Chapter 20 Vanishing Conditions
Monday, March 15, 1993 (Monday after Spring break)
Lemma 20.1 Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme.
\[k_i = p^0_{ii'} = |\{y\in X\mid (x,y)\in R_i\}| \quad (x\in X).\]
\[m_i = \mathrm{rank} E_i.\]
Proof.
\[\begin{align} A_0 & = p_0(0)E_0 + p_0(1)E_1 + \cdots + p_0(D)E_D\\ I & = E_0 + E_1 + \cdots + E_D, \end{align}\] \(p_0(i) = 1\) for all \(i\).
\[A_i = p_i(0)E_0 + p_i(1)E_1 + \cdots + p_i(D)E_D,\] \(A_i E_0 = p_i(0)E_0\), and \[k_i J = A_i J = p_i(0)J\] as there are \(k_i\) \(1\)’s in each row of \(A_i\), we have \(k_i = p_i(0)\).
\[\begin{align} E_0 & = |X|^{-1}(q_0(0)A_0 + q_0(1)A_1 + \cdots + q_0(D)A_D)\\ |X|^{-1}J & = |X|^{-1}(A_0 + A_1 + \cdots + A_D), \end{align}\] \(q_0(i) = 1\) for all \(i\).
\[\begin{pmatrix} I_{m_i} & O \\ O & O\end{pmatrix}.\] So, \[m_i = \mathrm{rank}E_i = \mathrm{trace} E_i = \sum_{x\in X}(E_i)_{xx} = |X||X|^{-1}q_i(0) = q_i(0).\] Note that as \[E_i = \frac{1}{|X|}\sum_{j=0}^D q_i(j)A_j \to (E_i)_{xx} = \frac{1}{|X|}q_i(0)(A_0)_{xx}.\] Hence, we have all formulas.
Lemma 20.2 With the above notation
Proof.
\[\begin{align} \sum_{h = 0}^D p^h_{ij} A_{h'} & = \left(\sum_{h=0}^D p^h_{ij}A_h\right)^\top \\ & = (A_iA_j)^\top \\ & = A_j^\top A_i^\top\\ & = A_{j'}A_{i'} \\ & = \sum_{h=0}^D p^{h'}_{j'i'}A_h'. \end{align}\]
\[\begin{align} & |\{xyz\in X^3 \mid (x,y)\in R_h, (x,z)\in R_i, (z,y)\in R_j\}| \\ & \quad = |X|k_hp^h_{ij} = |X|k_jp^j_{i'h} = |X|k^i_{hj'}. \end{align}\]
\[\begin{align} \frac{1}{|X|}\sum_{h = 0}^D q^h_{ij} E_{\hat{h}} & = \left(\frac{1}{|X|}\sum_{h=0}^D q^h_{ij}E_h\right)^\top \\ & = (E_i\circ E_j)^\top \\ & = E_j^\top \circ E_i^\top\\ & = E_{\hat{j}}E_{\hat{i}} \\ & = \frac{1}{|X|}\sum_{h=0}^D q^{\hat{h}}_{\hat{j}\hat{i}}E_{\hat{h}}. \end{align}\]
Observe: \(\tau(B\circ C) = \mathrm{trace}(BC^\top)\).
Observe \[\tau(E_i\circ E_j \circ E_{\hat{k}}) = \tau((E_i\circ E_j\circ E_{\hat{k}})^\top) = \tau(E_{\hat{i}}\circ E_k \circ E_{\hat{j}}) = \tau(E_k\circ E_{\hat{j}}\circ E_{\hat{i}}).\] Compute each one. \[\begin{align} \tau(E_i\circ E_j \circ E_{\hat{k}}) & = \mathrm{trace}((E_i\circ E_j)E_k) = \mathrm{trace}\left(\left(\frac{1}{|X|}\sum_{h} q^h_{ij}E_h\right)E_k\right)\\ & = \mathrm{trace}\left(\frac{1}{|X|} q^k_{ij}E_k\right) = \frac{1}{|X|}m_kq^k_{ij},\\ \tau(E_{\hat{i}}\circ E_k \circ E_{\hat{j}}) & = \mathrm{trace}((E_{\hat{i}}\circ E_k)E_{\hat{j}}) = \mathrm{trace}\left(\left(\frac{1}{|X|}\sum_{h} q^h_{\hat{i}k}E_h\right)E_{\hat{j}}\right)\\ & = \mathrm{trace}\left(\frac{1}{|X|} q^j_{\hat{i}k}E_k\right) = \frac{1}{|X|}m_jq^j_{\hat{i}k},\\ \tau(E_k\circ E_{\hat{j}}\circ E_{\hat{i}}) & = \mathrm{trace}((E_k\circ E_{\hat{j}})E_i) = \mathrm{trace}\left(\left(\frac{1}{|X|}\sum_{h} q^h_{k\hat{j}}E_h\right)E_i\right)\\ & = \mathrm{trace}\left(\frac{1}{|X|} q^i_{k\hat{j}}E_i\right) = \frac{1}{|X|}m_iq^i_{k\hat{j}}. \end{align}\] Hence, we have \((iv)\).
