D Appendix D Coronavirus

An example of an R Notebook, rendered at 2022-11-30 23:41:17 JST

This version uses tidyverse packages for importing and transforming data.

library(tidyverse)
library(DT)

D.1 Introduction

The following site of Johns Hopkins University is famous:

In this article, we study a coronavirus data collected by Johns Hopkins University called “JHU Covid-19 global time series data”. Since the original data requires reshaping, we use a data provided by RamiKrispin in the following site.

See also the R package coronavirus at

We can directly download and read the data from:

It is updated daily.

In this note, we use the original JHU data and transform it using dplyr in the form similar to the Krispin’s.

D.2 Exploration of Data with Base R

D.2.1 Download and read csv (comma separated value) file

coronavirus <- read.csv("https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv")

D.2.2 Summaries and structures of the data

head(coronavirus)
##         date province country     lat      long      type cases   uid iso2 iso3
## 1 2020-01-22  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
## 2 2020-01-23  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
## 3 2020-01-24  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
## 4 2020-01-25  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
## 5 2020-01-26  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
## 6 2020-01-27  Alberta  Canada 53.9333 -116.5765 confirmed     0 12401   CA  CAN
##   code3    combined_key population continent_name continent_code
## 1   124 Alberta, Canada    4413146  North America           <NA>
## 2   124 Alberta, Canada    4413146  North America           <NA>
## 3   124 Alberta, Canada    4413146  North America           <NA>
## 4   124 Alberta, Canada    4413146  North America           <NA>
## 5   124 Alberta, Canada    4413146  North America           <NA>
## 6   124 Alberta, Canada    4413146  North America           <NA>
str(coronavirus)
## 'data.frame':    888636 obs. of  15 variables:
##  $ date          : chr  "2020-01-22" "2020-01-23" "2020-01-24" "2020-01-25" ...
##  $ province      : chr  "Alberta" "Alberta" "Alberta" "Alberta" ...
##  $ country       : chr  "Canada" "Canada" "Canada" "Canada" ...
##  $ lat           : num  53.9 53.9 53.9 53.9 53.9 ...
##  $ long          : num  -117 -117 -117 -117 -117 ...
##  $ type          : chr  "confirmed" "confirmed" "confirmed" "confirmed" ...
##  $ cases         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ uid           : int  12401 12401 12401 12401 12401 12401 12401 12401 12401 12401 ...
##  $ iso2          : chr  "CA" "CA" "CA" "CA" ...
##  $ iso3          : chr  "CAN" "CAN" "CAN" "CAN" ...
##  $ code3         : int  124 124 124 124 124 124 124 124 124 124 ...
##  $ combined_key  : chr  "Alberta, Canada" "Alberta, Canada" "Alberta, Canada" "Alberta, Canada" ...
##  $ population    : num  4413146 4413146 4413146 4413146 4413146 ...
##  $ continent_name: chr  "North America" "North America" "North America" "North America" ...
##  $ continent_code: chr  NA NA NA NA ...

Since the first column consists of date in character format, we change it to Date.

coronavirus$date <- as.Date(coronavirus$date)
str(coronavirus)
## 'data.frame':    888636 obs. of  15 variables:
##  $ date          : Date, format: "2020-01-22" "2020-01-23" ...
##  $ province      : chr  "Alberta" "Alberta" "Alberta" "Alberta" ...
##  $ country       : chr  "Canada" "Canada" "Canada" "Canada" ...
##  $ lat           : num  53.9 53.9 53.9 53.9 53.9 ...
##  $ long          : num  -117 -117 -117 -117 -117 ...
##  $ type          : chr  "confirmed" "confirmed" "confirmed" "confirmed" ...
##  $ cases         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ uid           : int  12401 12401 12401 12401 12401 12401 12401 12401 12401 12401 ...
##  $ iso2          : chr  "CA" "CA" "CA" "CA" ...
##  $ iso3          : chr  "CAN" "CAN" "CAN" "CAN" ...
##  $ code3         : int  124 124 124 124 124 124 124 124 124 124 ...
##  $ combined_key  : chr  "Alberta, Canada" "Alberta, Canada" "Alberta, Canada" "Alberta, Canada" ...
##  $ population    : num  4413146 4413146 4413146 4413146 4413146 ...
##  $ continent_name: chr  "North America" "North America" "North America" "North America" ...
##  $ continent_code: chr  NA NA NA NA ...

Now the first column is recognized as date. The range of dates covered can be seen by the following.

range(coronavirus$date)
## [1] "2020-01-22" "2022-11-29"

Let us check the countries by unique function. We choose a country from this list later.

head(unique(coronavirus$country), 10)
##  [1] "Canada"         "United Kingdom" "China"          "Netherlands"   
##  [5] "Australia"      "New Zealand"    "Denmark"        "France"        
##  [9] "Afghanistan"    "Albania"

Now check the type column similarly.

unique(coronavirus$type)
## [1] "confirmed" "death"     "recovery"

D.2.3 Set a Country

As a test we choose “Japan” as a country. Please check the country list above. We apply a filter country == COUNTRY to the country column.

COUNTRY <- "Japan"
df0 <- coronavirus[coronavirus$country == COUNTRY,]

Let us check the subset of our data and see if the population column changes over time.

head(df0)
##              date province country      lat     long      type cases uid iso2
## 183569 2020-01-22     <NA>   Japan 36.20482 138.2529 confirmed     2 392   JP
## 183570 2020-01-23     <NA>   Japan 36.20482 138.2529 confirmed     0 392   JP
## 183571 2020-01-24     <NA>   Japan 36.20482 138.2529 confirmed     0 392   JP
## 183572 2020-01-25     <NA>   Japan 36.20482 138.2529 confirmed     0 392   JP
## 183573 2020-01-26     <NA>   Japan 36.20482 138.2529 confirmed     2 392   JP
## 183574 2020-01-27     <NA>   Japan 36.20482 138.2529 confirmed     0 392   JP
##        iso3 code3 combined_key population continent_name continent_code
## 183569  JPN   392        Japan  126476458           Asia             AS
## 183570  JPN   392        Japan  126476458           Asia             AS
## 183571  JPN   392        Japan  126476458           Asia             AS
## 183572  JPN   392        Japan  126476458           Asia             AS
## 183573  JPN   392        Japan  126476458           Asia             AS
## 183574  JPN   392        Japan  126476458           Asia             AS
tail(df0)
##              date province country      lat     long     type cases uid iso2
## 771815 2022-11-24     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
## 771816 2022-11-25     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
## 771817 2022-11-26     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
## 771818 2022-11-27     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
## 771819 2022-11-28     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
## 771820 2022-11-29     <NA>   Japan 36.20482 138.2529 recovery     0 392   JP
##        iso3 code3 combined_key population continent_name continent_code
## 771815  JPN   392        Japan  126476458           Asia             AS
## 771816  JPN   392        Japan  126476458           Asia             AS
## 771817  JPN   392        Japan  126476458           Asia             AS
## 771818  JPN   392        Japan  126476458           Asia             AS
## 771819  JPN   392        Japan  126476458           Asia             AS
## 771820  JPN   392        Japan  126476458           Asia             AS

Since the population on the first day and the last day are equal, you can set one as the population of the country.

(pop <- df0$population[1])
## [1] 126476458

We need only the first, the sixth, the seventh and the thirteenth column, namely, “date”, “type”, “cases”, “population”, we create a new data frame called df by the following.

df <- df0[c(1,6,7,13)]
str(df)
## 'data.frame':    3129 obs. of  4 variables:
##  $ date      : Date, format: "2020-01-22" "2020-01-23" ...
##  $ type      : chr  "confirmed" "confirmed" "confirmed" "confirmed" ...
##  $ cases     : int  2 0 0 0 2 0 3 0 4 4 ...
##  $ population: num  1.26e+08 1.26e+08 1.26e+08 1.26e+08 1.26e+08 ...
head(df)
##              date      type cases population
## 183569 2020-01-22 confirmed     2  126476458
## 183570 2020-01-23 confirmed     0  126476458
## 183571 2020-01-24 confirmed     0  126476458
## 183572 2020-01-25 confirmed     0  126476458
## 183573 2020-01-26 confirmed     2  126476458
## 183574 2020-01-27 confirmed     0  126476458

Alternatively, df0[c(1,6,7,13)] can be replaced by df0[c("date", "type", "cases", "population")].

head(df0[c("date", "type", "cases", "population")])
##              date      type cases population
## 183569 2020-01-22 confirmed     2  126476458
## 183570 2020-01-23 confirmed     0  126476458
## 183571 2020-01-24 confirmed     0  126476458
## 183572 2020-01-25 confirmed     0  126476458
## 183573 2020-01-26 confirmed     2  126476458
## 183574 2020-01-27 confirmed     0  126476458

D.2.4 Types: “confirmed” “death” and “recovery”

Let us check each type as follows.

df_confirmed <- df[df$type == "confirmed",]
df_death <- df[df$type == "death",]
df_recovery <- df[df$data_type == "recovery",]
head(df_confirmed)
##              date      type cases population
## 183569 2020-01-22 confirmed     2  126476458
## 183570 2020-01-23 confirmed     0  126476458
## 183571 2020-01-24 confirmed     0  126476458
## 183572 2020-01-25 confirmed     0  126476458
## 183573 2020-01-26 confirmed     2  126476458
## 183574 2020-01-27 confirmed     0  126476458
head(df_death)
##              date  type cases population
## 484996 2020-01-22 death     0  126476458
## 484997 2020-01-23 death     0  126476458
## 484998 2020-01-24 death     0  126476458
## 484999 2020-01-25 death     0  126476458
## 485000 2020-01-26 death     0  126476458
## 485001 2020-01-27 death     0  126476458
head(df_recovery)
## [1] date       type       cases      population
##  <0 行> (または長さ 0 の row.names)

Notice that “recovery” data is empty.

D.2.5 Data Visualization

D.2.5.1 Histogram for One Numerical Data

plot(df_confirmed$date, df_confirmed$cases, type = "h")

plot(df_death$date, df_death$cases, type = "h")

# plot(df_recovered$date, df_recovered$cases, type = "h") # no data for recovery

D.2.6 Scatter Plot and Correlation for Two Numerial Data

plot(df_confirmed$cases, df_death$cases, type = "p")

cor(df_confirmed$cases, df_death$cases)
## [1] 0.716229

D.2.6.1 Extra

It is better to add the title of the graph and the labels of x-axis and y-axis. Here we used paste("Comfirmed Cases in",COUNTRY) to automatically paste the chosen country name.

plot(df_confirmed$date, df_confirmed$cases, type = "h", 
     main = paste("Comfirmed Cases in",COUNTRY), 
     xlab = "Date", ylab = "Number of Cases")

D.2.7 In Addition Set a Period

start_date <- as.Date("2021-07-01")
end_date <- Sys.Date() 
df_date <- df[df$date >=start_date & df$date <= end_date,]

Apply the same operations on this subset.

D.2.7.1 Setting types

df_date_confirmed <- df_date[df_date$type == "confirmed",]
df_date_death <- df_date[df_date$type == "death",]
df_date_recovery <- df_date[df_date$data_type == "recovery",]
head(df_date_confirmed)
##              date      type cases population
## 184095 2021-07-01 confirmed  1754  126476458
## 184096 2021-07-02 confirmed  1775  126476458
## 184097 2021-07-03 confirmed  1878  126476458
## 184098 2021-07-04 confirmed  1485  126476458
## 184099 2021-07-05 confirmed  1029  126476458
## 184100 2021-07-06 confirmed  1668  126476458
head(df_date_death)
##              date  type cases population
## 485522 2021-07-01 death    24  126476458
## 485523 2021-07-02 death    25  126476458
## 485524 2021-07-03 death     9  126476458
## 485525 2021-07-04 death     6  126476458
## 485526 2021-07-05 death    19  126476458
## 485527 2021-07-06 death    22  126476458
head(df_date_recovery)
## [1] date       type       cases      population
##  <0 行> (または長さ 0 の row.names)

D.2.8 Histograms

plot(df_date_confirmed$date, df_date_confirmed$cases, type = "h")

plot(df_date_death$date, df_date_death$cases, type = "h")

# plot(df_date_recovered$date, df_date_recovered$cases, type = "h") # no data for recovery

D.2.8.1 Scatter Plot and Correlation

plot(df_date_confirmed$cases, df_date_death$cases, type = "p")

cor(df_date_confirmed$cases, df_date_death$cases)
## [1] 0.7289401

D.2.9 List Observations and Questions for Further Exploration

  • Q0. Change the values of the location and the period and see the outcomes.
  • Q1. What is the correlation between df_confirmed\(cases and df_death\)cases?
  • Q2. Do we have a larger correlation value if we shift the dates to implement the time-lag?
  • Q3. Do you have any other questions to explore?

D.3 Selection of Several Countries with ggplot2

Let us choose “US”, “Germany”, “India”, “South Africa”, “Korea, South” and “Japan” Check whether province part is valid in these countries.

df0 <- coronavirus[coronavirus$country %in% c("US", "Germany", "India", "South Africa","Korea, South", "Japan"),]
unique(df0$province)
## [1] NA

We keep the country name.

df <- df0[c(1,3,6,7,13)]
str(df)
## 'data.frame':    18774 obs. of  5 variables:
##  $ date      : Date, format: "2020-01-22" "2020-01-23" ...
##  $ country   : chr  "Germany" "Germany" "Germany" "Germany" ...
##  $ type      : chr  "confirmed" "confirmed" "confirmed" "confirmed" ...
##  $ cases     : int  0 0 0 0 0 1 3 0 0 1 ...
##  $ population: num  83783945 83783945 83783945 83783945 83783945 ...
head(df)
##              date country      type cases population
## 161666 2020-01-22 Germany confirmed     0   83783945
## 161667 2020-01-23 Germany confirmed     0   83783945
## 161668 2020-01-24 Germany confirmed     0   83783945
## 161669 2020-01-25 Germany confirmed     0   83783945
## 161670 2020-01-26 Germany confirmed     0   83783945
## 161671 2020-01-27 Germany confirmed     1   83783945

D.3.1 Set types

df_confirmed <- df[df$type == "confirmed",]
df_death <- df[df$type == "death",]
df_recovery <- df[df$data_type == "recovery",]
head(df_confirmed)
##              date country      type cases population
## 161666 2020-01-22 Germany confirmed     0   83783945
## 161667 2020-01-23 Germany confirmed     0   83783945
## 161668 2020-01-24 Germany confirmed     0   83783945
## 161669 2020-01-25 Germany confirmed     0   83783945
## 161670 2020-01-26 Germany confirmed     0   83783945
## 161671 2020-01-27 Germany confirmed     1   83783945
head(df_death)
##              date country  type cases population
## 463093 2020-01-22 Germany death     0   83783945
## 463094 2020-01-23 Germany death     0   83783945
## 463095 2020-01-24 Germany death     0   83783945
## 463096 2020-01-25 Germany death     0   83783945
## 463097 2020-01-26 Germany death     0   83783945
## 463098 2020-01-27 Germany death     0   83783945
head(df_recovery)
## [1] date       country    type       cases      population
##  <0 行> (または長さ 0 の row.names)
unique(df_confirmed$population)
## [1]   83783945 1380004385  126476458   51269183   59308690  329466283

D.3.2 Visualization using ggplot2 package

library(ggplot2)
ggplot(df_confirmed) +
  geom_line(aes(x = date, y = cases, color = country)) +
  labs(x = "Date", y = "Number of Confirmed Cases", title = "Number of Confirmed Cases")

ggplot(df_confirmed) +
  geom_line(aes(x = date, y = cases, color = country)) +
  facet_wrap(vars(country)) +
  labs(x = "Date", y = "Number of Confirmed Cases", title = "Number of Confirmed Cases")

ggplot(df_confirmed) +
  geom_boxplot(aes(x = country, y = cases)) +
  labs(x = "Date", y = "Number of Confirmed Cases", title = "Number of Confirmed Cases")

ggplot(df_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", title = "Number of Confirmed Cases per 100,000")

ggplot(df_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  facet_wrap(vars(country)) + 
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", title = "Number of Confirmed Cases per 100,000")

ggplot(df_confirmed) +
  geom_boxplot(aes(x = country, y = (cases*100000)/population)) +
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", title = "Number of Confirmed Cases per 100,000")

ggplot(df_confirmed) +
  geom_boxplot(aes(x = country, y = (cases*100000)/population)) +
  scale_y_continuous(trans='log10') + 
  labs(x = "Date", y = "Number of Confirmed Cases in log10 per 100,000", title = "Number of Confirmed Cases in log10 Scale per 100,000")
## Warning in self$trans$transform(x): 計算結果が NaN になりました
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 265 rows containing non-finite values (`stat_boxplot()`).

ggplot(df_death) +
  geom_line(aes(x = date, y = cases, color = country)) +
  labs(x = "Date", y = "Number of Deaths", title = "Number of Deaths")

ggplot(df_death) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  labs(x = "Date", y = "Number of Deaths per 100,000", title = "Number of Deaths per 100,000")

ggplot(df_death) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  facet_wrap(vars(country)) +
  labs(x = "Date", y = "Number of Deaths per 100,000", title = "Number of Deaths per 100,000")

ggplot(df_death) +
  geom_boxplot(aes(x = country, y = (cases*100000)/population)) +
  scale_y_continuous(trans='log10') + 
  labs(x = "Date", y = "Number of Deaths in log10 per 100,000", title = "Number of Deaths in log10 Scale per 100,000")
## Warning in self$trans$transform(x): 計算結果が NaN になりました
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 635 rows containing non-finite values (`stat_boxplot()`).

D.3.3 Setting a Period

start_date <- as.Date("2021-07-01")
end_date <- Sys.Date() 
df_date <- df[df$date >=start_date & df$date <= end_date,]
df_date_confirmed <- df_date[df_date$type == "confirmed",]
df_date_death <- df_date[df_date$type == "death",]
ggplot(df_date_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country))

ggplot(df_date_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  facet_wrap(vars(country))

start_date <- as.Date("2021-11-20")
end_date <- Sys.Date() 
df_date <- df[df$date >=start_date & df$date <= end_date & df$country %in% c("Germany", "South Africa", "US"),]
df_date_confirmed <- df_date[df_date$type == "confirmed",]
df_date_death <- df_date[df_date$type == "death",]
ggplot(df_date_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country))

The number of deaths in 100,000.

ggplot(df_date_death) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country))

D.4 Importing and Transforming Data with readr and dplyr in tidyverse Packages

D.4.1 Review

  1. Attaching neccessary packages
  2. Importing data
  3. Glimpsing data with head(), str() and changing types of a column, i.e.,characters to date
  4. Selecting columns of data
  5. Filtering rows of data
  6. Mutating data
  7. Visualizing data by ggplot()
library(ggplot2)

coronavirus <- read.csv("https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv")

coronavirus$date <- as.Date(coronavirus$date)

df <- coronavirus[c(1,3,6,7,13)]

COUNTRIES <- c("US", "Germany", "India", "South Africa","Korea, South", "Japan")
start_date <- as.Date("2021-07-01")
end_date <- Sys.Date() 

df0 <- coronavirus[df$country %in% COUNTRIES,]
df1 <- df0[df0$date >=start_date & df0$date <= end_date,]
df1_confirmed <- df1[df1$type == "confirmed",]

ggplot(df1_confirmed) +
  geom_line(aes(x = date, y = (cases*100000/population), color = country)) +
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", title = "Number of Confirmed Cases per 100,000")

### library: Loading/Attaching Packages

To use packages,

  1. Install packages by install.packages() only once, e.g., install.packages("tidyverse").
  2. Load and attach packages by library() at each session, e.g., library(tidyverse).

For library(), see https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/library.

library(tidyverse)

D.4.2 Importing data by readr in tidyverse

The goal of readr is to provide a fast and friendly way to read rectangular data (like csv, tsv, and fwf). It is designed to flexibly parse many types of data found in the wild, while still cleanly failing when data unexpectedly changes. If you are new to readr, the best place to start is the data import chapter in R for data science.

To accurately read a rectangular dataset with readr you combine two pieces: a function that parses the overall file, and a column specification. The column specification describes how each column should be converted from a character vector to the most appropriate data type, and in most cases it’s not necessary because readr will guess it for you automatically.

readr supports seven file formats with seven read_ functions:

  • read_csv(): comma separated (CSV) files
  • read_tsv(): tab separated files
  • read_delim(): general delimited files
  • read_fwf(): fixed width files
  • read_table(): tabular files where columns are separated by white-space.
  • read_log(): web log files
coronavirus_tv <- read_csv("https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv")
## Rows: 888636 Columns: 15
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): province, country, type, iso2, iso3, combined_key, continent_name,...
## dbl  (6): lat, long, cases, uid, code3, population
## date (1): date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
coronavirus_tv
## # A tibble: 888,636 × 15
##    date       province country   lat  long type    cases   uid iso2  iso3  code3
##    <date>     <chr>    <chr>   <dbl> <dbl> <chr>   <dbl> <dbl> <chr> <chr> <dbl>
##  1 2020-01-22 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  2 2020-01-23 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  3 2020-01-24 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  4 2020-01-25 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  5 2020-01-26 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  6 2020-01-27 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  7 2020-01-28 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  8 2020-01-29 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
##  9 2020-01-30 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
## 10 2020-01-31 Alberta  Canada   53.9 -117. confir…     0 12401 CA    CAN     124
## # … with 888,626 more rows, and 4 more variables: combined_key <chr>,
## #   population <dbl>, continent_name <chr>, continent_code <chr>
# print(coronavirus_tv) # same as above
  • Data is in tibble, see https://tibble.tidyverse.org.
  • See thatthe first column is already recognized as date.
  • glimpse is similar to str and is like a transposed version of print()
glimpse(coronavirus_tv)
## Rows: 888,636
## Columns: 15
## $ date           <date> 2020-01-22, 2020-01-23, 2020-01-24, 2020-01-25, 2020-0…
## $ province       <chr> "Alberta", "Alberta", "Alberta", "Alberta", "Alberta", …
## $ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
## $ lat            <dbl> 53.9333, 53.9333, 53.9333, 53.9333, 53.9333, 53.9333, 5…
## $ long           <dbl> -116.5765, -116.5765, -116.5765, -116.5765, -116.5765, …
## $ type           <chr> "confirmed", "confirmed", "confirmed", "confirmed", "co…
## $ cases          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ uid            <dbl> 12401, 12401, 12401, 12401, 12401, 12401, 12401, 12401,…
## $ iso2           <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
## $ iso3           <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
## $ code3          <dbl> 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, …
## $ combined_key   <chr> "Alberta, Canada", "Alberta, Canada", "Alberta, Canada"…
## $ population     <dbl> 4413146, 4413146, 4413146, 4413146, 4413146, 4413146, 4…
## $ continent_name <chr> "North America", "North America", "North America", "Nor…
## $ continent_code <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
  • download.file() and write_csv()
# Don't run repeatedly
DLURL <- "https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv"
DLDATE <- paste0("coronavirus", Sys.Date(), ".csv")
download.file(DLURL, destfile = DLDATE)
# Don't run repeatedly
WRITEDATE <- paste0("covid19_", Sys.Date(), ".csv")
write_csv(coronavirus, WRITEDATE)

D.4.3 Transforming data by dplyr in tidyverse

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

  • mutate() adds new variables that are functions of existing variables
  • select() picks variables based on their names.
  • filter() picks cases based on their values.
  • summarise() reduces multiple values down to a single summary.
  • arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation “by group”. You can learn more about them in vignette(“dplyr”). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table").

If you are new to dplyr, the best place to start is the data transformation chapter in R for data science.

D.4.3.1 slice(): Subset rows using their positions

slice() lets you index rows by their (integer) locations. It allows you to select, remove, and duplicate rows. It is accompanied by a number of helpers for common use cases:

  • slice_head() and slice_tail() select the first or last rows.
  • slice_sample() randomly selects rows.
  • slice_min() and slice_max() select rows with highest or lowest values of a variable.

The following is similar to head() but it does much more.

slice(coronavirus_tv, 6)
## # A tibble: 1 × 15
##   date       province country   lat  long type     cases   uid iso2  iso3  code3
##   <date>     <chr>    <chr>   <dbl> <dbl> <chr>    <dbl> <dbl> <chr> <chr> <dbl>
## 1 2020-01-27 Alberta  Canada   53.9 -117. confirm…     0 12401 CA    CAN     124
## # … with 4 more variables: combined_key <chr>, population <dbl>,
## #   continent_name <chr>, continent_code <chr>

D.4.3.2 select() Subset columns using their names and types

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes it easy to refer to variables based on their name (e.g. a:f selects all columns from a on the left to f on the right). You can also use predicate functions like is.numeric to select variables based on their properties.

