Chapter 17 Association Schemes
Monday, March 1, 1993
Review
Let \(\Gamma = (X, E)\) be a distance-regular graph of diameter \(D\geq 2\). Pick a vertex \(x\in X\).
Let \(W\) be a thin irreducible \(T(x)\)-module with endpoint \(r = 1\), diameter \(d = D-1\) or \(D-2\), and \(r_0 = a_0(W) + 1\).
Show \[\gamma_i = \frac{c_2c_2\cdots c_{i+1}b_2b_3\cdots b_{i+1}\gamma_0}{x_1(W)\cdots x_i(W)},\] \(a_i(W)\) and \(x_i(W)\) are all algebraic integers in \(\mathbb{Q}[\gamma_0]\), where \[\begin{align} x_i(W) & = c_ib_i + \gamma_{i-1}(a_i + c_i - c_{i+1}-a_{i-1}(W)) && (1\leq i\leq d)\\ a_i(W) & = \gamma_i - \gamma_{i-1} + a_i + c_i - c_{i+1} && (1\leq i\leq d) \end{align}\]
Certainly, \(x_i(W)\), \(\gamma_i\), and \(a_i(W)\) are in \(\mathbb{Q}[\gamma_0]\) by the above lines and so on. \[\gamma_0 \to a_0(W) \to x_1(W) \to \gamma_1 \to a_1(W)\to x_1(W) \to \cdots .\] Recall some \(B\in \mathrm{Mat}_n(\mathbb{C})\) is integral whenever \[B\in \mathrm{Mat}_n(\mathbb{Z}).\] In this case, the characteristic polynomial \[\det(\lambda I - B) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \cdots + \alpha_0, \; \text{ for some }\; \alpha_0, \ldots, \alpha_{n-1}\in \mathbb{Z}.\] Hence, eigenvalues of \(B\) are algebraic integers. But \(a_i(W)\) is an eigenvalue of an integral matrices, \[B = E^*_{i+1}(x)AE^*_{i+1}(x).\] Hence, \(a_i(W)\) is an algebraic integer.
Also, \(x_i(W)\) is an eigenvalue of an integral matrix \[B = E^*_i(x)AE^*_{i+1}(x)AE^*_i(x).\] So \(x_i(W)\) is an algebraic integer. \[\gamma_i - \gamma_{i-1} = a_i(W) - a_i - c_i + c_{i+1}\] is an algebraic integer.
Since \(\gamma_0 = a_0(W) + 1\) is an algebraic integer, we find \(\gamma_i\) is an algebraic integer for all \(i\).
Definition 17.1 A (commutative) association scheme is a configuration \(Y = (X, \{R_i\}_{0\leq i\leq D})\), where \(X\) is a finite nonempty set (of vertices), \(R_0, R_1, \ldots, R_D\) are nonempty subsets of \(X\times X\) such that
\[p^h_{ij} = |\{z\in X\mid (x,z)\in R_i, \; (z,y)\in R_j\}|\] depends only on \(h, i, j\) and not on \(x,y\); and
If \(i' = i\) for all \(i\), we say \(Y\) is symmetric. We call \(D\) the class of scheme and \(R_i\), the \(i\)th relation of \(Y\). We say vertices \(x,y\in X\) are \(i\)-related, or ‘at distance \(i\)’, whenever \((x,y)\in R_i\).
We always assume that a ‘scheme’ is a commutative association scheme.
Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be an association scheme.