Lemma 20.3 Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme. Fix a vertex \(x\in X\), and set \(E^*_i\equiv E^*_i(x)\) and \(A^*_i \equiv A^*(x)\). Then the following hold.
Proof.
\[E^*_i(x)A_j E^*_h(x)\] is the \((i,h)\) block of \(A_j\).
Hence this submatrix is zero if and only if there exists no \(y,z\in X\) such that \((x,y)\in R_i\), \((x,z)\in R_h\) and \((y,z)\in R_j\). This is exactly when \(p^h_{ij} = 0\).
\[\begin{align} & = \tau((E_iA^*_jE_k)\circ (\overline{E_jA^*_jE_k}))\\ & = \mathrm{trace}(E_iA^*_jE_k(\overline{E_jA^*_jE_k})^\top)\\ & = \mathrm{trace}(E_iA^*_jE_kA^*_{\hat{j}}E_i)\\ & = \mathrm{trace}(E_iA^*_jE_kA^*_{\hat{j}}) && \text{as $\mathrm{trace}(XY) = \mathrm{trace}(YX)$}\\ & = \sum_{y\in X}(E_iA^*_jE_kA^*_{\hat{j}})_{yy}\\ & = \sum_{y\in X}\left(\sum_{z\in X} (E_i)_{yz}(A^*_j)_{zz}(E_k)_{zy}(A^*_{\hat{j}})_{yy}\right)\\ & = \sum_{y\in X}\left(\sum_{z\in X} (E_{\hat{i}})_{zy}(|X|(E_j)_{xz})(E_k)_{zy}(|X|(E_j)_{yx})\right)\\ & = |X|^2(E_j(E_{\hat{i}}\circ E_k))E_j)_{xx}\\ & = |X|q^j_{\hat{i}k}(E_j)_{xx}\\ & = q^j_{\hat{i}k}m_j \\ & = m_kq^k_{ij}. \end{align}\] Note that since \(|X|E_j = q_j(0)A_0 + q_j(1)A_1 + \cdots q_j(D)A_D\), \[(E_j)_{xx} = \frac{1}{|X|}q_j(0) = \frac{m_j}{|X|}.\] Thus, we have \((ii)\).
Corollary 20.1 (Krein Condition) For any commutative scheme \(Y = (X, \{R_i\}_{0\leq i\leq D})\), \(q^h_{ij}\) is a non-negative real number for \(0\leq h, i, j\leq D\).
Proof. Since \(q^h_{ij}m_h\) is a non-negative real by the proof of Lemma 20.3 \((ii)\).
Note that \(m_h\) is a positive integer.
An interpretation of the Krein parameters.
Let \(Y = (X, \{R_i\}_{0\leq i\leq D})\) be a commutative scheme with standard module \(V\).
Pick a vector \(v\in V\) with \[v = \sum_{x\in X}\alpha_x \hat{x}.\] View \(v\) as a function \[v: X\longrightarrow \mathbb{C} \quad (x\mapsto \alpha_x).\] View \(V\) as the set of all functions \(V \longrightarrow \mathbb{C}\). Then the vector space \(V\) together with product of functions is a \(\mathbb{C}\)-algebra.
For \[v = \sum_{x\in X}\alpha_x \hat{x}, \quad w = \sum_{x\in X}\beta_x \hat{x} \in V,\] write \[v\circ w = \sum_{x\in X}\alpha_x\beta_x \hat{x}\] to represent the product of \(v\) and \(w\) viewed as functions.
Lemma 20.4 With the above notation,