Helper Function Use Example
- Columns except select(babynames, -prop)
: Columns between (inclusive) select(babynames, year:n)
contains() Columns that contains a string select(babynames, contains(“n”))
ends_with() Columns that ends with a string select(babynames, ends_with(“n”))
matches() Columns that matches a regex select(babynames, matches(“n”))
num_range() Columns with a numerical suffix in the range Not applicable with babynames
one_of() Columns whose name appear in the given set select(babynames, one_of(c(“sex”, “gender”)))
starts_with() Columns that starts with a string select(babynames, starts_with(“n”))
df_tv <- select(coronavirus_tv, c(date, country, type, cases, population))
df_tv
## # A tibble: 888,636 × 5
##    date       country type      cases population
##    <date>     <chr>   <chr>     <dbl>      <dbl>
##  1 2020-01-22 Canada  confirmed     0    4413146
##  2 2020-01-23 Canada  confirmed     0    4413146
##  3 2020-01-24 Canada  confirmed     0    4413146
##  4 2020-01-25 Canada  confirmed     0    4413146
##  5 2020-01-26 Canada  confirmed     0    4413146
##  6 2020-01-27 Canada  confirmed     0    4413146
##  7 2020-01-28 Canada  confirmed     0    4413146
##  8 2020-01-29 Canada  confirmed     0    4413146
##  9 2020-01-30 Canada  confirmed     0    4413146
## 10 2020-01-31 Canada  confirmed     0    4413146
## # … with 888,626 more rows
identical(df_tv, select(coronavirus_tv, date, country, type, cases, population))
## [1] TRUE
identical(df_tv, select(coronavirus_tv, 1, 3, 6, 7, 13))
## [1] TRUE
identical(df_tv, select(coronavirus_tv, "date", "country", "type", "cases", "population"))
## [1] TRUE

D.4.3.3 filter() Subset rows using column values

The filter() function is used to subset a data frame, retaining all rows that satisfy your conditions. To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition evaluates to NA the row will be dropped, unlike base subsetting with [.

Logical operator tests Example
> Is x greater than y? x > y
>= Is x greater than or equal to y? x >= y
< Is x less than y? x < y
<= Is x less than or equal to y? x <= y
== Is x equal to y? x == y
!= Is x not equal to y? x != y
is.na() Is x an NA? is.na(x)
!is.na() Is x not an NA? !is.na(x)
COUNTRIES <- c("US", "Germany", "India", "South Africa","Korea, South", "Japan")
start_date <- as.Date("2021-07-01")
end_date <- Sys.Date() 
df_tv0 <- filter(df_tv, country %in% COUNTRIES)
df_tv1 <- filter(df_tv0, date >=start_date & df_tv0$date <= end_date)
df_tv1_confirmed <- filter(df_tv1, type == "confirmed")
identical(df_tv1_confirmed, 
          filter(df_tv, (country %in% COUNTRIES) & 
                   (date >=start_date & date <= end_date) &
                   (type == "confirmed")))
## [1] TRUE
  • Advanced method using piping
df_tv %>% filter(country %in% COUNTRIES) %>%
  filter(date >=start_date & df_tv0$date <= end_date) %>%
  filter(type == "confirmed") %>%
  identical(df_tv1_confirmed)
## [1] TRUE

D.4.3.4 mutate(): Create, modify, and delete columns

mutate() adds new variables and preserves existing ones; transmute() adds new variables and drops existing ones. New variables overwrite existing variables of the same name. Variables can be removed by setting their value to NULL.

df_tv1_confirmed_pp <- mutate(df_tv1_confirmed, confirmed_pp = cases*100000/population)

D.4.3.5 ggplot(): Plotting

ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

ggplot(df_tv1_confirmed_pp) +
  geom_line(aes(x = date, y = confirmed_pp, color = country)) +
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", 
       title = "Number of Confirmed Cases per 100,000")

D.4.3.6 Summary

library(tidyverse)

coronavirus_tv <- read_csv("https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv")
## Rows: 888636 Columns: 15
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): province, country, type, iso2, iso3, combined_key, continent_name,...
## dbl  (6): lat, long, cases, uid, code3, population
## date (1): date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
COUNTRIES <- c("US", "Germany", "India", "South Africa","Korea, South", "Japan")
start_date <- as.Date("2021-07-01")
end_date <- Sys.Date() 

df_tv <- select(coronavirus_tv, c(date, country, type, cases, population))

df_tv0 <- filter(df_tv, country %in% COUNTRIES)
df_tv1 <- filter(df_tv0, date >=start_date & df_tv0$date <= end_date)
df_tv1_confirmed <- filter(df_tv1, type == "confirmed")

df_tv1_confirmed_pp <- mutate(df_tv1_confirmed, confirmed_pp = cases*100000/population)

ggplot(df_tv1_confirmed_pp) +
  geom_line(aes(x = date, y = confirmed_pp, color = country)) +
  labs(x = "Date", y = "Number of Confirmed Cases per 100,000", 
       title = "Number of Confirmed Cases per 100,000")

D.4.3.7 Pipes

After importing data and setting parameters; COUNTRIES, start_date and end_date, we can simplify the code block as follows.

coronavirus_tv %>% 
  select(date, country, type, cases, population) %>%
  filter(country %in% COUNTRIES) %>%
  filter(date >=start_date & df_tv0$date <= end_date) %>%
  filter(type == "confirmed") %>%
  mutate(confirmed_pp = cases*100000/population) %>%
  ggplot() +
    geom_line(aes(x = date, y = confirmed_pp, color = country)) +
    labs(x = "Date", y = "Number of Confirmed Cases per 100,000", 
       title = "Number of Confirmed Cases per 100,000")

D.5 Data of Johns Hopkins Universiy and World Bank

D.5.1 Importing Raw Data

We import the original Johns Hopkins Github data.

