B Covid 19
An example of an R Notebook, rendered at 2023-05-13 23:15:09 JST
B.1 Introduction
The following site of Johns Hopkins University is famous:
In this article, we study a coronavirus data collected by Johns Hopkins University called “JHU Covid-19 global time series data”. Since the original data requires reshaping, we use the data provided by RamiKrispin in the following site.
See also the R package coronavirus
at
- https://CRAN.R-project.org/package=coronavirus
- For installation:
install.packages("coronavirus")
library(tidyverse)
#> ── Attaching core tidyverse packages ──── tidyverse 2.0.0 ──
#> ✔ dplyr 1.1.2 ✔ readr 2.1.4
#> ✔ forcats 1.0.0 ✔ stringr 1.5.0
#> ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
#> ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
#> ✔ purrr 1.0.1
#> ── Conflicts ────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(coronavirus)
library(owidR)
We can directly download and read the data from:
It is updated daily.
In this note, we use the original JHU data and transform it using dplyr
in the form similar to the Krispin’s.
Our world in data also provides vairous data related to covid-19. We will study a little by using owid_covid
.
B.2 Krispin’s Package
coronavirus_tv <- read_csv("https://github.com/RamiKrispin/coronavirus/raw/master/csv/coronavirus.csv")
#> Rows: 919308 Columns: 15
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (8): province, country, type, iso2, iso3, combined_...
#> dbl (6): lat, long, cases, uid, code3, population
#> date (1): date
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
COUNTRY <- "Japan"
df_tv <- select(coronavirus_tv, c(date, country, type, cases, population))
df_tv0 <- filter(df_tv, country %in% COUNTRY)
df_tv_confirmed <- filter(df_tv0, type == "confirmed")
df_tv_confirmed_pp <- mutate(df_tv_confirmed, confirmed_pp = cases*100000/population)
ggplot(df_tv_confirmed_pp) + geom_line(aes(x = date, y = confirmed_pp), col = "red") +
geom_smooth(aes(x = date, y = confirmed_pp), formula = y~x, method="loess", span = 0.1, se=FALSE) +
labs(x = "Date", y = "Number of Confirmed Cases per 100,000",
title = paste("Number of Confirmed Cases per 100,000 ", COUNTRY))
COUNTRIES <- c("US", "Germany", "India", "South Africa","Korea, South", "Japan")
start_date <- as.Date("2021-07-01")
end_date <- Sys.Date()
coronavirus_tv %>% select(c(date, country, type, cases, population)) %>%
filter(country %in% COUNTRIES) %>%
filter(date >=start_date & df_tv0$date <= end_date) %>%
filter(type == "confirmed") %>%
mutate(confirmed_pp = cases*100000/population) %>%
ggplot() +
geom_smooth(aes(x = date, y = confirmed_pp, color = country), formula=y~x, method="loess", se=FALSE, span=0.1) +
labs(x = "Date", y = "Number of Confirmed Cases per 100,000",
title = "Number of Confirmed Cases per 100,000")
COUNTRIES <- c("US", "Germany", "India", "South Africa","Korea, South", "Japan")
start_date <- as.Date("2021-07-01")
end_date <- Sys.Date()
df_tv <- select(coronavirus_tv, c(date, country, type, cases, population))
df_tv0 <- filter(df_tv, country %in% COUNTRIES)
df_tv1 <- filter(df_tv0, date >=start_date & df_tv0$date <= end_date)
df_tv1_confirmed <- filter(df_tv1, type == "confirmed")
df_tv1_confirmed_pp <- mutate(df_tv1_confirmed, confirmed_pp = cases*100000/population)
ggplot(df_tv1_confirmed_pp) +
geom_smooth(aes(x = date, y = confirmed_pp, color = country), formula=y~x, method="loess", se=FALSE, span=0.1) +
labs(x = "Date", y = "Number of Confirmed Cases per 100,000",
title = "Number of Confirmed Cases per 100,000")
B.3 Data of Johns Hopkins Universiy
B.3.1 Importing Raw Data
We import the original Johns Hopkins Github data.
- COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University: https://github.com/CSSEGISandData/COVID-19
- We use time series data
# IMPORT RAW DATA: Johns Hopkins Github data
confirmedraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")
#> Rows: 289 Columns: 1121
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (2): Province/State, Country/Region
#> dbl (1119): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/2...
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(confirmedraw)
#> Rows: 289
#> Columns: 1,121
#> $ `Province/State` <chr> NA, NA, NA, NA, NA, NA, NA, NA, N…
#> $ `Country/Region` <chr> "Afghanistan", "Albania", "Algeri…
#> $ Lat <dbl> 33.93911, 41.15330, 28.03390, 42.…
#> $ Long <dbl> 67.70995, 20.16830, 1.65960, 1.52…
#> $ `1/22/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ `1/23/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ `1/24/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ `1/25/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ `1/26/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, …
#> $ `1/27/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `1/28/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `1/29/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `1/30/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `1/31/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/1/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/2/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/3/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/4/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/5/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/6/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/7/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/8/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/9/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/10/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/11/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/12/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/13/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/14/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/15/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/16/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/17/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/18/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/19/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/20/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/21/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/22/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/23/20` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/24/20` <dbl> 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/25/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/26/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/27/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/28/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `2/29/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, …
#> $ `3/1/20` <dbl> 5, 0, 1, 0, 0, 0, 0, 0, 1, 0, 6, …
#> $ `3/2/20` <dbl> 5, 0, 3, 1, 0, 0, 0, 0, 1, 0, 6, …
#> $ `3/3/20` <dbl> 5, 0, 5, 1, 0, 0, 0, 1, 1, 0, 13,…
#> $ `3/4/20` <dbl> 5, 0, 12, 1, 0, 0, 0, 1, 1, 0, 22…
#> $ `3/5/20` <dbl> 5, 0, 12, 1, 0, 0, 0, 1, 1, 0, 22…
#> $ `3/6/20` <dbl> 5, 0, 17, 1, 0, 0, 0, 2, 1, 0, 26…
#> $ `3/7/20` <dbl> 8, 0, 17, 1, 0, 0, 0, 8, 1, 0, 28…
#> $ `3/8/20` <dbl> 8, 0, 19, 1, 0, 0, 0, 12, 1, 0, 3…
#> $ `3/9/20` <dbl> 8, 2, 20, 1, 0, 0, 0, 12, 1, 0, 4…
#> $ `3/10/20` <dbl> 8, 10, 20, 1, 0, 0, 0, 17, 1, 0, …
#> $ `3/11/20` <dbl> 11, 12, 20, 1, 0, 0, 0, 19, 1, 0,…
#> $ `3/12/20` <dbl> 11, 23, 24, 1, 0, 0, 0, 19, 4, 0,…
#> $ `3/13/20` <dbl> 11, 33, 26, 1, 0, 0, 1, 31, 8, 1,…
#> $ `3/14/20` <dbl> 14, 38, 37, 1, 0, 0, 1, 34, 18, 1…
#> $ `3/15/20` <dbl> 20, 42, 48, 1, 0, 0, 1, 45, 26, 1…
#> $ `3/16/20` <dbl> 25, 51, 54, 2, 0, 0, 1, 56, 52, 2…
#> $ `3/17/20` <dbl> 26, 55, 60, 39, 0, 0, 1, 68, 78, …
#> $ `3/18/20` <dbl> 26, 59, 74, 39, 0, 0, 1, 79, 84, …
#> $ `3/19/20` <dbl> 26, 64, 87, 53, 0, 0, 1, 97, 115,…
#> $ `3/20/20` <dbl> 24, 70, 90, 75, 1, 0, 1, 128, 136…
#> $ `3/21/20` <dbl> 24, 76, 139, 88, 2, 0, 1, 158, 16…
#> $ `3/22/20` <dbl> 34, 89, 201, 113, 2, 0, 1, 266, 1…
#> $ `3/23/20` <dbl> 40, 104, 230, 133, 3, 0, 3, 301, …
#> $ `3/24/20` <dbl> 42, 123, 264, 164, 3, 0, 3, 387, …
#> $ `3/25/20` <dbl> 74, 146, 302, 188, 3, 0, 3, 387, …
#> $ `3/26/20` <dbl> 80, 174, 367, 224, 4, 0, 7, 502, …
#> $ `3/27/20` <dbl> 91, 186, 409, 267, 4, 0, 7, 589, …
#> $ `3/28/20` <dbl> 106, 197, 454, 308, 5, 0, 7, 690,…
#> $ `3/29/20` <dbl> 114, 212, 511, 334, 7, 0, 7, 745,…
#> $ `3/30/20` <dbl> 114, 223, 584, 370, 7, 0, 7, 820,…
#> $ `3/31/20` <dbl> 166, 243, 716, 376, 7, 0, 7, 1054…
#> $ `4/1/20` <dbl> 192, 259, 847, 390, 8, 0, 7, 1054…
#> $ `4/2/20` <dbl> 235, 277, 986, 428, 8, 0, 9, 1133…
#> $ `4/3/20` <dbl> 269, 304, 1171, 439, 8, 0, 15, 12…
#> $ `4/4/20` <dbl> 270, 333, 1251, 466, 10, 0, 15, 1…
#> $ `4/5/20` <dbl> 299, 361, 1320, 501, 14, 0, 15, 1…
#> $ `4/6/20` <dbl> 337, 377, 1423, 525, 16, 0, 15, 1…
#> $ `4/7/20` <dbl> 367, 383, 1468, 545, 17, 0, 19, 1…
#> $ `4/8/20` <dbl> 423, 400, 1572, 564, 19, 0, 19, 1…
#> $ `4/9/20` <dbl> 444, 409, 1666, 583, 19, 0, 19, 1…
#> $ `4/10/20` <dbl> 521, 416, 1761, 601, 19, 0, 19, 1…
#> $ `4/11/20` <dbl> 521, 433, 1825, 601, 19, 0, 21, 1…
#> $ `4/12/20` <dbl> 555, 446, 1914, 638, 19, 0, 21, 2…
#> $ `4/13/20` <dbl> 607, 467, 1983, 646, 19, 0, 23, 2…
#> $ `4/14/20` <dbl> 665, 475, 2070, 659, 19, 0, 23, 2…
#> $ `4/15/20` <dbl> 770, 494, 2160, 673, 19, 0, 23, 2…
#> $ `4/16/20` <dbl> 794, 518, 2268, 673, 19, 0, 23, 2…
#> $ `4/17/20` <dbl> 845, 539, 2418, 696, 19, 0, 23, 2…
#> $ `4/18/20` <dbl> 908, 548, 2534, 704, 24, 0, 23, 2…
#> $ `4/19/20` <dbl> 933, 562, 2629, 713, 24, 0, 23, 2…
#> $ `4/20/20` <dbl> 996, 584, 2718, 717, 24, 0, 23, 2…
#> $ `4/21/20` <dbl> 1026, 609, 2811, 717, 24, 0, 23, …
#> $ `4/22/20` <dbl> 1092, 634, 2910, 723, 25, 0, 24, …
#> $ `4/23/20` <dbl> 1176, 663, 3007, 723, 25, 0, 24, …
#> $ `4/24/20` <dbl> 1226, 678, 3127, 731, 25, 0, 24, …
