28 World Inequality Report

28.1 Set up

library(tidyverse)
#> ── Attaching core tidyverse packages ──── tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.2     ✔ readr     2.1.4
#> ✔ forcats   1.0.0     ✔ stringr   1.5.0
#> ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
#> ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
#> ✔ purrr     1.0.1     
#> ── Conflicts ────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl) # for excel files
library(WDI)

28.1.1 World Inequility Report - WIR2022

Please add mode="wb" (web binary). This should work better.

url_summary <- "https://wir2022.wid.world/www-site/uploads/2022/03/WIR2022TablesFigures-Summary.xlsx"
download.file(url = url_summary, 
              destfile = "./data/WIR2022s.xlsx", 
              mode = "wb") 

If you get an error, download the file directory from the methodology site into your computer, then open it with Excel and save it in the data folder of your R Studio project. Then R studio can recognize it easily as an Excel data.

Generally, a text file such as a CSV file is easy to import, but a binary file is difficult to handle. It is because unless R can recognize its file type, for example, Excel or so, R cannot import the data.

excel_sheets("./data/WIR2022s.xlsx")
#>  [1] "Index"     "F1"        "F2"        "F3"       
#>  [5] "F4"        "F5."       "F6"        "F7"       
#>  [9] "F8"        "F9"        "F10"       "F11"      
#> [13] "F12"       "F13"       "F14"       "F15"      
#> [17] "T1"        "data-F1"   "data-F2"   "data-F3"  
#> [21] "data-F4"   "data-F5"   "data-F6"   "data-F7"  
#> [25] "data-F8"   "data-F9"   "data-F10"  "data-F11" 
#> [29] "data-F12"  "data-F13." "data-F14." "data-F15"

28.2 WIR Package

In the following, we explain how to download data by an R package wir. First, you need to install the package. However, it is not an official R package yet; you need to use the package devtools to install it.

install.packages("devtools")
devtools::install_github("WIDworld/wid-r-tool")

I have not studied fully, but you can download the data by a package called wir. See here. After installing the package, check the codebook of the indicators. The following is not the ratio given in F8, but an example.

  • w wealth-to-income ratio or labor/capital share fraction of national income
  • wealg: net public wealth to net national income ratio
  • wealp: net private wealth to net national income ratio
library(wid)
wwealg <- download_wid(indicators = "wwealg", areas = "all", years = "all")
wwealp <- download_wid(indicators = "wwealp", areas = "all", years = "all")
#> Rows: 8783 Columns: 5
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (3): country, variable, percentile
#> dbl (2): year, value
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> Rows: 8989 Columns: 5
#> ── Column specification ────────────────────────────────────
#> Delimiter: ","
#> chr (3): country, variable, percentile
#> dbl (2): year, value
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
public <- wwealg %>% select(country, year, public = value)
public
#> # A tibble: 8,783 × 3
#>    country  year public
#>    <chr>   <dbl>  <dbl>
#>  1 AD       1995 0.0765
#>  2 AD       1996 0.0973
#>  3 AD       1997 0.118 
#>  4 AD       1998 0.138 
#>  5 AD       1999 0.159 
#>  6 AD       2000 0.182 
#>  7 AD       2001 0.207 
#>  8 AD       2002 0.234 
#>  9 AD       2003 0.263 
#> 10 AD       2004 0.294 
#> # ℹ 8,773 more rows
private <- wwealp %>% select(country, year, private = value)
private
#> # A tibble: 8,989 × 3
#>    country  year private
#>    <chr>   <dbl>   <dbl>
#>  1 AD       1995   0.441
#>  2 AD       1996   0.488
#>  3 AD       1997   0.534
#>  4 AD       1998   0.582
#>  5 AD       1999   0.628
#>  6 AD       2000   0.678
#>  7 AD       2001   0.727
#>  8 AD       2002   0.778
#>  9 AD       2003   0.834
#> 10 AD       2004   0.894
#> # ℹ 8,979 more rows
public_vs_private <- public %>% left_join(private)
#> Joining with `by = join_by(country, year)`
public_vs_private
#> # A tibble: 8,783 × 4
#>    country  year public private
#>    <chr>   <dbl>  <dbl>   <dbl>
#>  1 AD       1995 0.0765   0.441
#>  2 AD       1996 0.0973   0.488
#>  3 AD       1997 0.118    0.534
#>  4 AD       1998 0.138    0.582
#>  5 AD       1999 0.159    0.628
#>  6 AD       2000 0.182    0.678
#>  7 AD       2001 0.207    0.727
#>  8 AD       2002 0.234    0.778
#>  9 AD       2003 0.263    0.834
#> 10 AD       2004 0.294    0.894
#> # ℹ 8,773 more rows