# IMPORT RAW DATA: Johns Hopkins Github data
confirmedraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")
## Rows: 289 Columns: 1047
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr    (2): Province/State, Country/Region
## dbl (1045): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/20, 1/26/20, 1/27/20,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(confirmedraw)
## Rows: 289
## Columns: 1,047
## $ `Province/State` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "Australian Capit…
## $ `Country/Region` <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Ango…
## $ Lat              <dbl> 33.93911, 41.15330, 28.03390, 42.50630, -11.20270, -7…
## $ Long             <dbl> 67.709953, 20.168300, 1.659600, 1.521800, 17.873900, …
## $ `1/22/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `1/23/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `1/24/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `1/25/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `1/26/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0,…
## $ `1/27/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0,…
## $ `1/28/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0,…
## $ `1/29/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 0, 1, 0, 0,…
## $ `1/30/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 0, 2, 0, 0,…
## $ `1/31/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 3, 0, 0,…
## $ `2/1/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 1, 0, 4, 0, 0,…
## $ `2/2/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0,…
## $ `2/3/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0,…
## $ `2/4/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 2, 0, 4, 0, 0,…
## $ `2/5/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 2, 0, 4, 0, 0,…
## $ `2/6/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 4, 0, 0,…
## $ `2/7/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/8/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/9/20`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/10/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/11/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/12/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/13/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/14/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/15/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/16/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/17/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/18/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/19/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/20/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/21/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/22/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/23/20`        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/24/20`        <dbl> 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 0,…
## $ `2/25/20`        <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 2,…
## $ `2/26/20`        <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 1,…
## $ `2/27/20`        <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 1,…
## $ `2/28/20`        <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 2, 0, 4, 0, 1,…
## $ `2/29/20`        <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 9, 3, 0, 7, 2, 3,…
## $ `3/1/20`         <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 1, 0, 6, 0, 9, 3, 0, 7, 2, 7,…
## $ `3/2/20`         <dbl> 5, 0, 3, 1, 0, 0, 0, 0, 1, 0, 6, 0, 9, 3, 1, 9, 2, 8,…
## $ `3/3/20`         <dbl> 5, 0, 5, 1, 0, 0, 0, 1, 1, 0, 13, 0, 11, 3, 1, 9, 2, …
## $ `3/4/20`         <dbl> 5, 0, 12, 1, 0, 0, 0, 1, 1, 0, 22, 1, 11, 5, 1, 10, 2…
## $ `3/5/20`         <dbl> 5, 0, 12, 1, 0, 0, 0, 1, 1, 0, 22, 1, 13, 5, 1, 10, 3…
## $ `3/6/20`         <dbl> 5, 0, 17, 1, 0, 0, 0, 2, 1, 0, 26, 0, 13, 7, 1, 10, 3…
## $ `3/7/20`         <dbl> 8, 0, 17, 1, 0, 0, 0, 8, 1, 0, 28, 0, 13, 7, 1, 11, 3…
## $ `3/8/20`         <dbl> 8, 0, 19, 1, 0, 0, 0, 12, 1, 0, 38, 0, 15, 7, 2, 11, …
## $ `3/9/20`         <dbl> 8, 2, 20, 1, 0, 0, 0, 12, 1, 0, 48, 0, 15, 7, 2, 15, …
## $ `3/10/20`        <dbl> 8, 10, 20, 1, 0, 0, 0, 17, 1, 0, 55, 1, 18, 7, 2, 18,…
## $ `3/11/20`        <dbl> 11, 12, 20, 1, 0, 0, 0, 19, 1, 0, 65, 1, 20, 9, 3, 21…
## $ `3/12/20`        <dbl> 11, 23, 24, 1, 0, 0, 0, 19, 4, 0, 65, 1, 20, 9, 3, 21…
## $ `3/13/20`        <dbl> 11, 33, 26, 1, 0, 0, 1, 31, 8, 1, 92, 1, 35, 16, 5, 3…
## $ `3/14/20`        <dbl> 14, 38, 37, 1, 0, 0, 1, 34, 18, 1, 112, 1, 46, 19, 5,…
## $ `3/15/20`        <dbl> 20, 42, 48, 1, 0, 0, 1, 45, 26, 1, 134, 1, 61, 20, 6,…
## $ `3/16/20`        <dbl> 25, 51, 54, 2, 0, 0, 1, 56, 52, 2, 171, 1, 68, 29, 7,…
## $ `3/17/20`        <dbl> 26, 55, 60, 39, 0, 0, 1, 68, 78, 2, 210, 1, 78, 29, 7…
## $ `3/18/20`        <dbl> 26, 59, 74, 39, 0, 0, 1, 79, 84, 3, 267, 1, 94, 37, 1…
## $ `3/19/20`        <dbl> 26, 64, 87, 53, 0, 0, 1, 97, 115, 4, 307, 1, 144, 42,…
## $ `3/20/20`        <dbl> 24, 70, 90, 75, 1, 0, 1, 128, 136, 6, 353, 3, 184, 50…
## $ `3/21/20`        <dbl> 24, 76, 139, 88, 2, 0, 1, 158, 160, 9, 436, 3, 221, 6…
## $ `3/22/20`        <dbl> 34, 89, 201, 113, 2, 0, 1, 266, 194, 19, 669, 5, 259,…
## $ `3/23/20`        <dbl> 40, 104, 230, 133, 3, 0, 3, 301, 235, 32, 669, 5, 319…
## $ `3/24/20`        <dbl> 42, 123, 264, 164, 3, 0, 3, 387, 249, 39, 818, 6, 397…
## $ `3/25/20`        <dbl> 74, 146, 302, 188, 3, 0, 3, 387, 265, 39, 1029, 6, 44…
## $ `3/26/20`        <dbl> 80, 174, 367, 224, 4, 0, 7, 502, 290, 53, 1219, 12, 4…
## $ `3/27/20`        <dbl> 91, 186, 409, 267, 4, 0, 7, 589, 329, 62, 1405, 12, 5…
## $ `3/28/20`        <dbl> 106, 197, 454, 308, 5, 0, 7, 690, 407, 71, 1617, 15, …
## $ `3/29/20`        <dbl> 114, 212, 511, 334, 7, 0, 7, 745, 424, 77, 1791, 15, …
## $ `3/30/20`        <dbl> 114, 223, 584, 370, 7, 0, 7, 820, 482, 78, 2032, 15, …
## $ `3/31/20`        <dbl> 166, 243, 716, 376, 7, 0, 7, 1054, 532, 80, 2032, 17,…
## $ `4/1/20`         <dbl> 192, 259, 847, 390, 8, 0, 7, 1054, 571, 84, 2182, 19,…
## $ `4/2/20`         <dbl> 235, 277, 986, 428, 8, 0, 9, 1133, 663, 87, 2298, 21,…
## $ `4/3/20`         <dbl> 269, 304, 1171, 439, 8, 0, 15, 1265, 736, 91, 2389, 2…
## $ `4/4/20`         <dbl> 270, 333, 1251, 466, 10, 0, 15, 1451, 770, 93, 2493, …
## $ `4/5/20`         <dbl> 299, 361, 1320, 501, 14, 0, 15, 1451, 822, 96, 2580, …
## $ `4/6/20`         <dbl> 337, 377, 1423, 525, 16, 0, 15, 1554, 833, 96, 2637, …
## $ `4/7/20`         <dbl> 367, 383, 1468, 545, 17, 0, 19, 1628, 853, 96, 2686, …
## $ `4/8/20`         <dbl> 423, 400, 1572, 564, 19, 0, 19, 1715, 881, 99, 2734, …
## $ `4/9/20`         <dbl> 444, 409, 1666, 583, 19, 0, 19, 1795, 921, 100, 2773,…
## $ `4/10/20`        <dbl> 521, 416, 1761, 601, 19, 0, 19, 1975, 937, 103, 2822,…
## $ `4/11/20`        <dbl> 521, 433, 1825, 601, 19, 0, 21, 1975, 967, 103, 2857,…
## $ `4/12/20`        <dbl> 555, 446, 1914, 638, 19, 0, 21, 2142, 1013, 103, 2857…
## $ `4/13/20`        <dbl> 607, 467, 1983, 646, 19, 0, 23, 2208, 1039, 102, 2863…
## $ `4/14/20`        <dbl> 665, 475, 2070, 659, 19, 0, 23, 2277, 1067, 103, 2870…
## $ `4/15/20`        <dbl> 770, 494, 2160, 673, 19, 0, 23, 2443, 1111, 103, 2886…
## $ `4/16/20`        <dbl> 794, 518, 2268, 673, 19, 0, 23, 2571, 1159, 103, 2897…
## $ `4/17/20`        <dbl> 845, 539, 2418, 696, 19, 0, 23, 2669, 1201, 103, 2926…
## $ `4/18/20`        <dbl> 908, 548, 2534, 704, 24, 0, 23, 2758, 1248, 103, 2936…
## $ `4/19/20`        <dbl> 933, 562, 2629, 713, 24, 0, 23, 2839, 1291, 103, 2957…
## $ `4/20/20`        <dbl> 996, 584, 2718, 717, 24, 0, 23, 2941, 1339, 104, 2963…
## $ `4/21/20`        <dbl> 1026, 609, 2811, 717, 24, 0, 23, 3031, 1401, 104, 296…
## $ `4/22/20`        <dbl> 1092, 634, 2910, 723, 25, 0, 24, 3144, 1473, 104, 297…
## $ `4/23/20`        <dbl> 1176, 663, 3007, 723, 25, 0, 24, 3435, 1523, 104, 297…
## $ `4/24/20`        <dbl> 1226, 678, 3127, 731, 25, 0, 24, 3607, 1596, 105, 298…
## $ `4/25/20`        <dbl> 1330, 712, 3256, 738, 25, 0, 24, 3780, 1677, 106, 299…
## $ `4/26/20`        <dbl> 1463, 726, 3382, 738, 26, 0, 24, 3892, 1746, 106, 300…
## $ `4/27/20`        <dbl> 1531, 736, 3517, 743, 27, 0, 24, 4003, 1808, 106, 300…
## $ `4/28/20`        <dbl> 1703, 750, 3649, 743, 27, 0, 24, 4127, 1867, 106, 301…
## $ `4/29/20`        <dbl> 1827, 766, 3848, 743, 27, 0, 24, 4285, 1932, 106, 301…
## $ `4/30/20`        <dbl> 1827, 773, 4006, 745, 27, 0, 24, 4428, 2066, 106, 302…
## $ `5/1/20`         <dbl> 2171, 782, 4154, 745, 30, 0, 25, 4532, 2148, 106, 303…
## $ `5/2/20`         <dbl> 2469, 789, 4295, 747, 35, 0, 25, 4681, 2273, 106, 303…
## $ `5/3/20`         <dbl> 2469, 795, 4474, 748, 35, 0, 25, 4783, 2386, 106, 303…
## $ `5/4/20`         <dbl> 2469, 803, 4648, 750, 35, 0, 25, 4887, 2507, 107, 303…
## $ `5/5/20`         <dbl> 2469, 820, 4838, 751, 36, 0, 25, 5020, 2619, 107, 304…
## $ `5/6/20`         <dbl> 3224, 832, 4997, 751, 36, 0, 25, 5208, 2782, 107, 304…
## $ `5/7/20`         <dbl> 3392, 842, 5182, 752, 36, 0, 25, 5371, 2884, 107, 304…
## $ `5/8/20`         <dbl> 3563, 850, 5369, 752, 43, 0, 25, 5611, 3029, 107, 305…
## $ `5/9/20`         <dbl> 3563, 856, 5558, 754, 43, 0, 25, 5776, 3175, 107, 305…
## $ `5/10/20`        <dbl> 4402, 868, 5723, 755, 45, 0, 25, 6034, 3313, 107, 305…
## $ `5/11/20`        <dbl> 4664, 872, 5891, 755, 45, 0, 25, 6278, 3392, 107, 305…
## $ `5/12/20`        <dbl> 4967, 876, 6067, 758, 45, 0, 25, 6563, 3538, 107, 305…
## $ `5/13/20`        <dbl> 4967, 880, 6253, 760, 45, 0, 25, 6879, 3718, 107, 306…
## $ `5/14/20`        <dbl> 5339, 898, 6442, 761, 48, 0, 25, 7134, 3860, 107, 307…
## $ `5/15/20`        <dbl> 6053, 916, 6629, 761, 48, 0, 25, 7479, 4044, 107, 307…
## $ `5/16/20`        <dbl> 6402, 933, 6821, 761, 48, 0, 25, 7805, 4283, 107, 307…
## $ `5/17/20`        <dbl> 6635, 946, 7019, 761, 48, 0, 25, 8068, 4472, 107, 307…
## $ `5/18/20`        <dbl> 7072, 948, 7201, 761, 50, 0, 25, 8371, 4823, 107, 307…
## $ `5/19/20`        <dbl> 7655, 949, 7377, 761, 52, 0, 25, 8809, 5041, 107, 308…
## $ `5/20/20`        <dbl> 8145, 964, 7542, 762, 52, 0, 25, 9283, 5271, 107, 308…
## $ `5/21/20`        <dbl> 8676, 969, 7728, 762, 58, 0, 25, 9931, 5606, 107, 308…
## $ `5/22/20`        <dbl> 9216, 981, 7918, 762, 60, 0, 25, 10649, 5928, 107, 30…
## $ `5/23/20`        <dbl> 9952, 989, 8113, 762, 61, 0, 25, 11353, 6302, 107, 30…
## $ `5/24/20`        <dbl> 10668, 998, 8306, 762, 69, 0, 25, 12076, 6661, 107, 3…
## $ `5/25/20`        <dbl> 11180, 1004, 8503, 763, 70, 0, 25, 12628, 7113, 107, …
## $ `5/26/20`        <dbl> 11917, 1029, 8697, 763, 70, 0, 25, 13228, 7402, 107, …
## $ `5/27/20`        <dbl> 12465, 1050, 8857, 763, 71, 0, 25, 13933, 7774, 107, …
## $ `5/28/20`        <dbl> 13102, 1076, 8997, 763, 74, 0, 25, 14702, 8216, 107, …
## $ `5/29/20`        <dbl> 13745, 1099, 9134, 764, 81, 0, 25, 15419, 8676, 107, …
## $ `5/30/20`        <dbl> 14529, 1122, 9267, 764, 84, 0, 25, 16214, 8927, 107, …
## $ `5/31/20`        <dbl> 15180, 1137, 9394, 764, 86, 0, 26, 16851, 9282, 107, …
## $ `6/1/20`         <dbl> 15836, 1143, 9513, 765, 86, 0, 26, 17415, 9492, 107, …
## $ `6/2/20`         <dbl> 16578, 1164, 9626, 844, 86, 0, 26, 18319, 10009, 107,…
## $ `6/3/20`         <dbl> 17353, 1184, 9733, 851, 86, 0, 26, 19268, 10524, 107,…
## $ `6/4/20`         <dbl> 17977, 1197, 9831, 852, 86, 0, 26, 20197, 11221, 107,…
## $ `6/5/20`         <dbl> 19055, 1212, 9935, 852, 86, 0, 26, 21037, 11817, 107,…
## $ `6/6/20`         <dbl> 19637, 1232, 10050, 852, 88, 0, 26, 22020, 12364, 108…
## $ `6/7/20`         <dbl> 20428, 1246, 10154, 852, 91, 0, 26, 22794, 13130, 108…
## $ `6/8/20`         <dbl> 21003, 1263, 10265, 852, 92, 0, 26, 23620, 13325, 108…
## $ `6/9/20`         <dbl> 21308, 1299, 10382, 852, 96, 0, 26, 24761, 13675, 108…
## $ `6/10/20`        <dbl> 22228, 1341, 10484, 852, 113, 0, 26, 25987, 14103, 10…
## $ `6/11/20`        <dbl> 22976, 1385, 10589, 852, 118, 0, 26, 27373, 14669, 10…
## $ `6/12/20`        <dbl> 23632, 1416, 10698, 853, 130, 0, 26, 28764, 15281, 10…
## $ `6/13/20`        <dbl> 24188, 1464, 10810, 853, 138, 0, 26, 30295, 16004, 10…
## $ `6/14/20`        <dbl> 24852, 1521, 10919, 853, 140, 0, 26, 31577, 16667, 10…
## $ `6/15/20`        <dbl> 25613, 1590, 11031, 853, 142, 0, 26, 32785, 17064, 10…
## $ `6/16/20`        <dbl> 25719, 1672, 11147, 854, 148, 0, 26, 34159, 17489, 10…
## $ `6/17/20`        <dbl> 26960, 1722, 11268, 854, 155, 0, 26, 35552, 18033, 10…
## $ `6/18/20`        <dbl> 27423, 1788, 11385, 855, 166, 0, 26, 37510, 18698, 10…
## $ `6/19/20`        <dbl> 27964, 1838, 11504, 855, 172, 0, 26, 39570, 19157, 10…
## $ `6/20/20`        <dbl> 28383, 1891, 11631, 855, 176, 0, 26, 41204, 19708, 10…
## $ `6/21/20`        <dbl> 28919, 1962, 11771, 855, 183, 0, 26, 42785, 20268, 10…
## $ `6/22/20`        <dbl> 29229, 1995, 11920, 855, 186, 0, 26, 44931, 20588, 10…
## $ `6/23/20`        <dbl> 29567, 2047, 12076, 855, 189, 0, 26, 47203, 21006, 10…
## $ `6/24/20`        <dbl> 29726, 2114, 12248, 855, 197, 0, 26, 49851, 21717, 10…
## $ `6/25/20`        <dbl> 30261, 2192, 12445, 855, 212, 0, 65, 52457, 22488, 10…
## $ `6/26/20`        <dbl> 30346, 2269, 12685, 855, 212, 0, 65, 55343, 23247, 10…
## $ `6/27/20`        <dbl> 30702, 2330, 12968, 855, 259, 0, 65, 57744, 23909, 10…
## $ `6/28/20`        <dbl> 31053, 2402, 13273, 855, 267, 0, 69, 59933, 24645, 10…
## $ `6/29/20`        <dbl> 31324, 2466, 13571, 855, 276, 0, 69, 62268, 25127, 10…
## $ `6/30/20`        <dbl> 31445, 2535, 13907, 855, 284, 0, 69, 64530, 25542, 10…
## $ `7/1/20`         <dbl> 31848, 2580, 14272, 855, 291, 0, 69, 67197, 26065, 10…
## $ `7/2/20`         <dbl> 32108, 2662, 14657, 855, 315, 0, 69, 69941, 26658, 10…
## $ `7/3/20`         <dbl> 32410, 2752, 15070, 855, 328, 0, 68, 72786, 27320, 10…
## $ `7/4/20`         <dbl> 32758, 2819, 15500, 855, 346, 0, 68, 75376, 27900, 10…
## $ `7/5/20`         <dbl> 33037, 2893, 15941, 855, 346, 0, 68, 77815, 28606, 10…
## $ `7/6/20`         <dbl> 33150, 2964, 16404, 855, 346, 0, 70, 80447, 28936, 10…
## $ `7/7/20`         <dbl> 33470, 3038, 16879, 855, 386, 0, 70, 83426, 29285, 11…
## $ `7/8/20`         <dbl> 33680, 3106, 17348, 855, 386, 0, 70, 87030, 29820, 11…
## $ `7/9/20`         <dbl> 33739, 3188, 17808, 855, 396, 0, 73, 90693, 30346, 11…
## $ `7/10/20`        <dbl> 34280, 3278, 18242, 855, 458, 0, 74, 94060, 30903, 11…
## $ `7/11/20`        <dbl> 34437, 3371, 18712, 855, 462, 0, 74, 97509, 31392, 11…
## $ `7/12/20`        <dbl> 34537, 3454, 19195, 855, 506, 0, 74, 100166, 31969, 1…
## $ `7/13/20`        <dbl> 34541, 3571, 19689, 858, 525, 0, 74, 103265, 32151, 1…
## $ `7/14/20`        <dbl> 34826, 3667, 20216, 861, 541, 0, 74, 106910, 32490, 1…
## $ `7/15/20`        <dbl> 35026, 3752, 20770, 862, 576, 0, 74, 111146, 33005, 1…
## $ `7/16/20`        <dbl> 35156, 3851, 21355, 877, 607, 0, 74, 114783, 33559, 1…
## $ `7/17/20`        <dbl> 35315, 3906, 21948, 880, 638, 0, 76, 119301, 34001, 1…
## $ `7/18/20`        <dbl> 35375, 4008, 22549, 880, 687, 0, 76, 122524, 34462, 1…
## $ `7/19/20`        <dbl> 35561, 4090, 23084, 880, 705, 0, 76, 126755, 34877, 1…
## $ `7/20/20`        <dbl> 35595, 4171, 23691, 884, 749, 0, 76, 130774, 34981, 1…
## $ `7/21/20`        <dbl> 35701, 4290, 24278, 884, 779, 0, 76, 136118, 35254, 1…
## $ `7/22/20`        <dbl> 35813, 4358, 24872, 889, 812, 0, 76, 141900, 35693, 1…
## $ `7/23/20`        <dbl> 36001, 4466, 25484, 889, 851, 0, 76, 148027, 36162, 1…
## $ `7/24/20`        <dbl> 36067, 4570, 26159, 897, 880, 0, 82, 153520, 36613, 1…
## $ `7/25/20`        <dbl> 36122, 4637, 26764, 897, 916, 0, 82, 158334, 36996, 1…
## $ `7/26/20`        <dbl> 36243, 4763, 27357, 897, 932, 0, 82, 162526, 37317, 1…
## $ `7/27/20`        <dbl> 36349, 4880, 27973, 907, 950, 0, 86, 167416, 37390, 1…
## $ `7/28/20`        <dbl> 36454, 4997, 28615, 907, 1000, 0, 86, 173355, 37629, …
## $ `7/29/20`        <dbl> 36557, 5105, 29229, 918, 1078, 0, 91, 178996, 37937, …
## $ `7/30/20`        <dbl> 36628, 5197, 29831, 922, 1109, 0, 91, 185373, 38196, …
## $ `7/31/20`        <dbl> 36628, 5276, 30394, 925, 1148, 0, 91, 191302, 38550, …
## $ `8/1/20`         <dbl> 36796, 5396, 30950, 925, 1164, 0, 91, 196543, 38841, …
## $ `8/2/20`         <dbl> 36796, 5519, 31465, 925, 1199, 0, 91, 201919, 39050, …
## $ `8/3/20`         <dbl> 36796, 5620, 31972, 937, 1280, 0, 92, 206743, 39102, …
## $ `8/4/20`         <dbl> 36833, 5750, 32504, 939, 1344, 0, 92, 213535, 39298, …
## $ `8/5/20`         <dbl> 36915, 5889, 33055, 939, 1395, 0, 92, 220682, 39586, …
## $ `8/6/20`         <dbl> 36982, 6016, 33626, 944, 1483, 0, 92, 228195, 39819, …
## $ `8/7/20`         <dbl> 37023, 6151, 34155, 955, 1538, 0, 92, 235677, 39985, …
## $ `8/8/20`         <dbl> 37101, 6275, 34693, 955, 1572, 0, 92, 241811, 40185, …
## $ `8/9/20`         <dbl> 37140, 6411, 35160, 955, 1672, 0, 92, 246499, 40410, …
## $ `8/10/20`        <dbl> 37140, 6536, 35712, 963, 1679, 0, 92, 253868, 40433, …
## $ `8/11/20`        <dbl> 37355, 6676, 36204, 963, 1735, 0, 92, 260911, 40593, …
## $ `8/12/20`        <dbl> 37431, 6817, 36699, 977, 1762, 0, 92, 268574, 40794, …
## $ `8/13/20`        <dbl> 37510, 6971, 37187, 981, 1815, 0, 92, 276072, 41023, …
## $ `8/14/20`        <dbl> 37517, 7117, 37664, 989, 1852, 0, 93, 282437, 41299, …
## $ `8/15/20`        <dbl> 37637, 7260, 38133, 989, 1879, 0, 93, 289100, 41495, …
## $ `8/16/20`        <dbl> 37682, 7380, 38583, 989, 1906, 0, 93, 294569, 41663, …
## $ `8/17/20`        <dbl> 37682, 7499, 39025, 1005, 1935, 0, 93, 299126, 41701,…
## $ `8/18/20`        <dbl> 37685, 7654, 39444, 1005, 1966, 0, 93, 305966, 41846,…
## $ `8/19/20`        <dbl> 37685, 7812, 39847, 1024, 2015, 0, 94, 312659, 42056,…
## $ `8/20/20`        <dbl> 37845, 7967, 40258, 1024, 2044, 0, 94, 320884, 42319,…
## $ `8/21/20`        <dbl> 37942, 8119, 40667, 1045, 2068, 0, 94, 329043, 42477,…
## $ `8/22/20`        <dbl> 37980, 8275, 41068, 1045, 2134, 0, 94, 336802, 42616,…
## $ `8/23/20`        <dbl> 38039, 8427, 41460, 1045, 2171, 0, 94, 342154, 42792,…
## $ `8/24/20`        <dbl> 38085, 8605, 41858, 1060, 2222, 0, 94, 350867, 42825,…
## $ `8/25/20`        <dbl> 38156, 8759, 42228, 1060, 2283, 0, 94, 359638, 42936,…
## $ `8/26/20`        <dbl> 38199, 8927, 42619, 1098, 2332, 0, 94, 370188, 43067,…
## $ `8/27/20`        <dbl> 38215, 9083, 43016, 1098, 2415, 0, 94, 380292, 43270,…
## $ `8/28/20`        <dbl> 38226, 9195, 43403, 1124, 2471, 0, 94, 392009, 43451,…
## $ `8/29/20`        <dbl> 38229, 9279, 43781, 1124, 2551, 0, 94, 401239, 43626,…
## $ `8/30/20`        <dbl> 38229, 9380, 44146, 1124, 2624, 0, 94, 408426, 43750,…
## $ `8/31/20`        <dbl> 38248, 9513, 44494, 1176, 2654, 0, 94, 417735, 43781,…
## $ `9/1/20`         <dbl> 38282, 9606, 44833, 1184, 2729, 0, 94, 428239, 43878,…
## $ `9/2/20`         <dbl> 38329, 9728, 45158, 1199, 2777, 0, 94, 439172, 44075,…
## $ `9/3/20`         <dbl> 38374, 9844, 45469, 1199, 2805, 0, 95, 451198, 44271,…
## $ `9/4/20`         <dbl> 38374, 9967, 45773, 1215, 2876, 0, 95, 461882, 44461,…
## $ `9/5/20`         <dbl> 38390, 10102, 46071, 1215, 2935, 0, 95, 471806, 44649…
## $ `9/6/20`         <dbl> 38484, 10255, 46364, 1215, 2965, 0, 95, 478792, 44783…
## $ `9/7/20`         <dbl> 38580, 10406, 46653, 1261, 2981, 0, 95, 488007, 44845…
## $ `9/8/20`         <dbl> 38606, 10553, 46938, 1261, 3033, 0, 95, 500034, 44953…
## $ `9/9/20`         <dbl> 38630, 10704, 47216, 1301, 3092, 0, 95, 512293, 45152…
## $ `9/10/20`        <dbl> 38658, 10860, 47488, 1301, 3217, 0, 95, 524198, 45326…
## $ `9/11/20`        <dbl> 38692, 11021, 47752, 1344, 3279, 0, 95, 535705, 45503…
## $ `9/12/20`        <dbl> 38727, 11185, 48007, 1344, 3335, 0, 95, 546481, 45675…
## $ `9/13/20`        <dbl> 38802, 11353, 48254, 1344, 3388, 0, 95, 555537, 45862…
## $ `9/14/20`        <dbl> 38858, 11520, 48496, 1438, 3439, 0, 95, 565446, 45969…
## $ `9/15/20`        <dbl> 38901, 11672, 48734, 1438, 3569, 0, 95, 577338, 46119…
## $ `9/16/20`        <dbl> 38941, 11816, 48966, 1483, 3675, 0, 95, 589012, 46376…
## $ `9/17/20`        <dbl> 38958, 11948, 49194, 1483, 3789, 0, 95, 601713, 46671…
## $ `9/18/20`        <dbl> 38969, 12073, 49413, 1564, 3848, 0, 95, 613658, 46910…
## $ `9/19/20`        <dbl> 39005, 12226, 49623, 1564, 3901, 0, 96, 622934, 47154…
## $ `9/20/20`        <dbl> 39130, 12385, 49826, 1564, 3991, 0, 96, 631365, 47431…
## $ `9/21/20`        <dbl> 39160, 12535, 50023, 1681, 4117, 0, 96, 640147, 47552…
## $ `9/22/20`        <dbl> 39182, 12666, 50214, 1681, 4236, 0, 96, 652174, 47667…
## $ `9/23/20`        <dbl> 39231, 12787, 50400, 1753, 4363, 0, 97, 664799, 47877…
## $ `9/24/20`        <dbl> 39256, 12921, 50579, 1753, 4475, 0, 97, 678266, 48251…
## $ `9/25/20`        <dbl> 39272, 13045, 50754, 1836, 4590, 0, 98, 691235, 48643…
## $ `9/26/20`        <dbl> 39278, 13153, 50914, 1836, 4672, 0, 98, 702484, 49072…
## $ `9/27/20`        <dbl> 39313, 13259, 51067, 1836, 4718, 0, 101, 711325, 4940…
## $ `9/28/20`        <dbl> 39325, 13391, 51213, 1966, 4797, 0, 101, 723132, 4957…
## $ `9/29/20`        <dbl> 39340, 13518, 51368, 1966, 4905, 0, 101, 736609, 4990…
## $ `9/30/20`        <dbl> 39354, 13649, 51530, 2050, 4972, 0, 101, 751001, 5035…
## $ `10/1/20`        <dbl> 39371, 13806, 51690, 2050, 5114, 0, 101, 765002, 5085…
## $ `10/2/20`        <dbl> 39376, 13965, 51847, 2110, 5211, 0, 106, 779689, 5138…
## $ `10/3/20`        <dbl> 39383, 14117, 51995, 2110, 5370, 0, 107, 790818, 5192…
## $ `10/4/20`        <dbl> 39427, 14266, 52136, 2110, 5402, 0, 107, 798486, 5249…
## $ `10/5/20`        <dbl> 39508, 14410, 52270, 2370, 5530, 0, 107, 809728, 5267…
## $ `10/6/20`        <dbl> 39572, 14568, 52399, 2370, 5725, 0, 107, 824468, 5308…
## $ `10/7/20`        <dbl> 39634, 14730, 52520, 2568, 5725, 0, 108, 840915, 5375…
## $ `10/8/20`        <dbl> 39702, 14899, 52658, 2568, 5958, 0, 111, 856369, 5447…
## $ `10/9/20`        <dbl> 39779, 15066, 52804, 2696, 6031, 0, 111, 871468, 5508…
## $ `10/10/20`       <dbl> 39789, 15231, 52940, 2696, 6246, 0, 111, 883882, 5573…
## $ `10/11/20`       <dbl> 39885, 15399, 53072, 2696, 6366, 0, 111, 894206, 5645…
## $ `10/12/20`       <dbl> 39956, 15570, 53325, 2995, 6488, 0, 111, 903730, 5682…
## $ `10/13/20`       <dbl> 40014, 15752, 53399, 2995, 6680, 0, 111, 917035, 5756…
## $ `10/14/20`       <dbl> 40080, 15955, 53584, 3190, 6846, 0, 112, 931967, 5862…
## $ `10/15/20`       <dbl> 40112, 16212, 53777, 3190, 7096, 0, 112, 949063, 5999…
## $ `10/16/20`       <dbl> 40159, 16501, 53998, 3377, 7222, 0, 112, 965609, 6146…
## $ `10/17/20`       <dbl> 40227, 16774, 54203, 3377, 7462, 0, 119, 979119, 6300…
## $ `10/18/20`       <dbl> 40286, 17055, 54402, 3377, 7622, 0, 119, 989680, 6469…
## $ `10/19/20`       <dbl> 40373, 17350, 54616, 3623, 7829, 0, 119, 1002662, 654…
## $ `10/20/20`       <dbl> 40461, 17651, 54829, 3623, 8049, 0, 119, 1018999, 666…
## $ `10/21/20`       <dbl> 40461, 17948, 55081, 3811, 8338, 0, 122, 1037325, 685…
## $ `10/22/20`       <dbl> 40510, 18250, 55357, 3811, 8582, 0, 122, 1053650, 708…
## $ `10/23/20`       <dbl> 40626, 18556, 55630, 4038, 8829, 0, 122, 1069368, 