C World Map

In this chapter, we study the topic of drawing world maps using ggplot2.

Using a map data in data.frame to apply geom_map or geom_polygon is possible. However, recently, we can obtain a map data in simple feature (sf) format, ad ggplot2 includes a special geom called geom_sf to draw more complex data.

C.1 Setup

library(tidyverse)
#> ── Attaching core tidyverse packages ──── tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.2     ✔ readr     2.1.4
#> ✔ forcats   1.0.0     ✔ stringr   1.5.0
#> ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
#> ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
#> ✔ purrr     1.0.1     
#> ── Conflicts ────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(sf)
#> Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2()
#> is TRUE
library(showtext)
#> Loading required package: sysfonts
#> Loading required package: showtextdb
showtext_auto()

We will use income level data with the iso2c code of each country obtained using WDIcache().

wdi_cache <- read_rds("./data/wdi_cache.RData")
wdi_cache$country %>% as_tibble() %>% glimpse()
#> Rows: 299
#> Columns: 9
#> $ iso3c     <chr> "ABW", "AFE", "AFG", "AFR", "AFW", "AGO"…
#> $ iso2c     <chr> "AW", "ZH", "AF", "A9", "ZI", "AO", "AL"…
#> $ country   <chr> "Aruba", "Africa Eastern and Southern", …
#> $ region    <chr> "Latin America & Caribbean", "Aggregates…
#> $ capital   <chr> "Oranjestad", "", "Kabul", "", "", "Luan…
#> $ longitude <chr> "-70.0167", "", "69.1761", "", "", "13.2…
#> $ latitude  <chr> "12.5167", "", "34.5228", "", "", "-8.81…
#> $ income    <chr> "High income", "Aggregates", "Low income…
#> $ lending   <chr> "Not classified", "Aggregates", "IDA", "…
wdi_income <- wdi_cache$country %>% 
  filter(region != "Aggregates") %>%
  select(iso2c, income) %>% 
  drop_na(iso2c) %>%
  mutate(income = factor(income, levels = c("High income", "Upper middle income", "Lower middle income", "Low income", "Not classified", NA))) 
glimpse(wdi_income)
#> Rows: 218
#> Columns: 2
#> $ iso2c  <chr> "AW", "AF", "AO", "AL", "AD", "AE", "AR", "…
#> $ income <fct> High income, Low income, Lower middle incom…

C.1.1 geom_sf

See also, coord_sf, geom_sf_label, geom_sf_text, stat_sf.

This set of geom, stat, and coord are used to visualise simple feature (sf) objects. For simple plots, you will only need geom_sf() as it uses stat_sf() and adds coord_sf() for you. geom_sf() is an unusual geom because it will draw different geometric objects depending on what simple features are present in the data: you can get points, lines, or polygons. For text and labels, you can use geom_sf_text() and geom_sf_label().

geom_sf(
  mapping = aes(),
  data = NULL,
  stat = "sf",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)

C.2 Natural Earth Data

https://www.naturalearthdata.com

Get natural earth world country polygons

Manual: https://cran.r-project.org/web/packages/rnaturalearth/rnaturalearth.pdf

C.2.1 ne_countries

library(rnaturalearth)
library(rnaturalearthdata)
#> 
#> Attaching package: 'rnaturalearthdata'
#> The following object is masked from 'package:rnaturalearth':
#> 
#>     countries110
ne_countries(
  scale = 110,
  type = "countries",
  continent = NULL,
  country = NULL,
  geounit = NULL,
  sovereignty = NULL,
  returnclass = c("sp", "sf")
)

C.2.1.1 Arguments

  • scale: scale of map to return, one of 110, 50, 10 or ‘small’, ‘medium’, ‘large’
  • type: country type, one of ‘countries’, ‘map_units’, ‘sovereignty’, ‘tiny_countries’
  • continent: a character vector of continent names to get countries from.
  • country: a character vector of country names.
  • geounit: a character vector of geounit names.
  • sovereignty: a character vector of sovereignty names.
  • returnclass: ‘sp’ default or ‘sf’ for Simple Features

C.2.1.2 Examples

There are three scales. Add returnclass = "sf" as an option to obtain data in sf format.