We use wdi_cache created by wdi_cache = WDI::wdi_cache().

wdi_cache <- read_rds("./data/wdi_cache.RData")
df_pub_priv <- public_vs_private %>% pivot_longer(cols = c(3,4), names_to = "category", values_to = "value") %>% left_join(wdi_cache$country, by = c("country"="iso2c")) %>%
  select(country = country.y, iso2c = country, year, category, value, region, income, lending)
df_pub_priv
#> # A tibble: 17,566 × 8
#>    country iso2c  year category  value region income lending
#>    <chr>   <chr> <dbl> <chr>     <dbl> <chr>  <chr>  <chr>  
#>  1 Andorra AD     1995 public   0.0765 Europ… High … Not cl…
#>  2 Andorra AD     1995 private  0.441  Europ… High … Not cl…
#>  3 Andorra AD     1996 public   0.0973 Europ… High … Not cl…
#>  4 Andorra AD     1996 private  0.488  Europ… High … Not cl…
#>  5 Andorra AD     1997 public   0.118  Europ… High … Not cl…
#>  6 Andorra AD     1997 private  0.534  Europ… High … Not cl…
#>  7 Andorra AD     1998 public   0.138  Europ… High … Not cl…
#>  8 Andorra AD     1998 private  0.582  Europ… High … Not cl…
#>  9 Andorra AD     1999 public   0.159  Europ… High … Not cl…
#> 10 Andorra AD     1999 private  0.628  Europ… High … Not cl…
#> # ℹ 17,556 more rows
unique(df_pub_priv$country)
#>   [1] "Andorra"                                     
#>   [2] "United Arab Emirates"                        
#>   [3] "Afghanistan"                                 
#>   [4] "Antigua and Barbuda"                         
#>   [5] NA                                            
#>   [6] "Albania"                                     
#>   [7] "Armenia"                                     
#>   [8] "Angola"                                      
#>   [9] "Argentina"                                   
#>  [10] "American Samoa"                              
#>  [11] "Austria"                                     
#>  [12] "Australia"                                   
#>  [13] "Aruba"                                       
#>  [14] "Azerbaijan"                                  
#>  [15] "Bosnia and Herzegovina"                      
#>  [16] "Barbados"                                    
#>  [17] "Bangladesh"                                  
#>  [18] "Belgium"                                     
#>  [19] "Burkina Faso"                                
#>  [20] "Bulgaria"                                    
#>  [21] "Bahrain"                                     
#>  [22] "Burundi"                                     
#>  [23] "Benin"                                       
#>  [24] "Bermuda"                                     
#>  [25] "Brunei Darussalam"                           
#>  [26] "Bolivia"                                     
#>  [27] "Brazil"                                      
#>  [28] "Bahamas, The"                                
#>  [29] "Bhutan"                                      
#>  [30] "Botswana"                                    
#>  [31] "Belize"                                      
#>  [32] "Canada"                                      
#>  [33] "Congo, Dem. Rep."                            
#>  [34] "Central African Republic"                    
#>  [35] "Congo, Rep."                                 
#>  [36] "Switzerland"                                 
#>  [37] "Cote d'Ivoire"                               
#>  [38] "Chile"                                       
#>  [39] "Cameroon"                                    
#>  [40] "China"                                       
#>  [41] "Colombia"                                    
#>  [42] "Costa Rica"                                  
#>  [43] "Cuba"                                        
#>  [44] "Cabo Verde"                                  
#>  [45] "Curacao"                                     
#>  [46] "Cyprus"                                      
#>  [47] "Czechia"                                     
#>  [48] "Germany"                                     
#>  [49] "Djibouti"                                    
#>  [50] "Denmark"                                     
#>  [51] "Dominica"                                    
#>  [52] "Dominican Republic"                          
#>  [53] "Algeria"                                     
#>  [54] "Ecuador"                                     
#>  [55] "Estonia"                                     
#>  [56] "Egypt, Arab Rep."                            
#>  [57] "Eritrea"                                     
#>  [58] "Spain"                                       
#>  [59] "Ethiopia"                                    
#>  [60] "Finland"                                     
#>  [61] "Fiji"                                        