#> $ `4/25/20` <dbl> 1330, 712, 3256, 738, 25, 0, 24, …
#> $ `4/26/20` <dbl> 1463, 726, 3382, 738, 26, 0, 24, …
#> $ `4/27/20` <dbl> 1531, 736, 3517, 743, 27, 0, 24, …
#> $ `4/28/20` <dbl> 1703, 750, 3649, 743, 27, 0, 24, …
#> $ `4/29/20` <dbl> 1827, 766, 3848, 743, 27, 0, 24, …
#> $ `4/30/20` <dbl> 1827, 773, 4006, 745, 27, 0, 24, …
#> $ `5/1/20` <dbl> 2171, 782, 4154, 745, 30, 0, 25, …
#> $ `5/2/20` <dbl> 2469, 789, 4295, 747, 35, 0, 25, …
#> $ `5/3/20` <dbl> 2469, 795, 4474, 748, 35, 0, 25, …
#> $ `5/4/20` <dbl> 2469, 803, 4648, 750, 35, 0, 25, …
#> $ `5/5/20` <dbl> 2469, 820, 4838, 751, 36, 0, 25, …
#> $ `5/6/20` <dbl> 3224, 832, 4997, 751, 36, 0, 25, …
#> $ `5/7/20` <dbl> 3392, 842, 5182, 752, 36, 0, 25, …
#> $ `5/8/20` <dbl> 3563, 850, 5369, 752, 43, 0, 25, …
#> $ `5/9/20` <dbl> 3563, 856, 5558, 754, 43, 0, 25, …
#> $ `5/10/20` <dbl> 4402, 868, 5723, 755, 45, 0, 25, …
#> $ `5/11/20` <dbl> 4664, 872, 5891, 755, 45, 0, 25, …
#> $ `5/12/20` <dbl> 4967, 876, 6067, 758, 45, 0, 25, …
#> $ `5/13/20` <dbl> 4967, 880, 6253, 760, 45, 0, 25, …
#> $ `5/14/20` <dbl> 5339, 898, 6442, 761, 48, 0, 25, …
#> $ `5/15/20` <dbl> 6053, 916, 6629, 761, 48, 0, 25, …
#> $ `5/16/20` <dbl> 6402, 933, 6821, 761, 48, 0, 25, …
#> $ `5/17/20` <dbl> 6635, 946, 7019, 761, 48, 0, 25, …
#> $ `5/18/20` <dbl> 7072, 948, 7201, 761, 50, 0, 25, …
#> $ `5/19/20` <dbl> 7655, 949, 7377, 761, 52, 0, 25, …
#> $ `5/20/20` <dbl> 8145, 964, 7542, 762, 52, 0, 25, …
#> $ `5/21/20` <dbl> 8676, 969, 7728, 762, 58, 0, 25, …
#> $ `5/22/20` <dbl> 9216, 981, 7918, 762, 60, 0, 25, …
#> $ `5/23/20` <dbl> 9952, 989, 8113, 762, 61, 0, 25, …
#> $ `5/24/20` <dbl> 10668, 998, 8306, 762, 69, 0, 25,…
#> $ `5/25/20` <dbl> 11180, 1004, 8503, 763, 70, 0, 25…
#> $ `5/26/20` <dbl> 11917, 1029, 8697, 763, 70, 0, 25…
#> $ `5/27/20` <dbl> 12465, 1050, 8857, 763, 71, 0, 25…
#> $ `5/28/20` <dbl> 13102, 1076, 8997, 763, 74, 0, 25…
#> $ `5/29/20` <dbl> 13745, 1099, 9134, 764, 81, 0, 25…
#> $ `5/30/20` <dbl> 14529, 1122, 9267, 764, 84, 0, 25…
#> $ `5/31/20` <dbl> 15180, 1137, 9394, 764, 86, 0, 26…
#> $ `6/1/20` <dbl> 15836, 1143, 9513, 765, 86, 0, 26…
#> $ `6/2/20` <dbl> 16578, 1164, 9626, 844, 86, 0, 26…
#> $ `6/3/20` <dbl> 17353, 1184, 9733, 851, 86, 0, 26…
#> $ `6/4/20` <dbl> 17977, 1197, 9831, 852, 86, 0, 26…
#> $ `6/5/20` <dbl> 19055, 1212, 9935, 852, 86, 0, 26…
#> $ `6/6/20` <dbl> 19637, 1232, 10050, 852, 88, 0, 2…
#> $ `6/7/20` <dbl> 20428, 1246, 10154, 852, 91, 0, 2…
#> $ `6/8/20` <dbl> 21003, 1263, 10265, 852, 92, 0, 2…
#> $ `6/9/20` <dbl> 21308, 1299, 10382, 852, 96, 0, 2…
#> $ `6/10/20` <dbl> 22228, 1341, 10484, 852, 113, 0, …
#> $ `6/11/20` <dbl> 22976, 1385, 10589, 852, 118, 0, …
#> $ `6/12/20` <dbl> 23632, 1416, 10698, 853, 130, 0, …
#> $ `6/13/20` <dbl> 24188, 1464, 10810, 853, 138, 0, …
#> $ `6/14/20` <dbl> 24852, 1521, 10919, 853, 140, 0, …
#> $ `6/15/20` <dbl> 25613, 1590, 11031, 853, 142, 0, …
#> $ `6/16/20` <dbl> 25719, 1672, 11147, 854, 148, 0, …
#> $ `6/17/20` <dbl> 26960, 1722, 11268, 854, 155, 0, …
#> $ `6/18/20` <dbl> 27423, 1788, 11385, 855, 166, 0, …
#> $ `6/19/20` <dbl> 27964, 1838, 11504, 855, 172, 0, …
#> $ `6/20/20` <dbl> 28383, 1891, 11631, 855, 176, 0, …
#> $ `6/21/20` <dbl> 28919, 1962, 11771, 855, 183, 0, …
#> $ `6/22/20` <dbl> 29229, 1995, 11920, 855, 186, 0, …
#> $ `6/23/20` <dbl> 29567, 2047, 12076, 855, 189, 0, …
#> $ `6/24/20` <dbl> 29726, 2114, 12248, 855, 197, 0, …
#> $ `6/25/20` <dbl> 30261, 2192, 12445, 855, 212, 0, …
#> $ `6/26/20` <dbl> 30346, 2269, 12685, 855, 212, 0, …
#> $ `6/27/20` <dbl> 30702, 2330, 12968, 855, 259, 0, …
#> $ `6/28/20` <dbl> 31053, 2402, 13273, 855, 267, 0, …
#> $ `6/29/20` <dbl> 31324, 2466, 13571, 855, 276, 0, …
#> $ `6/30/20` <dbl> 31445, 2535, 13907, 855, 284, 0, …
#> $ `7/1/20` <dbl> 31848, 2580, 14272, 855, 291, 0, …
#> $ `7/2/20` <dbl> 32108, 2662, 14657, 855, 315, 0, …
#> $ `7/3/20` <dbl> 32410, 2752, 15070, 855, 328, 0, …
#> $ `7/4/20` <dbl> 32758, 2819, 15500, 855, 346, 0, …
#> $ `7/5/20` <dbl> 33037, 2893, 15941, 855, 346, 0, …
#> $ `7/6/20` <dbl> 33150, 2964, 16404, 855, 346, 0, …
#> $ `7/7/20` <dbl> 33470, 3038, 16879, 855, 386, 0, …
#> $ `7/8/20` <dbl> 33680, 3106, 17348, 855, 386, 0, …
#> $ `7/9/20` <dbl> 33739, 3188, 17808, 855, 396, 0, …
#> $ `7/10/20` <dbl> 34280, 3278, 18242, 855, 458, 0, …
#> $ `7/11/20` <dbl> 34437, 3371, 18712, 855, 462, 0, …
#> $ `7/12/20` <dbl> 34537, 3454, 19195, 855, 506, 0, …
#> $ `7/13/20` <dbl> 34541, 3571, 19689, 858, 525, 0, …
#> $ `7/14/20` <dbl> 34826, 3667, 20216, 861, 541, 0, …
#> $ `7/15/20` <dbl> 35026, 3752, 20770, 862, 576, 0, …
#> $ `7/16/20` <dbl> 35156, 3851, 21355, 877, 607, 0, …
#> $ `7/17/20` <dbl> 35315, 3906, 21948, 880, 638, 0, …
#> $ `7/18/20` <dbl> 35375, 4008, 22549, 880, 687, 0, …
#> $ `7/19/20` <dbl> 35561, 4090, 23084, 880, 705, 0, …
#> $ `7/20/20` <dbl> 35595, 4171, 23691, 884, 749, 0, …
#> $ `7/21/20` <dbl> 35701, 4290, 24278, 884, 779, 0, …
#> $ `7/22/20` <dbl> 35813, 4358, 24872, 889, 812, 0, …
#> $ `7/23/20` <dbl> 36001, 4466, 25484, 889, 851, 0, …
#> $ `7/24/20` <dbl> 36067, 4570, 26159, 897, 880, 0, …
#> $ `7/25/20` <dbl> 36122, 4637, 26764, 897, 916, 0, …
#> $ `7/26/20` <dbl> 36243, 4763, 27357, 897, 932, 0, …
#> $ `7/27/20` <dbl> 36349, 4880, 27973, 907, 950, 0, …
#> $ `7/28/20` <dbl> 36454, 4997, 28615, 907, 1000, 0,…
#> $ `7/29/20` <dbl> 36557, 5105, 29229, 918, 1078, 0,…
#> $ `7/30/20` <dbl> 36628, 5197, 29831, 922, 1109, 0,…
#> $ `7/31/20` <dbl> 36628, 5276, 30394, 925, 1148, 0,…
#> $ `8/1/20` <dbl> 36796, 5396, 30950, 925, 1164, 0,…
#> $ `8/2/20` <dbl> 36796, 5519, 31465, 925, 1199, 0,…
#> $ `8/3/20` <dbl> 36796, 5620, 31972, 937, 1280, 0,…
#> $ `8/4/20` <dbl> 36833, 5750, 32504, 939, 1344, 0,…
#> $ `8/5/20` <dbl> 36915, 5889, 33055, 939, 1395, 0,…
#> $ `8/6/20` <dbl> 36982, 6016, 33626, 944, 1483, 0,…
#> $ `8/7/20` <dbl> 37023, 6151, 34155, 955, 1538, 0,…
#> $ `8/8/20` <dbl> 37101, 6275, 34693, 955, 1572, 0,…
#> $ `8/9/20` <dbl> 37140, 6411, 35160, 955, 1672, 0,…
#> $ `8/10/20` <dbl> 37140, 6536, 35712, 963, 1679, 0,…
#> $ `8/11/20` <dbl> 37355, 6676, 36204, 963, 1735, 0,…
#> $ `8/12/20` <dbl> 37431, 6817, 36699, 977, 1762, 0,…
#> $ `8/13/20` <dbl> 37510, 6971, 37187, 981, 1815, 0,…
#> $ `8/14/20` <dbl> 37517, 7117, 37664, 989, 1852, 0,…
#> $ `8/15/20` <dbl> 37637, 7260, 38133, 989, 1879, 0,…
#> $ `8/16/20` <dbl> 37682, 7380, 38583, 989, 1906, 0,…
#> $ `8/17/20` <dbl> 37682, 7499, 39025, 1005, 1935, 0…
#> $ `8/18/20` <dbl> 37685, 7654, 39444, 1005, 1966, 0…
#> $ `8/19/20` <dbl> 37685, 7812, 39847, 1024, 2015, 0…
#> $ `8/20/20` <dbl> 37845, 7967, 40258, 1024, 2044, 0…
#> $ `8/21/20` <dbl> 37942, 8119, 40667, 1045, 2068, 0…
#> $ `8/22/20` <dbl> 37980, 8275, 41068, 1045, 2134, 0…
#> $ `8/23/20` <dbl> 38039, 8427, 41460, 1045, 2171, 0…
#> $ `8/24/20` <dbl> 38085, 8605, 41858, 1060, 2222, 0…
#> $ `8/25/20` <dbl> 38156, 8759, 42228, 1060, 2283, 0…
#> $ `8/26/20` <dbl> 38199, 8927, 42619, 1098, 2332, 0…
#> $ `8/27/20` <dbl> 38215, 9083, 43016, 1098, 2415, 0…
#> $ `8/28/20` <dbl> 38226, 9195, 43403, 1124, 2471, 0…
#> $ `8/29/20` <dbl> 38229, 9279, 43781, 1124, 2551, 0…
#> $ `8/30/20` <dbl> 38229, 9380, 44146, 1124, 2624, 0…
#> $ `8/31/20` <dbl> 38248, 9513, 44494, 1176, 2654, 0…
#> $ `9/1/20` <dbl> 38282, 9606, 44833, 1184, 2729, 0…
#> $ `9/2/20` <dbl> 38329, 9728, 45158, 1199, 2777, 0…
#> $ `9/3/20` <dbl> 38374, 9844, 45469, 1199, 2805, 0…
#> $ `9/4/20` <dbl> 38374, 9967, 45773, 1215, 2876, 0…
#> $ `9/5/20` <dbl> 38390, 10102, 46071, 1215, 2935, …
#> $ `9/6/20` <dbl> 38484, 10255, 46364, 1215, 2965, …
#> $ `9/7/20` <dbl> 38580, 10406, 46653, 1261, 2981, …
#> $ `9/8/20` <dbl> 38606, 10553, 46938, 1261, 3033, …
#> $ `9/9/20` <dbl> 38630, 10704, 47216, 1301, 3092, …
#> $ `9/10/20` <dbl> 38658, 10860, 47488, 1301, 3217, …
#> $ `9/11/20` <dbl> 38692, 11021, 47752, 1344, 3279, …
#> $ `9/12/20` <dbl> 38727, 11185, 48007, 1344, 3335, …
#> $ `9/13/20` <dbl> 38802, 11353, 48254, 1344, 3388, …
#> $ `9/14/20` <dbl> 38858, 11520, 48496, 1438, 3439, …
#> $ `9/15/20` <dbl> 38901, 11672, 48734, 1438, 3569, …
#> $ `9/16/20` <dbl> 38941, 11816, 48966, 1483, 3675, …
#> $ `9/17/20` <dbl> 38958, 11948, 49194, 1483, 3789, …
#> $ `9/18/20` <dbl> 38969, 12073, 49413, 1564, 3848, …
#> $ `9/19/20` <dbl> 39005, 12226, 49623, 1564, 3901, …
#> $ `9/20/20` <dbl> 39130, 12385, 49826, 1564, 3991, …
#> $ `9/21/20` <dbl> 39160, 12535, 50023, 1681, 4117, …
#> $ `9/22/20` <dbl> 39182, 12666, 50214, 1681, 4236, …
#> $ `9/23/20` <dbl> 39231, 12787, 50400, 1753, 4363, …
#> $ `9/24/20` <dbl> 39256, 12921, 50579, 1753, 4475, …
#> $ `9/25/20` <dbl> 39272, 13045, 50754, 1836, 4590, …
#> $ `9/26/20` <dbl> 39278, 13153, 50914, 1836, 4672, …
#> $ `9/27/20` <dbl> 39313, 13259, 51067, 1836, 4718, …
#> $ `9/28/20` <dbl> 39325, 13391, 51213, 1966, 4797, …
#> $ `9/29/20` <dbl> 39340, 13518, 51368, 1966, 4905, …
#> $ `9/30/20` <dbl> 39354, 13649, 51530, 2050, 4972, …
#> $ `10/1/20` <dbl> 39371, 13806, 51690, 2050, 5114, …
#> $ `10/2/20` <dbl> 39376, 13965, 51847, 2110, 5211, …
#> $ `10/3/20` <dbl> 39383, 14117, 51995, 2110, 5370, …
#> $ `10/4/20` <dbl> 39427, 14266, 52136, 2110, 5402, …
#> $ `10/5/20` <dbl> 39508, 14410, 52270, 2370, 5530, …
#> $ `10/6/20` <dbl> 39572, 14568, 52399, 2370, 5725, …
#> $ `10/7/20` <dbl> 39634, 14730, 52520, 2568, 5725, …
#> $ `10/8/20` <dbl> 39702, 14899, 52658, 2568, 5958, …
#> $ `10/9/20` <dbl> 39779, 15066, 52804, 2696, 6031, …
#> $ `10/10/20` <dbl> 39789, 15231, 52940, 2696, 6246, …
#> $ `10/11/20` <dbl> 39885, 15399, 53072, 2696, 6366, …
#> $ `10/12/20` <dbl> 39956, 15570, 53325, 2995, 6488, …
#> $ `10/13/20` <dbl> 40014, 15752, 53399, 2995, 6680, …
#> $ `10/14/20` <dbl> 40080, 15955, 53584, 3190, 6846, …
#> $ `10/15/20` <dbl> 40112, 16212, 53777, 3190, 7096, …
#> $ `10/16/20` <dbl> 40159, 16501, 53998, 3377, 7222, …