ne_countries(scale = "large", returnclass = "sf") %>%
  ggplot() +   geom_sf()
ne_countries(scale = "small", returnclass = "sf") %>%
  ggplot() +   geom_sf()

We will use medium scale data in the following.

ne_world <- ne_countries(scale = "medium", returnclass = "sf")
glimpse(ne_world)
#> Rows: 241
#> Columns: 64
#> $ scalerank  <int> 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 5, …
#> $ featurecla <chr> "Admin-0 country", "Admin-0 country", "…
#> $ labelrank  <dbl> 5, 3, 3, 6, 6, 6, 6, 4, 2, 6, 4, 4, 5, …
#> $ sovereignt <chr> "Netherlands", "Afghanistan", "Angola",…
#> $ sov_a3     <chr> "NL1", "AFG", "AGO", "GB1", "ALB", "FI1…
#> $ adm0_dif   <dbl> 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, …
#> $ level      <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
#> $ type       <chr> "Country", "Sovereign country", "Sovere…
#> $ admin      <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ adm0_a3    <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALD…
#> $ geou_dif   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ geounit    <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ gu_a3      <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALD…
#> $ su_dif     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ subunit    <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ su_a3      <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALD…
#> $ brk_diff   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ name       <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ name_long  <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ brk_a3     <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALD…
#> $ brk_name   <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ brk_group  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ abbrev     <chr> "Aruba", "Afg.", "Ang.", "Ang.", "Alb."…
#> $ postal     <chr> "AW", "AF", "AO", "AI", "AL", "AI", "AN…
#> $ formal_en  <chr> "Aruba", "Islamic State of Afghanistan"…
#> $ formal_fr  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ note_adm0  <chr> "Neth.", NA, NA, "U.K.", NA, "Fin.", NA…
#> $ note_brk   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ name_sort  <chr> "Aruba", "Afghanistan", "Angola", "Angu…
#> $ name_alt   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ mapcolor7  <dbl> 4, 5, 3, 6, 1, 4, 1, 2, 3, 3, 4, 4, 1, …
#> $ mapcolor8  <dbl> 2, 6, 2, 6, 4, 1, 4, 1, 1, 1, 5, 5, 2, …
#> $ mapcolor9  <dbl> 2, 8, 6, 6, 1, 4, 1, 3, 3, 2, 1, 1, 2, …
#> $ mapcolor13 <dbl> 9, 7, 1, 3, 6, 6, 8, 3, 13, 10, 1, NA, …
#> $ pop_est    <dbl> 103065, 28400000, 12799293, 14436, 3639…
#> $ gdp_md_est <dbl> 2258.0, 22270.0, 110300.0, 108.9, 21810…
#> $ pop_year   <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ lastcensus <dbl> 2010, 1979, 1970, NA, 2001, NA, 1989, 2…
#> $ gdp_year   <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ economy    <chr> "6. Developing region", "7. Least devel…
#> $ income_grp <chr> "2. High income: nonOECD", "5. Low inco…
#> $ wikipedia  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ fips_10    <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ iso_a2     <chr> "AW", "AF", "AO", "AI", "AL", "AX", "AD…
#> $ iso_a3     <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALA…
#> $ iso_n3     <chr> "533", "004", "024", "660", "008", "248…
#> $ un_a3      <chr> "533", "004", "024", "660", "008", "248…
#> $ wb_a2      <chr> "AW", "AF", "AO", NA, "AL", NA, "AD", "…
#> $ wb_a3      <chr> "ABW", "AFG", "AGO", NA, "ALB", NA, "AD…
#> $ woe_id     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ adm0_a3_is <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALA…
#> $ adm0_a3_us <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "ALD…
#> $ adm0_a3_un <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ adm0_a3_wb <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ continent  <chr> "North America", "Asia", "Africa", "Nor…
#> $ region_un  <chr> "Americas", "Asia", "Africa", "Americas…
#> $ subregion  <chr> "Caribbean", "Southern Asia", "Middle A…
#> $ region_wb  <chr> "Latin America & Caribbean", "South Asi…
#> $ name_len   <dbl> 5, 11, 6, 8, 7, 5, 7, 20, 9, 7, 14, 10,…
#> $ long_len   <dbl> 5, 11, 6, 8, 7, 13, 7, 20, 9, 7, 14, 10…
#> $ abbrev_len <dbl> 5, 4, 4, 4, 4, 5, 4, 6, 4, 4, 9, 4, 7, …
#> $ tiny       <dbl> 4, NA, NA, NA, NA, 5, 5, NA, NA, NA, 3,…
#> $ homepart   <dbl> NA, 1, 1, NA, 1, NA, 1, 1, 1, 1, NA, 1,…
#> $ geometry   <MULTIPOLYGON [°]> MULTIPOLYGON (((-69.89912 …