#>  [62] "Micronesia, Fed. Sts."                       
#>  [63] "France"                                      
#>  [64] "Gabon"                                       
#>  [65] "United Kingdom"                              
#>  [66] "Grenada"                                     
#>  [67] "Georgia"                                     
#>  [68] "Ghana"                                       
#>  [69] "Greenland"                                   
#>  [70] "Gambia, The"                                 
#>  [71] "Guinea"                                      
#>  [72] "Equatorial Guinea"                           
#>  [73] "Greece"                                      
#>  [74] "Guatemala"                                   
#>  [75] "Guam"                                        
#>  [76] "Guinea-Bissau"                               
#>  [77] "Guyana"                                      
#>  [78] "Hong Kong SAR, China"                        
#>  [79] "Honduras"                                    
#>  [80] "Croatia"                                     
#>  [81] "Haiti"                                       
#>  [82] "Hungary"                                     
#>  [83] "Indonesia"                                   
#>  [84] "Ireland"                                     
#>  [85] "Israel"                                      
#>  [86] "Isle of Man"                                 
#>  [87] "India"                                       
#>  [88] "Iraq"                                        
#>  [89] "Iran, Islamic Rep."                          
#>  [90] "Iceland"                                     
#>  [91] "Italy"                                       
#>  [92] "Jamaica"                                     
#>  [93] "Jordan"                                      
#>  [94] "Japan"                                       
#>  [95] "Kenya"                                       
#>  [96] "Kyrgyz Republic"                             
#>  [97] "Cambodia"                                    
#>  [98] "Kiribati"                                    
#>  [99] "Comoros"                                     
#> [100] "St. Kitts and Nevis"                         
#> [101] "Korea, Dem. People's Rep."                   
#> [102] "Korea, Rep."                                 
#> [103] "Kuwait"                                      
#> [104] "Cayman Islands"                              
#> [105] "Kazakhstan"                                  
#> [106] "Lao PDR"                                     
#> [107] "Lebanon"                                     
#> [108] "St. Lucia"                                   
#> [109] "Liechtenstein"                               
#> [110] "Sri Lanka"                                   
#> [111] "Liberia"                                     
#> [112] "Lesotho"                                     
#> [113] "Lithuania"                                   
#> [114] "Luxembourg"                                  
#> [115] "Latvia"                                      
#> [116] "Libya"                                       
#> [117] "Morocco"                                     
#> [118] "Monaco"                                      
#> [119] "Moldova"                                     
#> [120] "Montenegro"                                  
#> [121] "Madagascar"                                  
#> [122] "Marshall Islands"                            
#> [123] "North Macedonia"                             
#> [124] "Mali"                                        
#> [125] "Myanmar"                                     
#> [126] "Mongolia"                                    
#> [127] "Macao SAR, China"                            
#> [128] "Northern Mariana Islands"                    
#> [129] "Mauritania"                                  
#> [130] "Malta"                                       
#> [131] "Mauritius"                                   
#> [132] "Maldives"                                    
#> [133] "Malawi"                                      
#> [134] "Mexico"                                      
#> [135] "Malaysia"                                    
#> [136] "Mozambique"                                  
#> [137] "New Caledonia"                               
#> [138] "Niger"                                       
#> [139] "Nigeria"                                     
#> [140] "Nicaragua"                                   
#> [141] "Netherlands"                                 
#> [142] "Norway"                                      
#> [143] "Nepal"                                       
#> [144] "Nauru"                                       