#> $ `10/17/20` <dbl> 40227, 16774, 54203, 3377, 7462, …
#> $ `10/18/20` <dbl> 40286, 17055, 54402, 3377, 7622, …
#> $ `10/19/20` <dbl> 40373, 17350, 54616, 3623, 7829, …
#> $ `10/20/20` <dbl> 40461, 17651, 54829, 3623, 8049, …
#> $ `10/21/20` <dbl> 40461, 17948, 55081, 3811, 8338, …
#> $ `10/22/20` <dbl> 40510, 18250, 55357, 3811, 8582, …
#> $ `10/23/20` <dbl> 40626, 18556, 55630, 4038, 8829, …
#> $ `10/24/20` <dbl> 40687, 18858, 55880, 4038, 9026, …
#> $ `10/25/20` <dbl> 40768, 19157, 56143, 4038, 9381, …
#> $ `10/26/20` <dbl> 40833, 19445, 56419, 4325, 9644, …
#> $ `10/27/20` <dbl> 40937, 19729, 56706, 4410, 9871, …
#> $ `10/28/20` <dbl> 41032, 20040, 57026, 4517, 10074,…
#> $ `10/29/20` <dbl> 41145, 20315, 57332, 4567, 10269,…
#> $ `10/30/20` <dbl> 41268, 20634, 57651, 4665, 10558,…
#> $ `10/31/20` <dbl> 41334, 20875, 57942, 4756, 10805,…
#> $ `11/1/20` <dbl> 41425, 21202, 58272, 4825, 11035,…
#> $ `11/2/20` <dbl> 41501, 21523, 58574, 4888, 11228,…
#> $ `11/3/20` <dbl> 41633, 21904, 58979, 4910, 11577,…
#> $ `11/4/20` <dbl> 41728, 22300, 59527, 5045, 11813,…
#> $ `11/5/20` <dbl> 41814, 22721, 60169, 5135, 12102,…
#> $ `11/6/20` <dbl> 41935, 23210, 60800, 5135, 12223,…
#> $ `11/7/20` <dbl> 41975, 23705, 61381, 5319, 12335,…
#> $ `11/8/20` <dbl> 42033, 24206, 62051, 5383, 12433,…
#> $ `11/9/20` <dbl> 42159, 24731, 62693, 5437, 12680,…
#> $ `11/10/20` <dbl> 42297, 25294, 63446, 5477, 12816,…
#> $ `11/11/20` <dbl> 42463, 25801, 64257, 5567, 12953,…
#> $ `11/12/20` <dbl> 42609, 26211, 65108, 5616, 13053,…
#> $ `11/13/20` <dbl> 42795, 26701, 65975, 5725, 13228,…
#> $ `11/14/20` <dbl> 42969, 27233, 66819, 5725, 13374,…
#> $ `11/15/20` <dbl> 43035, 27830, 67679, 5872, 13451,…
#> $ `11/16/20` <dbl> 43240, 28432, 68589, 5914, 13615,…
#> $ `11/17/20` <dbl> 43403, 29126, 69591, 5951, 13818,…
#> $ `11/18/20` <dbl> 43628, 29837, 70629, 6018, 13922,…
#> $ `11/19/20` <dbl> 43851, 30623, 71652, 6066, 14134,…
#> $ `11/20/20` <dbl> 44228, 31459, 72755, 6142, 14267,…
#> $ `11/21/20` <dbl> 44443, 32196, 73774, 6207, 14413,…
#> $ `11/22/20` <dbl> 44503, 32761, 74862, 6256, 14493,…
#> $ `11/23/20` <dbl> 44706, 33556, 75867, 6304, 14634,…
#> $ `11/24/20` <dbl> 44988, 34300, 77000, 6351, 14742,…
#> $ `11/25/20` <dbl> 45278, 34944, 78025, 6428, 14821,…
#> $ `11/26/20` <dbl> 45490, 35600, 79110, 6534, 14920,…
#> $ `11/27/20` <dbl> 45716, 36245, 80168, 6610, 15008,…
#> $ `11/28/20` <dbl> 45839, 36790, 81212, 6610, 15087,…
#> $ `11/29/20` <dbl> 45966, 37625, 82221, 6712, 15103,…
#> $ `11/30/20` <dbl> 46215, 38182, 83199, 6745, 15139,…
#> $ `12/1/20` <dbl> 46498, 39014, 84152, 6790, 15251,…
#> $ `12/2/20` <dbl> 46717, 39719, 85084, 6842, 15319,…
#> $ `12/3/20` <dbl> 46980, 40501, 85927, 6904, 15361,…
#> $ `12/4/20` <dbl> 47258, 41302, 86730, 6955, 15493,…
#> $ `12/5/20` <dbl> 47388, 42148, 87502, 7005, 15536,…
#> $ `12/6/20` <dbl> 47641, 42988, 88252, 7050, 15591,…
#> $ `12/7/20` <dbl> 47901, 43683, 88825, 7084, 15648,…
#> $ `12/8/20` <dbl> 48136, 44436, 89416, 7127, 15729,…
#> $ `12/9/20` <dbl> 48366, 45188, 90014, 7162, 15804,…
#> $ `12/10/20` <dbl> 48540, 46061, 90579, 7190, 15925,…
#> $ `12/11/20` <dbl> 48753, 46863, 91121, 7236, 16061,…
#> $ `12/12/20` <dbl> 48826, 47742, 91638, 7288, 16161,…
#> $ `12/13/20` <dbl> 48952, 48530, 92102, 7338, 16188,…
#> $ `12/14/20` <dbl> 49273, 49191, 92597, 7382, 16277,…
#> $ `12/15/20` <dbl> 49484, 50000, 93065, 7382, 16362,…
#> $ `12/16/20` <dbl> 49703, 50637, 93507, 7446, 16407,…
#> $ `12/17/20` <dbl> 49927, 51424, 93933, 7466, 16484,…
#> $ `12/18/20` <dbl> 50202, 52004, 94371, 7519, 16562,…
#> $ `12/19/20` <dbl> 50456, 52542, 94781, 7560, 16626,…
#> $ `12/20/20` <dbl> 50536, 53003, 95203, 7577, 16644,…
#> $ `12/21/20` <dbl> 50678, 53425, 95659, 7602, 16686,…
#> $ `12/22/20` <dbl> 50888, 53814, 96069, 7633, 16802,…
#> $ `12/23/20` <dbl> 51070, 54317, 96549, 7669, 16931,…
#> $ `12/24/20` <dbl> 51357, 54827, 97007, 7699, 17029,…
#> $ `12/25/20` <dbl> 51595, 55380, 97441, 7756, 17099,…
#> $ `12/26/20` <dbl> 51764, 55755, 97857, 7806, 17149,…
#> $ `12/27/20` <dbl> 51848, 56254, 98249, 7821, 17240,…
#> $ `12/28/20` <dbl> 52007, 56572, 98631, 7875, 17296,…
#> $ `12/29/20` <dbl> 52147, 57146, 98988, 7919, 17371,…
#> $ `12/30/20` <dbl> 52330, 57727, 99311, 7983, 17433,…
#> $ `12/31/20` <dbl> 52330, 58316, 99610, 8049, 17553,…
#> $ `1/1/21` <dbl> 52513, 58316, 99897, 8117, 17568,…
#> $ `1/2/21` <dbl> 52586, 58991, 100159, 8166, 17608…
#> $ `1/3/21` <dbl> 52709, 59438, 100408, 8192, 17642…
#> $ `1/4/21` <dbl> 52909, 59623, 100645, 8249, 17684…
#> $ `1/5/21` <dbl> 53011, 60283, 100873, 8308, 17756…
#> $ `1/6/21` <dbl> 53105, 61008, 101120, 8348, 17864…
#> $ `1/7/21` <dbl> 53207, 61705, 101382, 8348, 17974…
#> $ `1/8/21` <dbl> 53332, 62378, 101657, 8489, 18066…
#> $ `1/9/21` <dbl> 53400, 63033, 101913, 8586, 18156…
#> $ `1/10/21` <dbl> 53489, 63595, 102144, 8586, 18193…
#> $ `1/11/21` <dbl> 53538, 63971, 102369, 8586, 18254…
#> $ `1/12/21` <dbl> 53584, 64627, 102641, 8682, 18343…
#> $ `1/13/21` <dbl> 53690, 65334, 102860, 8818, 18425…
#> $ `1/14/21` <dbl> 53775, 65994, 103127, 8868, 18613…
#> $ `1/15/21` <dbl> 53831, 66635, 103381, 8946, 18679…
#> $ `1/16/21` <dbl> 53938, 67216, 103611, 9038, 18765…
#> $ `1/17/21` <dbl> 53984, 67690, 103833, 9083, 18875…
#> $ `1/18/21` <dbl> 54062, 67982, 104092, 9083, 18926…
#> $ `1/19/21` <dbl> 54141, 68568, 104341, 9194, 19011…
#> $ `1/20/21` <dbl> 54278, 69238, 104606, 9308, 19093…
#> $ `1/21/21` <dbl> 54403, 69916, 104852, 9379, 19177…
#> $ `1/22/21` <dbl> 54483, 70655, 105124, 9416, 19269…
#> $ `1/23/21` <dbl> 54559, 71441, 105369, 9499, 19367…
#> $ `1/24/21` <dbl> 54595, 72274, 105596, 9549, 19399…
#> $ `1/25/21` <dbl> 54672, 72812, 105854, 9596, 19476…
#> $ `1/26/21` <dbl> 54750, 73691, 106097, 9638, 19553…
#> $ `1/27/21` <dbl> 54854, 74567, 106359, 9716, 19580…
#> $ `1/28/21` <dbl> 54891, 75454, 106610, 9779, 19672…
#> $ `1/29/21` <dbl> 54939, 76350, 106887, 9837, 19723…
#> $ `1/30/21` <dbl> 55008, 77251, 107122, 9885, 19782…
#> $ `1/31/21` <dbl> 55023, 78127, 107339, 9937, 19796…
#> $ `2/1/21` <dbl> 55059, 78992, 107578, 9972, 19829…
#> $ `2/2/21` <dbl> 55121, 79934, 107841, 10017, 1990…
#> $ `2/3/21` <dbl> 55174, 80941, 108116, 10070, 1993…
#> $ `2/4/21` <dbl> 55231, 81993, 108381, 10137, 1999…
#> $ `2/5/21` <dbl> 55265, 83082, 108629, 10172, 2003…
#> $ `2/6/21` <dbl> 55330, 84212, 108629, 10206, 2006…
#> $ `2/7/21` <dbl> 55335, 85336, 109088, 10251, 2008…
#> $ `2/8/21` <dbl> 55359, 86289, 109313, 10275, 2011…
#> $ `2/9/21` <dbl> 55384, 87528, 109559, 10312, 2016…
#> $ `2/10/21` <dbl> 55402, 88671, 109782, 10352, 2021…
#> $ `2/11/21` <dbl> 55420, 89776, 110049, 10391, 2026…
#> $ `2/12/21` <dbl> 55445, 90835, 110303, 10427, 2029…
#> $ `2/13/21` <dbl> 55473, 91987, 110513, 10463, 2032…
#> $ `2/14/21` <dbl> 55492, 93075, 110711, 10503, 2036…
#> $ `2/15/21` <dbl> 55514, 93850, 110894, 10538, 2038…
#> $ `2/16/21` <dbl> 55518, 94651, 111069, 10555, 2038…
#> $ `2/17/21` <dbl> 55540, 95726, 111247, 10583, 2040…
#> $ `2/18/21` <dbl> 55557, 96838, 111418, 10610, 2045…
#> $ `2/19/21` <dbl> 55575, 97909, 111600, 10645, 2047…
#> $ `2/20/21` <dbl> 55580, 99062, 111764, 10672, 2049…
#> $ `2/21/21` <dbl> 55604, 100246, 111917, 10699, 205…
#> $ `2/22/21` <dbl> 55617, 101285, 112094, 10712, 205…
#> $ `2/23/21` <dbl> 55646, 102306, 112279, 10739, 205…
#> $ `2/24/21` <dbl> 55664, 103327, 112461, 10775, 206…
#> $ `2/25/21` <dbl> 55680, 104313, 112622, 10799, 206…
#> $ `2/26/21` <dbl> 55696, 105229, 112805, 10822, 207…
#> $ `2/27/21` <dbl> 55707, 106215, 112960, 10849, 207…
#> $ `2/28/21` <dbl> 55714, 107167, 113092, 10866, 208…
#> $ `3/1/21` <dbl> 55733, 107931, 113255, 10889, 208…
#> $ `3/2/21` <dbl> 55759, 108823, 113430, 10908, 208…
#> $ `3/3/21` <dbl> 55770, 109674, 113593, 10948, 209…
#> $ `3/4/21` <dbl> 55775, 110521, 113761, 10976, 209…
#> $ `3/5/21` <dbl> 55827, 111301, 113948, 10998, 210…
#> $ `3/6/21` <dbl> 55840, 112078, 114104, 11019, 210…
#> $ `3/7/21` <dbl> 55847, 112897, 114234, 11042, 210…
#> $ `3/8/21` <dbl> 55876, 113580, 114382, 11069, 211…
#> $ `3/9/21` <dbl> 55876, 114209, 114543, 11089, 211…
#> $ `3/10/21` <dbl> 55894, 114840, 114681, 11130, 211…
#> $ `3/11/21` <dbl> 55917, 115442, 114851, 11130, 212…
#> $ `3/12/21` <dbl> 55959, 116123, 115008, 11199, 212…
#> $ `3/13/21` <dbl> 55959, 116821, 115143, 11228, 213…
#> $ `3/14/21` <dbl> 55985, 117474, 115265, 11266, 213…
#> $ `3/15/21` <dbl> 55985, 118017, 115410, 11289, 214…
#> $ `3/16/21` <dbl> 55995, 118492, 115540, 11319, 214…
#> $ `3/17/21` <dbl> 56016, 118938, 115688, 11360, 214…
#> $ `3/18/21` <dbl> 56044, 119528, 115842, 11393, 215…
#> $ `3/19/21` <dbl> 56069, 120022, 115970, 11431, 216…
#> $ `3/20/21` <dbl> 56093, 120541, 116066, 11481, 216…
#> $ `3/21/21` <dbl> 56103, 121200, 116157, 11517, 217…
#> $ `3/22/21` <dbl> 56153, 121544, 116255, 11545, 217…
#> $ `3/23/21` <dbl> 56177, 121847, 116349, 11591, 217…
#> $ `3/24/21` <dbl> 56192, 122295, 116438, 11638, 218…
#> $ `3/25/21` <dbl> 56226, 122767, 116543, 11687, 219…
#> $ `3/26/21` <dbl> 56254, 123216, 116657, 11732, 219…
#> $ `3/27/21` <dbl> 56290, 123641, 116750, 11809, 220…
#> $ `3/28/21` <dbl> 56294, 124134, 116836, 11850, 220…
#> $ `3/29/21` <dbl> 56322, 124419, 116946, 11888, 221…
#> $ `3/30/21` <dbl> 56384, 124723, 117061, 11944, 221…
#> $ `3/31/21` <dbl> 56454, 125157, 117192, 12010, 223…
#> $ `4/1/21` <dbl> 56517, 125506, 117304, 12053, 223…
#> $ `4/2/21` <dbl> 56572, 125842, 117429, 12115, 224…
#> $ `4/3/21` <dbl> 56595, 126183, 117524, 12174, 225…
#> $ `4/4/21` <dbl> 56676, 126531, 117622, 12231, 226…
#> $ `4/5/21` <dbl> 56717, 126795, 117739, 12286, 227…
#> $ `4/6/21` <dbl> 56779, 126936, 117879, 12328, 228…
#> $ `4/7/21` <dbl> 56873, 127192, 118004, 12363, 230…
#> $ `4/8/21` <dbl> 56943, 127509, 118116, 12409, 231…