The last column is the geometry which contains map data in multi-polygon format.

ne_world %>% ggplot() + geom_sf()

This map data comes with various information.

ne_world %>% ggplot() + geom_sf(aes(fill = income_grp))
You can specify a ‘continent’, a ‘region_un’, a ‘subregion’ or ‘region_wb’.
ne_world %>% as_tibble() %>% distinct(continent) %>% pull()
#> [1] "North America"           "Asia"                   
#> [3] "Africa"                  "Europe"                 
#> [5] "South America"           "Oceania"                
#> [7] "Antarctica"              "Seven seas (open ocean)"
ne_world %>% as_tibble() %>% distinct(region_un) %>% pull()
#> [1] "Americas"                "Asia"                   
#> [3] "Africa"                  "Europe"                 
#> [5] "Oceania"                 "Antarctica"             
#> [7] "Seven seas (open ocean)"
ne_world %>% as_tibble() %>% distinct(subregion) %>% pull()
#>  [1] "Caribbean"                 "Southern Asia"            
#>  [3] "Middle Africa"             "Southern Europe"          
#>  [5] "Northern Europe"           "Western Asia"             
#>  [7] "South America"             "Polynesia"                
#>  [9] "Antarctica"                "Australia and New Zealand"
#> [11] "Seven seas (open ocean)"   "Western Europe"           
#> [13] "Eastern Africa"            "Western Africa"           
#> [15] "Eastern Europe"            "Central America"          
#> [17] "Northern America"          "South-Eastern Asia"       
#> [19] "Southern Africa"           "Eastern Asia"             
#> [21] "Northern Africa"           "Melanesia"                
#> [23] "Micronesia"                "Central Asia"
ne_world %>% as_tibble() %>% distinct(region_wb) %>% pull()
#> [1] "Latin America & Caribbean" 
#> [2] "South Asia"                
#> [3] "Sub-Saharan Africa"        
#> [4] "Europe & Central Asia"     
#> [5] "Middle East & North Africa"
#> [6] "East Asia & Pacific"       
#> [7] "Antarctica"                
#> [8] "North America"
ne_world %>% filter(subregion == "South-Eastern Asia") %>%
  ggplot() +   geom_sf(aes(fill = iso_a2))
ne_world %>% filter(continent == 'Africa') %>%
  ggplot() +   geom_sf(aes(fill = subregion))

C.2.1.3 type argument

ne_countries(type = "countries", country = c("Japan", "South Korea", "North Korea", "China", "Taiwan", "Mongolia"), scale = "medium", returnclass = "sf") %>%
  ggplot() + geom_sf(aes(fill = economy))

C.2.2 ne_states

Get natural earth world state (admin level 1) polygons

Description: returns state polygons (administrative level 1) for specified countries

C.2.2.1 Usage

ne_states(
  country = NULL,
  geounit = NULL,
  iso_a2 = NULL,
  spdf = NULL,
  returnclass = c("sp", "sf")
)

C.2.3 Arguments

  • country: a character vector of country names.

  • geounit: a character vector of geounit names.