733…
## $ `10/24/20`       <dbl> 40687, 18858, 55880, 4038, 9026, 0, 124, 1081336, 755…
## $ `10/25/20`       <dbl> 40768, 19157, 56143, 4038, 9381, 0, 124, 1090589, 778…
## $ `10/26/20`       <dbl> 40833, 19445, 56419, 4325, 9644, 0, 124, 1102301, 788…
## $ `10/27/20`       <dbl> 40937, 19729, 56706, 4410, 9871, 0, 124, 1116609, 804…
## $ `10/28/20`       <dbl> 41032, 20040, 57026, 4517, 10074, 0, 124, 1130533, 82…
## $ `10/29/20`       <dbl> 41145, 20315, 57332, 4567, 10269, 0, 124, 1143800, 85…
## $ `10/30/20`       <dbl> 41268, 20634, 57651, 4665, 10558, 0, 127, 1157179, 87…
## $ `10/31/20`       <dbl> 41334, 20875, 57942, 4756, 10805, 0, 128, 1166924, 89…
## $ `11/1/20`        <dbl> 41425, 21202, 58272, 4825, 11035, 0, 128, 1173533, 92…
## $ `11/2/20`        <dbl> 41501, 21523, 58574, 4888, 11228, 0, 128, 1183131, 93…
## $ `11/3/20`        <dbl> 41633, 21904, 58979, 4910, 11577, 0, 128, 1195276, 94…
## $ `11/4/20`        <dbl> 41728, 22300, 59527, 5045, 11813, 0, 130, 1205928, 97…
## $ `11/5/20`        <dbl> 41814, 22721, 60169, 5135, 12102, 0, 130, 1217028, 99…
## $ `11/6/20`        <dbl> 41935, 23210, 60800, 5135, 12223, 0, 130, 1228814, 10…
## $ `11/7/20`        <dbl> 41975, 23705, 61381, 5319, 12335, 0, 131, 1236851, 10…
## $ `11/8/20`        <dbl> 42033, 24206, 62051, 5383, 12433, 0, 131, 1242182, 10…
## $ `11/9/20`        <dbl> 42159, 24731, 62693, 5437, 12680, 0, 131, 1250499, 10…
## $ `11/10/20`       <dbl> 42297, 25294, 63446, 5477, 12816, 0, 131, 1262476, 10…
## $ `11/11/20`       <dbl> 42463, 25801, 64257, 5567, 12953, 0, 131, 1273356, 11…
## $ `11/12/20`       <dbl> 42609, 26211, 65108, 5616, 13053, 0, 131, 1284519, 11…
## $ `11/13/20`       <dbl> 42795, 26701, 65975, 5725, 13228, 0, 133, 1296378, 11…
## $ `11/14/20`       <dbl> 42969, 27233, 66819, 5725, 13374, 0, 134, 1304846, 11…
## $ `11/15/20`       <dbl> 43035, 27830, 67679, 5872, 13451, 0, 134, 1310491, 11…
## $ `11/16/20`       <dbl> 43240, 28432, 68589, 5914, 13615, 0, 134, 1318384, 11…
## $ `11/17/20`       <dbl> 43403, 29126, 69591, 5951, 13818, 0, 134, 1329005, 11…
## $ `11/18/20`       <dbl> 43628, 29837, 70629, 6018, 13922, 0, 139, 1339337, 12…
## $ `11/19/20`       <dbl> 43851, 30623, 71652, 6066, 14134, 0, 139, 1349434, 12…
## $ `11/20/20`       <dbl> 44228, 31459, 72755, 6142, 14267, 0, 139, 1359042, 12…
## $ `11/21/20`       <dbl> 44443, 32196, 73774, 6207, 14413, 0, 139, 1366182, 12…
## $ `11/22/20`       <dbl> 44503, 32761, 74862, 6256, 14493, 0, 139, 1370366, 12…
## $ `11/23/20`       <dbl> 44706, 33556, 75867, 6304, 14634, 0, 139, 1374631, 12…
## $ `11/24/20`       <dbl> 44988, 34300, 77000, 6351, 14742, 0, 139, 1381795, 12…
## $ `11/25/20`       <dbl> 45278, 34944, 78025, 6428, 14821, 0, 140, 1390388, 12…
## $ `11/26/20`       <dbl> 45490, 35600, 79110, 6534, 14920, 0, 141, 1399431, 13…
## $ `11/27/20`       <dbl> 45716, 36245, 80168, 6610, 15008, 0, 141, 1407277, 13…
## $ `11/28/20`       <dbl> 45839, 36790, 81212, 6610, 15087, 0, 141, 1413375, 13…
## $ `11/29/20`       <dbl> 45966, 37625, 82221, 6712, 15103, 0, 141, 1418807, 13…
## $ `11/30/20`       <dbl> 46215, 38182, 83199, 6745, 15139, 0, 141, 1424533, 13…
## $ `12/1/20`        <dbl> 46498, 39014, 84152, 6790, 15251, 0, 142, 1432570, 13…
## $ `12/2/20`        <dbl> 46717, 39719, 85084, 6842, 15319, 0, 144, 1440103, 13…
## $ `12/3/20`        <dbl> 46980, 40501, 85927, 6904, 15361, 0, 144, 1447732, 13…
## $ `12/4/20`        <dbl> 47258, 41302, 86730, 6955, 15493, 0, 144, 1454631, 13…
## $ `12/5/20`        <dbl> 47388, 42148, 87502, 7005, 15536, 0, 144, 1459832, 14…
## $ `12/6/20`        <dbl> 47641, 42988, 88252, 7050, 15591, 0, 144, 1463110, 14…
## $ `12/7/20`        <dbl> 47901, 43683, 88825, 7084, 15648, 0, 146, 1466309, 14…
## $ `12/8/20`        <dbl> 48136, 44436, 89416, 7127, 15729, 0, 146, 1469919, 14…
## $ `12/9/20`        <dbl> 48366, 45188, 90014, 7162, 15804, 0, 146, 1475222, 14…
## $ `12/10/20`       <dbl> 48540, 46061, 90579, 7190, 15925, 0, 146, 1482216, 14…
## $ `12/11/20`       <dbl> 48753, 46863, 91121, 7236, 16061, 0, 147, 1489328, 14…
## $ `12/12/20`       <dbl> 48826, 47742, 91638, 7288, 16161, 0, 148, 1494602, 14…
## $ `12/13/20`       <dbl> 48952, 48530, 92102, 7338, 16188, 0, 148, 1498160, 14…
## $ `12/14/20`       <dbl> 49273, 49191, 92597, 7382, 16277, 0, 148, 1503222, 14…
## $ `12/15/20`       <dbl> 49484, 50000, 93065, 7382, 16362, 0, 148, 1510203, 14…
## $ `12/16/20`       <dbl> 49703, 50637, 93507, 7446, 16407, 0, 151, 1517046, 15…
## $ `12/17/20`       <dbl> 49927, 51424, 93933, 7466, 16484, 0, 151, 1524372, 15…
## $ `12/18/20`       <dbl> 50202, 52004, 94371, 7519, 16562, 0, 152, 1531374, 15…
## $ `12/19/20`       <dbl> 50456, 52542, 94781, 7560, 16626, 0, 152, 1537169, 15…
## $ `12/20/20`       <dbl> 50536, 53003, 95203, 7577, 16644, 0, 153, 1541285, 15…
## $ `12/21/20`       <dbl> 50678, 53425, 95659, 7602, 16686, 0, 153, 1547138, 15…
## $ `12/22/20`       <dbl> 50888, 53814, 96069, 7633, 16802, 0, 153, 1555279, 15…
## $ `12/23/20`       <dbl> 51070, 54317, 96549, 7669, 16931, 0, 154, 1563865, 15…
## $ `12/24/20`       <dbl> 51357, 54827, 97007, 7699, 17029, 0, 154, 1563865, 15…
## $ `12/25/20`       <dbl> 51595, 55380, 97441, 7756, 17099, 0, 155, 1574554, 15…
## $ `12/26/20`       <dbl> 51764, 55755, 97857, 7806, 17149, 0, 155, 1578267, 15…
## $ `12/27/20`       <dbl> 51848, 56254, 98249, 7821, 17240, 0, 155, 1583297, 15…
## $ `12/28/20`       <dbl> 52007, 56572, 98631, 7875, 17296, 0, 158, 1590513, 15…
## $ `12/29/20`       <dbl> 52147, 57146, 98988, 7919, 17371, 0, 158, 1602163, 15…
## $ `12/30/20`       <dbl> 52330, 57727, 99311, 7983, 17433, 0, 158, 1613928, 15…
## $ `12/31/20`       <dbl> 52330, 58316, 99610, 8049, 17553, 0, 159, 1625514, 15…
## $ `1/1/21`         <dbl> 52513, 58316, 99897, 8117, 17568, 0, 159, 1629594, 15…
## $ `1/2/21`         <dbl> 52586, 58991, 100159, 8166, 17608, 0, 159, 1634834, 1…
## $ `1/3/21`         <dbl> 52709, 59438, 100408, 8192, 17642, 0, 160, 1640718, 1…
## $ `1/4/21`         <dbl> 52909, 59623, 100645, 8249, 17684, 0, 160, 1648940, 1…
## $ `1/5/21`         <dbl> 53011, 60283, 100873, 8308, 17756, 0, 160, 1662730, 1…
## $ `1/6/21`         <dbl> 53105, 61008, 101120, 8348, 17864, 0, 163, 1676171, 1…
## $ `1/7/21`         <dbl> 53207, 61705, 101382, 8348, 17974, 0, 163, 1690006, 1…
## $ `1/8/21`         <dbl> 53332, 62378, 101657, 8489, 18066, 0, 167, 1703352, 1…
## $ `1/9/21`         <dbl> 53400, 63033, 101913, 8586, 18156, 0, 169, 1714409, 1…
## $ `1/10/21`        <dbl> 53489, 63595, 102144, 8586, 18193, 0, 176, 1722217, 1…
## $ `1/11/21`        <dbl> 53538, 63971, 102369, 8586, 18254, 0, 176, 1730921, 1…
## $ `1/12/21`        <dbl> 53584, 64627, 102641, 8682, 18343, 0, 176, 1744704, 1…
## $ `1/13/21`        <dbl> 53690, 65334, 102860, 8818, 18425, 0, 176, 1757429, 1…
## $ `1/14/21`        <dbl> 53775, 65994, 103127, 8868, 18613, 0, 184, 1770715, 1…
## $ `1/15/21`        <dbl> 53831, 66635, 103381, 8946, 18679, 0, 184, 1783047, 1…
## $ `1/16/21`        <dbl> 53938, 67216, 103611, 9038, 18765, 0, 187, 1791979, 1…
## $ `1/17/21`        <dbl> 53984, 67690, 103833, 9083, 18875, 0, 189, 1799243, 1…
## $ `1/18/21`        <dbl> 54062, 67982, 104092, 9083, 18926, 0, 189, 1807428, 1…
## $ `1/19/21`        <dbl> 54141, 68568, 104341, 9194, 19011, 0, 190, 1819569, 1…
## $ `1/20/21`        <dbl> 54278, 69238, 104606, 9308, 19093, 0, 190, 1831681, 1…
## $ `1/21/21`        <dbl> 54403, 69916, 104852, 9379, 19177, 0, 192, 1843077, 1…
## $ `1/22/21`        <dbl> 54483, 70655, 105124, 9416, 19269, 0, 195, 1853830, 1…
## $ `1/23/21`        <dbl> 54559, 71441, 105369, 9499, 19367, 0, 195, 1862192, 1…
## $ `1/24/21`        <dbl> 54595, 72274, 105596, 9549, 19399, 0, 198, 1867223, 1…
## $ `1/25/21`        <dbl> 54672, 72812, 105854, 9596, 19476, 0, 201, 1874801, 1…
## $ `1/26/21`        <dbl> 54750, 73691, 106097, 9638, 19553, 0, 201, 1885210, 1…
## $ `1/27/21`        <dbl> 54854, 74567, 106359, 9716, 19580, 0, 215, 1896053, 1…
## $ `1/28/21`        <dbl> 54891, 75454, 106610, 9779, 19672, 0, 215, 1905524, 1…
## $ `1/29/21`        <dbl> 54939, 76350, 106887, 9837, 19723, 0, 218, 1915362, 1…
## $ `1/30/21`        <dbl> 55008, 77251, 107122, 9885, 19782, 0, 218, 1922264, 1…
## $ `1/31/21`        <dbl> 55023, 78127, 107339, 9937, 19796, 0, 234, 1927239, 1…
## $ `2/1/21`         <dbl> 55059, 78992, 107578, 9972, 19829, 0, 234, 1933853, 1…
## $ `2/2/21`         <dbl> 55121, 79934, 107841, 10017, 19900, 0, 249, 1943548, …
## $ `2/3/21`         <dbl> 55174, 80941, 108116, 10070, 19937, 0, 249, 1952744, …
## $ `2/4/21`         <dbl> 55231, 81993, 108381, 10137, 19996, 0, 268, 1961635, …
## $ `2/5/21`         <dbl> 55265, 83082, 108629, 10172, 20030, 0, 277, 1970009, …
## $ `2/6/21`         <dbl> 55330, 84212, 108629, 10206, 20062, 0, 288, 1976689, …
## $ `2/7/21`         <dbl> 55335, 85336, 109088, 10251, 20086, 0, 299, 1980347, …
## $ `2/8/21`         <dbl> 55359, 86289, 109313, 10275, 20112, 0, 316, 1985501, …
## $ `2/9/21`         <dbl> 55384, 87528, 109559, 10312, 20163, 0, 316, 1993295, …
## $ `2/10/21`        <dbl> 55402, 88671, 109782, 10352, 20210, 0, 350, 2001034, …
## $ `2/11/21`        <dbl> 55420, 89776, 110049, 10391, 20261, 0, 381, 2008345, …
## $ `2/12/21`        <dbl> 55445, 90835, 110303, 10427, 20294, 0, 419, 2015496, …
## $ `2/13/21`        <dbl> 55473, 91987, 110513, 10463, 20329, 0, 427, 2021553, …
## $ `2/14/21`        <dbl> 55492, 93075, 110711, 10503, 20366, 0, 427, 2025798, …
## $ `2/15/21`        <dbl> 55514, 93850, 110894, 10538, 20381, 0, 443, 2029057, …
## $ `2/16/21`        <dbl> 55518, 94651, 111069, 10555, 20389, 0, 443, 2033060, …
## $ `2/17/21`        <dbl> 55540, 95726, 111247, 10583, 20400, 0, 525, 2039124, …
## $ `2/18/21`        <dbl> 55557, 96838, 111418, 10610, 20452, 0, 548, 2046795, …
## $ `2/19/21`        <dbl> 55575, 97909, 111600, 10645, 20478, 0, 548, 2054681, …
## $ `2/20/21`        <dbl> 55580, 99062, 111764, 10672, 20499, 0, 598, 2060625, …
## $ `2/21/21`        <dbl> 55604, 100246, 111917, 10699, 20519, 0, 598, 2064334,…
## $ `2/22/21`        <dbl> 55617, 101285, 112094, 10712, 20548, 0, 614, 2069751,…
## $ `2/23/21`        <dbl> 55646, 102306, 112279, 10739, 20584, 0, 636, 2077228,…
## $ `2/24/21`        <dbl> 55664, 103327, 112461, 10775, 20640, 0, 646, 2085411,…
## $ `2/25/21`        <dbl> 55680, 104313, 112622, 10799, 20695, 0, 701, 2093645,…
## $ `2/26/21`        <dbl> 55696, 105229, 112805, 10822, 20759, 0, 701, 2098728,…
## $ `2/27/21`        <dbl> 55707, 106215, 112960, 10849, 20782, 0, 726, 2104197,…
## $ `2/28/21`        <dbl> 55714, 107167, 113092, 10866, 20807, 0, 730, 2107365,…
## $ `3/1/21`         <dbl> 55733, 107931, 113255, 10889, 20854, 0, 769, 2112023,…
## $ `3/2/21`         <dbl> 55759, 108823, 113430, 10908, 20882, 0, 769, 2118676,…
## $ `3/3/21`         <dbl> 55770, 109674, 113593, 10948, 20923, 0, 769, 2126531,…
## $ `3/4/21`         <dbl> 55775, 110521, 113761, 10976, 20981, 0, 813, 2133963,…
## $ `3/5/21`         <dbl> 55827, 111301, 113948, 10998, 21026, 0, 813, 2141854,…
## $ `3/6/21`         <dbl> 55840, 112078, 114104, 11019, 21055, 0, 813, 2146714,…
## $ `3/7/21`         <dbl> 55847, 112897, 114234, 11042, 21086, 0, 848, 2149636,…
## $ `3/8/21`         <dbl> 55876, 113580, 114382, 11069, 21108, 0, 848, 2154694,…
## $ `3/9/21`         <dbl> 55876, 114209, 114543, 11089, 21114, 0, 862, 2162001,…
## $ `3/10/21`        <dbl> 55894, 114840, 114681, 11130, 21161, 0, 882, 2169694,…
## $ `3/11/21`        <dbl> 55917, 115442, 114851, 11130, 21205, 0, 882, 2177898,…
## $ `3/12/21`        <dbl> 55959, 116123, 115008, 11199, 21265, 0, 945, 2185747,…
## $ `3/13/21`        <dbl> 55959, 116821, 115143, 11228, 21323, 0, 962, 2192025,…
## $ `3/14/21`        <dbl> 55985, 117474, 115265, 11266, 21380, 0, 963, 2195722,…
## $ `3/15/21`        <dbl> 55985, 118017, 115410, 11289, 21407, 0, 963, 2201886,…
## $ `3/16/21`        <dbl> 55995, 118492, 115540, 11319, 21446, 0, 992, 2210121,…
## $ `3/17/21`        <dbl> 56016, 118938, 115688, 11360, 21489, 0, 992, 2218425,…
## $ `3/18/21`        <dbl> 56044, 119528, 115842, 11393, 21558, 0, 1008, 2226753…
## $ `3/19/21`        <dbl> 56069, 120022, 115970, 11431, 21642, 0, 1011, 2234913…
## $ `3/20/21`        <dbl> 56093, 120541, 116066, 11481, 21696, 0, 1033, 2241739…
## $ `3/21/21`        <dbl> 56103, 121200, 116157, 11517, 21733, 0, 1033, 2245771…
## $ `3/22/21`        <dbl> 56153, 121544, 116255, 11545, 21757, 0, 1072, 2252172…
## $ `3/23/21`        <dbl> 56177, 121847, 116349, 11591, 21774, 0, 1080, 2261577…
## $ `3/24/21`        <dbl> 56192, 122295, 116438, 11638, 21836, 0, 1080, 2269877…
## $ `3/25/21`        <dbl> 56226, 122767, 116543, 11687, 21914, 0, 1103, 2278115…
## $ `3/26/21`        <dbl> 56254, 123216, 116657, 11732, 21961, 0, 1122, 2291051…
## $ `3/27/21`        <dbl> 56290, 123641, 116750, 11809, 22031, 0, 1122, 2301389…
## $ `3/28/21`        <dbl> 56294, 124134, 116836, 11850, 22063, 0, 1128, 2308597…
## $ `3/29/21`        <dbl> 56322, 124419, 116946, 11888, 22132, 0, 1136, 2322611…
## $ `3/30/21`        <dbl> 56384, 124723, 117061, 11944, 22182, 0, 1136, 2332765…
## $ `3/31/21`        <dbl> 56454, 125157, 117192, 12010, 22311, 0, 1136, 2348821…
## $ `4/1/21`         <dbl> 56517, 125506, 117304, 12053, 22399, 0, 1147, 2363251…
## $ `4/2/21`         <dbl> 56572, 125842, 117429, 12115, 22467, 0, 1152, 2373153…
## $ `4/3/21`         <dbl> 56595, 126183, 117524, 12174, 22579, 0, 1170, 2383537…
## $ `4/4/21`         <dbl> 56676, 126531, 117622, 12231, 22631, 0, 1170, 2393492…
## $ `4/5/21`         <dbl> 56717, 126795, 117739, 12286, 22717, 0, 1173, 2407159…
## $ `4/6/21`         <dbl> 56779, 126936, 117879, 12328, 22885, 0, 1173, 2428029…
## $ `4/7/21`         <dbl> 56873, 127192, 118004, 12363, 23010, 0, 1177, 2450068…
## $ `4/8/21`         <dbl> 56943, 127509, 118116, 12409, 23108, 0, 1180, 2473751…
## $ `4/9/21`         <dbl> 57019, 127795, 118251, 12456, 23242, 0, 1182, 2497881…
## $ `4/10/21`        <dbl> 57144, 128155, 118378, 12497, 23331, 0, 1197, 2517300…
## $ `4/11/21`        <dbl> 57160, 128393, 118516, 12545, 23457, 0, 1198, 2532562…
## $ `4/12/21`        <dbl> 57242, 128518, 118645, 12581, 23549, 0, 1198, 2551999…
## $ `4/13/21`        <dbl> 57364, 128752, 118799, 12614, 23697, 0, 1201, 2579000…
## $ `4/14/21`        <dbl> 57492, 128959, 118975, 12641, 23841, 0, 1201, 2604157…
## $ `4/15/21`        <dbl> 57534, 129128, 119142, 12641, 23951, 0, 1209, 2629156…
## $ `4/16/21`        <dbl> 57612, 129307, 119323, 12712, 24122, 0, 1213, 2658628…
## $ `4/17/21`        <dbl> 57721, 129456, 119486, 12771, 24300, 0, 1216, 2677747…
## $ `4/18/21`        <dbl> 57793, 129594, 119642, 12805, 24389, 0, 1216, 2694014…
## $ `4/19/21`        <dbl> 57898, 129694, 119805, 12805, 24518, 0, 1217, 2714475…
## $ `4/20/21`        <dbl> 58037, 129842, 119992, 12874, 24661, 0, 1217, 2743620…
## $ `4/21/21`        <dbl> 58214, 129980, 120174, 12917, 24883, 0, 1217, 2769552…
## $ `4/22/21`        <dbl> 58312, 130114, 120363, 12942, 25051, 0, 1217, 2796768…
## $ `4/23/21`        <dbl> 58542, 130270, 120562, 13007, 25279, 0, 1222, 2824652…
## $ `4/24/21`        <dbl> 58730, 130409, 120736, 13024, 25492, 0, 1227, 2845872…
## $ `4/25/21`        <dbl> 58843, 130537, 120922, 13060, 25609, 0, 1227, 2860884…
## $ `4/26/21`        <dbl> 59015, 130606, 121112, 13083, 25710, 0, 1228, 2879677…
## $ `4/27/21`        <dbl> 59225, 130736, 121344, 13121, 25942, 0, 1232, 2905172…
## $ `4/28/21`        <dbl> 59370, 130859, 121580, 13148, 26168, 0, 1232, 2928890…
## $ `4/29/21`        <dbl> 59576, 130977, 121866, 13198, 26431, 0, 1232, 2954943…
## $ `4/30/21`        <dbl> 59745, 131085, 122108, 13232, 26652, 0, 1232, 2977363…
## $ `5/1/21`         <dbl> 59939, 131185, 122311, 13232, 26815, 0, 1232, 2993865…
## $ `5/2/21`         <dbl> 60122, 131238, 122522, 13282, 26993, 0, 1232, 3005259…
## $ `5/3/21`         <dbl> 60300, 131276, 122717, 13295, 27133, 0, 1232, 3021179…
## $ `5/4/21`         <dbl> 60563, 131327, 122999, 13316, 27284, 0, 1232, 3047417…
## $ `5/5/21`         <dbl> 60797, 131419, 123272, 13340, 27529, 0, 1232, 3071496…
## $ `5/6/21`         <dbl> 61162, 131510, 123473, 13363, 27921, 0, 1232, 3095582…
## $ `5/7/21`         <dbl> 61455, 131577, 123692, 13390, 28201, 0, 1232, 3118134…
## $ `5/8/21`         <dbl> 61755, 131666, 123900, 13406, 28477, 0, 1232, 3136158…
## $ `5/9/21`         <dbl> 61842, 131723, 124104, 13423, 28740, 0, 1231, 3147740…
## $ `5/10/21`        <dbl> 62063, 131753, 124288, 13429, 28875, 0, 1237, 3165121…
## $ `5/11/21`        <dbl> 62403, 131803, 124483, 13447, 29146, 0, 1238, 3191097…
## $ `5/12/21`        <dbl> 62718, 131845, 124682, 13470, 29405, 0, 1240, 3215572…
## $ `5/13/21`        <dbl> 63045, 131890, 124889, 13470, 29695, 0, 1240, 3242103…
## $ `5/14/21`        <dbl> 63355, 131939, 125059, 13510, 30030, 0, 1240, 3269466…
## $ `5/15/21`        <dbl> 63412, 131978, 125194, 13510, 30354, 0, 1241, 3290935…
## $ `5/16/21`        <dbl> 63484, 132015, 125311, 13510, 30637, 0, 1241, 3307285…
## $ `5/17/21`        <dbl> 63598, 132032, 125485, 13555, 30787, 0, 1251, 3335965…
## $ `5/18/21`        <dbl> 63819, 132071, 125693, 13569, 31045, 0, 1251, 3371508…
## $ `5/19/21`        <dbl> 64122, 132095, 125896, 13569, 31438, 0, 1252, 3411160…
## $ `5/20/21`        <dbl> 64575, 132118, 126156, 13569, 31661, 0, 1255, 3447044…
## $ `5/21/21`        <dbl> 65080, 132153, 126434, 13569, 31909, 0, 1255, 3482512…
## $ `5/22/21`        <dbl> 65486, 132176, 126651, 13569, 32149, 0, 1257, 3514683…
## $ `5/23/21`        <dbl> 65728, 132209, 126860, 13569, 32441, 0, 1257, 3539484…
## $ `5/24/21`        <dbl> 66275, 132215, 127107, 13569, 32623, 0, 1258, 3562135…
## $ `5/25/21`        <dbl> 66903, 132229, 127361, 13664, 32933, 0, 1258, 3586736…
## $ `5/26/21`        <dbl> 67743, 132244, 127646, 13671, 33338, 0, 1258, 3622135…
## $ `5/27/21`        <dbl> 68366, 132264, 127926, 13682, 33607, 0, 1258, 3663215…
## $ `5/28/21`        <dbl> 69130, 132285, 128198, 13693, 33944, 0, 1259, 3702422…
## $ `5/29/21`        <dbl> 70111, 132297, 128456, 13693, 34180, 0, 1259, 3732263…
## $ `5/30/21`        <dbl> 70761, 132309, 128725, 13693, 34366, 0, 1259, 3753609…
## $ `5/31/21`        <dbl> 71838, 132315, 128913, 13727, 34551, 0, 1260, 3781784…
## $ `6/1/21`         <dbl> 72977, 132337, 129218, 13729, 34752, 0, 1260, 3817139…
## $ `6/2/21`         <dbl> 74026, 132351, 129640, 13744, 34960, 0, 1262, 3852156…
## $ `6/3/21`         <dbl> 75119, 132360, 129976, 13752, 35140, 0, 1262, 3884447…
## $ `6/4/21`         <dbl> 76628, 132372, 130361, 13758, 35307, 0, 1263, 3915397…
## $ `6/5/21`         <dbl> 77963, 132374, 130681, 13758, 35594, 0, 1263, 3939024…
## $ `6/6/21`         <dbl> 79224, 132379, 130958, 13758, 35772, 0, 1263, 3955439…
## $ `6/7/21`         <dbl> 80841, 132384, 131283, 13777, 35854, 0, 1263, 3977634…
## $ `6/8/21`         <dbl> 82326, 132397, 131647, 13781, 36004, 0, 1263, 4008771…
## $ `6/9/21`         <dbl> 84050, 132415, 132034, 13791, 36115, 0, 1263, 4038528…
## $ `6/10/21`        <dbl> 85892, 132426, 132355, 13805, 36325, 0, 1263, 4066156…
## $ `6/11/21`        <dbl> 87716, 132437, 132727, 13813, 36455, 0, 1263, 4093090…
## $ `6/12/21`        <dbl> 88740, 132449, 133070, 13813, 36600, 0, 1263, 4111147…
## $ `6/13/21`        <dbl> 89861, 132459, 133388, 13813, 36705, 0, 1263, 4124190…
## $ `6/14/21`        <dbl> 91458, 132461, 133742, 13826, 36790, 0, 1263, 4145482…
## $ `6/15/21`        <dbl> 93272, 132469, 134115, 13828, 36921, 0, 1263, 4172742…
## $ `6/16/21`        <dbl> 93288, 132476, 134458, 13836, 37094, 0, 1263, 4198620…
## $ `6/17/21`        <dbl> 96531, 132481, 134840, 13839, 37289, 0, 1263, 4222400…
## $ `6/18/21`        <dbl> 98734, 132484, 135219, 13842, 37467, 0, 1263, 4242763…
## $ `6/19/21`        <dbl> 100521, 132488, 135586, 13842, 37604, 0, 1263, 425839…
## $ `6/20/21`        <dbl> 101906, 132490, 135821, 13842, 37678, 0, 1263, 426878…
## $ `6/21/21`        <dbl> 103902, 132490, 136294, 13864, 37748, 0, 1263, 427739…
## $ `6/22/21`        <dbl> 105749, 132496, 136679, 13864, 37874, 0, 1263, 429878…
## $ `6/23/21`        <dbl> 107957, 132497, 137049, 13873, 38002, 0, 1263, 432610…
## $ `6/24/21`        <dbl> 109532, 132499, 137403, 13877, 38091, 0, 1263, 435056…
## $ `6/25/21`        <dbl> 111592, 132506, 137772, 13882, 38371, 0, 1263, 437458…
## $ `6/26/21`        <dbl> 113124, 132509, 138113, 13882, 38528, 0, 1263, 439314…
## $ `6/27/21`        <dbl> 114220, 132512, 138465, 13882, 38556, 0, 1263, 440524…
## $ `6/28/21`        <dbl> 115751, 132513, 138840, 13882, 38613, 0, 1263, 442363…
## $ `6/29/21`        <dbl> 117158, 132514, 139229, 13900, 38682, 0, 1263, 444770…
## $ `6/30/21`        <dbl> 118659, 132521, 139626, 13911, 38849, 0, 1263, 447037…
## $ `7/1/21`         <dbl> 120216, 132523, 140075, 13918, 38965, 0, 1264, 449155…
## $ `7/2/21`         <dbl> 122156, 132526, 140550, 13918, 39089, 0, 1264, 451243…
## $ `7/3/21`         <dbl> 123485, 132534, 141007, 13918, 39172, 0, 1264, 452647…
## $ `7/4/21`         <dbl> 124748, 132535, 141471, 13918, 39230, 0, 1264, 453547…
## $ `7/5/21`         <dbl> 125937, 132537, 141966, 13918, 39300, 0, 1264, 455275…
## $ `7/6/21`         <dbl> 127464, 132544, 142447, 13991, 39375, 0, 1265, 457434…
## $ `7/7/21`         <dbl> 129021, 132557, 143032, 14021, 39491, 0, 1265, 459376…
## $ `7/8/21`         <dbl> 130113, 132565, 143652, 14050, 39593, 0, 1266, 461301…
## $ `7/9/21`         <dbl> 131586, 132580, 144483, 14075, 39791, 0, 1266, 462753…
## $ `7/10/21`        <dbl> 132777, 132587, 145296, 14075, 39881, 0, 1266, 463909…
## $ `7/11/21`        <dbl> 133578, 132592, 146064, 14075, 39958, 0, 1266, 464794…
## $ `7/12/21`        <dbl> 134653, 132597, 146942, 14155, 40055, 0, 1266, 466293…
## $ `7/13/21`        <dbl> 135889, 132608, 147883, 14167, 40138, 0, 1266, 468296…
## $ `7/14/21`        <dbl> 136643, 132616, 148797, 14167, 40327, 0, 1267, 470265…
## $ `7/15/21`        <dbl> 137853, 132629, 149906, 14239, 40530, 0, 1267, 471995…
## $ `7/16/21`        <dbl> 139051, 132647, 151103, 14273, 40631, 0, 1268, 473721…
## $ `7/17/21`        <dbl> 140224, 132665, 152210, 14273, 40707, 0, 1268, 474944…
## $ `7/18/21`        <dbl> 140602, 132686, 153309, 14273, 40805, 0, 1268, 475637…
## $ `7/19/21`        <dbl> 141499, 132697, 154486, 14359, 40906, 0, 1275, 476914…
## $ `7/20/21`        <dbl> 142414, 132740, 155784, 14379, 41061, 0, 1275, 478421…
## $ `7/21/21`        <dbl> 142762, 132763, 157005, 14379, 41227, 0, 1275, 479885…
## $ `7/22/21`        <dbl> 143183, 132797, 158213, 14464, 41405, 0, 1277, 481235…
## $ `7/23/21`        <dbl> 143439, 132828, 159563, 14498, 41629, 0, 1277, 482797…
## $ `7/24/21`        <dbl> 143666, 132853, 160868, 14498, 41736, 0, 1280, 483910…
## $ `7/25/21`        <dbl> 143871, 132875, 162155, 14498, 41780, 0, 1280, 484661…
## $ `7/26/21`        <dbl> 144285, 132891, 163660, 14577, 41879, 0, 1280, 485917…
## $ `7/27/21`        <dbl> 145008, 132922, 165204, 14586, 42110, 0, 1288, 487592…
## $ `7/28/21`        <dbl> 145552, 132952, 167131, 14586, 42288, 0, 1288, 