Chapter 33 Algebra on First Subconstitutent

Wednesday, April 21, 1993

Lemma 33.1 Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme. Fix a vertex \(x\in X\), write \(E^*_i\equiv E^*_i(x)\), \(M^* \equiv M^*(x)\), \(T\equiv T(x)\). Then the following hold.

\((i)\) \(E^*_0MM^* = E^*_0M\)
\((ii)\) \(E^*_0T = E^*_0M\).
\((iii)\) \(TE^*_0T = ME^*_0M\).
\((iv)\) \(E^*_0E_0E^*_0 = |X|^{-1}E^*_0\).
\((v)\) \(E^*_0E_0E^*_0 = |X|^{-1}E^*_0\).
\((vi)\) Lines \((i)\)-\((iv)\) hold if we interchange \((E_0, E^*_0)\), \((M, M^*)\).

Moreover, \(ME^*_0M = M^*E_0M^*\).

Proof.

\((i)\) \(\supseteq\): \(1\in M^*\) implies \(M\subseteq MM^*\).

\(\subseteq\): Pick \(\alpha\in E^*_0MM^*\). Show \(\alpha\in E^*_0M\). Since \(A_0, A_1, \ldots, A_D\) span \(M\), and since \(E^*_0, E^*_1, \ldots, E^*_D\) span \(M^*\), without loss of generality we may assume that \[\alpha = E^*_0A_iE^*_j\] for some \(i,j\in \{0, \ldots, D\}\).

Without loss of generality we may assume taht \(i = j\), else \(\alpha = 0\) by Lemma 20.3.

\[(E^*_hA_iE^*_j \neq O \Leftrightarrow p^j_{hi}\neq 0.)\]

Now \[\alpha = E^*_0A_i\left(\sum_{h=0}^D E^*_h\right) = E^*_0A_i \in E^*_0M.\]

\((ii)\) \(\supseteq\): This is clear.

\(\subseteq\): \(E^*_0T\) is the minimal right ideal of \(T\) containing \(E^*_0\).

So, we just have to show that \(E^*_0M\) is a right ideal of \(T\) containing \(E^*_0\).

It clearly contains \(E^*_0\) since \(I\in M\), and is a right ideal of \(T\) by \((i)\), and the fact that \(T\) is generated by \(M\) abd \(M^*\).

\((iii)\) By the transpose of \((ii)\),

\[TE^*_0 = ME^*_0,\] so, \[TE^*_0T = (TE^*_0)(E^*_0T) = ME^*_0E^*_0M = ME^*_0M.\]

\((iv)\) We have

\[E^*_0E_0E^*_0 = \frac{1}{|X|}E^*_0\left(\sum_{h=0}^D A_h\right)E^*_0 = \frac{1}{|X|}E^*_0A_0E^*_0 = |X|^{-1}E^*_0.\]

\((v)\) The first part is clear by using Lemma 20.3 \((ii)\),

\[E_hA^*_iE_j\neq O \Leftrightarrow q^j_{hi} \neq 0,\] and Lemma 22.1 \((iii)\), \[q^j_{0i} = \delta_{ij}.\]

Also, \[ME^*_0M = TE^*_0T = TE^*_0E_0E^*_0T \subseteq TE_0T = M^*E_0M^*,\] and \[M^*E_0M^* \subseteq ME^*_0M\] by dual argument. So, \[M^*E_0M^* = ME^*_0M.\]

This proves the lemma.

Lemma 33.2 Let \(\Gamma = (X, E)\) be distance regular of diameter \(D\leq 3\), \(Q\)-polynomial with respect to \(E_0, E_1, \ldots, E_D\). Pick a vertex \(x\in X\), write \(E^*_i\equiv E^*_i(x)\), \(M^* \equiv M^*(x)\), \(T\equiv T(x)\).

\((i)\) \(E^*_1MM^* = E^*M + E^*_1E_0M^* + E^*_1E_1M^*\).
\((ii)\) \(E_1M^*M = E_1M^* + E_1E^*_0M + E_1E^*_1M\).

Proof.

\((i)\) View \(E^*_{-1}\), \(E^*_{D+1}\) as \(O\).

View \(\theta^*_{-1}\), \(\theta^*_{D+1}\) as indeterminates.

Let \(\Delta\) denote \(\mathrm{RHS}\) in \((i)\).

\(\supseteq\): \(I\in M^*\) implies \(M\subseteq MM^*\).

\(\subseteq\): Suppose not. Then there exists \[\begin{equation} \alpha\in E^*_1MM^*\setminus \Delta. \tag{33.1} \end{equation}\]

Since \(A_0, A_1, \ldots, A_D\) span \(M\), since \(E^*_0, E^*_1, \ldots, E^*_D\) span \(M^*\), without loss of generality we may assume that \[\alpha = E^*_1A_iE^*_j\] for some \(i,j\in \{0, \ldots, D\}\).