Definition 17.2 The \(i\)-the association matrix \(A_i\in \mathbb{Mat}_X(\mathbb{C})\) \[\begin{align} (A_i)_{xy} & = \begin{cases} 1 & \text{if}\; (x,y)\in R_i\\ 0 & \text{if}\; (x,y)\not\in R_i,\end{cases} && (x,y\in X, 0\leq i\leq D) \end{align}\] Then,
Observe: \[Y \text{ is symmetric} \leftrightarrow A_i^\top = A_i \text{ for all } i \leftrightarrow M \text{ is symmetric}.\]
Example 17.1 Let \(\Gamma = (X, E)\) be distance-regular of diameter \(D\). Set \[\begin{align} R_i & = \{(x,y)\mid \partial(x,y) = i\} && (0\leq i\leq D). \end{align}\] Then, \[Y = (X, \{R_i\}_{0\leq i\leq D})\] is a symmetric scheme. \[i\text{-th association matrix} = i\text{-th distance matrix} \quad \text{for all $i$.}\]
Example 17.2 Suppose a group \(G\) acts transitively on a seet \(X\). Assume \(G\) is generously transitive, i.e., \[\text{for all }x,y\in X, \text{ there exists }g\in G \text{ such that }gx = y, gy = x.\] Then \(G\) acts on \(X\times X\) by rule; \[g(x,y) = (gx, gy), \quad \text{for all }\; g\in G, \text{ and for all }x,y\in X.\] Let \(R_0, \ldots, R_D\) denote orbits of \(G\) on \(X\times X\).
Observe that \(R_i^\top = R_i\) for all \(i\) by generously transitivity, and \[Y = (X, \{R_i\}_{0\leq i\leq D})\] is a symmetric scheme.
Exercise 17.1 In Example Example 17.2, Bose-Mesner algebra \[\begin{align} M & = \{B\in \mathrm{Mat}_X(\mathbb{C}) \mid Bg = gB, \text{ for all }g\in G\}\\ & = \text{the commuting algebra of $G$ on $X$.} \end{align}\] Here, we view each \(g\in G\) as a permutation matrix in \(\mathrm{Mat}_X(\mathbb{C})\) satisfying \[g\hat{x} = \widehat{gx} \quad \text{for all }x\in G.\]
Example 17.3 Let \(G\) be any finite group. \(G\) acts on \(X = G\) by conjugation. \[G\times X \to X, \quad (g,x)\mapsto gxg^{-1}.\] Let \(C_0, C_1, \ldots, C_D\) denote orbits (i.e., conjugacy classes), and let \(C_0 = \{1_G\}\). Claim that \(Y = (X, \{R_i\}_{0\leq i\leq D})\) is a commutative scheme (not symmetric in general).
\[\text{for all }h = (g,gz), \text{for all }x\in X, \quad h(x) = gx(gx)^{-1} = gxz^{-1}g^{-1}.\] \[R_i = \{(x,y)\mid x^{-1}y\in C_i\}, \; h_i\in C_i, \; x^{-1}y = gh_ig^{-1}.\] \[\begin{align} (x,y) & = (x, xgh_ig^{-1})\\ & = (xgg^{-1}, xgh_ig^{-1})\\ & = (xg, g)(1,h_i). \end{align}\] So, \(R_0, \ldots, R_D\) are the orbits of \(H\) on \(X\times X\).
Fix \(i,j, h\) and \(x, y\in X\) with \((x,y)\in R_h\). Set \[\begin{align} S & = \{z\in X\mid (x,z)\in R_i, \; (z,y)\in R_j\}\\ T & = \{z\in X\mid (x,z)\in R_j, \; (z,y)\in R_i\}. \end{align}\] Show \(|S| = |T|\). \[\text{For all }z\in S, \text{ set } \hat{z} = xz^{-1}y.\] Observe, \(\hat{z}\in T\). \[\begin{align} x^{-1}z\in C_i \quad & x^{-1}\hat{z} = x^{-1}xz^{-1}y\in C_j\\ z^{-1}y\in C_j \quad & \hat{z}^{-1}y = y^{-1}zx^{-1}x^{-1}y = y^{-1}x(x^{-1}z)x^{-1}y \in C_i. \end{align}\] Observe \[S\to T \quad (z\mapsto z^{-1}) \quad \text{is one-to-one and onto.}\]