489181…
## $ `7/29/21`        <dbl> 145996, 132999, 168668, 14655, 42486, 0, 1295, 490592…
## $ `7/30/21`        <dbl> 146523, 133036, 170189, 14678, 42646, 0, 1303, 491940…
## $ `7/31/21`        <dbl> 147154, 133081, 171392, 14678, 42777, 0, 1303, 492976…
## $ `8/1/21`         <dbl> 147501, 133121, 172564, 14678, 42815, 0, 1303, 493584…
## $ `8/2/21`         <dbl> 147985, 133146, 173922, 14747, 42970, 0, 1303, 494703…
## $ `8/3/21`         <dbl> 148572, 133211, 175229, 14766, 43070, 0, 1303, 496188…
## $ `8/4/21`         <dbl> 148933, 133310, 176724, 14797, 43158, 0, 1311, 497561…
## $ `8/5/21`         <dbl> 149361, 133442, 178013, 14809, 43269, 0, 1320, 498940…
## $ `8/6/21`         <dbl> 149810, 133591, 179216, 14836, 43487, 0, 1328, 500295…
## $ `8/7/21`         <dbl> 150240, 133730, 180356, 14836, 43592, 0, 1328, 501275…
## $ `8/8/21`         <dbl> 150458, 133912, 181376, 14836, 43662, 0, 1338, 501889…
## $ `8/9/21`         <dbl> 150778, 133981, 182368, 14836, 43747, 0, 1348, 502907…
## $ `8/10/21`        <dbl> 151013, 134201, 183347, 14873, 43890, 0, 1348, 504148…
## $ `8/11/21`        <dbl> 151291, 134487, 184191, 14891, 43998, 0, 1372, 505288…
## $ `8/12/21`        <dbl> 151563, 134761, 185042, 14908, 44174, 0, 1372, 506625…
## $ `8/13/21`        <dbl> 151770, 135140, 185902, 14924, 44328, 0, 1372, 507472…
## $ `8/14/21`        <dbl> 151941, 135550, 186655, 14924, 44534, 0, 1378, 508090…
## $ `8/15/21`        <dbl> 152033, 135947, 187258, 14924, 44617, 0, 1397, 508463…
## $ `8/16/21`        <dbl> 152142, 136147, 187968, 14954, 44739, 0, 1397, 508827…
## $ `8/17/21`        <dbl> 152243, 136598, 188663, 14960, 44972, 0, 1397, 509644…
## $ `8/18/21`        <dbl> 152363, 137075, 189384, 14976, 45175, 0, 1421, 510620…
## $ `8/19/21`        <dbl> 152411, 137597, 190078, 14981, 45325, 0, 1421, 511680…
## $ `8/20/21`        <dbl> 152448, 138132, 190656, 14988, 45583, 0, 1447, 512496…
## $ `8/21/21`        <dbl> 152497, 138790, 191171, 14988, 45817, 0, 1490, 513085…
## $ `8/22/21`        <dbl> 152511, 139324, 191583, 14988, 45945, 0, 1490, 513383…
## $ `8/23/21`        <dbl> 152583, 139721, 192089, 15002, 46076, 0, 1540, 513996…
## $ `8/24/21`        <dbl> 152660, 140521, 192626, 15003, 46340, 0, 1540, 514808…
## $ `8/25/21`        <dbl> 152722, 141365, 193171, 15014, 46539, 0, 1598, 515507…
## $ `8/26/21`        <dbl> 152822, 142253, 193674, 15016, 46726, 0, 1598, 516192…
## $ `8/27/21`        <dbl> 152960, 143174, 194186, 15025, 46929, 0, 1598, 516773…
## $ `8/28/21`        <dbl> 153007, 144079, 194671, 15025, 47079, 0, 1638, 517145…
## $ `8/29/21`        <dbl> 153033, 144847, 195162, 15025, 47168, 0, 1651, 517353…
## $ `8/30/21`        <dbl> 153148, 145333, 195574, 15032, 47331, 0, 1713, 517888…
## $ `8/31/21`        <dbl> 153220, 146387, 196080, 15033, 47544, 0, 1715, 518562…
## $ `9/1/21`         <dbl> 153260, 147369, 196527, 15046, 47781, 0, 1719, 519094…
## $ `9/2/21`         <dbl> 153306, 148222, 196915, 15052, 48004, 0, 1742, 519560…
## $ `9/3/21`         <dbl> 153375, 149117, 197308, 15055, 48261, 0, 1750, 519991…
## $ `9/4/21`         <dbl> 153395, 150101, 197659, 15055, 48475, 0, 1759, 520240…
## $ `9/5/21`         <dbl> 153423, 150997, 198004, 15055, 48656, 0, 1870, 520380…
## $ `9/6/21`         <dbl> 153534, 151499, 198313, 15069, 48790, 0, 1878, 520769…
## $ `9/7/21`         <dbl> 153626, 152239, 198645, 15070, 49114, 0, 1960, 521180…
## $ `9/8/21`         <dbl> 153736, 153318, 198962, 15070, 49349, 0, 1974, 521533…
## $ `9/9/21`         <dbl> 153840, 154316, 199275, 15078, 49628, 0, 2059, 521899…
## $ `9/10/21`        <dbl> 153962, 155293, 199560, 15083, 49943, 0, 2059, 522180…
## $ `9/11/21`        <dbl> 153982, 156162, 199822, 15083, 50348, 0, 2166, 522360…
## $ `9/12/21`        <dbl> 153990, 157026, 200068, 15083, 50446, 0, 2166, 522453…
## $ `9/13/21`        <dbl> 154094, 157436, 200301, 15096, 50738, 0, 2297, 522683…
## $ `9/14/21`        <dbl> 154180, 158431, 200528, 15099, 51047, 0, 2304, 522984…
## $ `9/15/21`        <dbl> 154283, 159423, 200770, 15108, 51407, 0, 2304, 523235…
## $ `9/16/21`        <dbl> 154361, 160365, 200989, 15113, 51827, 0, 2304, 523485…
## $ `9/17/21`        <dbl> 154487, 161324, 201224, 15124, 52208, 0, 2603, 523715…
## $ `9/18/21`        <dbl> 154487, 162173, 201425, 15124, 52307, 0, 2603, 523861…
## $ `9/19/21`        <dbl> 154487, 162953, 201600, 15124, 52307, 0, 2603, 523923…
## $ `9/20/21`        <dbl> 154585, 163404, 201766, 15140, 52644, 0, 2603, 524139…
## $ `9/21/21`        <dbl> 154712, 164276, 201948, 15140, 52968, 0, 2603, 524323…
## $ `9/22/21`        <dbl> 154757, 165096, 202122, 15153, 53387, 0, 2625, 524526…
## $ `9/23/21`        <dbl> 154800, 165864, 202283, 15156, 53840, 0, 2815, 524699…
## $ `9/24/21`        <dbl> 154960, 166690, 202449, 15167, 54280, 0, 2815, 524884…
## $ `9/25/21`        <dbl> 154960, 167354, 202574, 15167, 54795, 0, 2902, 524984…
## $ `9/26/21`        <dbl> 154960, 167893, 202722, 15167, 55121, 0, 2923, 525040…
## $ `9/27/21`        <dbl> 155072, 168188, 202877, 15189, 55583, 0, 2923, 525194…
## $ `9/28/21`        <dbl> 155093, 168782, 203045, 15192, 56040, 0, 3160, 525376…
## $ `9/29/21`        <dbl> 155128, 169462, 203198, 15209, 56583, 0, 3188, 525526…
## $ `9/30/21`        <dbl> 155174, 170131, 203359, 15222, 56583, 0, 3231, 525690…
## $ `10/1/21`        <dbl> 155191, 170778, 203517, 15222, 58076, 0, 3336, 525846…
## $ `10/2/21`        <dbl> 155191, 171327, 203657, 15222, 58603, 0, 3403, 525935…
## $ `10/3/21`        <dbl> 155191, 171794, 203789, 15222, 58943, 0, 3503, 525973…
## $ `10/4/21`        <dbl> 155287, 171794, 203915, 15267, 58943, 0, 3503, 526071…
## $ `10/5/21`        <dbl> 155309, 172618, 204046, 15271, 59895, 0, 3518, 526193…
## $ `10/6/21`        <dbl> 155380, 173190, 204171, 15284, 60448, 0, 3581, 526321…
## $ `10/7/21`        <dbl> 155429, 173723, 204276, 15288, 60803, 0, 3663, 526430…
## $ `10/8/21`        <dbl> 155448, 174168, 204388, 15291, 61023, 0, 3678, 526505…
## $ `10/9/21`        <dbl> 155466, 174643, 204490, 15291, 61245, 0, 3738, 526552…
## $ `10/10/21`       <dbl> 155508, 174968, 204597, 15291, 61378, 0, 3750, 526585…
## $ `10/11/21`       <dbl> 155540, 175163, 204695, 15307, 61580, 0, 3750, 526627…
## $ `10/12/21`       <dbl> 155599, 175664, 204790, 15307, 61794, 0, 3772, 526733…
## $ `10/13/21`       <dbl> 155627, 176172, 204900, 15314, 62143, 0, 3817, 526865…
## $ `10/14/21`       <dbl> 155682, 176667, 205005, 15326, 62385, 0, 3830, 527000…
## $ `10/15/21`       <dbl> 155688, 177108, 205106, 15338, 62606, 0, 3858, 527136…
## $ `10/16/21`       <dbl> 155739, 177536, 205199, 15338, 62789, 0, 3888, 527215…
## $ `10/17/21`       <dbl> 155764, 177971, 205286, 15338, 62842, 0, 3888, 527255…
## $ `10/18/21`       <dbl> 155776, 178188, 205364, 15367, 63012, 0, 3918, 527346…
## $ `10/19/21`       <dbl> 155801, 178804, 205453, 15369, 63197, 0, 3918, 527476…
## $ `10/20/21`       <dbl> 155859, 179463, 205529, 15382, 63340, 0, 3939, 527598…
## $ `10/21/21`       <dbl> 155891, 180029, 205599, 15382, 63567, 0, 3984, 527752…
## $ `10/22/21`       <dbl> 155931, 180623, 205683, 15404, 63691, 0, 3994, 527891…
## $ `10/23/21`       <dbl> 155940, 181252, 205750, 15404, 63775, 0, 4019, 527981…
## $ `10/24/21`       <dbl> 155944, 181696, 205822, 15404, 63861, 0, 4019, 528035…
## $ `10/25/21`       <dbl> 156040, 181960, 205903, 15425, 63930, 0, 4031, 528158…
## $ `10/26/21`       <dbl> 156071, 182610, 205990, 15425, 64033, 0, 4031, 528300…
## $ `10/27/21`       <dbl> 156124, 183282, 206069, 15462, 64126, 0, 4036, 528448…
## $ `10/28/21`       <dbl> 156166, 183873, 206160, 15505, 64226, 0, 4040, 528607…
## $ `10/29/21`       <dbl> 156196, 184340, 206270, 15516, 64301, 0, 4040, 528744…
## $ `10/30/21`       <dbl> 156210, 184887, 206358, 15516, 64374, 0, 4058, 528825…
## $ `10/31/21`       <dbl> 156250, 185300, 206452, 15516, 64433, 0, 4058, 528880…
## $ `11/1/21`        <dbl> 156284, 185497, 206566, 15516, 64458, 0, 4062, 528994…
## $ `11/2/21`        <dbl> 156307, 186222, 206649, 15516, 64487, 0, 4069, 529128…
## $ `11/3/21`        <dbl> 156323, 186793, 206754, 15572, 64533, 0, 4069, 529254…
## $ `11/4/21`        <dbl> 156363, 187363, 206878, 15618, 64583, 0, 4072, 529398…
## $ `11/5/21`        <dbl> 156392, 187994, 206995, 15618, 64612, 0, 4078, 529526…
## $ `11/6/21`        <dbl> 156397, 187994, 207079, 15618, 64654, 0, 4091, 529618…
## $ `11/7/21`        <dbl> 156397, 189125, 207156, 15618, 64674, 0, 4091, 529678…
## $ `11/8/21`        <dbl> 156397, 189355, 207254, 15705, 64724, 0, 4091, 529806…
## $ `11/9/21`        <dbl> 156397, 190125, 207385, 15717, 64762, 0, 4091, 529941…
## $ `11/10/21`       <dbl> 156414, 190815, 207509, 15744, 64815, 0, 4102, 530098…
## $ `11/11/21`       <dbl> 156456, 191440, 207624, 15744, 64857, 0, 4102, 530244…
## $ `11/12/21`       <dbl> 156487, 192013, 207764, 15819, 64875, 0, 4106, 530405…
## $ `11/13/21`       <dbl> 156510, 192600, 207873, 15819, 64899, 0, 4118, 530515…
## $ `11/14/21`       <dbl> 156552, 193075, 207970, 15819, 64913, 0, 4118, 530574…
## $ `11/15/21`       <dbl> 156610, 193269, 208104, 15907, 64913, 0, 4118, 530715…
## $ `11/16/21`       <dbl> 156649, 193856, 208245, 15929, 64940, 0, 4122, 530878…
## $ `11/17/21`       <dbl> 156739, 194472, 208380, 15972, 64968, 0, 4129, 531033…
## $ `11/18/21`       <dbl> 156739, 195021, 208532, 16035, 64985, 0, 4129, 531208…
## $ `11/19/21`       <dbl> 156812, 195523, 208695, 16086, 64997, 0, 4131, 531360…
## $ `11/20/21`       <dbl> 156864, 195988, 208839, 16086, 65011, 0, 4135, 531470…
## $ `11/21/21`       <dbl> 156896, 195988, 208952, 16086, 65024, 0, 4135, 531534…
## $ `11/22/21`       <dbl> 156911, 196611, 209111, 16299, 65033, 0, 4136, 531598…
## $ `11/23/21`       <dbl> 157015, 197167, 209283, 16342, 65061, 0, 4138, 531763…
## $ `11/24/21`       <dbl> 157032, 197776, 209463, 16426, 65080, 0, 4138, 531986…
## $ `11/25/21`       <dbl> 157144, 198292, 209624, 16566, 65105, 0, 4141, 532212…
## $ `11/26/21`       <dbl> 157171, 198732, 209817, 16712, 65130, 0, 4141, 532403…
## $ `11/27/21`       <dbl> 157190, 199137, 209980, 16712, 65139, 0, 4141, 532556…
## $ `11/28/21`       <dbl> 157218, 199555, 210152, 16712, 65144, 0, 4141, 532644…
## $ `11/29/21`       <dbl> 157260, 199750, 210344, 16712, 65155, 0, 4141, 532841…
## $ `11/30/21`       <dbl> 157289, 199945, 210531, 17115, 65168, 0, 4141, 533074…
## $ `12/1/21`        <dbl> 157359, 200173, 210723, 17426, 65183, 0, 4141, 533262…
## $ `12/2/21`        <dbl> 157387, 200639, 210921, 17658, 65208, 0, 4141, 533531…
## $ `12/3/21`        <dbl> 157412, 201045, 211112, 18010, 65223, 0, 4146, 533769…
## $ `12/4/21`        <dbl> 157431, 201402, 211297, 18010, 65244, 0, 4147, 533938…
## $ `12/5/21`        <dbl> 157454, 201730, 211469, 18010, 65259, 0, 4147, 534067…
## $ `12/6/21`        <dbl> 157499, 201902, 211662, 18631, 65259, 0, 4148, 534315…
## $ `12/7/21`        <dbl> 157508, 202295, 211859, 18815, 65301, 0, 4148, 534624…
## $ `12/8/21`        <dbl> 157542, 202641, 212047, 18815, 65332, 0, 4151, 534812…
## $ `12/9/21`        <dbl> 157585, 202863, 212224, 19272, 65346, 0, 4151, 535086…
## $ `12/10/21`       <dbl> 157603, 203215, 212434, 19440, 65371, 0, 4159, 535444…
## $ `12/11/21`       <dbl> 157611, 203524, 212652, 19440, 65397, 0, 4159, 535688…
## $ `12/12/21`       <dbl> 157633, 203787, 212848, 19440, 65404, 0, 4162, 535845…
## $ `12/13/21`       <dbl> 157648, 203925, 213058, 19440, 65404, 0, 4162, 536196…
## $ `12/14/21`       <dbl> 157660, 204301, 213288, 20136, 65431, 11, 4177, 53665…
## $ `12/15/21`       <dbl> 157665, 204627, 213533, 20136, 65565, 11, 4177, 53713…
## $ `12/16/21`       <dbl> 157725, 204928, 213745, 20549, 65648, 11, 4178, 53766…
## $ `12/17/21`       <dbl> 157734, 205224, 214044, 20549, 65760, 11, 4186, 53822…
## $ `12/18/21`       <dbl> 157745, 205549, 214330, 20549, 65868, 11, 4198, 53864…
## $ `12/19/21`       <dbl> 157787, 205777, 214592, 20549, 65938, 11, 4198, 53897…
## $ `12/20/21`       <dbl> 157797, 205897, 214835, 21062, 66086, 11, 4198, 53950…
## $ `12/21/21`       <dbl> 157816, 206273, 215145, 21062, 66566, 11, 4201, 54043…
## $ `12/22/21`       <dbl> 157841, 206616, 215430, 21372, 67199, 11, 4205, 54155…
## $ `12/23/21`       <dbl> 157878, 206935, 215723, 21571, 68362, 11, 4216, 54289…
## $ `12/24/21`       <dbl> 157887, 207221, 216098, 21730, 70221, 11, 4216, 54452…
## $ `12/25/21`       <dbl> 157895, 207542, 216376, 21730, 71142, 11, 4236, 54524…
## $ `12/26/21`       <dbl> 157951, 207709, 216637, 21730, 71752, 11, 4236, 54600…
## $ `12/27/21`       <dbl> 157967, 207709, 216930, 22332, 71752, 11, 4259, 54803…
## $ `12/28/21`       <dbl> 157998, 208352, 217265, 22540, 76787, 11, 4259, 55142…
## $ `12/29/21`       <dbl> 158037, 208899, 217647, 22823, 78475, 11, 4259, 55562…
## $ `12/30/21`       <dbl> 158056, 208899, 218037, 23122, 79871, 11, 4283, 56067…
## $ `12/31/21`       <dbl> 158084, 210224, 218432, 23740, 81593, 11, 4283, 56544…
## $ `1/1/22`         <dbl> 158107, 210224, 218818, 23740, 82398, 11, 4283, 56744…
## $ `1/2/22`         <dbl> 158189, 210885, 219159, 23740, 82920, 11, 4283, 56949…
## $ `1/3/22`         <dbl> 158183, 210885, 219532, 24502, 83764, 11, 4283, 57393…
## $ `1/4/22`         <dbl> 158205, 212021, 219953, 24802, 84666, 11, 4486, 58205…
## $ `1/5/22`         <dbl> 158245, 212021, 220415, 25289, 86636, 11, 4486, 59156…
## $ `1/6/22`         <dbl> 158275, 213257, 220825, 25289, 87625, 11, 4715, 60253…
## $ `1/7/22`         <dbl> 158300, 214905, 221316, 26408, 88775, 11, 4715, 61358…
## $ `1/8/22`         <dbl> 158309, 214905, 221742, 26408, 89251, 11, 4844, 62375…
## $ `1/9/22`         <dbl> 158381, 219694, 222157, 26408, 89718, 11, 5058, 63108…
## $ `1/10/22`        <dbl> 158394, 220487, 222639, 27983, 90316, 11, 5058, 63991…
## $ `1/11/22`        <dbl> 158471, 222664, 223196, 28542, 91148, 11, 5058, 65336…
## $ `1/12/22`        <dbl> 158511, 224569, 223806, 28899, 91907, 11, 5214, 66647…
## $ `1/13/22`        <dbl> 158602, 226598, 224383, 28899, 92581, 11, 5214, 67931…
## $ `1/14/22`        <dbl> 158639, 228777, 224979, 29888, 93302, 11, 5246, 69329…
## $ `1/15/22`        <dbl> 158678, 230940, 225484, 29888, 93524, 11, 5321, 70296…
## $ `1/16/22`        <dbl> 158717, 232637, 226057, 29888, 93694, 11, 5321, 70948…
## $ `1/17/22`        <dbl> 158826, 233654, 226749, 29888, 93974, 11, 5321, 71973…
## $ `1/18/22`        <dbl> 158974, 236486, 227559, 29888, 94275, 11, 5346, 73183…
## $ `1/19/22`        <dbl> 159070, 239129, 228918, 29888, 94779, 11, 5741, 74466…
## $ `1/20/22`        <dbl> 159303, 241512, 230470, 32201, 95220, 11, 5741, 75763…
## $ `1/21/22`        <dbl> 159516, 244182, 232325, 33025, 95676, 11, 5815, 76945…
## $ `1/22/22`        <dbl> 159548, 246412, 234536, 33025, 95902, 11, 5931, 77926…
## $ `1/23/22`        <dbl> 159649, 248070, 236670, 33025, 96582, 11, 5931, 78625…
## $ `1/24/22`        <dbl> 159896, 248070, 238885, 33025, 97263, 11, 6023, 79406…
## $ `1/25/22`        <dbl> 160252, 248859, 241406, 34701, 97594, 11, 6023, 80415…
## $ `1/26/22`        <dbl> 160692, 251015, 243568, 35028, 97812, 11, 6442, 81300…
## $ `1/27/22`        <dbl> 161004, 252577, 245698, 35028, 97901, 11, 6524, 82077…
## $ `1/28/22`        <dbl> 161057, 254126, 247568, 35556, 98029, 11, 6558, 82716…
## $ `1/29/22`        <dbl> 161290, 254126, 249310, 35556, 98057, 11, 6558, 83136…
## $ `1/30/22`        <dbl> 162111, 255741, 250774, 35556, 98076, 11, 6558, 83351…
## $ `1/31/22`        <dbl> 162926, 258543, 252117, 35958, 98116, 11, 6627, 83786…
## $ `2/1/22`         <dbl> 163555, 258543, 253520, 35958, 98226, 11, 6627, 84277…
## $ `2/2/22`         <dbl> 164190, 261240, 254885, 36315, 98267, 11, 6732, 84728…
## $ `2/3/22`         <dbl> 164727, 261240, 255836, 36470, 98319, 11, 6732, 85152…
## $ `2/4/22`         <dbl> 165358, 263172, 256806, 36599, 98340, 11, 6732, 85553…
## $ `2/5/22`         <dbl> 165711, 263172, 257598, 36599, 98351, 11, 6732, 85772…
## $ `2/6/22`         <dbl> 166191, 264624, 257976, 36599, 98364, 11, 6853, 85898…
## $ `2/7/22`         <dbl> 166924, 264875, 258478, 36808, 98409, 11, 6853, 86152…
## $ `2/8/22`         <dbl> 167739, 265716, 259088, 36808, 98424, 11, 6853, 86480…
## $ `2/9/22`         <dbl> 168550, 266416, 259673, 36989, 98453, 11, 6853, 86753…
## $ `2/10/22`        <dbl> 169448, 267020, 260191, 37074, 98474, 11, 7321, 87004…
## $ `2/11/22`        <dbl> 169940, 267020, 260723, 37140, 98501, 11, 7331, 87169…
## $ `2/12/22`        <dbl> 170152, 267551, 261226, 37140, 98514, 11, 7331, 87282…
## $ `2/13/22`        <dbl> 170604, 268008, 261752, 37140, 98514, 11, 7331, 87345…
## $ `2/14/22`        <dbl> 171246, 268304, 262165, 37277, 98514, 11, 7331, 87476…
## $ `2/15/22`        <dbl> 171422, 268491, 262570, 37361, 98555, 11, 7342, 87661…
## $ `2/16/22`        <dbl> 171519, 268940, 262994, 37452, 98568, 11, 7395, 87832…
## $ `2/17/22`        <dbl> 171673, 269301, 263369, 37522, 98585, 11, 7395, 87998…
## $ `2/18/22`        <dbl> 171857, 269601, 263685, 37589, 98605, 11, 7400, 88152…
## $ `2/19/22`        <dbl> 171931, 269904, 263936, 37589, 98617, 11, 7408, 88230…
## $ `2/20/22`        <dbl> 172205, 270164, 264054, 37589, 98638, 11, 7408, 88275…
## $ `2/21/22`        <dbl> 172441, 270370, 264201, 37589, 98658, 11, 7408, 88386…
## $ `2/22/22`        <dbl> 172716, 270455, 264365, 37820, 98671, 11, 7408, 88556…
## $ `2/23/22`        <dbl> 172901, 270734, 264488, 37901, 98698, 11, 7429, 88681…
## $ `2/24/22`        <dbl> 173047, 270947, 264603, 37958, 98701, 11, 7435, 88784…
## $ `2/25/22`        <dbl> 173084, 271141, 264706, 37999, 98701, 11, 7437, 88879…
## $ `2/26/22`        <dbl> 173146, 271141, 264778, 37999, 98701, 11, 7437, 88935…
## $ `2/27/22`        <dbl> 173395, 271527, 264855, 37999, 98701, 11, 7437, 88971…
## $ `2/28/22`        <dbl> 173659, 271563, 264936, 37999, 98741, 11, 7437, 89006…
## $ `3/1/22`         <dbl> 173879, 271702, 265010, 38165, 98746, 11, 7447, 89041…
## $ `3/2/22`         <dbl> 174073, 271825, 265079, 38249, 98746, 11, 7449, 89123…
## $ `3/3/22`         <dbl> 174214, 271825, 265130, 38342, 98746, 11, 7449, 89215…
## $ `3/4/22`         <dbl> 174214, 272030, 265186, 38434, 98796, 11, 7449, 89298…
## $ `3/5/22`         <dbl> 174331, 272030, 265227, 38434, 98796, 11, 7455, 89343…
## $ `3/6/22`         <dbl> 174582, 272210, 265265, 38434, 98806, 11, 7455, 89366…
## $ `3/7/22`         <dbl> 175000, 272250, 265297, 38620, 98806, 11, 7455, 89428…
## $ `3/8/22`         <dbl> 175353, 272337, 265323, 38710, 98829, 11, 7455, 89493…
## $ `3/9/22`         <dbl> 175525, 272412, 265346, 38794, 98855, 11, 7461, 89554…
## $ `3/10/22`        <dbl> 175893, 272479, 265366, 38794, 98855, 11, 7461, 89615…
## $ `3/11/22`        <dbl> 175974, 272552, 265391, 38794, 98855, 11, 7466, 89672…
## $ `3/12/22`        <dbl> 176039, 272621, 265410, 38794, 98909, 11, 7466, 89701…
## $ `3/13/22`        <dbl> 176201, 272663, 265432, 38794, 98927, 11, 7466, 89714…
## $ `3/14/22`        <dbl> 176409, 272689, 265457, 38794, 98931, 11, 7466, 89760…
## $ `3/15/22`        <dbl> 176571, 272711, 265478, 38794, 98956, 11, 7470, 89811…
## $ `3/16/22`        <dbl> 176743, 272804, 265496, 38794, 98985, 11, 7470, 89858…
## $ `3/17/22`        <dbl> 176918, 272885, 265511, 39234, 99003, 11, 7470, 89904…
## $ `3/18/22`        <dbl> 176983, 272961, 265524, 39234, 99003, 11, 7470, 90048…
## $ `3/19/22`        <dbl> 177039, 273040, 265539, 39234, 99003, 11, 7473, 90065…
## $ `3/20/22`        <dbl> 177093, 273088, 265550, 39234, 99003, 11, 7473, 90077…
## $ `3/21/22`        <dbl> 177191, 273088, 265562, 39234, 99010, 11, 7473, 90113…
## $ `3/22/22`        <dbl> 177255, 273146, 265573, 39234, 99058, 11, 7473, 90160…
## $ `3/23/22`        <dbl> 177321, 273164, 265585, 39713, 99058, 11, 7482, 90196…
## $ `3/24/22`        <dbl> 177321, 273257, 265599, 39713, 99081, 11, 7482, 90212…
## $ `3/25/22`        <dbl> 177321, 273318, 265612, 39713, 99102, 11, 7482, 90238…
## $ `3/26/22`        <dbl> 177321, 273387, 265621, 39713, 99106, 11, 7482, 90252…
## $ `3/27/22`        <dbl> 177520, 273432, 265629, 39713, 99115, 11, 7485, 90260…
## $ `3/28/22`        <dbl> 177602, 273432, 265641, 39713, 99115, 11, 7491, 90287…
## $ `3/29/22`        <dbl> 177658, 273529, 265651, 39713, 99138, 11, 7491, 90321…
## $ `3/30/22`        <dbl> 177716, 273608, 265662, 40024, 99138, 11, 7491, 90351…
## $ `3/31/22`        <dbl> 177747, 273677, 265671, 40024, 99169, 11, 7491, 90379…
## $ `4/1/22`         <dbl> 177782, 273759, 265679, 40024, 99194, 11, 7493, 90398…
## $ `4/2/22`         <dbl> 177803, 273823, 265684, 40024, 99194, 11, 7493, 90406…
## $ `4/3/22`         <dbl> 177827, 273870, 265691, 40024, 99194, 11, 7493, 90411…
## $ `4/4/22`         <dbl> 177897, 273913, 265694, 40024, 99194, 11, 7493, 90430…
## $ `4/5/22`         <dbl> 177932, 274000, 265699, 40024, 99194, 11, 7493, 90453…
## $ `4/6/22`         <dbl> 177974, 274055, 265705, 40024, 99194, 11, 7493, 90474…
## $ `4/7/22`         <dbl> 177974, 274108, 265707, 40328, 99194, 11, 7511, 90492…
## $ `4/8/22`         <dbl> 177974, 274136, 265714, 40328, 99194, 11, 7511, 90512…
## $ `4/9/22`         <dbl> 177974, 274191, 265720, 40328, 99194, 11, 7511, 90520…
## $ `4/10/22`        <dbl> 177974, 274219, 265724, 40328, 99194, 11, 7511, 90525…
## $ `4/11/22`        <dbl> 178141, 274219, 265727, 40328, 99194, 11, 7511, 90541…
## $ `4/12/22`        <dbl> 178257, 274272, 265730, 40328, 99194, 11, 7523, 90562…
## $ `4/13/22`        <dbl> 178295, 274320, 265731, 40709, 99194, 11, 7523, 90579…
## $ `4/14/22`        <dbl> 178352, 274376, 265733, 40709, 99194, 11, 7535, 90593…
## $ `4/15/22`        <dbl> 178373, 274429, 265738, 40709, 99194, 11, 7535, 90599…
## $ `4/16/22`        <dbl> 178387, 274462, 265739, 40709, 99194, 11, 7535, 90604…
## $ `4/17/22`        <dbl> 178418, 274504, 265739, 40709, 99194, 11, 7539, 90609…
## $ `4/18/22`        <dbl> 178457, 274520, 265741, 40709, 99194, 11, 7539, 90609…
## $ `4/19/22`        <dbl> 178513, 274535, 265746, 40709, 99287, 11, 7539, 90609…
## $ `4/20/22`        <dbl> 178574, 274606, 265746, 41013, 99287, 11, 7567, 90609…
## $ `4/21/22`        <dbl> 178611, 274606, 265754, 41013, 99287, 11, 7567, 90609…
## $ `4/22/22`        <dbl> 178638, 274737, 265761, 41013, 99287, 11, 7571, 90609…
## $ `4/23/22`        <dbl> 178648, 274791, 265761, 41013, 99287, 11, 7571, 90609…
## $ `4/24/22`        <dbl> 178689, 274828, 265767, 41013, 99287, 11, 7571, 90609…
## $ `4/25/22`        <dbl> 178745, 274828, 265771, 41013, 99287, 11, 7571, 90722…
## $ `4/26/22`        <dbl> 178769, 274862, 265772, 41013, 99287, 11, 7571, 90722…
## $ `4/27/22`        <dbl> 178809, 274929, 265773, 41013, 99287, 11, 7571, 90722…
## $ `4/28/22`        <dbl> 178850, 275002, 265776, 41349, 99287, 11, 7604, 90722…
## $ `4/29/22`        <dbl> 178873, 275055, 265779, 41349, 99287, 11, 7626, 90722…
## $ `4/30/22`        <dbl> 178879, 275107, 265780, 41349, 99287, 11, 7626, 90722…
## $ `5/1/22`         <dbl> 178899, 275167, 265782, 41349, 99287, 11, 7626, 90836…
## $ `5/2/22`         <dbl> 178901, 275177, 265782, 41349, 99287, 11, 