#> $ `4/9/21` <dbl> 57019, 127795, 118251, 12456, 232…
#> $ `4/10/21` <dbl> 57144, 128155, 118378, 12497, 233…
#> $ `4/11/21` <dbl> 57160, 128393, 118516, 12545, 234…
#> $ `4/12/21` <dbl> 57242, 128518, 118645, 12581, 235…
#> $ `4/13/21` <dbl> 57364, 128752, 118799, 12614, 236…
#> $ `4/14/21` <dbl> 57492, 128959, 118975, 12641, 238…
#> $ `4/15/21` <dbl> 57534, 129128, 119142, 12641, 239…
#> $ `4/16/21` <dbl> 57612, 129307, 119323, 12712, 241…
#> $ `4/17/21` <dbl> 57721, 129456, 119486, 12771, 243…
#> $ `4/18/21` <dbl> 57793, 129594, 119642, 12805, 243…
#> $ `4/19/21` <dbl> 57898, 129694, 119805, 12805, 245…
#> $ `4/20/21` <dbl> 58037, 129842, 119992, 12874, 246…
#> $ `4/21/21` <dbl> 58214, 129980, 120174, 12917, 248…
#> $ `4/22/21` <dbl> 58312, 130114, 120363, 12942, 250…
#> $ `4/23/21` <dbl> 58542, 130270, 120562, 13007, 252…
#> $ `4/24/21` <dbl> 58730, 130409, 120736, 13024, 254…
#> $ `4/25/21` <dbl> 58843, 130537, 120922, 13060, 256…
#> $ `4/26/21` <dbl> 59015, 130606, 121112, 13083, 257…
#> $ `4/27/21` <dbl> 59225, 130736, 121344, 13121, 259…
#> $ `4/28/21` <dbl> 59370, 130859, 121580, 13148, 261…
#> $ `4/29/21` <dbl> 59576, 130977, 121866, 13198, 264…
#> $ `4/30/21` <dbl> 59745, 131085, 122108, 13232, 266…
#> $ `5/1/21` <dbl> 59939, 131185, 122311, 13232, 268…
#> $ `5/2/21` <dbl> 60122, 131238, 122522, 13282, 269…
#> $ `5/3/21` <dbl> 60300, 131276, 122717, 13295, 271…
#> $ `5/4/21` <dbl> 60563, 131327, 122999, 13316, 272…
#> $ `5/5/21` <dbl> 60797, 131419, 123272, 13340, 275…
#> $ `5/6/21` <dbl> 61162, 131510, 123473, 13363, 279…
#> $ `5/7/21` <dbl> 61455, 131577, 123692, 13390, 282…
#> $ `5/8/21` <dbl> 61755, 131666, 123900, 13406, 284…
#> $ `5/9/21` <dbl> 61842, 131723, 124104, 13423, 287…
#> $ `5/10/21` <dbl> 62063, 131753, 124288, 13429, 288…
#> $ `5/11/21` <dbl> 62403, 131803, 124483, 13447, 291…
#> $ `5/12/21` <dbl> 62718, 131845, 124682, 13470, 294…
#> $ `5/13/21` <dbl> 63045, 131890, 124889, 13470, 296…
#> $ `5/14/21` <dbl> 63355, 131939, 125059, 13510, 300…
#> $ `5/15/21` <dbl> 63412, 131978, 125194, 13510, 303…
#> $ `5/16/21` <dbl> 63484, 132015, 125311, 13510, 306…
#> $ `5/17/21` <dbl> 63598, 132032, 125485, 13555, 307…
#> $ `5/18/21` <dbl> 63819, 132071, 125693, 13569, 310…
#> $ `5/19/21` <dbl> 64122, 132095, 125896, 13569, 314…
#> $ `5/20/21` <dbl> 64575, 132118, 126156, 13569, 316…
#> $ `5/21/21` <dbl> 65080, 132153, 126434, 13569, 319…
#> $ `5/22/21` <dbl> 65486, 132176, 126651, 13569, 321…
#> $ `5/23/21` <dbl> 65728, 132209, 126860, 13569, 324…
#> $ `5/24/21` <dbl> 66275, 132215, 127107, 13569, 326…
#> $ `5/25/21` <dbl> 66903, 132229, 127361, 13664, 329…
#> $ `5/26/21` <dbl> 67743, 132244, 127646, 13671, 333…
#> $ `5/27/21` <dbl> 68366, 132264, 127926, 13682, 336…
#> $ `5/28/21` <dbl> 69130, 132285, 128198, 13693, 339…
#> $ `5/29/21` <dbl> 70111, 132297, 128456, 13693, 341…
#> $ `5/30/21` <dbl> 70761, 132309, 128725, 13693, 343…
#> $ `5/31/21` <dbl> 71838, 132315, 128913, 13727, 345…
#> $ `6/1/21` <dbl> 72977, 132337, 129218, 13729, 347…
#> $ `6/2/21` <dbl> 74026, 132351, 129640, 13744, 349…
#> $ `6/3/21` <dbl> 75119, 132360, 129976, 13752, 351…
#> $ `6/4/21` <dbl> 76628, 132372, 130361, 13758, 353…
#> $ `6/5/21` <dbl> 77963, 132374, 130681, 13758, 355…
#> $ `6/6/21` <dbl> 79224, 132379, 130958, 13758, 357…
#> $ `6/7/21` <dbl> 80841, 132384, 131283, 13777, 358…
#> $ `6/8/21` <dbl> 82326, 132397, 131647, 13781, 360…
#> $ `6/9/21` <dbl> 84050, 132415, 132034, 13791, 361…
#> $ `6/10/21` <dbl> 85892, 132426, 132355, 13805, 363…
#> $ `6/11/21` <dbl> 87716, 132437, 132727, 13813, 364…
#> $ `6/12/21` <dbl> 88740, 132449, 133070, 13813, 366…
#> $ `6/13/21` <dbl> 89861, 132459, 133388, 13813, 367…
#> $ `6/14/21` <dbl> 91458, 132461, 133742, 13826, 367…
#> $ `6/15/21` <dbl> 93272, 132469, 134115, 13828, 369…
#> $ `6/16/21` <dbl> 93288, 132476, 134458, 13836, 370…
#> $ `6/17/21` <dbl> 96531, 132481, 134840, 13839, 372…
#> $ `6/18/21` <dbl> 98734, 132484, 135219, 13842, 374…
#> $ `6/19/21` <dbl> 100521, 132488, 135586, 13842, 37…
#> $ `6/20/21` <dbl> 101906, 132490, 135821, 13842, 37…
#> $ `6/21/21` <dbl> 103902, 132490, 136294, 13864, 37…
#> $ `6/22/21` <dbl> 105749, 132496, 136679, 13864, 37…
#> $ `6/23/21` <dbl> 107957, 132497, 137049, 13873, 38…
#> $ `6/24/21` <dbl> 109532, 132499, 137403, 13877, 38…
#> $ `6/25/21` <dbl> 111592, 132506, 137772, 13882, 38…
#> $ `6/26/21` <dbl> 113124, 132509, 138113, 13882, 38…
#> $ `6/27/21` <dbl> 114220, 132512, 138465, 13882, 38…
#> $ `6/28/21` <dbl> 115751, 132513, 138840, 13882, 38…
#> $ `6/29/21` <dbl> 117158, 132514, 139229, 13900, 38…
#> $ `6/30/21` <dbl> 118659, 132521, 139626, 13911, 38…
#> $ `7/1/21` <dbl> 120216, 132523, 140075, 13918, 38…
#> $ `7/2/21` <dbl> 122156, 132526, 140550, 13918, 39…
#> $ `7/3/21` <dbl> 123485, 132534, 141007, 13918, 39…
#> $ `7/4/21` <dbl> 124748, 132535, 141471, 13918, 39…
#> $ `7/5/21` <dbl> 125937, 132537, 141966, 13918, 39…
#> $ `7/6/21` <dbl> 127464, 132544, 142447, 13991, 39…
#> $ `7/7/21` <dbl> 129021, 132557, 143032, 14021, 39…
#> $ `7/8/21` <dbl> 130113, 132565, 143652, 14050, 39…
#> $ `7/9/21` <dbl> 131586, 132580, 144483, 14075, 39…
#> $ `7/10/21` <dbl> 132777, 132587, 145296, 14075, 39…
#> $ `7/11/21` <dbl> 133578, 132592, 146064, 14075, 39…
#> $ `7/12/21` <dbl> 134653, 132597, 146942, 14155, 40…
#> $ `7/13/21` <dbl> 135889, 132608, 147883, 14167, 40…
#> $ `7/14/21` <dbl> 136643, 132616, 148797, 14167, 40…
#> $ `7/15/21` <dbl> 137853, 132629, 149906, 14239, 40…
#> $ `7/16/21` <dbl> 139051, 132647, 151103, 14273, 40…
#> $ `7/17/21` <dbl> 140224, 132665, 152210, 14273, 40…
#> $ `7/18/21` <dbl> 140602, 132686, 153309, 14273, 40…
#> $ `7/19/21` <dbl> 141499, 132697, 154486, 14359, 40…
#> $ `7/20/21` <dbl> 142414, 132740, 155784, 14379, 41…
#> $ `7/21/21` <dbl> 142762, 132763, 157005, 14379, 41…
#> $ `7/22/21` <dbl> 143183, 132797, 158213, 14464, 41…
#> $ `7/23/21` <dbl> 143439, 132828, 159563, 14498, 41…
#> $ `7/24/21` <dbl> 143666, 132853, 160868, 14498, 41…
#> $ `7/25/21` <dbl> 143871, 132875, 162155, 14498, 41…
#> $ `7/26/21` <dbl> 144285, 132891, 163660, 14577, 41…
#> $ `7/27/21` <dbl> 145008, 132922, 165204, 14586, 42…
#> $ `7/28/21` <dbl> 145552, 132952, 167131, 14586, 42…
#> $ `7/29/21` <dbl> 145996, 132999, 168668, 14655, 42…
#> $ `7/30/21` <dbl> 146523, 133036, 170189, 14678, 42…
#> $ `7/31/21` <dbl> 147154, 133081, 171392, 14678, 42…
#> $ `8/1/21` <dbl> 147501, 133121, 172564, 14678, 42…
#> $ `8/2/21` <dbl> 147985, 133146, 173922, 14747, 42…
#> $ `8/3/21` <dbl> 148572, 133211, 175229, 14766, 43…
#> $ `8/4/21` <dbl> 148933, 133310, 176724, 14797, 43…
#> $ `8/5/21` <dbl> 149361, 133442, 178013, 14809, 43…
#> $ `8/6/21` <dbl> 149810, 133591, 179216, 14836, 43…
#> $ `8/7/21` <dbl> 150240, 133730, 180356, 14836, 43…
#> $ `8/8/21` <dbl> 150458, 133912, 181376, 14836, 43…
#> $ `8/9/21` <dbl> 150778, 133981, 182368, 14836, 43…
#> $ `8/10/21` <dbl> 151013, 134201, 183347, 14873, 43…
#> $ `8/11/21` <dbl> 151291, 134487, 184191, 14891, 43…
#> $ `8/12/21` <dbl> 151563, 134761, 185042, 14908, 44…
#> $ `8/13/21` <dbl> 151770, 135140, 185902, 14924, 44…
#> $ `8/14/21` <dbl> 151941, 135550, 186655, 14924, 44…
#> $ `8/15/21` <dbl> 152033, 135947, 187258, 14924, 44…
#> $ `8/16/21` <dbl> 152142, 136147, 187968, 14954, 44…
#> $ `8/17/21` <dbl> 152243, 136598, 188663, 14960, 44…
#> $ `8/18/21` <dbl> 152363, 137075, 189384, 14976, 45…
#> $ `8/19/21` <dbl> 152411, 137597, 190078, 14981, 45…
#> $ `8/20/21` <dbl> 152448, 138132, 190656, 14988, 45…
#> $ `8/21/21` <dbl> 152497, 138790, 191171, 14988, 45…
#> $ `8/22/21` <dbl> 152511, 139324, 191583, 14988, 45…
#> $ `8/23/21` <dbl> 152583, 139721, 192089, 15002, 46…
#> $ `8/24/21` <dbl> 152660, 140521, 192626, 15003, 46…
#> $ `8/25/21` <dbl> 152722, 141365, 193171, 15014, 46…
#> $ `8/26/21` <dbl> 152822, 142253, 193674, 15016, 46…
#> $ `8/27/21` <dbl> 152960, 143174, 194186, 15025, 46…
#> $ `8/28/21` <dbl> 153007, 144079, 194671, 15025, 47…
#> $ `8/29/21` <dbl> 153033, 144847, 195162, 15025, 47…
#> $ `8/30/21` <dbl> 153148, 145333, 195574, 15032, 47…
#> $ `8/31/21` <dbl> 153220, 146387, 196080, 15033, 47…
#> $ `9/1/21` <dbl> 153260, 147369, 196527, 15046, 47…
#> $ `9/2/21` <dbl> 153306, 148222, 196915, 15052, 48…
#> $ `9/3/21` <dbl> 153375, 149117, 197308, 15055, 48…
#> $ `9/4/21` <dbl> 153395, 150101, 197659, 15055, 48…
#> $ `9/5/21` <dbl> 153423, 150997, 198004, 15055, 48…
#> $ `9/6/21` <dbl> 153534, 151499, 198313, 15069, 48…
#> $ `9/7/21` <dbl> 153626, 152239, 198645, 15070, 49…
#> $ `9/8/21` <dbl> 153736, 153318, 198962, 15070, 49…
#> $ `9/9/21` <dbl> 153840, 154316, 199275, 15078, 49…
#> $ `9/10/21` <dbl> 153962, 155293, 199560, 15083, 49…
#> $ `9/11/21` <dbl> 153982, 156162, 199822, 15083, 50…
#> $ `9/12/21` <dbl> 153990, 157026, 200068, 15083, 50…
#> $ `9/13/21` <dbl> 154094, 157436, 200301, 15096, 50…
#> $ `9/14/21` <dbl> 154180, 158431, 200528, 15099, 51…
#> $ `9/15/21` <dbl> 154283, 159423, 200770, 15108, 51…
#> $ `9/16/21` <dbl> 154361, 160365, 200989, 15113, 51…
#> $ `9/17/21` <dbl> 154487, 161324, 201224, 15124, 52…
#> $ `9/18/21` <dbl> 154487, 162173, 201425, 15124, 52…
#> $ `9/19/21` <dbl> 154487, 162953, 201600, 15124, 52…
#> $ `9/20/21` <dbl> 154585, 163404, 201766, 15140, 52…
#> $ `9/21/21` <dbl> 154712, 164276, 201948, 15140, 52…
#> $ `9/22/21` <dbl> 154757, 165096, 202122, 15153, 53…
#> $ `9/23/21` <dbl> 154800, 165864, 202283, 15156, 53…
#> $ `9/24/21` <dbl> 154960, 166690, 202449, 15167, 54…
#> $ `9/25/21` <dbl> 154960, 167354, 202574, 15167, 54…
#> $ `9/26/21` <dbl> 154960, 167893, 202722, 15167, 55…
#> $ `9/27/21` <dbl> 155072, 168188, 202877, 15189, 55…
#> $ `9/28/21` <dbl> 155093, 168782, 203045, 15192, 56…
#> $ `9/29/21` <dbl> 155128, 169462, 203198, 15209, 56…
#> $ `9/30/21` <dbl> 155174, 170131, 203359, 15222, 56…