  • iso_a2: a character vector of iso_a2 country codes

  • spdf: an optional alternative states map

  • returnclass: ‘sp’ default or ‘sf’ for Simple Features

C.2.4 Value

  • SpatialPolygons DataFrame or sf
ne_world_admin1 <- ne_states(returnclass = "sf")
glimpse(ne_world_admin1)
#> Rows: 4,596
#> Columns: 122
#> $ featurecla <chr> "Admin-1 states provinces lakes", "Admi…
#> $ scalerank  <int> 3, 6, 2, 6, 3, 4, 4, 3, 4, 3, 4, 3, 3, …
#> $ adm1_code  <chr> "ARG-1309", "URY-8", "IDN-1185", "MYS-1…
#> $ diss_me    <int> 1309, 8, 1185, 1186, 2694, 1936, 1937, …
#> $ iso_3166_2 <chr> "AR-E", "UY-PA", "ID-KI", "MY-12", "CL-…
#> $ wikipedia  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ iso_a2     <chr> "AR", "UY", "ID", "MY", "CL", "BO", "BO…
#> $ adm0_sr    <int> 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ name       <chr> "Entre Ríos", "Paysandú", "Kalimantan T…
#> $ name_alt   <chr> "Entre-Rios", NA, "Kaltim", "North Born…
#> $ name_local <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ type       <chr> "Provincia", "Departamento", "Propinsi"…
#> $ type_en    <chr> "Province", "Department", "Province", "…
#> $ code_local <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ code_hasc  <chr> "AR.ER", "UY.PA", "ID.KI", "MY.SA", "CL…
#> $ note       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ hasc_maybe <chr> NA, NA, NA, NA, NA, NA, NA, NA, "BO.OR|…
#> $ region     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ region_cod <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ provnum_ne <int> 10, 19, 15, 1, 0, 8, 7, 0, 1, 20006, 8,…
#> $ gadm_level <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ check_me   <int> 20, 0, 20, 20, 20, 0, 0, 20, 10, 20, 10…
#> $ datarank   <int> 3, 8, 1, 6, 3, 8, 6, 3, 6, 3, 5, 3, 3, …
#> $ abbrev     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ postal     <chr> "ER", "PA", "KI", "SA", NA, "LP", "OR",…
#> $ area_sqkm  <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ sameascity <int> -99, -99, -99, -99, 7, 6, 6, -99, -99, …
#> $ labelrank  <int> 3, 6, 2, 6, 7, 6, 6, 3, 4, 6, 7, 6, 3, …
#> $ name_len   <int> 10, 8, 16, 5, 18, 6, 5, 8, 6, 11, 5, 5,…
#> $ mapcolor9  <int> 3, 2, 6, 3, 5, 2, 2, 5, 2, 5, 4, 3, 3, …
#> $ mapcolor13 <int> 13, 10, 11, 6, 9, 3, 3, 9, 3, 9, 11, 13…
#> $ fips       <chr> "AR08", "UY11", "ID14", "MY16", NA, "BL…
#> $ fips_alt   <chr> NA, NA, NA, NA, NA, NA, NA, NA, "BL05",…
#> $ woe_id     <int> 2344682, 2347650, 2345723, 2346310, 560…
#> $ woe_label  <chr> "Entre Rios, AR, Argentina", "Paysandú…
#> $ woe_name   <chr> "Entre Ríos", "Paysandú", "Kalimantan T…
#> $ latitude   <dbl> -32.02750, -32.09330, 1.28915, 5.31115,…
#> $ longitude  <dbl> -59.28240, -57.22400, 116.35400, 117.09…
#> $ sov_a3     <chr> "ARG", "URY", "IDN", "MYS", "CHL", "BOL…
#> $ adm0_a3    <chr> "ARG", "URY", "IDN", "MYS", "CHL", "BOL…
#> $ adm0_label <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
#> $ admin      <chr> "Argentina", "Uruguay", "Indonesia", "M…
#> $ geonunit   <chr> "Argentina", "Uruguay", "Indonesia", "M…
#> $ gu_a3      <chr> "ARG", "URY", "IDN", "MYS", "CHL", "BOL…
#> $ gn_id      <int> 3434137, 3441242, 1641897, 1733039, 669…
#> $ gn_name    <chr> "Provincia de Entre Rios", "Departament…
#> $ gns_id     <int> -988655, -908097, -2680740, -2405166, 1…
#> $ gns_name   <chr> "Entre Rios", "Paysandu, Departamento d…
#> $ gn_level   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ gn_region  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ gn_a1_code <chr> "AR.08", "UY.11", "ID.14", "MY.16", "CL…
#> $ region_sub <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ sub_code   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ gns_level  <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ gns_lang   <chr> "khm", "fra", "ind", "fil", "ara", "kor…
#> $ gns_adm1   <chr> "AR08", "UY11", "ID14", "MY16", "CI16",…
#> $ gns_region <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ min_label  <dbl> 6.0, 8.0, 5.0, 7.0, 6.0, 6.6, 6.6, 6.0,…
#> $ max_label  <dbl> 11.0, 11.0, 10.1, 11.0, 11.0, 11.0, 11.…
#> $ min_zoom   <dbl> 6.0, 8.0, 4.6, 7.0, 6.0, 6.6, 6.6, 6.0,…
#> $ wikidataid <chr> "Q44762", "Q16576", "Q3899", "Q179029",…
#> $ name_ar    <chr> "إنتري ريوس", "إدارة بايساندو", "كالمنت…
#> $ name_bn    <chr> "এন্ত্রে রিও প্রদেশ", "পেসান্ডো বিভাগ", "পূর্…
#> $ name_de    <chr> "Entre Ríos", "Paysandú", "Ostkalimanta…
#> $ name_en    <chr> "Entre Ríos", "Paysandú", "East Kaliman…
#> $ name_es    <chr> "Entre Ríos", "Paysandú", "Kalimantan O…
#> $ name_fr    <chr> "Entre Ríos", "Paysandú", "Kalimantan o…
#> $ name_el    <chr> "Έντρε Ρίος", "Παϊσαντού", "Ανατολικό Κ…
#> $ name_hi    <chr> "एन्ट्रे रियोस", "पयसंदु विभाग", "पूर्व कालिमंत…
#> $ name_hu    <chr> "Entre Ríos", "Paysandú", "Kelet-Kalima…