7626, 90836…
## $ `5/3/22`         <dbl> 178901, 275191, 265782, 41349, 99287, 11, 7626, 90836…
## $ `5/4/22`         <dbl> 178901, 275211, 265782, 41717, 99287, 11, 7654, 90836…
## $ `5/5/22`         <dbl> 178905, 275266, 265786, 41717, 99287, 11, 7663, 90836…
## $ `5/6/22`         <dbl> 178919, 275310, 265791, 41717, 99287, 11, 7663, 90836…
## $ `5/7/22`         <dbl> 178922, 275341, 265794, 41717, 99287, 11, 7663, 90836…
## $ `5/8/22`         <dbl> 178981, 275366, 265798, 41717, 99287, 11, 7663, 91013…
## $ `5/9/22`         <dbl> 179010, 275372, 265800, 41717, 99287, 11, 7663, 91013…
## $ `5/10/22`        <dbl> 179017, 275416, 265804, 41717, 99287, 11, 7663, 91013…
## $ `5/11/22`        <dbl> 179131, 275440, 265806, 41717, 99287, 11, 7721, 91013…
## $ `5/12/22`        <dbl> 179169, 275485, 265808, 42156, 99287, 11, 7721, 91013…
## $ `5/13/22`        <dbl> 179203, 275534, 265814, 42156, 99287, 11, 7721, 91013…
## $ `5/14/22`        <dbl> 179242, 275574, 265816, 42156, 99287, 11, 7721, 91013…
## $ `5/15/22`        <dbl> 179267, 275615, 265818, 42156, 99287, 11, 7721, 91353…
## $ `5/16/22`        <dbl> 179321, 275621, 265823, 42156, 99287, 11, 7795, 91353…
## $ `5/17/22`        <dbl> 179328, 275688, 265828, 42156, 99287, 11, 7795, 91353…
## $ `5/18/22`        <dbl> 179477, 275732, 265834, 42572, 99287, 11, 7855, 91353…
## $ `5/19/22`        <dbl> 179597, 275732, 265841, 42572, 99287, 11, 7910, 91353…
## $ `5/20/22`        <dbl> 179624, 275732, 265847, 42572, 99287, 11, 7910, 91353…
## $ `5/21/22`        <dbl> 179674, 275838, 265851, 42572, 99287, 11, 7942, 91353…
## $ `5/22/22`        <dbl> 179716, 275864, 265854, 42572, 99287, 11, 7942, 91787…
## $ `5/23/22`        <dbl> 179716, 275881, 265855, 42572, 99287, 11, 7982, 91787…
## $ `5/24/22`        <dbl> 179771, 275939, 265860, 42572, 99433, 11, 7982, 91787…
## $ `5/25/22`        <dbl> 179835, 275985, 265862, 42894, 99527, 11, 8062, 91787…
## $ `5/26/22`        <dbl> 179835, 276012, 265864, 42894, 99527, 11, 8119, 91787…
## $ `5/27/22`        <dbl> 180086, 276048, 265870, 42894, 99527, 11, 8119, 91787…
## $ `5/28/22`        <dbl> 180122, 276081, 265873, 42894, 99527, 11, 8119, 91787…
## $ `5/29/22`        <dbl> 180174, 276101, 265873, 42894, 99527, 11, 8119, 92305…
## $ `5/30/22`        <dbl> 180259, 276101, 265877, 42894, 99761, 11, 8163, 92305…
## $ `5/31/22`        <dbl> 180347, 276101, 265884, 42894, 99761, 11, 8253, 92305…
## $ `6/1/22`         <dbl> 180419, 276221, 265887, 42894, 99761, 11, 8253, 92305…
## $ `6/2/22`         <dbl> 180520, 276221, 265889, 42894, 99761, 11, 8295, 92305…
## $ `6/3/22`         <dbl> 180584, 276310, 265889, 43067, 99761, 11, 8295, 92305…
## $ `6/4/22`         <dbl> 180615, 276342, 265889, 43067, 99761, 11, 8378, 92305…
## $ `6/5/22`         <dbl> 180615, 276401, 265897, 43067, 99761, 11, 8378, 92766…
## $ `6/6/22`         <dbl> 180688, 276415, 265900, 43067, 99761, 11, 8378, 92766…
## $ `6/7/22`         <dbl> 180741, 276468, 265904, 43067, 99761, 11, 8378, 92766…
## $ `6/8/22`         <dbl> 180784, 276518, 265909, 43224, 99761, 11, 8378, 92766…
## $ `6/9/22`         <dbl> 180864, 276583, 265920, 43224, 99761, 11, 8406, 92766…
## $ `6/10/22`        <dbl> 180864, 276638, 265925, 43224, 99761, 11, 8479, 92766…
## $ `6/11/22`        <dbl> 180864, 276690, 265925, 43224, 99761, 11, 8479, 92766…
## $ `6/12/22`        <dbl> 180864, 276731, 265927, 43224, 99761, 11, 8492, 92766…
## $ `6/13/22`        <dbl> 181120, 276731, 265937, 43224, 99761, 11, 8531, 92766…
## $ `6/14/22`        <dbl> 181178, 276821, 265943, 43224, 99761, 11, 8537, 93134…
## $ `6/15/22`        <dbl> 181236, 276821, 265952, 43449, 99761, 11, 8537, 93134…
## $ `6/16/22`        <dbl> 181465, 276821, 265964, 43449, 99761, 11, 8537, 93134…
## $ `6/17/22`        <dbl> 181534, 277141, 265968, 43449, 99761, 11, 8555, 93134…
## $ `6/18/22`        <dbl> 181574, 277141, 265971, 43449, 99761, 11, 8581, 93134…
## $ `6/19/22`        <dbl> 181666, 277409, 265975, 43449, 99761, 11, 8581, 93414…
## $ `6/20/22`        <dbl> 181725, 277444, 265985, 43449, 99761, 11, 8581, 93414…
## $ `6/21/22`        <dbl> 181808, 277663, 265993, 43449, 99761, 11, 8581, 93414…
## $ `6/22/22`        <dbl> 181912, 277940, 266006, 43774, 99761, 11, 8590, 93414…
## $ `6/23/22`        <dbl> 181987, 278211, 266015, 43774, 99761, 11, 8590, 93414…
## $ `6/24/22`        <dbl> 182033, 278504, 266025, 43774, 99761, 11, 8625, 93414…
## $ `6/25/22`        <dbl> 182072, 278793, 266030, 43774, 99761, 11, 8625, 93414…
## $ `6/26/22`        <dbl> 182149, 279077, 266038, 43774, 99761, 11, 8625, 93671…
## $ `6/27/22`        <dbl> 182228, 279077, 266049, 43774, 99761, 11, 8625, 93671…
## $ `6/28/22`        <dbl> 182324, 279167, 266062, 43774, 101320, 11, 8625, 9367…
## $ `6/29/22`        <dbl> 182403, 280298, 266073, 43774, 101320, 11, 8625, 9367…
## $ `6/30/22`        <dbl> 182528, 280851, 266087, 43774, 101320, 11, 8641, 9367…
## $ `7/1/22`         <dbl> 182594, 281470, 266105, 44177, 101320, 11, 8656, 9367…
## $ `7/2/22`         <dbl> 182643, 282141, 266115, 44177, 101320, 11, 8665, 9367…
## $ `7/3/22`         <dbl> 182724, 282690, 266128, 44177, 101320, 11, 8665, 9394…
## $ `7/4/22`         <dbl> 182793, 282690, 266173, 44177, 101320, 11, 8665, 9394…
## $ `7/5/22`         <dbl> 182793, 282690, 266173, 44177, 101320, 11, 8665, 9394…
## $ `7/6/22`         <dbl> 182979, 283811, 266181, 44671, 101320, 11, 8668, 9394…
## $ `7/7/22`         <dbl> 183084, 284758, 266202, 44671, 101320, 11, 8681, 9394…
## $ `7/8/22`         <dbl> 183221, 285731, 266228, 44671, 101320, 11, 8686, 9394…
## $ `7/9/22`         <dbl> 183235, 286732, 266246, 44671, 101320, 11, 8686, 9394…
## $ `7/10/22`        <dbl> 183265, 287984, 266257, 44671, 101320, 11, 8686, 9426…
## $ `7/11/22`        <dbl> 183268, 288176, 266274, 44671, 101320, 11, 8686, 9426…
## $ `7/12/22`        <dbl> 183272, 289391, 266303, 44671, 101320, 11, 8686, 9426…
## $ `7/13/22`        <dbl> 183285, 290954, 266328, 44671, 101320, 11, 8686, 9426…
## $ `7/14/22`        <dbl> 183358, 290954, 266356, 44671, 101600, 11, 8704, 9426…
## $ `7/15/22`        <dbl> 183407, 293917, 266392, 44671, 101901, 11, 8704, 9426…
## $ `7/16/22`        <dbl> 183445, 295243, 266424, 44671, 101901, 11, 8712, 9426…
## $ `7/17/22`        <dbl> 183572, 296305, 266445, 44671, 101901, 11, 8712, 9465…
## $ `7/18/22`        <dbl> 183687, 296732, 266487, 45061, 102209, 11, 8712, 9465…
## $ `7/19/22`        <dbl> 183908, 298578, 266542, 45061, 102209, 11, 8712, 9465…
## $ `7/20/22`        <dbl> 184038, 300058, 266591, 45061, 102209, 11, 8712, 9465…
## $ `7/21/22`        <dbl> 184224, 301394, 266654, 45326, 102209, 11, 8712, 9465…
## $ `7/22/22`        <dbl> 184360, 302767, 266700, 45326, 102301, 11, 8736, 9465…
## $ `7/23/22`        <dbl> 184473, 303925, 266772, 45326, 102301, 11, 8736, 9465…
## $ `7/24/22`        <dbl> 184587, 304890, 266839, 45326, 102301, 11, 8736, 9507…
## $ `7/25/22`        <dbl> 184819, 305123, 266916, 45326, 102301, 11, 8736, 9507…
## $ `7/26/22`        <dbl> 185086, 306789, 267010, 45326, 102301, 11, 8741, 9507…
## $ `7/27/22`        <dbl> 185272, 308050, 267096, 45326, 102301, 11, 8741, 9507…
## $ `7/28/22`        <dbl> 185393, 309278, 267194, 45508, 102301, 11, 8741, 9507…
## $ `7/29/22`        <dbl> 185481, 310362, 267287, 45508, 102301, 11, 8741, 9507…
## $ `7/30/22`        <dbl> 185552, 311381, 267374, 45508, 102301, 11, 8773, 9507…
## $ `7/31/22`        <dbl> 185749, 312097, 267454, 45508, 102301, 11, 8773, 9560…
## $ `8/1/22`         <dbl> 185930, 312375, 267546, 45508, 102301, 11, 8773, 9560…
## $ `8/2/22`         <dbl> 186120, 313582, 267657, 45508, 102301, 11, 8773, 9560…
## $ `8/3/22`         <dbl> 186393, 314561, 267777, 45793, 102301, 11, 8773, 9560…
## $ `8/4/22`         <dbl> 186697, 315337, 267902, 45793, 102301, 11, 8773, 9560…
## $ `8/5/22`         <dbl> 187037, 316145, 268033, 45793, 102636, 11, 8773, 9560…
## $ `8/6/22`         <dbl> 187109, 316976, 268141, 45793, 102636, 11, 8773, 9560…
## $ `8/7/22`         <dbl> 187442, 317514, 268254, 45793, 102636, 11, 8787, 9602…
## $ `8/8/22`         <dbl> 187685, 317681, 268356, 45793, 102636, 11, 8809, 9602…
## $ `8/9/22`         <dbl> 187966, 318638, 268478, 45793, 102636, 11, 8809, 9602…
## $ `8/10/22`        <dbl> 188202, 319444, 268584, 45899, 102636, 11, 8809, 9602…
## $ `8/11/22`        <dbl> 188506, 320086, 268718, 45899, 102636, 11, 8809, 9602…
## $ `8/12/22`        <dbl> 188704, 320781, 268866, 45899, 102636, 11, 8820, 9602…
## $ `8/13/22`        <dbl> 188820, 321345, 269008, 45899, 102636, 11, 8820, 9602…
## $ `8/14/22`        <dbl> 189045, 321804, 269141, 45899, 102636, 11, 8820, 9633…
## $ `8/15/22`        <dbl> 189343, 322125, 269269, 45899, 102636, 11, 8851, 9633…
## $ `8/16/22`        <dbl> 189477, 322837, 269381, 45899, 102636, 11, 8851, 9633…
## $ `8/17/22`        <dbl> 189710, 323282, 269473, 45975, 102636, 11, 8851, 9633…
## $ `8/18/22`        <dbl> 190010, 323829, 269556, 45975, 102636, 11, 8895, 9633…
## $ `8/19/22`        <dbl> 190254, 325241, 269650, 45975, 102636, 11, 8895, 9633…
## $ `8/20/22`        <dbl> 190435, 325736, 269731, 45975, 102636, 11, 8895, 9633…
## $ `8/21/22`        <dbl> 190643, 326077, 269805, 45975, 102636, 11, 8895, 9658…
## $ `8/22/22`        <dbl> 191040, 326181, 269894, 45975, 102636, 11, 8895, 9658…
## $ `8/23/22`        <dbl> 191247, 326787, 269971, 45975, 102636, 11, 8895, 9658…
## $ `8/24/22`        <dbl> 191585, 327232, 270043, 46027, 102636, 11, 8949, 9658…
## $ `8/25/22`        <dbl> 191967, 327607, 270097, 46027, 102636, 11, 8949, 9658…
## $ `8/26/22`        <dbl> 191967, 327961, 270145, 46027, 102636, 11, 8949, 9658…
## $ `8/27/22`        <dbl> 191967, 328299, 270175, 46027, 102636, 11, 8949, 9658…
## $ `8/28/22`        <dbl> 192463, 328515, 270194, 46027, 102636, 11, 8949, 9678…
## $ `8/29/22`        <dbl> 192906, 328571, 270235, 46027, 102636, 11, 8949, 9678…
## $ `8/30/22`        <dbl> 193004, 329017, 270272, 46027, 102636, 11, 8974, 9678…
## $ `8/31/22`        <dbl> 193250, 329352, 270304, 46027, 102636, 11, 8974, 9678…
## $ `9/1/22`         <dbl> 193520, 329615, 270359, 46027, 102636, 11, 8974, 9678…
## $ `9/2/22`         <dbl> 193520, 329862, 270405, 46027, 102636, 11, 8974, 9678…
## $ `9/3/22`         <dbl> 193912, 330062, 270426, 46027, 102636, 11, 8974, 9678…
## $ `9/4/22`         <dbl> 194163, 330193, 270443, 46027, 102636, 11, 8974, 9689…
## $ `9/5/22`         <dbl> 194355, 330221, 270461, 46027, 102636, 11, 8974, 9689…
## $ `9/6/22`         <dbl> 194614, 330283, 270476, 46027, 102636, 11, 8974, 9689…
## $ `9/7/22`         <dbl> 195012, 330516, 270489, 46113, 102636, 11, 8974, 9689…
## $ `9/8/22`         <dbl> 195298, 330687, 270507, 46113, 102636, 11, 8974, 9689…
## $ `9/9/22`         <dbl> 195471, 330842, 270522, 46113, 103131, 11, 8974, 9689…
## $ `9/10/22`        <dbl> 195631, 330948, 270532, 46113, 103131, 11, 8974, 9689…
## $ `9/11/22`        <dbl> 195925, 331036, 270539, 46113, 103131, 11, 8974, 9697…
## $ `9/12/22`        <dbl> 196182, 331053, 270551, 46113, 103131, 11, 8974, 9697…
## $ `9/13/22`        <dbl> 196404, 331191, 270551, 46113, 103131, 11, 8974, 9697…
## $ `9/14/22`        <dbl> 196751, 331295, 270570, 46147, 103131, 11, 9008, 9697…
## $ `9/15/22`        <dbl> 196870, 331384, 270584, 46147, 103131, 11, 9008, 9697…
## $ `9/16/22`        <dbl> 196992, 331459, 270599, 46147, 103131, 11, 9008, 9697…
## $ `9/17/22`        <dbl> 197066, 331540, 270606, 46147, 103131, 11, 9008, 9697…
## $ `9/18/22`        <dbl> 197240, 331583, 270609, 46147, 103131, 11, 9008, 9703…
## $ `9/19/22`        <dbl> 197434, 331601, 270612, 46147, 103131, 11, 9008, 9703…
## $ `9/20/22`        <dbl> 197608, 331715, 270612, 46147, 103131, 11, 9008, 9703…
## $ `9/21/22`        <dbl> 197788, 331810, 270619, 46147, 103131, 11, 9008, 9703…
## $ `9/22/22`        <dbl> 198023, 331861, 270625, 46147, 103131, 11, 9008, 9703…
## $ `9/23/22`        <dbl> 198163, 331908, 270631, 46147, 103131, 11, 9008, 9703…
## $ `9/24/22`        <dbl> 198244, 331953, 270637, 46147, 103131, 11, 9008, 9703…
## $ `9/25/22`        <dbl> 198416, 331976, 270641, 46147, 103131, 11, 9008, 9708…
## $ `9/26/22`        <dbl> 198543, 331987, 270649, 46147, 103131, 11, 9089, 9708…
## $ `9/27/22`        <dbl> 198750, 332066, 270654, 46147, 103131, 11, 9089, 9708…
## $ `9/28/22`        <dbl> 198876, 332129, 270662, 46227, 103131, 11, 9089, 9708…
## $ `9/29/22`        <dbl> 199067, 332173, 270668, 46227, 103131, 11, 9098, 9708…
## $ `9/30/22`        <dbl> 199188, 332221, 270673, 46227, 103131, 11, 9098, 9708…
## $ `10/1/22`        <dbl> 199310, 332263, 270676, 46227, 103131, 11, 9098, 9708…
## $ `10/2/22`        <dbl> 199386, 332285, 270679, 46227, 103131, 11, 9098, 9711…
## $ `10/3/22`        <dbl> 199545, 332290, 270682, 46227, 103131, 11, 9098, 9711…
## $ `10/4/22`        <dbl> 199690, 332337, 270690, 46227, 103131, 11, 9098, 9711…
## $ `10/5/22`        <dbl> 199845, 332372, 270693, 46227, 103131, 11, 9098, 9711…
## $ `10/6/22`        <dbl> 199994, 332410, 270697, 46275, 103131, 11, 9098, 9711…
## $ `10/7/22`        <dbl> 200130, 332443, 270701, 46275, 103131, 11, 9098, 9711…
## $ `10/8/22`        <dbl> 200202, 332472, 270701, 46275, 103131, 11, 9098, 9711…
## $ `10/9/22`        <dbl> 200372, 332494, 270707, 46275, 103131, 11, 9098, 9713…
## $ `10/10/22`       <dbl> 200469, 332503, 270713, 46275, 103131, 11, 9098, 9713…
## $ `10/11/22`       <dbl> 200626, 332534, 270716, 46275, 103131, 11, 9098, 9713…
## $ `10/12/22`       <dbl> 200729, 332555, 270722, 46366, 103131, 11, 9106, 9713…
## $ `10/13/22`       <dbl> 200846, 332579, 270722, 46366, 103131, 11, 9106, 9713…
## $ `10/14/22`       <dbl> 201014, 332598, 270734, 46366, 103131, 11, 9106, 9713…
## $ `10/15/22`       <dbl> 201096, 332619, 270734, 46366, 103131, 11, 9106, 9713…
## $ `10/16/22`       <dbl> 201212, 332638, 270740, 46366, 103131, 11, 9106, 9715…
## $ `10/17/22`       <dbl> 201276, 332645, 270757, 46366, 103131, 11, 9106, 9715…
## $ `10/18/22`       <dbl> 201503, 332673, 270766, 46366, 103131, 11, 9106, 9715…
## $ `10/19/22`       <dbl> 201557, 332701, 270768, 46449, 103131, 11, 9106, 9715…
## $ `10/20/22`       <dbl> 201750, 332719, 270769, 46449, 103131, 11, 9106, 9715…
## $ `10/21/22`       <dbl> 201949, 332739, 270771, 46449, 103131, 11, 9106, 9715…
## $ `10/22/22`       <dbl> 202026, 332754, 270771, 46449, 103131, 11, 9106, 9715…
## $ `10/23/22`       <dbl> 202108, 332772, 270783, 46449, 103131, 11, 9106, 9717…
## $ `10/24/22`       <dbl> 202199, 332776, 270788, 46449, 103131, 11, 9106, 9717…
## $ `10/25/22`       <dbl> 202347, 332816, 270800, 46449, 103131, 11, 9106, 9717…
## $ `10/26/22`       <dbl> 202509, 332847, 270810, 46535, 103131, 11, 9106, 9717…
## $ `10/27/22`       <dbl> 202608, 332889, 270817, 46535, 103131, 11, 9106, 9717…
## $ `10/28/22`       <dbl> 202756, 332911, 270826, 46535, 103131, 11, 9106, 9717…
## $ `10/29/22`       <dbl> 202834, 332949, 270829, 46535, 103131, 11, 9106, 9717…
## $ `10/30/22`       <dbl> 202966, 332966, 270836, 46535, 103131, 11, 9106, 9718…
## $ `10/31/22`       <dbl> 203063, 332966, 270838, 46535, 103131, 11, 9106, 9718…
## $ `11/1/22`        <dbl> 203167, 332969, 270839, 46535, 103131, 11, 9106, 9718…
## $ `11/2/22`        <dbl> 203265, 332996, 270840, 46588, 103131, 11, 9106, 9718…
## $ `11/3/22`        <dbl> 203395, 332996, 270847, 46588, 103131, 11, 9106, 9718…
## $ `11/4/22`        <dbl> 203497, 333027, 270856, 46588, 103131, 11, 9106, 9718…
## $ `11/5/22`        <dbl> 203574, 333046, 270862, 46588, 103131, 11, 9106, 9718…
## $ `11/6/22`        <dbl> 203681, 333055, 270873, 46588, 103131, 11, 9106, 9720…
## $ `11/7/22`        <dbl> 203829, 333058, 270881, 46588, 103131, 11, 9106, 9720…
## $ `11/8/22`        <dbl> 203942, 333071, 270891, 46588, 103131, 11, 9106, 9720…
## $ `11/9/22`        <dbl> 204094, 333088, 270906, 46664, 103131, 11, 9106, 9720…
## $ `11/10/22`       <dbl> 204287, 333103, 270917, 46664, 103131, 11, 9106, 9720…
## $ `11/11/22`       <dbl> 204392, 333125, 270924, 46664, 103131, 11, 9106, 9720…
## $ `11/12/22`       <dbl> 204417, 333138, 270929, 46664, 103131, 11, 9106, 9720…
## $ `11/13/22`       <dbl> 204510, 333156, 270939, 46664, 103131, 11, 9106, 9721…
## $ `11/14/22`       <dbl> 204610, 333161, 270952, 46664, 103131, 11, 9106, 9721…
## $ `11/15/22`       <dbl> 204724, 333197, 270969, 46664, 103131, 11, 9106, 9721…
## $ `11/16/22`       <dbl> 204820, 333215, 270981, 46824, 103131, 11, 9106, 9721…
## $ `11/17/22`       <dbl> 204982, 333233, 270996, 46824, 103131, 11, 9106, 9721…
## $ `11/18/22`       <dbl> 205009, 333233, 270996, 46824, 103131, 11, 9106, 9721…
## $ `11/19/22`       <dbl> 205039, 333246, 271011, 46824, 103131, 11, 9106, 9721…
## $ `11/20/22`       <dbl> 205146, 333256, 271023, 46824, 103131, 11, 9106, 9723…
## $ `11/21/22`       <dbl> 205229, 333257, 271028, 46824, 103131, 11, 9106, 9723…
## $ `11/22/22`       <dbl> 205324, 333282, 271035, 46824, 103131, 11, 9106, 9723…
## $ `11/23/22`       <dbl> 205391, 333293, 271041, 46824, 104491, 11, 9106, 9723…
## $ `11/24/22`       <dbl> 205506, 333305, 271050, 46824, 104491, 11, 9106, 9723…
## $ `11/25/22`       <dbl> 205541, 333316, 271057, 46824, 104491, 11, 9106, 9723…
## $ `11/26/22`       <dbl> 205612, 333322, 271061, 46824, 104491, 11, 9106, 9723…
## $ `11/27/22`       <dbl> 205612, 333330, 271061, 46824, 104491, 11, 9106, 9727…
## $ `11/28/22`       <dbl> 205802, 333330, 271079, 46824, 104491, 11, 9106, 9727…
## $ `11/29/22`       <dbl> 205830, 333338, 271082, 46824, 104491, 11, 9106, 9727…
confirmedraw # %>% datatable() # Check latest date at the end of data as tibble
## # A tibble: 289 × 1,047
##    Provin…¹ Count…²   Lat   Long 1/22/…³ 1/23/…⁴ 1/24/…⁵ 1/25/…⁶ 1/26/…⁷ 1/27/…⁸
##    <chr>    <chr>   <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1 <NA>     Afghan…  33.9  67.7        0       0       0       0       0       0
##  2 <NA>     Albania  41.2  20.2        0       0       0       0       0       0
##  3 <NA>     Algeria  28.0   1.66       0       0       0       0       0       0
##  4 <NA>     Andorra  42.5   1.52       0       0       0       0       0       0
##  5 <NA>     Angola  -11.2  17.9        0       0       0       0       0       0
##  6 <NA>     Antarc… -71.9  23.3        0       0       0       0       0       0
##  7 <NA>     Antigu…  17.1 -61.8        0       0       0       0       0       0
##  8 <NA>     Argent… -38.4 -63.6        0       0       0       0       0       0
##  9 <NA>     Armenia  40.1  45.0        0       0       0       0       0       0
## 10 Austral… Austra… -35.5 149.         0       0       0       0       0       0
## # … with 279 more rows, 1,037 more variables: `1/28/20` <dbl>, `1/29/20` <dbl>,
## #   `1/30/20` <dbl>, `1/31/20` <dbl>, `2/1/20` <dbl>, `2/2/20` <dbl>,
## #   `2/3/20` <dbl>, `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
## #   `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>, `2/10/20` <dbl>,
## #   `2/11/20` <dbl>, `2/12/20` <dbl>, `2/13/20` <dbl>, `2/14/20` <dbl>,
## #   `2/15/20` <dbl>, `2/16/20` <dbl>, `2/17/20` <dbl>, `2/18/20` <dbl>,
## #   `2/19/20` <dbl>, `2/20/20` <dbl>, `2/21/20` <dbl>, `2/22/20` <dbl>, …
deathsraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv")
## Rows: 289 Columns: 1047
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr    (2): Province/State, Country/Region
## dbl (1045): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/20, 1/26/20, 1/27/20,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
deathsraw # %>% datatable()
## # A tibble: 289 × 1,047
##    Provin…¹ Count…²   Lat   Long 1/22/…³ 1/23/…⁴ 1/24/…⁵ 1/25/…⁶ 1/26/…⁷ 1/27/…⁸
##    <chr>    <chr>   <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1 <NA>     Afghan…  33.9  67.7        0       0       0       0       0       0
##  2 <NA>     Albania  41.2  20.2        0       0       0       0       0       0
##  3 <NA>     Algeria  28.0   1.66       0       0       0       0       0       0
##  4 <NA>     Andorra  42.5   1.52       0       0       0       0       0       0
##  5 <NA>     Angola  -11.2  17.9        0       0       0       0       0       0
##  6 <NA>     Antarc… -71.9  23.3        0       0       0       0       0       0
##  7 <NA>     Antigu…  17.1 -61.8        0       0       0       0       0       0
##  8 <NA>     Argent… -38.4 -63.6        0       0       0       0       0       0
##  9 <NA>     Armenia  40.1  45.0        0       0       0       0       0       0
## 10 Austral… Austra… -35.5 149.         0       0       0       0       0       0
## # … with 279 more rows, 1,037 more variables: `1/28/20` <dbl>, `1/29/20` <dbl>,
## #   `1/30/20` <dbl>, `1/31/20` <dbl>, `2/1/20` <dbl>, `2/2/20` <dbl>,
## #   `2/3/20` <dbl>, `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
## #   `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>, `2/10/20` <dbl>,
## #   `2/11/20` <dbl>, `2/12/20` <dbl>, `2/13/20` <dbl>, `2/14/20` <dbl>,
## #   `2/15/20` <dbl>, `2/16/20` <dbl>, `2/17/20` <dbl>, `2/18/20` <dbl>,
## #   `2/19/20` <dbl>, `2/20/20` <dbl>, `2/21/20` <dbl>, `2/22/20` <dbl>, …
recoveredraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv")
## Rows: 274 Columns: 1047
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr    (2): Province/State, Country/Region
## dbl (1045): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/20, 1/26/20, 1/27/20,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
recoveredraw # %>% datatable()
## # A tibble: 274 × 1,047
##    Provin…¹ Count…²   Lat   Long 1/22/…³ 1/23/…⁴ 1/24/…⁵ 1/25/…⁶ 1/26/…⁷ 1/27/…⁸
##    <chr>    <chr>   <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1 <NA>     Afghan…  33.9  67.7        0       0       0       0       0       0
##  2 <NA>     Albania  41.2  20.2        0       0       0       0       0       0
##  3 <NA>     Algeria  28.0   1.66       0       0       0       0       0       0
##  4 <NA>     Andorra  42.5   1.52       0       0       0       0       0       0
##  5 <NA>     Angola  -11.2  17.9        0       0       0       0       0       0
##  6 <NA>     Antarc… -71.9  23.3        0       0       0       0       0       0
##  7 <NA>     Antigu…  17.1 -61.8        0       0       0       0       0       0
##  8 <NA>     Argent… -38.4 -63.6        0       0       0       0       0       0
##  9 <NA>     Armenia  40.1  45.0        0       0       0       0       0       0
## 10 Austral… Austra… -35.5 149.         0       0       0       0       0       0
## # … with 264 more rows, 1,037 more variables: `1/28/20` <dbl>, `1/29/20` <dbl>,
## #   `1/30/20` <dbl>, `1/31/20` <dbl>, `2/1/20` <dbl>, `2/2/20` <dbl>,
## #   `2/3/20` <dbl>, `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
## #   `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>, `2/10/20` <dbl>,
## #   `2/11/20` <dbl>, `2/12/20` <dbl>, `2/13/20` <dbl>, `2/14/20` <dbl>,
## #   `2/15/20` <dbl>, `2/16/20` <dbl>, `2/17/20` <dbl>, `2/18/20` <dbl>,
## #   `2/19/20` <dbl>, `2/20/20` <dbl>, `2/21/20` <dbl>, `2/22/20` <dbl>, …
# Note differences in the number of rows/columns