#> $ `10/1/21` <dbl> 155191, 170778, 203517, 15222, 58…
#> $ `10/2/21` <dbl> 155191, 171327, 203657, 15222, 58…
#> $ `10/3/21` <dbl> 155191, 171794, 203789, 15222, 58…
#> $ `10/4/21` <dbl> 155287, 171794, 203915, 15267, 58…
#> $ `10/5/21` <dbl> 155309, 172618, 204046, 15271, 59…
#> $ `10/6/21` <dbl> 155380, 173190, 204171, 15284, 60…
#> $ `10/7/21` <dbl> 155429, 173723, 204276, 15288, 60…
#> $ `10/8/21` <dbl> 155448, 174168, 204388, 15291, 61…
#> $ `10/9/21` <dbl> 155466, 174643, 204490, 15291, 61…
#> $ `10/10/21` <dbl> 155508, 174968, 204597, 15291, 61…
#> $ `10/11/21` <dbl> 155540, 175163, 204695, 15307, 61…
#> $ `10/12/21` <dbl> 155599, 175664, 204790, 15307, 61…
#> $ `10/13/21` <dbl> 155627, 176172, 204900, 15314, 62…
#> $ `10/14/21` <dbl> 155682, 176667, 205005, 15326, 62…
#> $ `10/15/21` <dbl> 155688, 177108, 205106, 15338, 62…
#> $ `10/16/21` <dbl> 155739, 177536, 205199, 15338, 62…
#> $ `10/17/21` <dbl> 155764, 177971, 205286, 15338, 62…
#> $ `10/18/21` <dbl> 155776, 178188, 205364, 15367, 63…
#> $ `10/19/21` <dbl> 155801, 178804, 205453, 15369, 63…
#> $ `10/20/21` <dbl> 155859, 179463, 205529, 15382, 63…
#> $ `10/21/21` <dbl> 155891, 180029, 205599, 15382, 63…
#> $ `10/22/21` <dbl> 155931, 180623, 205683, 15404, 63…
#> $ `10/23/21` <dbl> 155940, 181252, 205750, 15404, 63…
#> $ `10/24/21` <dbl> 155944, 181696, 205822, 15404, 63…
#> $ `10/25/21` <dbl> 156040, 181960, 205903, 15425, 63…
#> $ `10/26/21` <dbl> 156071, 182610, 205990, 15425, 64…
#> $ `10/27/21` <dbl> 156124, 183282, 206069, 15462, 64…
#> $ `10/28/21` <dbl> 156166, 183873, 206160, 15505, 64…
#> $ `10/29/21` <dbl> 156196, 184340, 206270, 15516, 64…
#> $ `10/30/21` <dbl> 156210, 184887, 206358, 15516, 64…
#> $ `10/31/21` <dbl> 156250, 185300, 206452, 15516, 64…
#> $ `11/1/21` <dbl> 156284, 185497, 206566, 15516, 64…
#> $ `11/2/21` <dbl> 156307, 186222, 206649, 15516, 64…
#> $ `11/3/21` <dbl> 156323, 186793, 206754, 15572, 64…
#> $ `11/4/21` <dbl> 156363, 187363, 206878, 15618, 64…
#> $ `11/5/21` <dbl> 156392, 187994, 206995, 15618, 64…
#> $ `11/6/21` <dbl> 156397, 187994, 207079, 15618, 64…
#> $ `11/7/21` <dbl> 156397, 189125, 207156, 15618, 64…
#> $ `11/8/21` <dbl> 156397, 189355, 207254, 15705, 64…
#> $ `11/9/21` <dbl> 156397, 190125, 207385, 15717, 64…
#> $ `11/10/21` <dbl> 156414, 190815, 207509, 15744, 64…
#> $ `11/11/21` <dbl> 156456, 191440, 207624, 15744, 64…
#> $ `11/12/21` <dbl> 156487, 192013, 207764, 15819, 64…
#> $ `11/13/21` <dbl> 156510, 192600, 207873, 15819, 64…
#> $ `11/14/21` <dbl> 156552, 193075, 207970, 15819, 64…
#> $ `11/15/21` <dbl> 156610, 193269, 208104, 15907, 64…
#> $ `11/16/21` <dbl> 156649, 193856, 208245, 15929, 64…
#> $ `11/17/21` <dbl> 156739, 194472, 208380, 15972, 64…
#> $ `11/18/21` <dbl> 156739, 195021, 208532, 16035, 64…
#> $ `11/19/21` <dbl> 156812, 195523, 208695, 16086, 64…
#> $ `11/20/21` <dbl> 156864, 195988, 208839, 16086, 65…
#> $ `11/21/21` <dbl> 156896, 195988, 208952, 16086, 65…
#> $ `11/22/21` <dbl> 156911, 196611, 209111, 16299, 65…
#> $ `11/23/21` <dbl> 157015, 197167, 209283, 16342, 65…
#> $ `11/24/21` <dbl> 157032, 197776, 209463, 16426, 65…
#> $ `11/25/21` <dbl> 157144, 198292, 209624, 16566, 65…
#> $ `11/26/21` <dbl> 157171, 198732, 209817, 16712, 65…
#> $ `11/27/21` <dbl> 157190, 199137, 209980, 16712, 65…
#> $ `11/28/21` <dbl> 157218, 199555, 210152, 16712, 65…
#> $ `11/29/21` <dbl> 157260, 199750, 210344, 16712, 65…
#> $ `11/30/21` <dbl> 157289, 199945, 210531, 17115, 65…
#> $ `12/1/21` <dbl> 157359, 200173, 210723, 17426, 65…
#> $ `12/2/21` <dbl> 157387, 200639, 210921, 17658, 65…
#> $ `12/3/21` <dbl> 157412, 201045, 211112, 18010, 65…
#> $ `12/4/21` <dbl> 157431, 201402, 211297, 18010, 65…
#> $ `12/5/21` <dbl> 157454, 201730, 211469, 18010, 65…
#> $ `12/6/21` <dbl> 157499, 201902, 211662, 18631, 65…
#> $ `12/7/21` <dbl> 157508, 202295, 211859, 18815, 65…
#> $ `12/8/21` <dbl> 157542, 202641, 212047, 18815, 65…
#> $ `12/9/21` <dbl> 157585, 202863, 212224, 19272, 65…
#> $ `12/10/21` <dbl> 157603, 203215, 212434, 19440, 65…
#> $ `12/11/21` <dbl> 157611, 203524, 212652, 19440, 65…
#> $ `12/12/21` <dbl> 157633, 203787, 212848, 19440, 65…
#> $ `12/13/21` <dbl> 157648, 203925, 213058, 19440, 65…
#> $ `12/14/21` <dbl> 157660, 204301, 213288, 20136, 65…
#> $ `12/15/21` <dbl> 157665, 204627, 213533, 20136, 65…
#> $ `12/16/21` <dbl> 157725, 204928, 213745, 20549, 65…
#> $ `12/17/21` <dbl> 157734, 205224, 214044, 20549, 65…
#> $ `12/18/21` <dbl> 157745, 205549, 214330, 20549, 65…
#> $ `12/19/21` <dbl> 157787, 205777, 214592, 20549, 65…
#> $ `12/20/21` <dbl> 157797, 205897, 214835, 21062, 66…
#> $ `12/21/21` <dbl> 157816, 206273, 215145, 21062, 66…
#> $ `12/22/21` <dbl> 157841, 206616, 215430, 21372, 67…
#> $ `12/23/21` <dbl> 157878, 206935, 215723, 21571, 68…
#> $ `12/24/21` <dbl> 157887, 207221, 216098, 21730, 70…
#> $ `12/25/21` <dbl> 157895, 207542, 216376, 21730, 71…
#> $ `12/26/21` <dbl> 157951, 207709, 216637, 21730, 71…
#> $ `12/27/21` <dbl> 157967, 207709, 216930, 22332, 71…
#> $ `12/28/21` <dbl> 157998, 208352, 217265, 22540, 76…
#> $ `12/29/21` <dbl> 158037, 208899, 217647, 22823, 78…
#> $ `12/30/21` <dbl> 158056, 208899, 218037, 23122, 79…
#> $ `12/31/21` <dbl> 158084, 210224, 218432, 23740, 81…
#> $ `1/1/22` <dbl> 158107, 210224, 218818, 23740, 82…
#> $ `1/2/22` <dbl> 158189, 210885, 219159, 23740, 82…
#> $ `1/3/22` <dbl> 158183, 210885, 219532, 24502, 83…
#> $ `1/4/22` <dbl> 158205, 212021, 219953, 24802, 84…
#> $ `1/5/22` <dbl> 158245, 212021, 220415, 25289, 86…
#> $ `1/6/22` <dbl> 158275, 213257, 220825, 25289, 87…
#> $ `1/7/22` <dbl> 158300, 214905, 221316, 26408, 88…
#> $ `1/8/22` <dbl> 158309, 214905, 221742, 26408, 89…
#> $ `1/9/22` <dbl> 158381, 219694, 222157, 26408, 89…
#> $ `1/10/22` <dbl> 158394, 220487, 222639, 27983, 90…
#> $ `1/11/22` <dbl> 158471, 222664, 223196, 28542, 91…
#> $ `1/12/22` <dbl> 158511, 224569, 223806, 28899, 91…
#> $ `1/13/22` <dbl> 158602, 226598, 224383, 28899, 92…
#> $ `1/14/22` <dbl> 158639, 228777, 224979, 29888, 93…
#> $ `1/15/22` <dbl> 158678, 230940, 225484, 29888, 93…
#> $ `1/16/22` <dbl> 158717, 232637, 226057, 29888, 93…
#> $ `1/17/22` <dbl> 158826, 233654, 226749, 29888, 93…
#> $ `1/18/22` <dbl> 158974, 236486, 227559, 29888, 94…
#> $ `1/19/22` <dbl> 159070, 239129, 228918, 29888, 94…
#> $ `1/20/22` <dbl> 159303, 241512, 230470, 32201, 95…
#> $ `1/21/22` <dbl> 159516, 244182, 232325, 33025, 95…
#> $ `1/22/22` <dbl> 159548, 246412, 234536, 33025, 95…
#> $ `1/23/22` <dbl> 159649, 248070, 236670, 33025, 96…
#> $ `1/24/22` <dbl> 159896, 248070, 238885, 33025, 97…
#> $ `1/25/22` <dbl> 160252, 248859, 241406, 34701, 97…
#> $ `1/26/22` <dbl> 160692, 251015, 243568, 35028, 97…
#> $ `1/27/22` <dbl> 161004, 252577, 245698, 35028, 97…
#> $ `1/28/22` <dbl> 161057, 254126, 247568, 35556, 98…
#> $ `1/29/22` <dbl> 161290, 254126, 249310, 35556, 98…
#> $ `1/30/22` <dbl> 162111, 255741, 250774, 35556, 98…
#> $ `1/31/22` <dbl> 162926, 258543, 252117, 35958, 98…
#> $ `2/1/22` <dbl> 163555, 258543, 253520, 35958, 98…
#> $ `2/2/22` <dbl> 164190, 261240, 254885, 36315, 98…
#> $ `2/3/22` <dbl> 164727, 261240, 255836, 36470, 98…
#> $ `2/4/22` <dbl> 165358, 263172, 256806, 36599, 98…
#> $ `2/5/22` <dbl> 165711, 263172, 257598, 36599, 98…
#> $ `2/6/22` <dbl> 166191, 264624, 257976, 36599, 98…
#> $ `2/7/22` <dbl> 166924, 264875, 258478, 36808, 98…
#> $ `2/8/22` <dbl> 167739, 265716, 259088, 36808, 98…
#> $ `2/9/22` <dbl> 168550, 266416, 259673, 36989, 98…
#> $ `2/10/22` <dbl> 169448, 267020, 260191, 37074, 98…
#> $ `2/11/22` <dbl> 169940, 267020, 260723, 37140, 98…
#> $ `2/12/22` <dbl> 170152, 267551, 261226, 37140, 98…
#> $ `2/13/22` <dbl> 170604, 268008, 261752, 37140, 98…
#> $ `2/14/22` <dbl> 171246, 268304, 262165, 37277, 98…
#> $ `2/15/22` <dbl> 171422, 268491, 262570, 37361, 98…
#> $ `2/16/22` <dbl> 171519, 268940, 262994, 37452, 98…
#> $ `2/17/22` <dbl> 171673, 269301, 263369, 37522, 98…
#> $ `2/18/22` <dbl> 171857, 269601, 263685, 37589, 98…
#> $ `2/19/22` <dbl> 171931, 269904, 263936, 37589, 98…
#> $ `2/20/22` <dbl> 172205, 270164, 264054, 37589, 98…
#> $ `2/21/22` <dbl> 172441, 270370, 264201, 37589, 98…
#> $ `2/22/22` <dbl> 172716, 270455, 264365, 37820, 98…
#> $ `2/23/22` <dbl> 172901, 270734, 264488, 37901, 98…
#> $ `2/24/22` <dbl> 173047, 270947, 264603, 37958, 98…
#> $ `2/25/22` <dbl> 173084, 271141, 264706, 37999, 98…
#> $ `2/26/22` <dbl> 173146, 271141, 264778, 37999, 98…
#> $ `2/27/22` <dbl> 173395, 271527, 264855, 37999, 98…
#> $ `2/28/22` <dbl> 173659, 271563, 264936, 37999, 98…
#> $ `3/1/22` <dbl> 173879, 271702, 265010, 38165, 98…
#> $ `3/2/22` <dbl> 174073, 271825, 265079, 38249, 98…
#> $ `3/3/22` <dbl> 174214, 271825, 265130, 38342, 98…
#> $ `3/4/22` <dbl> 174214, 272030, 265186, 38434, 98…
#> $ `3/5/22` <dbl> 174331, 272030, 265227, 38434, 98…
#> $ `3/6/22` <dbl> 174582, 272210, 265265, 38434, 98…
#> $ `3/7/22` <dbl> 175000, 272250, 265297, 38620, 98…
#> $ `3/8/22` <dbl> 175353, 272337, 265323, 38710, 98…
#> $ `3/9/22` <dbl> 175525, 272412, 265346, 38794, 98…
#> $ `3/10/22` <dbl> 175893, 272479, 265366, 38794, 98…
#> $ `3/11/22` <dbl> 175974, 272552, 265391, 38794, 98…
#> $ `3/12/22` <dbl> 176039, 272621, 265410, 38794, 98…
#> $ `3/13/22` <dbl> 176201, 272663, 265432, 38794, 98…
#> $ `3/14/22` <dbl> 176409, 272689, 265457, 38794, 98…
#> $ `3/15/22` <dbl> 176571, 272711, 265478, 38794, 98…
#> $ `3/16/22` <dbl> 176743, 272804, 265496, 38794, 98…
#> $ `3/17/22` <dbl> 176918, 272885, 265511, 39234, 99…
#> $ `3/18/22` <dbl> 176983, 272961, 265524, 39234, 99…
#> $ `3/19/22` <dbl> 177039, 273040, 265539, 39234, 99…
#> $ `3/20/22` <dbl> 177093, 273088, 265550, 39234, 99…
#> $ `3/21/22` <dbl> 177191, 273088, 265562, 39234, 99…
#> $ `3/22/22` <dbl> 177255, 273146, 265573, 39234, 99…