#> $ name_id    <chr> "Entre Ríos", "Departemen Paysandú", "K…
#> $ name_it    <chr> "Entre Ríos", "dipartimento di Paysandú…
#> $ name_ja    <chr> "エントレ・リオス州", "パイサンドゥ県",…
#> $ name_ko    <chr> "엔트레리오스", "파이산두", "동칼리만탄…
#> $ name_nl    <chr> "Entre Ríos", "Paysandú", "Oost-Kaliman…
#> $ name_pl    <chr> "Entre Ríos", "Paysandú", "Borneo Wscho…
#> $ name_pt    <chr> "Entre Ríos", "Paysandú", "Kalimantan O…
#> $ name_ru    <chr> "Энтре-Риос", "Пайсанду", "Восточный Ка…
#> $ name_sv    <chr> "Entre Ríos", "Paysandú", "Kalimantan T…
#> $ name_tr    <chr> "Entre Ríos eyaleti", "Paysandu Departm…
#> $ name_vi    <chr> "Entre Ríos", "Paysandú", "Đông Kaliman…
#> $ name_zh    <chr> "恩特雷里奥斯省", "派桑杜省", "东加里曼…
#> $ ne_id      <dbl> 1159309789, 1159307733, 1159310009, 115…
#> $ name_he    <chr> "אנטרה ריוס", "פאיסאנדו", "מזרח קלימנטא…
#> $ name_uk    <chr> "Ентре-Ріос", "Пайсанду", "Східний Калі…
#> $ name_ur    <chr> "صوبہ انترے ریوس", "پایساندو محکمہ", "م…
#> $ name_fa    <chr> "ایالت انتره ریوز", "بخش پایساندو", "کا…
#> $ name_zht   <chr> "恩特雷里奥斯省", "派桑杜省", "東加里曼…
#> $ FCLASS_ISO <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_US  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_FR  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_RU  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_ES  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_CN  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_TW  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_IN  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_NP  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_PK  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_DE  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_GB  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_BR  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_IL  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_PS  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_SA  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_EG  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_MA  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_PT  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_AR  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_JP  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_KO  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_VN  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_TR  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_ID  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_PL  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_GR  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_IT  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_NL  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_SE  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_BD  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_UA  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ FCLASS_TLC <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
#> $ geometry   <MULTIPOLYGON [°]> MULTIPOLYGON (((-58.20011 …
ne_world_admin1 %>% as_tibble() %>% 
  filter(iso_a2 != "-1") %>% arrange(admin) %>%
  distinct(iso_a2, admin)
#> # A tibble: 243 × 2
#>    iso_a2 admin              
#>    <chr>  <chr>              
#>  1 AF     Afghanistan        
#>  2 AX     Aland              
#>  3 AL     Albania            
#>  4 DZ     Algeria            
#>  5 AS     American Samoa     
#>  6 AD     Andorra            
#>  7 AO     Angola             
#>  8 AI     Anguilla           
#>  9 AQ     Antarctica         
#> 10 AG     Antigua and Barbuda
#> # ℹ 233 more rows
country <- "Japan"
ne_world_admin1 %>% filter(admin == country) %>% 
  ggplot() + geom_sf()
iso2s <- c("IN","PK","BD","LK")
ne_world_admin1 %>% filter(iso_a2 %in% iso2s) %>% 
  ggplot() +   geom_sf(aes(fill = admin))
regions <- c("Tohoku")
ne_world_admin1 %>% filter(region %in% regions) %>% 
  ggplot() + geom_sf(aes(fill = name_local))
ne_world_admin1 %>% filter(iso_a2 == "JP") %>%
  ggplot() +   geom_sf(aes(fill = region))
ne_world_admin1 %>% as_tibble() %>% filter(admin %in% "Japan") %>% 
  select(name_local, region) %>% filter(is.na(region))
#> # A tibble: 2 × 2
#>   name_local region
#>   <chr>      <chr> 
#> 1 佐賀県     <NA>  
#> 2 長崎県     <NA>
ne_world_admin1 %>% mutate(region = case_when(
  name_local == "佐賀県" ~ "Kyushu",
  name_local == "長崎県" ~ "Kyushu",
  TRUE ~ region)) %>%
  as_tibble() %>% filter(admin %in% "Japan") %>% 
  select(name_local, region) %>% filter(is.na(region))
#> # A tibble: 0 × 2
#> # ℹ 2 variables: name_local <chr>, region <chr>
ne_world_admin1 %>% mutate(region = case_when(
  name_local == "佐賀県" ~ "Kyushu",
  name_local == "長崎県" ~ "Kyushu",
  TRUE ~ region)) %>%
  filter(iso_a2 == "JP") %>%
  ggplot() +   geom_sf(aes(fill = region))