D.5.2 Tidying and Combining: To create country level and global combined data

D.5.2.1 Convert each data set from wide to long

confirmed <- confirmedraw %>% 
  dplyr::rename(province = "Province/State", country = "Country/Region", lat = "Lat", long = "Long") %>% 
  pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="confirmed") %>% 
  mutate(date = as.Date(date, "%m/%d/%y")) %>%
  group_by(province, country) %>% arrange(date) %>%
  mutate(confirmed = confirmed - lag(confirmed)) %>%
  slice(-1) %>% ungroup() %>%
  relocate(date, .before = province) %>%
  group_by(country, province) %>% 
  arrange(province, date) 

Check the data.

confirmed %>% filter(country == "Japan") %>%  ggplot() + geom_line(aes(x = date, y = confirmed))

df_tv %>% filter(country == "Japan") %>% filter(type == "confirmed") %>%  ggplot() + geom_line(aes(x = date, y = cases))

The dplyr::rename seems to have conflict with other rename function.

deaths <- deathsraw %>%  
  dplyr::rename(province = "Province/State", country = "Country/Region", lat = Lat, long = Long) %>% 
  pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="death") %>% 
  mutate(date = as.Date(date, "%m/%d/%y")) %>%
  group_by(province, country) %>% arrange(date) %>%
  mutate(death = death - lag(death)) %>%
  slice(-1) %>% ungroup() %>%
  relocate(date, .before = province) %>%
  arrange(province, date) 
recovered <- recoveredraw %>%  
  dplyr::rename(province = "Province/State", country = "Country/Region", lat = Lat, long = Long) %>% 
  pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="recovered") %>% 
  mutate(date = as.Date(date, "%m/%d/%y")) %>%
  group_by(province, country) %>% arrange(date) %>%
  mutate(recovered = recovered - lag(recovered)) %>%
  slice(-1) %>% ungroup() %>%
  relocate(date, .before = province) %>%
  arrange(province, date)

D.5.2.2 Final data: combine all three

coronavirus_jhu <- full_join(confirmed, deaths) %>% full_join(recovered) %>%
  pivot_longer(c(confirmed, death, recovered), names_to = "cases") %>%
  arrange(cases, province, country, date)
## Joining, by = c("date", "province", "country", "lat", "long")
## Joining, by = c("date", "province", "country", "lat", "long")
coronavirus_jhu  # %>% datatable()
## # A tibble: 922,170 × 7
## # Groups:   country, province [290]
##    date       province country   lat  long cases     value
##    <date>     <chr>    <chr>   <dbl> <dbl> <chr>     <dbl>
##  1 2020-01-23 Alberta  Canada   53.9 -117. confirmed     0
##  2 2020-01-24 Alberta  Canada   53.9 -117. confirmed     0
##  3 2020-01-25 Alberta  Canada   53.9 -117. confirmed     0
##  4 2020-01-26 Alberta  Canada   53.9 -117. confirmed     0
##  5 2020-01-27 Alberta  Canada   53.9 -117. confirmed     0
##  6 2020-01-28 Alberta  Canada   53.9 -117. confirmed     0
##  7 2020-01-29 Alberta  Canada   53.9 -117. confirmed     0
##  8 2020-01-30 Alberta  Canada   53.9 -117. confirmed     0
##  9 2020-01-31 Alberta  Canada   53.9 -117. confirmed     0
## 10 2020-02-01 Alberta  Canada   53.9 -117. confirmed     0
## # … with 922,160 more rows

D.5.3 Aggregated by Countries

The list of countries classified in provinces.

coronavirus_jhu %>% filter(!is.na(province)) %>% distinct(country)
## # A tibble: 91 × 2
## # Groups:   country, province [91]
##    province                         country       
##    <chr>                            <chr>         
##  1 Alberta                          Canada        
##  2 Anguilla                         United Kingdom
##  3 Anhui                            China         
##  4 Aruba                            Netherlands   
##  5 Australian Capital Territory     Australia     
##  6 Beijing                          China         
##  7 Bermuda                          United Kingdom
##  8 Bonaire, Sint Eustatius and Saba Netherlands   
##  9 British Columbia                 Canada        
## 10 British Virgin Islands           United Kingdom
## # … with 81 more rows

Check the data associated with provinces.

If we are only interested in coutries, the following is a possibility.

coronavirus_jhu_country <- coronavirus_jhu %>% 
  group_by(date, country, cases) %>% 
  summarize(value = sum(value)) %>% 
  arrange(cases, country, date)
## `summarise()` has grouped output by 'date', 'country'. You can override using
## the `.groups` argument.
coronavirus_jhu_country # %>% datatable()
## # A tibble: 628,326 × 4
## # Groups:   date, country [209,442]
##    date       country     cases     value
##    <date>     <chr>       <chr>     <dbl>
##  1 2020-01-23 Afghanistan confirmed     0
##  2 2020-01-24 Afghanistan confirmed     0
##  3 2020-01-25 Afghanistan confirmed     0
##  4 2020-01-26 Afghanistan confirmed     0
##  5 2020-01-27 Afghanistan confirmed     0
##  6 2020-01-28 Afghanistan confirmed     0
##  7 2020-01-29 Afghanistan confirmed     0
##  8 2020-01-30 Afghanistan confirmed     0
##  9 2020-01-31 Afghanistan confirmed     0
## 10 2020-02-01 Afghanistan confirmed     0
## # … with 628,316 more rows