#> $ `3/23/22` <dbl> 177321, 273164, 265585, 39713, 99…
#> $ `3/24/22` <dbl> 177321, 273257, 265599, 39713, 99…
#> $ `3/25/22` <dbl> 177321, 273318, 265612, 39713, 99…
#> $ `3/26/22` <dbl> 177321, 273387, 265621, 39713, 99…
#> $ `3/27/22` <dbl> 177520, 273432, 265629, 39713, 99…
#> $ `3/28/22` <dbl> 177602, 273432, 265641, 39713, 99…
#> $ `3/29/22` <dbl> 177658, 273529, 265651, 39713, 99…
#> $ `3/30/22` <dbl> 177716, 273608, 265662, 40024, 99…
#> $ `3/31/22` <dbl> 177747, 273677, 265671, 40024, 99…
#> $ `4/1/22` <dbl> 177782, 273759, 265679, 40024, 99…
#> $ `4/2/22` <dbl> 177803, 273823, 265684, 40024, 99…
#> $ `4/3/22` <dbl> 177827, 273870, 265691, 40024, 99…
#> $ `4/4/22` <dbl> 177897, 273913, 265694, 40024, 99…
#> $ `4/5/22` <dbl> 177932, 274000, 265699, 40024, 99…
#> $ `4/6/22` <dbl> 177974, 274055, 265705, 40024, 99…
#> $ `4/7/22` <dbl> 177974, 274108, 265707, 40328, 99…
#> $ `4/8/22` <dbl> 177974, 274136, 265714, 40328, 99…
#> $ `4/9/22` <dbl> 177974, 274191, 265720, 40328, 99…
#> $ `4/10/22` <dbl> 177974, 274219, 265724, 40328, 99…
#> $ `4/11/22` <dbl> 178141, 274219, 265727, 40328, 99…
#> $ `4/12/22` <dbl> 178257, 274272, 265730, 40328, 99…
#> $ `4/13/22` <dbl> 178295, 274320, 265731, 40709, 99…
#> $ `4/14/22` <dbl> 178352, 274376, 265733, 40709, 99…
#> $ `4/15/22` <dbl> 178373, 274429, 265738, 40709, 99…
#> $ `4/16/22` <dbl> 178387, 274462, 265739, 40709, 99…
#> $ `4/17/22` <dbl> 178418, 274504, 265739, 40709, 99…
#> $ `4/18/22` <dbl> 178457, 274520, 265741, 40709, 99…
#> $ `4/19/22` <dbl> 178513, 274535, 265746, 40709, 99…
#> $ `4/20/22` <dbl> 178574, 274606, 265746, 41013, 99…
#> $ `4/21/22` <dbl> 178611, 274606, 265754, 41013, 99…
#> $ `4/22/22` <dbl> 178638, 274737, 265761, 41013, 99…
#> $ `4/23/22` <dbl> 178648, 274791, 265761, 41013, 99…
#> $ `4/24/22` <dbl> 178689, 274828, 265767, 41013, 99…
#> $ `4/25/22` <dbl> 178745, 274828, 265771, 41013, 99…
#> $ `4/26/22` <dbl> 178769, 274862, 265772, 41013, 99…
#> $ `4/27/22` <dbl> 178809, 274929, 265773, 41013, 99…
#> $ `4/28/22` <dbl> 178850, 275002, 265776, 41349, 99…
#> $ `4/29/22` <dbl> 178873, 275055, 265779, 41349, 99…
#> $ `4/30/22` <dbl> 178879, 275107, 265780, 41349, 99…
#> $ `5/1/22` <dbl> 178899, 275167, 265782, 41349, 99…
#> $ `5/2/22` <dbl> 178901, 275177, 265782, 41349, 99…
#> $ `5/3/22` <dbl> 178901, 275191, 265782, 41349, 99…
#> $ `5/4/22` <dbl> 178901, 275211, 265782, 41717, 99…
#> $ `5/5/22` <dbl> 178905, 275266, 265786, 41717, 99…
#> $ `5/6/22` <dbl> 178919, 275310, 265791, 41717, 99…
#> $ `5/7/22` <dbl> 178922, 275341, 265794, 41717, 99…
#> $ `5/8/22` <dbl> 178981, 275366, 265798, 41717, 99…
#> $ `5/9/22` <dbl> 179010, 275372, 265800, 41717, 99…
#> $ `5/10/22` <dbl> 179017, 275416, 265804, 41717, 99…
#> $ `5/11/22` <dbl> 179131, 275440, 265806, 41717, 99…
#> $ `5/12/22` <dbl> 179169, 275485, 265808, 42156, 99…
#> $ `5/13/22` <dbl> 179203, 275534, 265814, 42156, 99…
#> $ `5/14/22` <dbl> 179242, 275574, 265816, 42156, 99…
#> $ `5/15/22` <dbl> 179267, 275615, 265818, 42156, 99…
#> $ `5/16/22` <dbl> 179321, 275621, 265823, 42156, 99…
#> $ `5/17/22` <dbl> 179328, 275688, 265828, 42156, 99…
#> $ `5/18/22` <dbl> 179477, 275732, 265834, 42572, 99…
#> $ `5/19/22` <dbl> 179597, 275732, 265841, 42572, 99…
#> $ `5/20/22` <dbl> 179624, 275732, 265847, 42572, 99…
#> $ `5/21/22` <dbl> 179674, 275838, 265851, 42572, 99…
#> $ `5/22/22` <dbl> 179716, 275864, 265854, 42572, 99…
#> $ `5/23/22` <dbl> 179716, 275881, 265855, 42572, 99…
#> $ `5/24/22` <dbl> 179771, 275939, 265860, 42572, 99…
#> $ `5/25/22` <dbl> 179835, 275985, 265862, 42894, 99…
#> $ `5/26/22` <dbl> 179835, 276012, 265864, 42894, 99…
#> $ `5/27/22` <dbl> 180086, 276048, 265870, 42894, 99…
#> $ `5/28/22` <dbl> 180122, 276081, 265873, 42894, 99…
#> $ `5/29/22` <dbl> 180174, 276101, 265873, 42894, 99…
#> $ `5/30/22` <dbl> 180259, 276101, 265877, 42894, 99…
#> $ `5/31/22` <dbl> 180347, 276101, 265884, 42894, 99…
#> $ `6/1/22` <dbl> 180419, 276221, 265887, 42894, 99…
#> $ `6/2/22` <dbl> 180520, 276221, 265889, 42894, 99…
#> $ `6/3/22` <dbl> 180584, 276310, 265889, 43067, 99…
#> $ `6/4/22` <dbl> 180615, 276342, 265889, 43067, 99…
#> $ `6/5/22` <dbl> 180615, 276401, 265897, 43067, 99…
#> $ `6/6/22` <dbl> 180688, 276415, 265900, 43067, 99…
#> $ `6/7/22` <dbl> 180741, 276468, 265904, 43067, 99…
#> $ `6/8/22` <dbl> 180784, 276518, 265909, 43224, 99…
#> $ `6/9/22` <dbl> 180864, 276583, 265920, 43224, 99…
#> $ `6/10/22` <dbl> 180864, 276638, 265925, 43224, 99…
#> $ `6/11/22` <dbl> 180864, 276690, 265925, 43224, 99…
#> $ `6/12/22` <dbl> 180864, 276731, 265927, 43224, 99…
#> $ `6/13/22` <dbl> 181120, 276731, 265937, 43224, 99…
#> $ `6/14/22` <dbl> 181178, 276821, 265943, 43224, 99…
#> $ `6/15/22` <dbl> 181236, 276821, 265952, 43449, 99…
#> $ `6/16/22` <dbl> 181465, 276821, 265964, 43449, 99…
#> $ `6/17/22` <dbl> 181534, 277141, 265968, 43449, 99…
#> $ `6/18/22` <dbl> 181574, 277141, 265971, 43449, 99…
#> $ `6/19/22` <dbl> 181666, 277409, 265975, 43449, 99…
#> $ `6/20/22` <dbl> 181725, 277444, 265985, 43449, 99…
#> $ `6/21/22` <dbl> 181808, 277663, 265993, 43449, 99…
#> $ `6/22/22` <dbl> 181912, 277940, 266006, 43774, 99…
#> $ `6/23/22` <dbl> 181987, 278211, 266015, 43774, 99…
#> $ `6/24/22` <dbl> 182033, 278504, 266025, 43774, 99…
#> $ `6/25/22` <dbl> 182072, 278793, 266030, 43774, 99…
#> $ `6/26/22` <dbl> 182149, 279077, 266038, 43774, 99…
#> $ `6/27/22` <dbl> 182228, 279077, 266049, 43774, 99…
#> $ `6/28/22` <dbl> 182324, 279167, 266062, 43774, 10…
#> $ `6/29/22` <dbl> 182403, 280298, 266073, 43774, 10…
#> $ `6/30/22` <dbl> 182528, 280851, 266087, 43774, 10…
#> $ `7/1/22` <dbl> 182594, 281470, 266105, 44177, 10…
#> $ `7/2/22` <dbl> 182643, 282141, 266115, 44177, 10…
#> $ `7/3/22` <dbl> 182724, 282690, 266128, 44177, 10…
#> $ `7/4/22` <dbl> 182793, 282690, 266173, 44177, 10…
#> $ `7/5/22` <dbl> 182793, 282690, 266173, 44177, 10…
#> $ `7/6/22` <dbl> 182979, 283811, 266181, 44671, 10…
#> $ `7/7/22` <dbl> 183084, 284758, 266202, 44671, 10…
#> $ `7/8/22` <dbl> 183221, 285731, 266228, 44671, 10…
#> $ `7/9/22` <dbl> 183235, 286732, 266246, 44671, 10…
#> $ `7/10/22` <dbl> 183265, 287984, 266257, 44671, 10…
#> $ `7/11/22` <dbl> 183268, 288176, 266274, 44671, 10…
#> $ `7/12/22` <dbl> 183272, 289391, 266303, 44671, 10…
#> $ `7/13/22` <dbl> 183285, 290954, 266328, 44671, 10…
#> $ `7/14/22` <dbl> 183358, 290954, 266356, 44671, 10…
#> $ `7/15/22` <dbl> 183407, 293917, 266392, 44671, 10…
#> $ `7/16/22` <dbl> 183445, 295243, 266424, 44671, 10…
#> $ `7/17/22` <dbl> 183572, 296305, 266445, 44671, 10…
#> $ `7/18/22` <dbl> 183687, 296732, 266487, 45061, 10…
#> $ `7/19/22` <dbl> 183908, 298578, 266542, 45061, 10…
#> $ `7/20/22` <dbl> 184038, 300058, 266591, 45061, 10…
#> $ `7/21/22` <dbl> 184224, 301394, 266654, 45326, 10…
#> $ `7/22/22` <dbl> 184360, 302767, 266700, 45326, 10…
#> $ `7/23/22` <dbl> 184473, 303925, 266772, 45326, 10…
#> $ `7/24/22` <dbl> 184587, 304890, 266839, 45326, 10…
#> $ `7/25/22` <dbl> 184819, 305123, 266916, 45326, 10…
#> $ `7/26/22` <dbl> 185086, 306789, 267010, 45326, 10…
#> $ `7/27/22` <dbl> 185272, 308050, 267096, 45326, 10…
#> $ `7/28/22` <dbl> 185393, 309278, 267194, 45508, 10…
#> $ `7/29/22` <dbl> 185481, 310362, 267287, 45508, 10…
#> $ `7/30/22` <dbl> 185552, 311381, 267374, 45508, 10…
#> $ `7/31/22` <dbl> 185749, 312097, 267454, 45508, 10…
#> $ `8/1/22` <dbl> 185930, 312375, 267546, 45508, 10…
#> $ `8/2/22` <dbl> 186120, 313582, 267657, 45508, 10…
#> $ `8/3/22` <dbl> 186393, 314561, 267777, 45793, 10…
#> $ `8/4/22` <dbl> 186697, 315337, 267902, 45793, 10…
#> $ `8/5/22` <dbl> 187037, 316145, 268033, 45793, 10…
#> $ `8/6/22` <dbl> 187109, 316976, 268141, 45793, 10…
#> $ `8/7/22` <dbl> 187442, 317514, 268254, 45793, 10…
#> $ `8/8/22` <dbl> 187685, 317681, 268356, 45793, 10…
#> $ `8/9/22` <dbl> 187966, 318638, 268478, 45793, 10…
#> $ `8/10/22` <dbl> 188202, 319444, 268584, 45899, 10…
#> $ `8/11/22` <dbl> 188506, 320086, 268718, 45899, 10…
#> $ `8/12/22` <dbl> 188704, 320781, 268866, 45899, 10…
#> $ `8/13/22` <dbl> 188820, 321345, 269008, 45899, 10…
#> $ `8/14/22` <dbl> 189045, 321804, 269141, 45899, 10…
#> $ `8/15/22` <dbl> 189343, 322125, 269269, 45899, 10…
#> $ `8/16/22` <dbl> 189477, 322837, 269381, 45899, 10…
#> $ `8/17/22` <dbl> 189710, 323282, 269473, 45975, 10…
#> $ `8/18/22` <dbl> 190010, 323829, 269556, 45975, 10…
#> $ `8/19/22` <dbl> 190254, 325241, 269650, 45975, 10…
#> $ `8/20/22` <dbl> 190435, 325736, 269731, 45975, 10…
#> $ `8/21/22` <dbl> 190643, 326077, 269805, 45975, 10…
#> $ `8/22/22` <dbl> 191040, 326181, 269894, 45975, 10…
#> $ `8/23/22` <dbl> 191247, 326787, 269971, 45975, 10…
#> $ `8/24/22` <dbl> 191585, 327232, 270043, 46027, 10…
#> $ `8/25/22` <dbl> 191967, 327607, 270097, 46027, 10…
#> $ `8/26/22` <dbl> 191967, 327961, 270145, 46027, 10…
#> $ `8/27/22` <dbl> 191967, 328299, 270175, 46027, 10…
#> $ `8/28/22` <dbl> 192463, 328515, 270194, 46027, 10…
#> $ `8/29/22` <dbl> 192906, 328571, 270235, 46027, 10…
#> $ `8/30/22` <dbl> 193004, 329017, 270272, 46027, 10…
#> $ `8/31/22` <dbl> 193250, 329352, 270304, 46027, 10…
#> $ `9/1/22` <dbl> 193520, 329615, 270359, 46027, 10…
#> $ `9/2/22` <dbl> 193520, 329862, 270405, 46027, 10…
#> $ `9/3/22` <dbl> 193912, 330062, 270426, 46027, 10…
#> $ `9/4/22` <dbl> 194163, 330193, 270443, 46027, 10…
#> $ `9/5/22` <dbl> 194355, 330221, 270461, 46027, 10…
#> $ `9/6/22` <dbl> 194614, 330283, 270476, 46027, 10…
#> $ `9/7/22` <dbl> 195012, 330516, 270489, 46113, 10…
#> $ `9/8/22` <dbl> 195298, 330687, 270507, 46113, 10…
#> $ `9/9/22` <dbl> 195471, 330842, 270522, 46113, 10…
#> $ `9/10/22` <dbl> 195631, 330948, 270532, 46113, 10…
#> $ `9/11/22` <dbl> 195925, 331036, 270539, 46113, 10…
#> $ `9/12/22` <dbl> 196182, 331053, 270551, 46113, 10…
#> $ `9/13/22` <dbl> 196404, 331191, 270551, 46113, 10…
#> $ `9/14/22` <dbl> 196751, 331295, 270570, 46147, 10…