C.3 geodata Package

library(geodata)
#> Loading required package: terra
#> terra 1.7.29
#> 
#> Attaching package: 'terra'
#> The following object is masked from 'package:tidyr':
#> 
#>     extract
world(resolution=5, level=0, path = "./data")
#>  class       : SpatVector 
#>  geometry    : polygons 
#>  dimensions  : 231, 2  (geometries, attributes)
#>  extent      : -180, 180, -90, 83.65625  (xmin, xmax, ymin, ymax)
#>  coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
#>  names       : GID_0      NAME_0
#>  type        : <chr>       <chr>
#>  values      :   ABW       Aruba
#>                  AFG Afghanistan
#>                  AGO      Angola
world5 <- readRDS("./data/gadm/gadm36_adm0_r5_pk.rds")
world5 %>% as_tibble() %>% glimpse()
#> Rows: 231
#> Columns: 2
#> $ GID_0  <chr> "ABW", "AFG", "AGO", "ALA", "ALB", "AND", "…
#> $ NAME_0 <chr> "Aruba", "Afghanistan", "Angola", "Åland", …
world5 %>% st_as_sf() %>% ggplot() + geom_sf()
world5 %>% 
  st_as_sf() %>% filter(GID_0 == "JPN") %>% 
  ggplot() + geom_sf()
world(resolution=1, level=0, path = "./data") %>%
  st_as_sf() %>% ggplot() + geom_sf()
world(path = "./data") %>%
  st_as_sf() %>% ggplot() + geom_sf()
world(resolution=1, level=0, path = "./data") %>%
  st_as_sf() %>% filter(NAME_0 == "Japan") %>%
  ggplot() + geom_sf()
world(resolution=1, level=0, path = "./data") %>%
  st_as_sf() %>% filter(NAME_0 %in% c("India","Pakistan", "Bangladesh" , "Sri Lanka")) %>%
  ggplot() + geom_sf(aes(fill = GID_0))
world5_df <- st_as_sf(world5) %>% 
  st_set_crs("+proj=longlat +datum=WGS84") %>% 
  st_transform(., "+proj=robin")

ggplot() +
  geom_sf(data = world5_df)