D.5.4 Population of 2019

library(WDI)
population <- WDI(
  country = "all", 
  indicator = "SP.POP.TOTL",
  start = 2019,
  end = 2019,
  extra = TRUE,
  cache = NULL,
  latest = NULL,
  language = "en"
) %>%
  select(country, iso2c, iso3c, region, income, population = SP.POP.TOTL)
population # %>% datatable()
##                                                  country iso2c iso3c
## 1                                            Afghanistan    AF   AFG
## 2                            Africa Eastern and Southern    ZH   AFE
## 3                             Africa Western and Central    ZI   AFW
## 4                                                Albania    AL   ALB
## 5                                                Algeria    DZ   DZA
## 6                                         American Samoa    AS   ASM
## 7                                                Andorra    AD   AND
## 8                                                 Angola    AO   AGO
## 9                                    Antigua and Barbuda    AG   ATG
## 10                                            Arab World    1A   ARB
## 11                                             Argentina    AR   ARG
## 12                                               Armenia    AM   ARM
## 13                                                 Aruba    AW   ABW
## 14                                             Australia    AU   AUS
## 15                                               Austria    AT   AUT
## 16                                            Azerbaijan    AZ   AZE
## 17                                          Bahamas, The    BS   BHS
## 18                                               Bahrain    BH   BHR
## 19                                            Bangladesh    BD   BGD
## 20                                              Barbados    BB   BRB
## 21                                               Belarus    BY   BLR
## 22                                               Belgium    BE   BEL
## 23                                                Belize    BZ   BLZ
## 24                                                 Benin    BJ   BEN
## 25                                               Bermuda    BM   BMU
## 26                                                Bhutan    BT   BTN
## 27                                               Bolivia    BO   BOL
## 28                                Bosnia and Herzegovina    BA   BIH
## 29                                              Botswana    BW   BWA
## 30                                                Brazil    BR   BRA
## 31                                British Virgin Islands    VG   VGB
## 32                                     Brunei Darussalam    BN   BRN
## 33                                              Bulgaria    BG   BGR
## 34                                          Burkina Faso    BF   BFA
## 35                                               Burundi    BI   BDI
## 36                                            Cabo Verde    CV   CPV
## 37                                              Cambodia    KH   KHM
## 38                                              Cameroon    CM   CMR
## 39                                                Canada    CA   CAN
## 40                                Caribbean small states    S3   CSS
## 41                                        Cayman Islands    KY   CYM
## 42                              Central African Republic    CF   CAF
## 43                        Central Europe and the Baltics    B8   CEB
## 44                                                  Chad    TD   TCD
## 45                                       Channel Islands    JG   CHI
## 46                                                 Chile    CL   CHL
## 47                                                 China    CN   CHN
## 48                                              Colombia    CO   COL
## 49                                               Comoros    KM   COM
## 50                                      Congo, Dem. Rep.    CD   COD
## 51                                           Congo, Rep.    CG   COG
## 52                                            Costa Rica    CR   CRI
## 53                                         Cote d'Ivoire    CI   CIV
## 54                                               Croatia    HR   HRV
## 55                                                  Cuba    CU   CUB
## 56                                               Curacao    CW   CUW
## 57                                                Cyprus    CY   CYP
## 58                                               Czechia    CZ   CZE
## 59                                               Denmark    DK   DNK
## 60                                              Djibouti    DJ   DJI
## 61                                              Dominica    DM   DMA
## 62                                    Dominican Republic    DO   DOM
## 63                            Early-demographic dividend    V2   EAR
## 64                                   East Asia & Pacific    Z4   EAS
## 65           East Asia & Pacific (excluding high income)    4E   EAP
## 66            East Asia & Pacific (IDA & IBRD countries)    T4   TEA
## 67                                               Ecuador    EC   ECU
## 68                                      Egypt, Arab Rep.    EG   EGY
## 69                                           El Salvador    SV   SLV
## 70                                     Equatorial Guinea    GQ   GNQ
## 71                                               Eritrea    ER   ERI
## 72                                               Estonia    EE   EST
## 73                                              Eswatini    SZ   SWZ
## 74                                              Ethiopia    ET   ETH
## 75                                             Euro area    XC   EMU
## 76                                 Europe & Central Asia    Z7   ECS
## 77         Europe & Central Asia (excluding high income)    7E   ECA
## 78          Europe & Central Asia (IDA & IBRD countries)    T7   TEC
## 79                                        European Union    EU   EUU
## 80                                         Faroe Islands    FO   FRO
## 81                                                  Fiji    FJ   FJI
## 82                                               Finland    FI   FIN
## 83              Fragile and conflict affected situations    F1   FCS
## 84                                                France    FR   FRA
## 85                                      French Polynesia    PF   PYF
## 86                                                 Gabon    GA   GAB
## 87                                           Gambia, The    GM   GMB
## 88                                               Georgia    GE   GEO
## 89                                               Germany    DE   DEU
## 90                                                 Ghana    GH   GHA
## 91                                             Gibraltar    GI   GIB
## 92                                                Greece    GR   GRC
## 93                                             Greenland    GL   GRL
## 94                                               Grenada    GD   GRD
## 95                                                  Guam    GU   GUM
## 96                                             Guatemala    GT   GTM
## 97                                                Guinea    GN   GIN
## 98                                         Guinea-Bissau    GW   GNB
## 99                                                Guyana    GY   GUY
## 100                                                Haiti    HT   HTI
## 101               Heavily indebted poor countries (HIPC)    XE   HPC
## 102                                          High income    XD      
## 103                                             Honduras    HN   HND
## 104                                 Hong Kong SAR, China    HK   HKG
## 105                                              Hungary    HU   HUN
## 106                                            IBRD only    XF   IBD
## 107                                              Iceland    IS   ISL
## 108                                     IDA & IBRD total    ZT   IBT
## 109                                            IDA blend    XH   IDB
## 110                                             IDA only    XI   IDX
## 111                                            IDA total    XG   IDA
## 112                                                India    IN   IND
## 113                                            Indonesia    ID   IDN
## 114                                   Iran, Islamic Rep.    IR   IRN
## 115                                                 Iraq    IQ   IRQ
## 116                                              Ireland    IE   IRL
## 117                                          Isle of Man    IM   IMN
## 118                                               Israel    IL   ISR
## 119                                                Italy    IT   ITA
## 120                                              Jamaica    JM   JAM
## 121                                                Japan    JP   JPN
## 122                                               Jordan    JO   JOR
## 123                                           Kazakhstan    KZ   KAZ
## 124                                                Kenya    KE   KEN
## 125                                             Kiribati    KI   KIR
## 126                            Korea, Dem. People's Rep.    KP   PRK
## 127                                          Korea, Rep.    KR   KOR
## 128                                               Kosovo    XK   XKX
## 129                                               Kuwait    KW   KWT
## 130                                      Kyrgyz Republic    KG   KGZ
## 131                                              Lao PDR    LA   LAO
## 132                            Late-demographic dividend    V3   LTE
## 133                            Latin America & Caribbean    ZJ   LCN
## 134    Latin America & Caribbean (excluding high income)    XJ   LAC
## 135 Latin America & the Caribbean (IDA & IBRD countries)    T2   TLA
## 136                                               Latvia    LV   LVA
## 137         Least developed countries: UN classification    XL   LDC
## 138                                              Lebanon    LB   LBN
## 139                                              Lesotho    LS   LSO
## 140                                              Liberia    LR   LBR
## 141                                                Libya    LY   LBY
## 142                                        Liechtenstein    LI   LIE
## 143                                            Lithuania    LT   LTU
## 144                                  Low & middle income    XO   LMY
## 145                                           Low income    XM      
## 146                                  Lower middle income    XN      
## 147                                           Luxembourg    LU   LUX
## 148                                     Macao SAR, China    MO   MAC
## 149                                           Madagascar    MG   MDG
## 150                                               Malawi    MW   MWI
## 151                                             Malaysia    MY   MYS
## 152                                             Maldives    MV   MDV
## 153                                                 Mali    ML   MLI
## 154                                                Malta    MT   MLT
## 155                                     Marshall Islands    MH   MHL
## 156                                           Mauritania    MR   MRT
## 157                                            Mauritius    MU   MUS
## 158                                               Mexico    MX   MEX
## 159                                Micronesia, Fed. Sts.    FM   FSM
## 160                           Middle East & North Africa    ZQ   MEA
## 161   Middle East & North Africa (excluding high income)    XQ   MNA
## 162    Middle East & North Africa (IDA & IBRD countries)    T3   TMN
## 163                                        Middle income    XP   MIC
## 164                                              Moldova    MD   MDA
## 165                                               Monaco    MC   MCO
## 166                                             Mongolia    MN   MNG
## 167                                           Montenegro    ME   MNE
## 168                                              Morocco    MA   MAR
## 169                                           Mozambique    MZ   MOZ
## 170                                              Myanmar    MM   MMR
## 171                                              Namibia    NA   NAM
## 172                                                Nauru    NR   NRU
## 173                                                Nepal    NP   NPL
## 174                                          Netherlands    NL   NLD
## 175                                        New Caledonia    NC   NCL
## 176                                          New Zealand    NZ   NZL
## 177                                            Nicaragua    NI   NIC
## 178                                                Niger    NE   NER
## 179                                              Nigeria    NG   NGA
## 180                                        North America    XU   NAC
## 181                                      North Macedonia    MK   MKD
## 182                             Northern Mariana Islands    MP   MNP
## 183                                               Norway    NO   NOR
## 184                                       Not classified    XY      
## 185                                         OECD members    OE   OED
## 186                                                 Oman    OM   OMN
## 187                                   Other small states    S4   OSS
## 188                          Pacific island small states    S2   PSS
## 189                                             Pakistan    PK   PAK
## 190                                                Palau    PW   PLW
## 191                                               Panama    PA   PAN
## 192                                     Papua New Guinea    PG   PNG
## 193                                             Paraguay    PY   PRY
## 194                                                 Peru    PE   PER
## 195                                          Philippines    PH   PHL
## 196                                               Poland    PL   POL
## 197                                             Portugal    PT   PRT
## 198                            Post-demographic dividend    V4   PST
## 199                             Pre-demographic dividend    V1   PRE
## 200                                          Puerto Rico    PR   PRI
## 201                                                Qatar    QA   QAT
## 202                                              Romania    RO   ROU
## 203                                   Russian Federation    RU   RUS
## 204                                               Rwanda    RW   RWA
## 205                                                Samoa    WS   WSM
## 206                                           San Marino    SM   SMR
## 207                                Sao Tome and Principe    ST   STP
## 208                                         Saudi Arabia    SA   SAU
## 209                                              Senegal    SN   SEN
## 210                                               Serbia    RS   SRB
## 211                                           Seychelles    SC   SYC
## 212                                         Sierra Leone    SL   SLE
## 213                                            Singapore    SG   SGP
## 214                            Sint Maarten (Dutch part)    SX   SXM
## 215                                      Slovak Republic    SK   SVK
## 216                                             Slovenia    SI   SVN
## 217                                         Small states    S1   SST
## 218                                      Solomon Islands    SB   SLB
## 219                                              Somalia    SO   SOM
## 220                                         South Africa    ZA   ZAF
## 221                                           South Asia    8S   SAS
## 222                              South Asia (IDA & IBRD)    T5   TSA
## 223                                          South Sudan    SS   SSD
## 224                                                Spain    ES   ESP
## 225                                            Sri Lanka    LK   LKA
## 226                                  St. Kitts and Nevis    KN   KNA
## 227                                            St. Lucia    LC   LCA
## 228                             St. Martin (French part)    MF   MAF
## 229                       St. Vincent and the Grenadines    VC   VCT
## 230                                   Sub-Saharan Africa    ZG   SSF
## 231           Sub-Saharan Africa (excluding high income)    ZF   SSA
## 232            Sub-Saharan Africa (IDA & IBRD countries)    T6   TSS
## 233                                                Sudan    SD   SDN
## 234                                             Suriname    SR   SUR
## 235                                               Sweden    SE   SWE
## 236                                          Switzerland    CH   CHE
## 237                                 Syrian Arab Republic    SY   SYR
## 238                                           Tajikistan    TJ   TJK
## 239                                             Tanzania    TZ   TZA
## 240                                             Thailand    TH   THA
## 241                                          Timor-Leste    TL   TLS
## 242                                                 Togo    TG   TGO
## 243                                                Tonga    TO   TON
## 244                                  Trinidad and Tobago    TT   TTO
## 245                                              Tunisia    TN   TUN
## 246                                              Turkiye    TR   TUR
## 247                                         Turkmenistan    TM   TKM
## 248                             Turks and Caicos Islands    TC   TCA
## 249                                               Tuvalu    TV   TUV
## 250                                               Uganda    UG   UGA
## 251                                              Ukraine    UA   UKR
## 252                                 United Arab Emirates    AE   ARE
## 253                                       United Kingdom    GB   GBR
## 254                                        United States    US   USA
## 255                                  Upper middle income    XT      
## 256                                              Uruguay    UY   URY
## 257                                           Uzbekistan    UZ   UZB
## 258                                              Vanuatu    VU   VUT
## 259                                        Venezuela, RB    VE   VEN
## 260                                              Vietnam    VN   VNM
## 261                                Virgin Islands (U.S.)    VI   VIR
## 262                                   West Bank and Gaza    PS   PSE
## 263                                                World    1W   WLD
## 264                                          Yemen, Rep.    YE   YEM
## 265                                               Zambia    ZM   ZMB
## 266                                             Zimbabwe    ZW   ZWE
##                         region              income population
## 1                   South Asia          Low income   38041757
## 2                   Aggregates          Aggregates  660046272
## 3                   Aggregates          Aggregates  446911598
## 4        Europe & Central Asia Upper middle income    2854191
## 5   Middle East & North Africa Lower middle income   43053054
## 6          East Asia & Pacific Upper middle income      55312
## 7        Europe & Central Asia         High income      77146
## 8           Sub-Saharan Africa Lower middle income   31825299
## 9    Latin America & Caribbean         High income      97115
## 10                  Aggregates          Aggregates  427870273
## 11   Latin America & Caribbean Upper middle income   44938712
## 12       Europe & Central Asia Upper middle income    2957728
## 13   Latin America & Caribbean         High income     106310
## 14         East Asia & Pacific         High income   25365745
## 15       Europe & Central Asia         High income    8879920
## 16       Europe & Central Asia Upper middle income   10024283
## 17   Latin America & Caribbean         High income     389486
## 18  Middle East & North Africa         High income    1641164
## 19                  South Asia Lower middle income  163046173
## 20   Latin America & Caribbean         High income     287021
## 21       Europe & Central Asia Upper middle income    9419758
## 22       Europe & Central Asia         High income   11488980
## 23   Latin America & Caribbean Upper middle income     390351
## 24          Sub-Saharan Africa Lower middle income   11801151
## 25               North America         High income      63911
## 26                  South Asia Lower middle income     763094
## 27   Latin America & Caribbean Lower middle income   11513102
## 28       Europe & Central Asia Upper middle income    3300998
## 29          Sub-Saharan Africa Upper middle income    2303703
## 30   Latin America & Caribbean Upper middle income  211049519
## 31   Latin America & Caribbean         High income      30033
## 32         East Asia & Pacific         High income     433296
## 33       Europe & Central Asia Upper middle income    6975761
## 34          Sub-Saharan Africa          Low income   20321383
## 35          Sub-Saharan Africa          Low income   11530577
## 36          Sub-Saharan Africa Lower middle income     549936
## 37         East Asia & Pacific Lower middle income   16486542
## 38          Sub-Saharan Africa Lower middle income   25876387
## 39               North America         High income   37601230
## 40                  Aggregates          Aggregates    7401389
## 41   Latin America & Caribbean         High income      64948
## 42          Sub-Saharan Africa          Low income    4745179
## 43                  Aggregates          Aggregates  102398494
## 44          Sub-Saharan Africa          Low income   15946882
## 45       Europe & Central Asia         High income     172264
## 46   Latin America & Caribbean         High income   18952035
## 47         East Asia & Pacific Upper middle income 1407745000
## 48   Latin America & Caribbean Upper middle income   50339443
## 49          Sub-Saharan Africa Lower middle income     850891
## 50          Sub-Saharan Africa          Low income   86790568
## 51          Sub-Saharan Africa Lower middle income    5380504
## 52   Latin America & Caribbean Upper middle income    5047561
## 53          Sub-Saharan Africa Lower middle income   25716554
## 54       Europe & Central Asia         High income    4065253
## 55   Latin America & Caribbean Upper middle income   11333484
## 56   Latin America & Caribbean         High income     157441
## 57       Europe & Central Asia         High income    1198574
## 58                        <NA>                <NA>   10671870
## 59       Europe & Central Asia         High income    5814422
## 60  Middle East & North Africa Lower middle income     973557
## 61   Latin America & Caribbean Upper middle income      71808
## 62   Latin America & Caribbean Upper middle income   10738957
## 63                  Aggregates          Aggregates 3290291029
## 64                  Aggregates          Aggregates 2351127942
## 65                  Aggregates          Aggregates 2103723076
## 66                  Aggregates          Aggregates 2078012370
## 67   Latin America & Caribbean Upper middle income   17373657
## 68  Middle East & North Africa Lower middle income  100388076
## 69   Latin America & Caribbean Lower middle income    6453550
## 70          Sub-Saharan Africa Upper middle income    1355982
## 71          Sub-Saharan Africa          Low income         NA
## 72       Europe & Central Asia         High income    1326855
## 73          Sub-Saharan Africa Lower middle income    1148133
## 74          Sub-Saharan Africa          Low income  112078727
## 75                  Aggregates          Aggregates  342283354
## 76                  Aggregates          Aggregates  920807612
## 77                  Aggregates          Aggregates  399386100
## 78                  Aggregates          Aggregates  460788476
## 79                  Aggregates          Aggregates  447197811
## 80       Europe & Central Asia         High income      48677
## 81         East Asia & Pacific Upper middle income     889955
## 82       Europe & Central Asia         High income    5521606
## 83                  Aggregates          Aggregates  940026046
## 84       Europe & Central Asia         High income   67248926
## 85         East Asia & Pacific         High income     279285
## 86          Sub-Saharan Africa Upper middle income    2172578
## 87          Sub-Saharan Africa          Low income    2347696
## 88       Europe & Central Asia Upper middle income    3720161
## 89       Europe & Central Asia         High income   83092962
## 90          Sub-Saharan Africa Lower middle income   30417858
## 91       Europe & Central Asia         High income      33706
## 92       Europe & Central Asia         High income   10721582
## 93       Europe & Central Asia         High income      56225
## 94   Latin America & Caribbean Upper middle income     112002
## 95         East Asia & Pacific         High income     167295
## 96   Latin America & Caribbean Upper middle income   16604026
## 97          Sub-Saharan Africa          Low income   12771246
## 98          Sub-Saharan Africa          Low income    1920917
## 99   Latin America & Caribbean Upper middle income     782775
## 100  Latin America & Caribbean Lower middle income   11263079
## 101                 Aggregates          Aggregates  801708019
## 102                       <NA>                <NA> 1234830048
## 103  Latin America & Caribbean Lower middle income    9746115
## 104        East Asia & Pacific         High income    7507900
## 105      Europe & Central Asia         High income    9771141
## 106                 Aggregates          Aggregates 4826259460
## 107      Europe & Central Asia         High income     360563
## 108                 Aggregates          Aggregates 6496952025
## 109                 Aggregates          Aggregates  561571929
## 110                 Aggregates          Aggregates 1109120636
## 111                 Aggregates          Aggregates 1670692565
## 112                 South Asia Lower middle income 1366417756
## 113        East Asia & Pacific Lower middle income  270625567
## 114 Middle East & North Africa Lower middle income   82913893
## 115 Middle East & North Africa Upper middle income   39309789
## 116      Europe & Central Asia         High income    4934340
## 117      Europe & Central Asia         High income      84589
## 118 Middle East & North Africa         High income    9054000
## 119      Europe & Central Asia         High income   59729081
## 120  Latin America & Caribbean Upper middle income    2948277
## 121        East Asia & Pacific         High income  126633000
## 122 Middle East & North Africa Upper middle income   10101697
## 123      Europe & Central Asia Upper middle income   18513673
## 124         Sub-Saharan Africa Lower middle income   52573967
## 125        East Asia & Pacific Lower middle income     117608
## 126        East Asia & Pacific          Low income   25666158
## 127        East Asia & Pacific         High income   51764822
## 128      Europe & Central Asia Upper middle income    1788878
## 129 Middle East & North Africa         High income    4207077
## 130      Europe & Central Asia Lower middle income    6456200
## 131        East Asia & Pacific Lower middle income    7169456
## 132                 Aggregates          Aggregates 2308520840
## 133                       <NA>                <NA>  646431661
## 134                 Aggregates          Aggregates  585257302
## 135                 Aggregates          Aggregates  630644771
## 136      Europe & Central Asia         High income    1913822
## 137                 Aggregates          Aggregates 1033088986
## 138 Middle East & North Africa Lower middle income    6855709
## 139         Sub-Saharan Africa Lower middle income    2125267
## 140         Sub-Saharan Africa          Low income    4937374
## 141 Middle East & North Africa Upper middle income    6777453
## 142      Europe & Central Asia         High income      38020
## 143      Europe & Central Asia         High income    2794137
## 144                 Aggregates          Aggregates 6420460567
## 145                       <NA>                <NA>  665731857
## 146                       <NA>                <NA> 3274021191
## 147      Europe & Central Asia         High income     620001
## 148        East Asia & Pacific         High income     640446
## 149         Sub-Saharan Africa          Low income   26969306
## 150         Sub-Saharan Africa          Low income   18628749
## 151        East Asia & Pacific Upper middle income   31949789
## 152                 South Asia Upper middle income     530957
## 153         Sub-Saharan Africa          Low income   19658023
## 154 Middle East & North Africa         High income     504062
## 155        East Asia & Pacific Upper middle income      58791
## 156         Sub-Saharan Africa Lower middle income    4525698
## 157         Sub-Saharan Africa Upper middle income    1265711
## 158  Latin America & Caribbean Upper middle income  127575529
## 159        East Asia & Pacific Lower middle income     113811
## 160                 Aggregates          Aggregates  456709496
## 161                 Aggregates          Aggregates  389457075
## 162                 Aggregates          Aggregates  384771769
## 163                 Aggregates          Aggregates 5754728710
## 164      Europe & Central Asia Upper middle income    2664974
## 165      Europe & Central Asia         High income      38967
## 166        East Asia & Pacific Lower middle income    3225166
## 167      Europe & Central Asia Upper middle income     622028
## 168 Middle East & North Africa Lower middle income   36471766
## 169         Sub-Saharan Africa          Low income   30366043
## 170        East Asia & Pacific Lower middle income   54045422
## 171         Sub-Saharan Africa Upper middle income    2494524
## 172        East Asia & Pacific         High income      10764
## 173                 South Asia Lower middle income   28608715
## 174      Europe & Central Asia         High income   17344874
## 175        East Asia & Pacific         High income     271300
## 176        East Asia & Pacific         High income    4979200
## 177  Latin America & Caribbean Lower middle income    6545503
## 178         Sub-Saharan Africa          Low income   23310719
## 179         Sub-Saharan Africa Lower middle income  200963603
## 180                 Aggregates          Aggregates  365995094
## 181      Europe & Central Asia Upper middle income    2076694
## 182        East Asia & Pacific         High income      57213
## 183      Europe & Central Asia         High income    5347896
## 184                       <NA>                <NA>         NA
## 185                 Aggregates          Aggregates 1365274704
## 186 Middle East & North Africa         High income    4974992
## 187                 Aggregates          Aggregates   31361216
## 188                 Aggregates          Aggregates    2491878
## 189                 South Asia Lower middle income  216565317
## 190        East Asia & Pacific Upper middle income      18001
## 191  Latin America & Caribbean         High income    4246440
## 192        East Asia & Pacific Lower middle income    8776119
## 193  Latin America & Caribbean Upper middle income    7044639
## 194  Latin America & Caribbean Upper middle income   32510462
## 195        East Asia & Pacific Lower middle income  108116622
## 196      Europe & Central Asia         High income   37965475
## 197      Europe & Central Asia         High income   10286263
## 198                 Aggregates          Aggregates 1113142897
## 199                 Aggregates          Aggregates  944902748
## 200  Latin America & Caribbean         High income    3193694
## 201 Middle East & North Africa         High income    2832071
## 202      Europe & Central Asia         High income   19371648
## 203      Europe & Central Asia Upper middle income  144406261
## 204         Sub-Saharan Africa          Low income   12626938
## 205        East Asia & Pacific Lower middle income     197093
## 206      Europe & Central Asia         High income      33864
## 207         Sub-Saharan Africa Lower middle income     215048
## 208 Middle East & North Africa         High income   34268529
## 209         Sub-Saharan Africa Lower middle income   16296362
## 210      Europe & Central Asia Upper middle income    6945235
## 211         Sub-Saharan Africa         High income      97625
## 212         Sub-Saharan Africa          Low income    7813207
## 213        East Asia & Pacific         High income    5703569
## 214  Latin America & Caribbean         High income      41608
## 215      Europe & Central Asia         High income    5454147
## 216      Europe & Central Asia         High income    2088385
## 217                 Aggregates          Aggregates   41254483
## 218        East Asia & Pacific Lower middle income     669821
## 219         Sub-Saharan Africa          Low income   15442906
## 220         Sub-Saharan Africa Upper middle income   58558267
## 221                 Aggregates          Aggregates 1835776769
## 222                 Aggregates          Aggregates 1835776769
## 223         Sub-Saharan Africa          Low income   11062114
## 224      Europe & Central Asia         High income   47134837
## 225                 South Asia Lower middle income   21803000
## 226  Latin America & Caribbean         High income      52834
## 227  Latin America & Caribbean Upper middle income     182795
## 228  Latin America & Caribbean         High income      38002
## 229  Latin America & Caribbean Upper middle income     110593
## 230                       <NA>                <NA> 1106957870
## 231                 Aggregates          Aggregates 1106860245
## 232                 Aggregates          Aggregates 1106957870
## 233         Sub-Saharan Africa          Low income   42813237
## 234  Latin America & Caribbean Upper middle income     581363
## 235      Europe & Central Asia         High income   10278887
## 236      Europe & Central Asia         High income    8575280
## 237 Middle East & North Africa          Low income   17070132
## 238      Europe & Central Asia Lower middle income    9321023
## 239         Sub-Saharan Africa Lower middle income   58005461
## 240        East Asia & Pacific Upper middle income   69625581
## 241        East Asia & Pacific Lower middle income    1293120
## 242         Sub-Saharan Africa          Low income    8082359
## 243        East Asia & Pacific Upper middle income     104497
## 244  Latin America & Caribbean         High income    1394969
## 245 Middle East & North Africa Lower middle income   11694721
## 246      Europe & Central Asia Upper middle income   83429607
## 247      Europe & Central Asia Upper middle income    5942094
## 248  Latin America & Caribbean         High income      38194
## 249        East Asia & Pacific Upper middle income      11655
## 250         Sub-Saharan Africa          Low income   44269587
## 251      Europe & Central Asia Lower middle income   44386203
## 252 Middle East & North Africa         High income    9770526
## 253      Europe & Central Asia         High income   66836327
## 254              North America         High income  328329953
## 255                       <NA>                <NA> 2480707519
## 256  Latin America & Caribbean         High income    3461731
## 257      Europe & Central Asia Lower middle income   33580350
## 258        East Asia & Pacific Lower middle income     299882
## 259  Latin America & Caribbean      Not classified   28515829
## 260        East Asia & Pacific Lower middle income   96462108
## 261  Latin America & Caribbean         High income     106669
## 262 Middle East & North Africa Lower middle income    4685306
## 263                 Aggregates          Aggregates 7683806444
## 264 Middle East & North Africa          Low income   29161922
## 265         Sub-Saharan Africa          Low income   17861034
## 266         Sub-Saharan Africa Lower middle income   14645473
coronavirus_country <- coronavirus_jhu_country %>%
  left_join(population)
## Joining, by = "country"
coronavirus_country # %>% datatable()
## # A tibble: 628,326 × 9
## # Groups:   date, country [209,442]
##    date       country     cases     value iso2c iso3c region     income  popul…¹
##    <date>     <chr>       <chr>     <dbl> <chr> <chr> <chr>      <chr>     <dbl>
##  1 2020-01-23 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  2 2020-01-24 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  3 2020-01-25 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  4 2020-01-26 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  5 2020-01-27 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  6 2020-01-28 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  7 2020-01-29 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  8 2020-01-30 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
##  9 2020-01-31 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
## 10 2020-02-01 Afghanistan confirmed     0 AF    AFG   South Asia Low in…  3.80e7
## # … with 628,316 more rows, and abbreviated variable name ¹​population
summary(coronavirus_country)
##       date              country             cases               value          
##  Min.   :2020-01-23   Length:628326      Length:628326      Min.   :-30974748  
##  1st Qu.:2020-10-09   Class :character   Class :character   1st Qu.:        0  
##  Median :2021-06-26   Mode  :character   Mode  :character   Median :        0  
##  Mean   :2021-06-26                                         Mean   :     1046  
##  3rd Qu.:2022-03-14                                         3rd Qu.:       54  
##  Max.   :2022-11-29                                         Max.   :  1355242  
##                                                             NA's   :15630      
##     iso2c              iso3c              region             income         
##  Length:628326      Length:628326      Length:628326      Length:628326     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    population       
##  Min.   :1.076e+04  
##  1st Qu.:1.921e+06  
##  Median :8.828e+06  
##  Mean   :3.869e+07  
##  3rd Qu.:2.572e+07  
##  Max.   :1.408e+09  
##  NA's   :96906

D.5.4.1 Region

coronavirus_country %>% group_by(region) %>% 
  summarize(n = n_distinct(country))
## # A tibble: 8 × 2
##   region                         n
##   <chr>                      <int>
## 1 East Asia & Pacific           24
## 2 Europe & Central Asia         47
## 3 Latin America & Caribbean     28
## 4 Middle East & North Africa    17
## 5 North America                  1
## 6 South Asia                     8
## 7 Sub-Saharan Africa            45
## 8 <NA>                          31
coronavirus_country %>% filter(is.na(region)) %>% pull(country) %>% unique()
##  [1] "Antarctica"                       "Bahamas"                         
##  [3] "Brunei"                           "Burma"                           
##  [5] "Congo (Brazzaville)"              "Congo (Kinshasa)"                
##  [7] "Czechia"                          "Diamond Princess"                
##  [9] "Egypt"                            "Gambia"                          
## [11] "Holy See"                         "Iran"                            
## [13] "Korea, North"                     "Korea, South"                    
## [15] "Kyrgyzstan"                       "Laos"                            
## [17] "Micronesia"                       "MS Zaandam"                      
## [19] "Russia"                           "Saint Kitts and Nevis"           
## [21] "Saint Lucia"                      "Saint Vincent and the Grenadines"
## [23] "Slovakia"                         "Summer Olympics 2020"            
## [25] "Syria"                            "Taiwan*"                         
## [27] "Turkey"                           "US"                              
## [29] "Venezuela"                        "Winter Olympics 2022"            
## [31] "Yemen"
coronavirus_country %>% drop_na() %>% group_by(region) %>% 
  summarize(n = n_distinct(country)) %>%
  arrange(n) %>%
  ggplot() +
    geom_col(aes(y = reorder(region, n), x = n))

coronavirus_country %>% filter(cases == "confirmed") %>%
  group_by(region, date) %>% summarize(confirmed = sum(value, na.rm = TRUE)) %>%
  ggplot() +
    geom_line(aes(x = date, y = confirmed, color = region)) +
    labs(title = "Total Number of Confirmed Cases by Region")
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.

coronavirus_country %>% filter(cases == "death") %>%
  group_by(region, date) %>% summarize(death = sum(value, na.rm = TRUE)) %>%
  ggplot() +
    geom_line(aes(x = date, y = death, color = region)) +
    labs(title = "Total Number of Deaths by Region")
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.

D.5.4.2 Income

coronavirus_country %>% group_by(income) %>% 
  summarize(n = n_distinct(country))
## # A tibble: 5 × 2
##   income                  n
##   <chr>               <int>
## 1 High income            52
## 2 Low income             23
## 3 Lower middle income    47
## 4 Upper middle income    48
## 5 <NA>                   31
coronavirus_country %>% filter(is.na(income)) %>% pull(country) %>% unique()
##  [1] "Antarctica"                       "Bahamas"                         
##  [3] "Brunei"                           "Burma"                           
##  [5] "Congo (Brazzaville)"              "Congo (Kinshasa)"                
##  [7] "Czechia"                          "Diamond Princess"                
##  [9] "Egypt"                            "Gambia"                          
## [11] "Holy See"                         "Iran"                            
## [13] "Korea, North"                     "Korea, South"                    
## [15] "Kyrgyzstan"                       "Laos"                            
## [17] "Micronesia"                       "MS Zaandam"                      
## [19] "Russia"                           "Saint Kitts and Nevis"           
## [21] "Saint Lucia"                      "Saint Vincent and the Grenadines"
## [23] "Slovakia"                         "Summer Olympics 2020"            
## [25] "Syria"                            "Taiwan*"                         
## [27] "Turkey"                           "US"                              
## [29] "Venezuela"                        "Winter Olympics 2022"            
## [31] "Yemen"
coronavirus_country %>% drop_na() %>% group_by(income) %>% 
  summarize(n = n_distinct(country)) %>%
  arrange(n) %>%
  ggplot() +
    geom_col(aes(y = reorder(income, n), x = n))

coronavirus_country %>% filter(cases == "confirmed") %>%
  group_by(income, date) %>% summarize(confirmed = sum(value, na.rm = TRUE)) %>%
  ggplot() +
    geom_line(aes(x = date, y = confirmed, color = income)) +
    labs(title = "Total Number of Confirmed Cases by Income Level")
## `summarise()` has grouped output by 'income'. You can override using the
## `.groups` argument.

coronavirus_country %>% filter(cases == "death") %>%
  group_by(income, date) %>% summarize(death = sum(value, na.rm = TRUE)) %>%
  ggplot() +
    geom_line(aes(x = date, y = death, color = income)) +
    labs(title = "Total Number of Deaths by Income Level")
## `summarise()` has grouped output by 'income'. You can override using the
## `.groups` argument.

### Analysis Suggested by Rami Krispin

See https://github.com/RamiKrispin/coronavirus/

D.5.4.3 Summary of the total confrimed cases by country

coronavirus_country %>% 
  filter(cases == "confirmed") %>%
  group_by(country) %>%
  summarize(total_cases = sum(value)) %>%
  arrange(desc(total_cases))
## # A tibble: 201 × 2
##    country        total_cases
##    <chr>                <dbl>
##  1 US                98673987
##  2 India             44673567
##  3 France            37979248
##  4 Germany           36463485
##  5 Brazil            35227599
##  6 Korea, South      27098733
##  7 Japan             24676910
##  8 Italy             24260660
##  9 United Kingdom    24224763
## 10 Russia            21278433
## # … with 191 more rows

D.5.4.4 Summary of new cases during the past 24 hours by country and type

Date = 2022-11-28

coronavirus_country %>% 
  filter(date == Sys.Date() -2) %>%
  select(country, cases, value) %>%
  group_by(country, cases) %>%
  summarize(total_cases = sum(value)) %>%
  pivot_wider(names_from = cases,
              values_from = total_cases) %>%
  arrange(desc(confirmed))
## Adding missing grouping variables: `date`
## `summarise()` has grouped output by 'country'. You can override using the `.groups` argument.
## # A tibble: 201 × 4
## # Groups:   country [201]
##    country      confirmed death recovered
##    <chr>            <dbl> <dbl>     <dbl>
##  1 France           95382   132         0
##  2 Korea, South     71476    41         0
##  3 US               59717   280         0
##  4 Japan            49117   103         0
##  5 Germany          46552   162         0
##  6 Taiwan*          10651    41         0
##  7 Russia            4980    50         0
##  8 Australia         4149    19         0
##  9 Indonesia         3225    59         0
## 10 Belgium           3152    15         0
## # … with 191 more rows