Observe \(|i-j|\leq 1\), else \(\alpha =0\) by Lemma 20.3.

Without loss of generality, assume \(i+j\) is minimal subject to the above constraints.

First assume \[\begin{equation} j = i+1. \tag{33.2} \end{equation}\] Observe \[\begin{align} & E^*_1A_iE^*_{i+1} + E^*_1A_iE^*_i + E^*_1A_iE^*_{i-1}\\ & \qquad = E^*_1A_i\left(\sum_{h=0}^D E^*_h\right)\\ & \qquad = E^*_1A_i\\ & \qquad \in \Delta. \tag{33.3} \end{align}\]

Also, observe \[E^*_1A_iE^*_i, \; E^*_1A_iE^*_{i-1}\in \Delta\] by the minimality of \(i+j\), so \[\alpha = E^*_1A_iE^*_{i+1}\in \Delta\] by (33.3). Hence, (33.2) cannot occur.

Since \(|i-j|\leq 1\), \[\begin{equation} i\in \{j, j+1\}. \tag{33.4} \end{equation}\]

Observe \[\begin{align} & E^*_1A_{j+1}E^*_{j} + E^*_1A_jE^*_j + E^*_1A_{j-1}E^*_{j}\\ & \qquad = E^*_1\left(\sum_{h=0}^D A_h\right)E^*_j\\ & \qquad = |X|E^*_1E_0E^*_j\\ & \qquad \in \Delta, \tag{33.5} \end{align}\] and \[\begin{align} & \theta^*_{j+1}E^*_1A_{j+1}E^*_{j} + \theta^*_j E^*_1A_jE^*_j + \theta^*_{j-1}E^*_1A_{j-1}E^*_{j}\\ & \qquad = E^*_1\left(\sum_{h=0}^D \theta^*_h A_h\right)E^*_j\\ & \qquad = |X|E^*_1E_1E^*_j\\ & \qquad \in \Delta. \tag{33.6} \end{align}\]

Since \(E^*_1A_{j-1}E^*_j\in \Delta\) by the minimality of \(i+j\), so \[E_1A_{j+1}E^*_j + E^*_1A_jE^*_j \in \Delta,\] \[\theta^*_{j+1}E^*_1A_{j+1}E^*_{j+1} + \theta^*_jE^*_1A_jE^*_j \in \Delta.\]

But, \(\theta^*_0, \theta^*_1, \ldots, \theta^*_D\) are distinct by Lemma 22.2 \((iv)\), so \[E^*_1A_{j+1}E^*_j, \; E^*_1A_jE^*_j\in \Delta.\] But \(\alpha\) is one of these two matrices, so \[\alpha \in \Delta.\] Hence, (33.4) cannot occur either, and we have a contradiction.

\((ii)\) Dual argument.

Lemma 33.3 With the above notation, set \[\tilde{J}:= E^*_1JE^*_1, \quad \tilde{A}:= E^*_1AE^*_1.\]

\((i)\) \(\tilde{J}^2 = k\tilde{J}\). \((k = \text{valency of $\Gamma$})\)
\((ii)\) \(\tilde{J}\tilde{A} = \tilde{A}\tilde{J} = a_1\tilde{J}\). \((a_1 = p^{1}_{11} \text{ for } \Gamma)\)
\((iii)\) \(E_1^*E_0E^*_1 = |X|^{-1}\tilde{J}\).
\((iv)\) \(E^*_1E_1E^*_1 = |X|^{-1}(E^*_1(\theta^*_0-\theta^*_2)+\tilde{A}(\theta^*_{1}-\theta^*_2)+\tilde{J}(\theta^*_2))\).

Proof.

\((i)\) The first subconstituent has \(k\) vertices.
\((ii)\) The first subconstituent is regular of valency \(a_1\).
\((iii)\) Since \(E_0 = |X|^{-1}J\),

\[E^*_1E_0E^*_1 = |X|^{-1}\tilde{J}.\]

\((iv)\) We have

\[\begin{align} E^*_1E_1E^*_1 & = E^*_1\left(|X|^{-1}\sum_{h=0}^D\theta^*_h A_h\right)E^*_1\\ & = |X|^{-1}(\theta^*_0E^*_1A_0E^*_1 + \theta^*_1E^*_1A_1E^*_1 + \theta^*_2E^*_1A_2E^*_1)\\ & = |X|^{-1}(\theta^*_0E^*_1 + \theta^*_1\tilde{A} + \theta^*_2E^*_1A_2E^*_1). \tag{33.7} \end{align}\] Also, \[\begin{align} \tilde{J} & = E^*_1JE^*_1\\ & = E^*_1A_0E^*_1 + E^*_1A_1E^*_1 + E^*_1A_2E^*_1\\ & = E^*_1 + \tilde{A} + E^*_1A_2E^*_1. \tag{33.8} \end{align}\] Eliminating the \(E^*_1A_2E^*_1\) term in (33.7) using equation (33.8), we get \((iv)\).