#> [145] "New Zealand"                                 
#> [146] "OECD members"                                
#> [147] "Oman"                                        
#> [148] "Panama"                                      
#> [149] "Peru"                                        
#> [150] "French Polynesia"                            
#> [151] "Papua New Guinea"                            
#> [152] "Philippines"                                 
#> [153] "Pakistan"                                    
#> [154] "Poland"                                      
#> [155] "Puerto Rico"                                 
#> [156] "West Bank and Gaza"                          
#> [157] "Portugal"                                    
#> [158] "Palau"                                       
#> [159] "Paraguay"                                    
#> [160] "Qatar"                                       
#> [161] "Romania"                                     
#> [162] "Serbia"                                      
#> [163] "Russian Federation"                          
#> [164] "Rwanda"                                      
#> [165] "Saudi Arabia"                                
#> [166] "Solomon Islands"                             
#> [167] "Seychelles"                                  
#> [168] "Sudan"                                       
#> [169] "Sweden"                                      
#> [170] "Singapore"                                   
#> [171] "Slovenia"                                    
#> [172] "Slovak Republic"                             
#> [173] "Sierra Leone"                                
#> [174] "San Marino"                                  
#> [175] "Senegal"                                     
#> [176] "Somalia"                                     
#> [177] "Suriname"                                    
#> [178] "South Sudan"                                 
#> [179] "Sao Tome and Principe"                       
#> [180] "El Salvador"                                 
#> [181] "Sint Maarten (Dutch part)"                   
#> [182] "Syrian Arab Republic"                        
#> [183] "Eswatini"                                    
#> [184] "Turks and Caicos Islands"                    
#> [185] "Chad"                                        
#> [186] "Togo"                                        
#> [187] "Thailand"                                    
#> [188] "Tajikistan"                                  
#> [189] "Timor-Leste"                                 
#> [190] "Turkmenistan"                                
#> [191] "Tunisia"                                     
#> [192] "Tonga"                                       
#> [193] "Turkiye"                                     
#> [194] "Trinidad and Tobago"                         
#> [195] "Tuvalu"                                      
#> [196] "Taiwan, China"                               
#> [197] "Tanzania"                                    
#> [198] "Ukraine"                                     
#> [199] "Uganda"                                      
#> [200] "United States"                               
#> [201] "Uruguay"                                     
#> [202] "Uzbekistan"                                  
#> [203] "St. Vincent and the Grenadines"              
#> [204] "Venezuela, RB"                               
#> [205] "British Virgin Islands"                      
#> [206] "Virgin Islands (U.S.)"                       
#> [207] "Vietnam"                                     
#> [208] "Vanuatu"                                     
#> [209] "Samoa"                                       
#> [210] "IBRD only"                                   
#> [211] "IDA only"                                    
#> [212] "Least developed countries: UN classification"
#> [213] "Low income"                                  
#> [214] "Lower middle income"                         
#> [215] "Yemen, Rep."                                 
#> [216] "South Africa"                                
#> [217] "Zambia"                                      
#> [218] "Zimbabwe"
df_pub_priv %>% 
  filter(country %in% c("Japan", "Norway", "Sweden", "Denmark", "Finland"), year %in% 1970:2020) %>%
  ggplot(aes(year, value, color = country, linetype = category)) + geom_line()

We choose two indicators: ‘wealg’ and ‘wealp’. WIR2022 indicators consists of 6 characters; 1 letter code plus 5 letter code. You can find the list in the codebook.

If you want to study WIR2022, please study the report, the codebook, and wir vignette together with the R Notebook.

As I mentioned earlier, the data tables used in the report are available from the following page.