(G, \Delta). We shall show that \theta: X' \to X \; (g\mapsto g(x)) is an isomorphism of graphs.

\theta is one-to-one: For h_1, h_2\in X' = G, \theta(h_1)=\theta(h_2) \to h_1(x) = h_2(x) \to h_2^{-1}h_1(x)=x \to h_2^{-1}h_1\in \mathrm{Stab}_G(x) = \{1_G\} \to h_1 = h_2. (\mathrm{Stab}_G(x) = \{g\in G\mid g(x) = x\}.)

\theta is onto: Since G is transitive, X = \{g(x)\mid g\in G\} = \theta(X') = \theta(G).

\theta respects adjacency: For h_1, h_2\in X' = G, (h_1,h_2)\in E' \leftrightarrow h_1^{-1}h_2\in \Delta \leftrightarrow (x, h_1^{-1}h_2(x))\in E \leftrightarrow (h_1(x),h_2(x))\in E \leftrightarrow (\theta(h_1), \theta(h_2))\in E. Therefore \theta is an isomorphism between graphs \Gamma(G, \Delta) and \Gamma(X, E).

How to compute the eigenvalues of the Cayley graph of and abelian group.

Let G be any finite abelian group. Let \mathbb{C}^* be the multiplicative group on \mathbb{C}\setminus \{0\}.

Definition 3.5 A (linear) G-character is any group homomorphism \theta: G \to \mathbb{C}^*.

Example 3.4 G = \langle a\mid a^3 =1\rangle has three characters, \theta_0, \theta_1, \theta_2. \begin{array}{c|ccc} \theta_i(a^j) & 1 & a & a^2 \\ \hline \theta_0 & 1 & 1 & 1\\ \theta_1 & 1 & \omega & \omega^2\\ \theta_2 & 1 & \omega^2 & \omega \end{array}, \quad \textrm{with }\; \omega = \frac{-1+\sqrt{-3}}{2}. Here \omega is a primitive cube root of q in \mathbb{C}^*, i.e., 1+\omega + \omega^2 = 0.

For arbitraty group G, let X(G) be the set of all characters of G.

Observe: For \theta_1, \theta_2\in X(G), one can define product \theta_1\theta_2: \theta_1\theta_2(g) = \theta_1(g)\theta_2(g) \quad \textrm{for all }\; g\in G. Then \theta_1\theta_2\in X(G).

Observe: X(G) with this product is an (abelian) group.

Lemma 3.1 The groups G and X(G) are isomorphic for all finite abelian groups G.

Proof. G is a direct sum of cyclic groups; G = G_1\oplus G_2 \oplus \cdots \oplus G_m, \quad \textrm{where } \; G_i = \langle a_i\mid a_i^{d_i} = 1\rangle \quad (1\leq i\leq m). Pick any element \omega_i of order d_i in \mathbb{C}^*, i.e., a primitive d_i-the root of 1. Define \theta_i: G \to \mathbb{C}^* \quad (a_1^{\varepsilon_1}\cdots a_m^{\varepsilon_m} \mapsto \omega_i^{\varepsilon_i} \quad \textrm{where }\; 0\leq \varepsilon_i < d_i, 1\leq i\leq m). Then \theta_i\in X(G). (Exercise)

Claim: There exists an isomorphism of groups G \to X(G) that sends a_i to \theta_i.

Observe: \theta_i^{d_i} = 1. For every g = a_1^{\varepsilon_1}\cdots a_m^{\varepsilon_m} \in G, \theta_i^{d_i}(g) = (\theta_i(g))^{d_i} = (\omega_i^{\varepsilon_i})^{d_i} = (\omega_i^{d_i})^{\varepsilon_i} = 1. Observe: If \theta_1^{\varepsilon_1}\theta_2^{\varepsilon_2}\cdots \theta_m^{\varepsilon_m} = 1 for some 0\leq \varepsilon_i < d_i, 1\leq i\leq m. Then \varepsilon_1 = \varepsilon_2 = \cdots = \varepsilon_m = 0.

Pf. 1 = \theta_1^{\varepsilon_1}\theta_2^{\varepsilon_2}\cdots \theta_m^{\varepsilon_m}(a_i) = \omega_i^{\varepsilon_i}, Since \omega_i is a primitive d_i-th root of 1, \varepsilon_i = 0 for 1\leq i\leq m.

Observe: \theta_1, \ldots, \theta_m generate X(G). Pick \theta\in X(G). Since a_i^{d_i} = 1, 1 = \theta(a_i^{d_i}) = \theta(a_i)^{d_i}.

Hence \theta(a_i) = \omega^{\varepsilon_i} for some \varepsilon_i with 0\leq \varepsilon_i < d_i.

Now \theta = \theta_1^{\varepsilon_1}\cdots \theta_m^{\varepsilon_m}, since these are both equal to \omega_i^{\varepsilon_i} at a_i for 1\leq i \leq m.

Therefore, G \to X(G) \quad (a_i \mapsto \theta_i) is an isomorphism of groups.

Note. The correspondence above is clearly a group homomorphism.