C.3.1 gadm Administrative boundaries

  • Get administrative boundaries for any country in the world. Data are read from files that are down- loaded if necessary.
  • Usage: gadm(country, level=1, path, version="latest", resolution=1, ...)
  • Arguments
    • country: character. Three-letter ISO code or full country name. If you provide multiple names they are all downloaded and rbind-ed together
    • level: numeric. The level of administrative subdivision requested. (starting with 0 for country, then 1 for the first level of subdivision)
    • path: character. Path for storing the downloaded data. See geodata_path
    • version: character. Either “latest” or GADM version number (can be “3.6”, “4.0” or “4.1”)
    • resolution: integer indicating the level of detail. Only for version 4.1. It should be either 1 (high) or 2 (low)
gadm0 <- gadm("JPN", level = 0, path = "./data/")
gadm0 %>% st_as_sf() %>% 
  ggplot() + geom_sf()
gadm1 <- gadm("JPN", level = 1, path = "./data/") %>% st_as_sf()
gadm1 %>% glimpse()
#> Rows: 47
#> Columns: 12
#> $ GID_1     <chr> "JPN.1_1", "JPN.2_1", "JPN.3_1", "JPN.4_…
#> $ GID_0     <chr> "JPN", "JPN", "JPN", "JPN", "JPN", "JPN"…
#> $ COUNTRY   <chr> "Japan", "Japan", "Japan", "Japan", "Jap…
#> $ NAME_1    <chr> "Aichi", "Akita", "Aomori", "Chiba", "Eh…
#> $ VARNAME_1 <chr> "Aiti", NA, NA, "Tiba|Tsiba", NA, "Hukui…
#> $ NL_NAME_1 <chr> "愛知県", "秋田県", "青森県", "千葉県", …
#> $ TYPE_1    <chr> "Ken", "Ken", "Ken", "Ken", "Ken", "Ken"…
#> $ ENGTYPE_1 <chr> "Prefecture", "Prefecture", "Prefecture"…
#> $ CC_1      <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ HASC_1    <chr> "JP.AI", "JP.AK", "JP.AO", "JP.CH", "JP.…
#> $ ISO_1     <chr> "JP-23", "JP-05", "JP-02", "JP-12", "JP-…
#> $ geometry  <GEOMETRY [°]> MULTIPOLYGON (((137.0974 34...,…
gadm1 %>% 
  ggplot() + geom_sf(aes(fill = NAME_1)) + theme(legend.position = "none")
gadm2 <- gadm("JPN", level = 2, path = "./data/") %>% st_as_sf()
gadm2 %>% glimpse()
#> Rows: 1,811
#> Columns: 14
#> $ GID_2     <chr> "JPN.1.1_1", "JPN.1.2_1", "JPN.1.3_1", "…
#> $ GID_0     <chr> "JPN", "JPN", "JPN", "JPN", "JPN", "JPN"…
#> $ COUNTRY   <chr> "Japan", "Japan", "Japan", "Japan", "Jap…
#> $ GID_1     <chr> "JPN.1_1", "JPN.1_1", "JPN.1_1", "JPN.1_…
#> $ NAME_1    <chr> "Aichi", "Aichi", "Aichi", "Aichi", "Aic…
#> $ NL_NAME_1 <chr> "愛知県", "愛知県", "愛知県", "愛知県", …
#> $ NAME_2    <chr> "Agui", "Aisai", "Anjō", "Chiryū", "Chit…
#> $ VARNAME_2 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ NL_NAME_2 <chr> "阿久比町", "愛西市", "安城市", "知立市"…
#> $ TYPE_2    <chr> "Machi", "Shi", "Shi", "Shi", "Shi", "Ma…
#> $ ENGTYPE_2 <chr> "Town", "City", "City", "City", "City", …
#> $ CC_2      <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ HASC_2    <chr> NA, NA, NA, NA, "JP.AI.CG", NA, NA, "JP.…
#> $ geometry  <GEOMETRY [°]> POLYGON ((136.8802 34.94398...,…
gadm2 %>% filter(NL_NAME_1 %in% c("埼玉県", "群馬県", "栃木県", "茨城県", "千葉県", "神奈川県", "東京都")) %>% 
  ggplot() + geom_sf(aes(fill = NAME_1)) + 
  ylim(34.7,37.2) + xlim(138.2,141) + 
  theme(legend.position = "none")