#> $ `9/15/22` <dbl> 196870, 331384, 270584, 46147, 10…
#> $ `9/16/22` <dbl> 196992, 331459, 270599, 46147, 10…
#> $ `9/17/22` <dbl> 197066, 331540, 270606, 46147, 10…
#> $ `9/18/22` <dbl> 197240, 331583, 270609, 46147, 10…
#> $ `9/19/22` <dbl> 197434, 331601, 270612, 46147, 10…
#> $ `9/20/22` <dbl> 197608, 331715, 270612, 46147, 10…
#> $ `9/21/22` <dbl> 197788, 331810, 270619, 46147, 10…
#> $ `9/22/22` <dbl> 198023, 331861, 270625, 46147, 10…
#> $ `9/23/22` <dbl> 198163, 331908, 270631, 46147, 10…
#> $ `9/24/22` <dbl> 198244, 331953, 270637, 46147, 10…
#> $ `9/25/22` <dbl> 198416, 331976, 270641, 46147, 10…
#> $ `9/26/22` <dbl> 198543, 331987, 270649, 46147, 10…
#> $ `9/27/22` <dbl> 198750, 332066, 270654, 46147, 10…
#> $ `9/28/22` <dbl> 198876, 332129, 270662, 46227, 10…
#> $ `9/29/22` <dbl> 199067, 332173, 270668, 46227, 10…
#> $ `9/30/22` <dbl> 199188, 332221, 270673, 46227, 10…
#> $ `10/1/22` <dbl> 199310, 332263, 270676, 46227, 10…
#> $ `10/2/22` <dbl> 199386, 332285, 270679, 46227, 10…
#> $ `10/3/22` <dbl> 199545, 332290, 270682, 46227, 10…
#> $ `10/4/22` <dbl> 199690, 332337, 270690, 46227, 10…
#> $ `10/5/22` <dbl> 199845, 332372, 270693, 46227, 10…
#> $ `10/6/22` <dbl> 199994, 332410, 270697, 46275, 10…
#> $ `10/7/22` <dbl> 200130, 332443, 270701, 46275, 10…
#> $ `10/8/22` <dbl> 200202, 332472, 270701, 46275, 10…
#> $ `10/9/22` <dbl> 200372, 332494, 270707, 46275, 10…
#> $ `10/10/22` <dbl> 200469, 332503, 270713, 46275, 10…
#> $ `10/11/22` <dbl> 200626, 332534, 270716, 46275, 10…
#> $ `10/12/22` <dbl> 200729, 332555, 270722, 46366, 10…
#> $ `10/13/22` <dbl> 200846, 332579, 270722, 46366, 10…
#> $ `10/14/22` <dbl> 201014, 332598, 270734, 46366, 10…
#> $ `10/15/22` <dbl> 201096, 332619, 270734, 46366, 10…
#> $ `10/16/22` <dbl> 201212, 332638, 270740, 46366, 10…
#> $ `10/17/22` <dbl> 201276, 332645, 270757, 46366, 10…
#> $ `10/18/22` <dbl> 201503, 332673, 270766, 46366, 10…
#> $ `10/19/22` <dbl> 201557, 332701, 270768, 46449, 10…
#> $ `10/20/22` <dbl> 201750, 332719, 270769, 46449, 10…
#> $ `10/21/22` <dbl> 201949, 332739, 270771, 46449, 10…
#> $ `10/22/22` <dbl> 202026, 332754, 270771, 46449, 10…
#> $ `10/23/22` <dbl> 202108, 332772, 270783, 46449, 10…
#> $ `10/24/22` <dbl> 202199, 332776, 270788, 46449, 10…
#> $ `10/25/22` <dbl> 202347, 332816, 270800, 46449, 10…
#> $ `10/26/22` <dbl> 202509, 332847, 270810, 46535, 10…
#> $ `10/27/22` <dbl> 202608, 332889, 270817, 46535, 10…
#> $ `10/28/22` <dbl> 202756, 332911, 270826, 46535, 10…
#> $ `10/29/22` <dbl> 202834, 332949, 270829, 46535, 10…
#> $ `10/30/22` <dbl> 202966, 332966, 270836, 46535, 10…
#> $ `10/31/22` <dbl> 203063, 332966, 270838, 46535, 10…
#> $ `11/1/22` <dbl> 203167, 332969, 270839, 46535, 10…
#> $ `11/2/22` <dbl> 203265, 332996, 270840, 46588, 10…
#> $ `11/3/22` <dbl> 203395, 332996, 270847, 46588, 10…
#> $ `11/4/22` <dbl> 203497, 333027, 270856, 46588, 10…
#> $ `11/5/22` <dbl> 203574, 333046, 270862, 46588, 10…
#> $ `11/6/22` <dbl> 203681, 333055, 270873, 46588, 10…
#> $ `11/7/22` <dbl> 203829, 333058, 270881, 46588, 10…
#> $ `11/8/22` <dbl> 203942, 333071, 270891, 46588, 10…
#> $ `11/9/22` <dbl> 204094, 333088, 270906, 46664, 10…
#> $ `11/10/22` <dbl> 204287, 333103, 270917, 46664, 10…
#> $ `11/11/22` <dbl> 204392, 333125, 270924, 46664, 10…
#> $ `11/12/22` <dbl> 204417, 333138, 270929, 46664, 10…
#> $ `11/13/22` <dbl> 204510, 333156, 270939, 46664, 10…
#> $ `11/14/22` <dbl> 204610, 333161, 270952, 46664, 10…
#> $ `11/15/22` <dbl> 204724, 333197, 270969, 46664, 10…
#> $ `11/16/22` <dbl> 204820, 333215, 270981, 46824, 10…
#> $ `11/17/22` <dbl> 204982, 333233, 270996, 46824, 10…
#> $ `11/18/22` <dbl> 205009, 333233, 270996, 46824, 10…
#> $ `11/19/22` <dbl> 205039, 333246, 271011, 46824, 10…
#> $ `11/20/22` <dbl> 205146, 333256, 271023, 46824, 10…
#> $ `11/21/22` <dbl> 205229, 333257, 271028, 46824, 10…
#> $ `11/22/22` <dbl> 205324, 333282, 271035, 46824, 10…
#> $ `11/23/22` <dbl> 205391, 333293, 271041, 46824, 10…
#> $ `11/24/22` <dbl> 205506, 333305, 271050, 46824, 10…
#> $ `11/25/22` <dbl> 205541, 333316, 271057, 46824, 10…
#> $ `11/26/22` <dbl> 205612, 333322, 271061, 46824, 10…
#> $ `11/27/22` <dbl> 205612, 333330, 271061, 46824, 10…
#> $ `11/28/22` <dbl> 205802, 333330, 271079, 46824, 10…
#> $ `11/29/22` <dbl> 205830, 333338, 271082, 46824, 10…
#> $ `11/30/22` <dbl> 205907, 333343, 271090, 47219, 10…
#> $ `12/1/22` <dbl> 206073, 333360, 271096, 47219, 10…
#> $ `12/2/22` <dbl> 206133, 333381, 271100, 47219, 10…
#> $ `12/3/22` <dbl> 206145, 333391, 271102, 47219, 10…
#> $ `12/4/22` <dbl> 206206, 333408, 271107, 47219, 10…
#> $ `12/5/22` <dbl> 206273, 333413, 271113, 47219, 10…
#> $ `12/6/22` <dbl> 206331, 333455, 271122, 47219, 10…
#> $ `12/7/22` <dbl> 206414, 333472, 271128, 47446, 10…
#> $ `12/8/22` <dbl> 206465, 333490, 271135, 47446, 10…
#> $ `12/9/22` <dbl> 206504, 333491, 271140, 47446, 10…
#> $ `12/10/22` <dbl> 206543, 333521, 271146, 47446, 10…
#> $ `12/11/22` <dbl> 206603, 333533, 271146, 47446, 10…
#> $ `12/12/22` <dbl> 206702, 333535, 271147, 47446, 10…
#> $ `12/13/22` <dbl> 206743, 333567, 271149, 47446, 10…
#> $ `12/14/22` <dbl> 206788, 333591, 271156, 47606, 10…
#> $ `12/15/22` <dbl> 206879, 333613, 271156, 47606, 10…
#> $ `12/16/22` <dbl> 206912, 333635, 271156, 47606, 10…
#> $ `12/17/22` <dbl> 206943, 333635, 271168, 47606, 10…
#> $ `12/18/22` <dbl> 207037, 333650, 271174, 47606, 10…
#> $ `12/19/22` <dbl> 207084, 333653, 271179, 47606, 10…
#> $ `12/20/22` <dbl> 207146, 333686, 271182, 47686, 10…
#> $ `12/21/22` <dbl> 207190, 333708, 271186, 47686, 10…
#> $ `12/22/22` <dbl> 207239, 333708, 271190, 47686, 10…
#> $ `12/23/22` <dbl> 207262, 333731, 271193, 47686, 10…
#> $ `12/24/22` <dbl> 207310, 333749, 271194, 47686, 10…
#> $ `12/25/22` <dbl> 207399, 333749, 271198, 47686, 10…
#> $ `12/26/22` <dbl> 207438, 333751, 271198, 47686, 10…
#> $ `12/27/22` <dbl> 207460, 333751, 271202, 47686, 10…
#> $ `12/28/22` <dbl> 207493, 333776, 271208, 47751, 10…
#> $ `12/29/22` <dbl> 207511, 333776, 271217, 47751, 10…
#> $ `12/30/22` <dbl> 207550, 333806, 271223, 47751, 10…
#> $ `12/31/22` <dbl> 207559, 333806, 271228, 47751, 10…
#> $ `1/1/23` <dbl> 207616, 333811, 271229, 47751, 10…
#> $ `1/2/23` <dbl> 207627, 333812, 271229, 47751, 10…
#> $ `1/3/23` <dbl> 207654, 333812, 271230, 47751, 10…
#> $ `1/4/23` <dbl> 207715, 333818, 271236, 47751, 10…
#> $ `1/5/23` <dbl> 207748, 333850, 271244, 47781, 10…
#> $ `1/6/23` <dbl> 207766, 333887, 271250, 47781, 10…
#> $ `1/7/23` <dbl> 207766, 333916, 271254, 47781, 10…
#> $ `1/8/23` <dbl> 207819, 333947, 271254, 47781, 10…
#> $ `1/9/23` <dbl> 207841, 333948, 271255, 47781, 10…
#> $ `1/10/23` <dbl> 207866, 333995, 271262, 47781, 10…
#> $ `1/11/23` <dbl> 207900, 333995, 271268, 47781, 10…
#> $ `1/12/23` <dbl> 207900, 334018, 271277, 47781, 10…
#> $ `1/13/23` <dbl> 207900, 334018, 271286, 47781, 10…
#> $ `1/14/23` <dbl> 207900, 334029, 271287, 47781, 10…
#> $ `1/15/23` <dbl> 207900, 334037, 271287, 47781, 10…
#> $ `1/16/23` <dbl> 207993, 334037, 271287, 47781, 10…
#> $ `1/17/23` <dbl> 208009, 334064, 271292, 47781, 10…
#> $ `1/18/23` <dbl> 208034, 334084, 271296, 47781, 10…
#> $ `1/19/23` <dbl> 208062, 334084, 271307, 47820, 10…
#> $ `1/20/23` <dbl> 208084, 334084, 271316, 47820, 10…
#> $ `1/21/23` <dbl> 208084, 334097, 271328, 47820, 10…
#> $ `1/22/23` <dbl> 208084, 334101, 271335, 47820, 10…
#> $ `1/23/23` <dbl> 208097, 334101, 271346, 47820, 10…
#> $ `1/24/23` <dbl> 208289, 334113, 271354, 47820, 10…
#> $ `1/25/23` <dbl> 208324, 334124, 271360, 47820, 10…
#> $ `1/26/23` <dbl> 208324, 334135, 271364, 47820, 10…
#> $ `1/27/23` <dbl> 208432, 334144, 271369, 47820, 10…
#> $ `1/28/23` <dbl> 208435, 334153, 271369, 47839, 10…
#> $ `1/29/23` <dbl> 208435, 334157, 271376, 47839, 10…
#> $ `1/30/23` <dbl> 208502, 334157, 271376, 47839, 10…
#> $ `1/31/23` <dbl> 208545, 334167, 271378, 47839, 10…
#> $ `2/1/23` <dbl> 208552, 334177, 271385, 47839, 10…
#> $ `2/2/23` <dbl> 208669, 334187, 271386, 47839, 10…
#> $ `2/3/23` <dbl> 208669, 334203, 271394, 47850, 10…
#> $ `2/4/23` <dbl> 208621, 334204, 271394, 47850, 10…
#> $ `2/5/23` <dbl> 208627, 334211, 271394, 47850, 10…
#> $ `2/6/23` <dbl> 208704, 334211, 271395, 47850, 10…
#> $ `2/7/23` <dbl> 208721, 334211, 271399, 47850, 10…
#> $ `2/8/23` <dbl> 208771, 334222, 271403, 47850, 10…
#> $ `2/9/23` <dbl> 208771, 334229, 271406, 47860, 10…
#> $ `2/10/23` <dbl> 208943, 334229, 271406, 47860, 10…
#> $ `2/11/23` <dbl> 208971, 334234, 271409, 47860, 10…
confirmedraw %>% slice(1:10)# %>% datatable() # Check latest date at the end of data as tibble
#> # A tibble: 10 × 1,121
#> Province/S…¹ Count…² Lat Long 1/22/…³ 1/23/…⁴ 1/24/…⁵
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 <NA> Afghan… 33.9 67.7 0 0 0
#> 2 <NA> Albania 41.2 20.2 0 0 0
#> 3 <NA> Algeria 28.0 1.66 0 0 0
#> 4 <NA> Andorra 42.5 1.52 0 0 0
#> 5 <NA> Angola -11.2 17.9 0 0 0
#> 6 <NA> Antarc… -71.9 23.3 0 0 0
#> 7 <NA> Antigu… 17.1 -61.8 0 0 0
#> 8 <NA> Argent… -38.4 -63.6 0 0 0
#> 9 <NA> Armenia 40.1 45.0 0 0 0
#> 10 Australian … Austra… -35.5 149. 0 0 0
#> # … with 1,114 more variables: `1/25/20` <dbl>,
#> # `1/26/20` <dbl>, `1/27/20` <dbl>, `1/28/20` <dbl>,
#> # `1/29/20` <dbl>, `1/30/20` <dbl>, `1/31/20` <dbl>,
#> # `2/1/20` <dbl>, `2/2/20` <dbl>, `2/3/20` <dbl>,
#> # `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
#> # `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>,
#> # `2/10/20` <dbl>, `2/11/20` <dbl>, `2/12/20` <dbl>, …
We need to tranform data. The other data are similar.
deathsraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv")
#> Rows: 289 Columns: 1121
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (2): Province/State, Country/Region
#> dbl (1119): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/2...
