Last Update: July 18, 2020
Distance-Regular Graphs of Classical Parameters (d, q, a, b)
- Click the “Evaluate” button below to calculate parameters.
- The outputs will be at the bottom.
- Edit the parameters in "array" at the top of the code, and see the results.
- The program below only works for numeric values.
- If you want to get the text form of matrices, edit 'show' to 'print'
- You can get latex-format output as shown below.
- Link to SageCell Server
- Instruction to make similar pages
Examples of Distance-Regular Graphs of Classical Parameters
- Johnson graph J(n,d): (d, 1, 1, n-d)
- Grassmann graph Jq(n,d): (d, q, q, q[n-d]q)
- Dual polar graph (e = 0, 1/2, 1, 3/2, 2): (d,q,0,qe)
- Dual polar graph U(2d,r): (d, -r, r(r+1)/(1-r), (r-(-r)d+1)/(1-r))
- Half dual polar graph: Dn.n(q): (d, q2, q2+q, q[m]q), [m=n=2d+1, or m+1 = n = 2d]
- Exceptional Lie graph E7,7(q): (3, q4, (q3+q2+q+1)q, q[9]q)
- Gosset graph E7(1): (3, 1, 4, 9)
- Triality graph 3D4,2(q): (3, -q, q/(1-q), q(q+1))
- Witt graph M24: (3, -2, -4, 10)
- Witt graph M23: (3, -2, -2, 5)
- Hamming graph H(d,n): (d, 1, 0, n-1)
- Halved cube (1/2)H(n,2): (d,1,2,m), [m=n=2d+1, or m+1 = n = 2d]
- Bilinear forms graph: (d, q, q-1, qn-1)
- Alternating forms graph: (d, q2, q2-1, qm-1), [m=n=2d+1, or m+1 = n = 2d]
- Heamitean forms graph q = r2: (d, -r, -r-1, -(-r)d-1)
- Affine E6(q) graph: (3, q4, q4-1, q9-1)
- Extended ternary Golay code graph: (3, -2, -3, 8)
- Pseudo Dm(q) graphs: (d, q, 0, 1)
- Dist. 1-or-2 in symplectic dual polar graph: (d, q2, q(q+1), q[m]q)
- Doob graph: (d, 1, 0, 3)
- Quadratic forms graph: (d, q2, q2-1, qm-1), , [m=n=2d-1, or m-1 = n = 2d]