Lemma 33.4 With the above notation,

\((i)\) \(E^*_1T = E^*_1E_0M^* + E^*_1M + E^*_1E_1M^* + E^*_1E_1E^*_1M + \cdots\).
\((ii)\) \(E^*_1TE^*_1 = \mathrm{Span}(E^*_1E_0E^*_1, E^*_1, E^*_1E_1E^*_1, (E^*_1E_1E^*_1)^2, \ldots)\).
\((iii)\) \(E^*_1TE^*_1 = \mathrm{Span}(\tilde{J}, E^*_1, \tilde{A}, \tilde{A}^2, \ldots )\).
\((iv)\) \(E^*_1TE^*_1\) is symmetric (in particular, commutative).

Proof.

\((i)\) \(\supseteq\): Clear.

\(\subseteq\): \(E^*_1T\) is the minimal right ideal of \(\Gamma\) that contains \(E^*_1\).

\(\mathrm{RHS}\) contains \(E^*_1\), so show \(\mathrm{RHS}\) is a right ideal of \(T\).

Show \(\mathrm{RHS}\) is closed with respect to multiplication on right by \(M\), \(M^*\).

We have \[E^*_1E_0M^*(M) = E^*_1E_0M^*, \; E^*_1E_0M^*(M^*) = E^*_1E_0M^*\] by dual of Lemma 33.1 \((i)\).

By Lemma 33.2, \[\begin{align} & E^*_1E_1E^*_1\cdots E^*_1M(M^*)\\ & \qquad = E^*_1E_1E^*_1\cdots E_1(E^*_1MM^*)\\ & \qquad = E^*_1E_1E^*_1\cdots E_1(E^*_1M+E^*_1E_0M^* + E^*_1E_1M^*)\\ & \qquad \in \mathrm{RHS}, \end{align}\] because \[E^*_1E_1E^*_1\cdots E_1E^*_1E_0M^* \subseteq E^*_1TE_0T = E^*_1M^*E_0M^* = E^*_1E_0M^*.\]

By Lemma 33.2, \[\begin{align} & E^*_1E_1E^*_1\cdots E_1M^*(M)\\ & \qquad = E^*_1E_1E^*_1\cdots E^*_1(_1M^*M)\\ & \qquad = E^*_1E_1E^*_1\cdots E^*_1(E_1M^*+E_1E^*_0M^* + E_1E^*_1M)\\ & \qquad \in \mathrm{RHS}, \end{align}\] because by the last part of Lemma 33.1, \[E^*_1E_1E^*_1\cdots E^*_1E_1E^*_0M \subseteq E^*_1TE^*_0T = E^*_1ME^*_0M = E^*_1E_0M^*.\]

\((ii)\) Multiply \((i)\) on the right by \(E^*_1\), we have

\[\begin{align} E^*_1TE^*_1 & = E^*_1E_0M^*E^*_1 + E^*_1ME^*_1 + E^*_1E_1M^*E^*_1\\ & \quad + \cdots + E^*_1E_1\cdots E_1M^*E^*_1 + E^*_1E_1\cdots E^*_1ME^*_1\\ & = \mathrm{Span}(E^*_1E_0E^*_1, E^*_1, E^*_1E_1E^*_1, (E^*_1E_1E^*_1)^2, \ldots). \end{align}\]

HS MEMO

Note that by Lemma 29.1, \[\begin{align} E^*_1ME^*_1 & = \mathrm{Span}(E^*_1A_0E^*_1, E^*_1A_1E^*_1, E^*_1A_2E^*_1)\\ & = \mathrm{Span}(E^*_1, E^*_1E_1E^*_1, E^*_1E_0E^*_1). \end{align}\] Moreover, \[E^*_1\cdots E^*_1E_0E^*_1 \subseteq E^*_1TE_0TE^*_1 = E^*_1M^*E_0M^*E^*_1 \in \mathrm{Span}(E^*_1E_0E^*_1).\]

\((iii)\) By \((ii)\), \(E^*_1TE^*_1\) is generated by \(\tilde{J} = |X|E^*_1E_0E^*_1\) and \(E^*_1E_1E^*_1\).

By Lemma 33.3 \((iv)\), \(E^*_1TE^*_1\) is generated by \(\tilde{J}, \tilde{A}\).

But, \(\mathrm{Span}{\tilde{J}}\) is a \(2\)-sided ideal by Lemma 33.3 \((i)\), \((ii)\).

Hence, we have \((iii)\).

\((iv)\) \(\tilde{A}\), \(\tilde{J}\) are symmetric commuting matrices, we have the claim.