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
deathsraw %>% slice(1)
#> # A tibble: 1 × 1,121
#> Province/Sta…¹ Count…² Lat Long 1/22/…³ 1/23/…⁴ 1/24/…⁵
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 <NA> Afghan… 33.9 67.7 0 0 0
#> # … with 1,114 more variables: `1/25/20` <dbl>,
#> # `1/26/20` <dbl>, `1/27/20` <dbl>, `1/28/20` <dbl>,
#> # `1/29/20` <dbl>, `1/30/20` <dbl>, `1/31/20` <dbl>,
#> # `2/1/20` <dbl>, `2/2/20` <dbl>, `2/3/20` <dbl>,
#> # `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
#> # `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>,
#> # `2/10/20` <dbl>, `2/11/20` <dbl>, `2/12/20` <dbl>, …
recoveredraw <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv")
#> Rows: 274 Columns: 1121
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (2): Province/State, Country/Region
#> dbl (1119): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/2...
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
recoveredraw %>% slice(1)
#> # A tibble: 1 × 1,121
#> Province/Sta…¹ Count…² Lat Long 1/22/…³ 1/23/…⁴ 1/24/…⁵
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 <NA> Afghan… 33.9 67.7 0 0 0
#> # … with 1,114 more variables: `1/25/20` <dbl>,
#> # `1/26/20` <dbl>, `1/27/20` <dbl>, `1/28/20` <dbl>,
#> # `1/29/20` <dbl>, `1/30/20` <dbl>, `1/31/20` <dbl>,
#> # `2/1/20` <dbl>, `2/2/20` <dbl>, `2/3/20` <dbl>,
#> # `2/4/20` <dbl>, `2/5/20` <dbl>, `2/6/20` <dbl>,
#> # `2/7/20` <dbl>, `2/8/20` <dbl>, `2/9/20` <dbl>,
#> # `2/10/20` <dbl>, `2/11/20` <dbl>, `2/12/20` <dbl>, …
# Note differences in the number of rows/columns
B.3.2 Tidying and Combining: To create country level and global combined data
B.3.2.1 Convert each data set from wide to long
confirmed <- confirmedraw %>%
dplyr::rename(province = "Province/State", country = "Country/Region", lat = "Lat", long = "Long") %>%
pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(province, country) %>% arrange(date) %>%
mutate(confirmed = confirmed - lag(confirmed)) %>%
slice(-1) %>% ungroup() %>%
relocate(date, .before = province) %>%
group_by(country, province) %>%
arrange(province, date)
Check the data.
df_tv %>% filter(country == "Japan") %>% filter(type == "confirmed") %>% ggplot() + geom_line(aes(x = date, y = cases))
The dplyr::rename
seems to have conflict with other rename
function.
deaths <- deathsraw %>%
dplyr::rename(province = "Province/State", country = "Country/Region", lat = Lat, long = Long) %>%
pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="death") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(province, country) %>% arrange(date) %>%
mutate(death = death - lag(death)) %>%
slice(-1) %>% ungroup() %>%
relocate(date, .before = province) %>%
arrange(province, date)
recovered <- recoveredraw %>%
dplyr::rename(province = "Province/State", country = "Country/Region", lat = Lat, long = Long) %>%
pivot_longer(-c(province, country, lat, long), names_to = "date", values_to ="recovered") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(province, country) %>% arrange(date) %>%
mutate(recovered = recovered - lag(recovered)) %>%
slice(-1) %>% ungroup() %>%
relocate(date, .before = province) %>%
arrange(province, date)
B.3.2.2 Final data: combine all three
coronavirus_jhu <- full_join(confirmed, deaths) %>% full_join(recovered) %>%
pivot_longer(c(confirmed, death, recovered), names_to = "cases") %>%
arrange(cases, province, country, date)
#> Joining, by = c("date", "province", "country", "lat",
#> "long")
#> Joining, by = c("date", "province", "country", "lat",
#> "long")
coronavirus_jhu %>% slice(1:10) # %>% datatable()
#> # A tibble: 2,900 × 7
#> # Groups: country, province [290]
#> date province country lat long cases value
#> <date> <chr> <chr> <dbl> <dbl> <chr> <dbl>
#> 1 2020-01-23 <NA> Afghanistan 33.9 67.7 confir… 0
#> 2 2020-01-24 <NA> Afghanistan 33.9 67.7 confir… 0
#> 3 2020-01-25 <NA> Afghanistan 33.9 67.7 confir… 0
#> 4 2020-01-26 <NA> Afghanistan 33.9 67.7 confir… 0
#> 5 2020-01-27 <NA> Afghanistan 33.9 67.7 confir… 0
#> 6 2020-01-28 <NA> Afghanistan 33.9 67.7 confir… 0
#> 7 2020-01-29 <NA> Afghanistan 33.9 67.7 confir… 0
#> 8 2020-01-30 <NA> Afghanistan 33.9 67.7 confir… 0
#> 9 2020-01-31 <NA> Afghanistan 33.9 67.7 confir… 0
#> 10 2020-02-01 <NA> Afghanistan 33.9 67.7 confir… 0
#> # … with 2,890 more rows
B.3.3 Aggregated by Countries
The list of countries classified in provinces.
coronavirus_jhu %>% filter(!is.na(province)) %>% distinct(country)
#> # A tibble: 91 × 2
#> # Groups: country, province [91]
#> province country
#> <chr> <chr>
#> 1 Alberta Canada
#> 2 Anguilla United Kingdom
#> 3 Anhui China
#> 4 Aruba Netherlands
#> 5 Australian Capital Territory Australia
#> 6 Beijing China
#> 7 Bermuda United Kingdom
#> 8 Bonaire, Sint Eustatius and Saba Netherlands
#> 9 British Columbia Canada
#> 10 British Virgin Islands United Kingdom
#> # … with 81 more rows
Check the data associated with provinces.
If we are only interested in countries, the following is a possibility.
coronavirus_jhu_country <- coronavirus_jhu %>%
group_by(date, country, cases) %>%
summarize(value = sum(value)) %>%
arrange(cases, country, date)
#> `summarise()` has grouped output by 'date', 'country'. You
#> can override using the `.groups` argument.
coronavirus_jhu_country # %>% datatable()
#> # A tibble: 672,948 × 4
#> # Groups: date, country [224,316]
#> date country cases value
#> <date> <chr> <chr> <dbl>
#> 1 2020-01-23 Afghanistan confirmed 0
#> 2 2020-01-24 Afghanistan confirmed 0
#> 3 2020-01-25 Afghanistan confirmed 0
#> 4 2020-01-26 Afghanistan confirmed 0
#> 5 2020-01-27 Afghanistan confirmed 0
#> 6 2020-01-28 Afghanistan confirmed 0
#> 7 2020-01-29 Afghanistan confirmed 0
#> 8 2020-01-30 Afghanistan confirmed 0
#> 9 2020-01-31 Afghanistan confirmed 0
#> 10 2020-02-01 Afghanistan confirmed 0
#> # … with 672,938 more rows
B.4 owid_covid
owid_covid: Get the Our World in Data covid-19 dataset
owid_covid()
See the detail at the GitHub site.
- Example
covid <- owid_covid()
glimpse(covid)
#> Rows: 309,639
#> Columns: 67
#> $ iso_code <chr> "AFG", …
#> $ continent <chr> "Asia",…
#> $ location <chr> "Afghan…
#> $ date <date> 2020-0…
#> $ total_cases <dbl> NA, NA,…
#> $ new_cases <dbl> 0, 0, 0…
#> $ new_cases_smoothed <dbl> NA, NA,…
#> $ total_deaths <dbl> NA, NA,…
#> $ new_deaths <dbl> 0, 0, 0…
#> $ new_deaths_smoothed <dbl> NA, NA,…
#> $ total_cases_per_million <dbl> NA, NA,…
#> $ new_cases_per_million <dbl> 0, 0, 0…
#> $ new_cases_smoothed_per_million <dbl> NA, NA,…
#> $ total_deaths_per_million <dbl> NA, NA,…
#> $ new_deaths_per_million <dbl> 0, 0, 0…
#> $ new_deaths_smoothed_per_million <dbl> NA, NA,…
#> $ reproduction_rate <dbl> NA, NA,…
#> $ icu_patients <dbl> NA, NA,…
#> $ icu_patients_per_million <dbl> NA, NA,…
#> $ hosp_patients <dbl> NA, NA,…
#> $ hosp_patients_per_million <dbl> NA, NA,…
#> $ weekly_icu_admissions <dbl> NA, NA,…
#> $ weekly_icu_admissions_per_million <dbl> NA, NA,…
#> $ weekly_hosp_admissions <dbl> NA, NA,…
#> $ weekly_hosp_admissions_per_million <dbl> NA, NA,…
#> $ total_tests <dbl> NA, NA,…
#> $ new_tests <dbl> NA, NA,…
#> $ total_tests_per_thousand <dbl> NA, NA,…
#> $ new_tests_per_thousand <dbl> NA, NA,…
#> $ new_tests_smoothed <dbl> NA, NA,…
#> $ new_tests_smoothed_per_thousand <dbl> NA, NA,…
#> $ positive_rate <dbl> NA, NA,…
#> $ tests_per_case <dbl> NA, NA,…
#> $ tests_units <chr> NA, NA,…
#> $ total_vaccinations <dbl> NA, NA,…
#> $ people_vaccinated <dbl> NA, NA,…
#> $ people_fully_vaccinated <dbl> NA, NA,…
#> $ total_boosters <dbl> NA, NA,…
#> $ new_vaccinations <dbl> NA, NA,…
#> $ new_vaccinations_smoothed <dbl> NA, NA,…
#> $ total_vaccinations_per_hundred <dbl> NA, NA,…
#> $ people_vaccinated_per_hundred <dbl> NA, NA,…
#> $ people_fully_vaccinated_per_hundred <dbl> NA, NA,…
#> $ total_boosters_per_hundred <dbl> NA, NA,…
#> $ new_vaccinations_smoothed_per_million <dbl> NA, NA,…
#> $ new_people_vaccinated_smoothed <dbl> NA, NA,…
#> $ new_people_vaccinated_smoothed_per_hundred <dbl> NA, NA,…
#> $ stringency_index <dbl> NA, NA,…
#> $ population_density <dbl> 54.422,…
#> $ median_age <dbl> 18.6, 1…
#> $ aged_65_older <dbl> 2.581, …
#> $ aged_70_older <dbl> 1.337, …
#> $ gdp_per_capita <dbl> 1803.98…
#> $ extreme_poverty <dbl> NA, NA,…
#> $ cardiovasc_death_rate <dbl> 597.029…
#> $ diabetes_prevalence <dbl> 9.59, 9…
#> $ female_smokers <dbl> NA, NA,…
#> $ male_smokers <dbl> NA, NA,…
#> $ handwashing_facilities <dbl> 37.746,…
#> $ hospital_beds_per_thousand <dbl> 0.5, 0.…
#> $ life_expectancy <dbl> 64.83, …
#> $ human_development_index <dbl> 0.511, …
#> $ population <dbl> 4112877…
#> $ excess_mortality_cumulative_absolute <dbl> NA, NA,…
#> $ excess_mortality_cumulative <dbl> NA, NA,…
#> $ excess_mortality <dbl> NA, NA,…
#> $ excess_mortality_cumulative_per_million <dbl> NA, NA,…
tdpm <- covid %>% drop_na(`total_deaths_per_million`) %>%
group_by(location) %>%
summarize(`total_deaths_per_million` = max(`total_deaths_per_million`)) %>%
arrange(desc(`total_deaths_per_million`))
DT::datatable(tdpm)
covid %>% drop_na(`total_deaths_per_million`) %>%
group_by(location) %>%
summarize(`total_deaths_per_million` = max(`total_deaths_per_million`), .groups = "drop") %>%
arrange(desc(`total_deaths_per_million`)) %>%
ggplot(aes(x = `total_deaths_per_million`)) + geom_histogram(bins = 30)
covid %>% filter(location == "Japan") %>% arrange(desc(date))
#> # A tibble: 1,224 × 67
#> iso_code continent location date total_cases
#> <chr> <chr> <chr> <date> <dbl>
#> 1 JPN Asia Japan 2023-05-10 33793429
#> 2 JPN Asia Japan 2023-05-09 33793429
#> 3 JPN Asia Japan 2023-05-08 33793429
#> 4 JPN Asia Japan 2023-05-07 33778993
#> 5 JPN Asia Japan 2023-05-06 33772764
#> 6 JPN Asia Japan 2023-05-05 33766957
#> 7 JPN Asia Japan 2023-05-04 33759614
#> 8 JPN Asia Japan 2023-05-03 33742983
#> 9 JPN Asia Japan 2023-05-02 33725765
#> 10 JPN Asia Japan 2023-05-01 33720739
#> # ℹ 1,214 more rows
#> # ℹ 62 more variables: new_cases <dbl>,
#> # new_cases_smoothed <dbl>, total_deaths <dbl>,
#> # new_deaths <dbl>, new_deaths_smoothed <dbl>,
#> # total_cases_per_million <dbl>,
#> # new_cases_per_million <dbl>,
#> # new_cases_smoothed_per_million <dbl>, …