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Foreword

April 4, 1995.

This book is a lecture note based on a series of lectures by Paul Terwilliger in
1993. The original is a manuscript written by Paul Terwilliger.

This note was rewritten by Hirosh Suzuki when he studied the lecture note
during the following period.

January 13, 1995 — March 4, 1995.

He had a chance to meet the author for a week after reading through the lecture
note. The author clarified almost everything he asked. So even in the part where
he put “?”, there seems to be no mathematical gap. But sometimes, it requires
lengthy calculations.

In the last part, each result has two numbers because the original lecture note
has duplications. He supposes that this lecture note is already two years old, so
some statements are improved essentially.
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Preface by P. Terwilliger

This book attempts to prepare the way for an eventual classification of the
graphs that are both thin and @-polynomial. These graphs are distance-regular
or bi-distance-regular, and since the distance-regular case is somewhat easier to
handle, the focus will be on that case. (It is assumed the bi-distance-regular case
is not too different). In the core of this book, we take a vertex z in a distance-
regular graph, and study the irreducible modules for the subconstituent algebra
T'(x) that have endpoint at most 2. (The modules with endpoint at most 3 seems
too complicated to consider, and do not seem to play much of a role anyway).
The thin condition and the @-polynomial property each affect the structure of
these momdules, so these assumptions are first considered separately, and then
jointly.

1. Introduction (Chapters 1 - 8)

la. The subconstituent algebra T'(x) associated with any vertex x in a graph
1b. Example: The D-dimensional cube and the Lie algebra si,(C)

lc. The graphs of thin type: definition and characterizations

2. The structure of a thin T'(z)-module W in an arbitrary graph (Chapters
9-11)

2a. The constants a,(W), x
2b. The measure m(W)

(W)
2c. The isomorphism class of W determines and is determined by m(WW)

2d. How non-orthogonal thin irreducible T'(x)-modules and thin, irreducible
T (y)-modules are related

2e. The matrices R, F, L, and R, L1

3. Distance-regularity (Chapters 12 - 13)

3a. Distance-regularity with respect to a vertex
3b. The trivial T'(z) modules

3c. A graph is distance-regular with respect to each vertex if and only if
the trivial T'(z)-module is thin if and only if the graph is distance-regular or
bi-distance-regular

4. The structure of a thin irreducible T'(z)-module W with endpoint 1 in a
distance-regular graph (Chapters 14 - 17)

4a. The isomorphism class of W is determined by the intersection numbers
and ay (W)

4b. Span({v{,v],...,v5}) is thin irreducible T'(z)-module if and only if
v}, v; are dependent, for all ¢
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4c. If my < ky, there exist at least one thin, irreducible T'(x)-module with
endpoint 1

4d. Formula for a,(W), z;(W), ~,(W)

4e. Feasibility conditions arising from the above constants being algebraic
integers

4f. Feasibility conditions arising from |a;(W)| < a;,, (?)

4g. A combinatorial characterization of the distance-regular graphs where
every irreducible T'(z)-module with endpoint 1 is thin

5. Distance-regular graphs where each irreducible T'(x)-module with end-
point 1 is thin

5a. Formulae for the multiplicities of the isomorphism class of T'(x)-modules
with endpoint 1

5b. The b,’s are determined by ¢;’s and the structure of the first subcon-
stituent

5¢. a; =0 impliesa;, =0 (1 <i<D—1)

5d. Distance-regular graphs where the first subconstituent is strongly regular:
restrictions on the parameters and possible classification (?)

5e. Distance-regular graphs where the first subconstituent has 4 distinct
eigenvalues: restrictions on the parameters (7)

5f. Distance-regular graphs where the first subconstituent has 5 distinct
eigenvalues: restrictions on the parameters (7)

5g. What minimal assumption (weaker than @) implies Z (7)

6. Structure of a thin, irreducible T'(z)-module with endpoint 2 in a distance-
regular graph

Ga. Similar to 4 (7)

7. The distance-regular graphs where each irreducible T'(x)-module with end-
point at most 2 is thin

7a. The intersection numbers are determined by the structure of the first
and the second subconstituents

7b. The bipartite case

7c. Classification of the examples where there are sufficiently few isomor-
phism classes of irreducible T'(x)-modules with endpoint 1 or 2 (?)

7d. Classification of the almost-triply-regular graphs
8. The @-polynomial property (Chapter 28)
8a. Graphs that are @-polynomial with respect to each vertex (?)
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9. Commutative association schemes (Chapters 17 - 27)

9a. The Bose-Mesner algebra M and the dual Bose-Mesner algebra M*
9b. The Krein parameters

9c. The fundamental relations between M, M*

9d. An algebraic characterization of the Q-polynomial schemes

9e. The representation of a commutative association scheme

9f. A representation-theoretic characterization of the P- and @-polynomial
schemes

10. Quantum Lie algebras (Chapter 29)
10a. The generators A, A* satisfy two cubic polynomial equations
10b. How these equations simplify in the thin case
10c. Complete classification in the thin case
11. @-polynomial distance-regular graphs (Chapters 30 - 31)
11a. Formulae for the intersection numbers

11b. A combinatorial characterization of the Q-polynomial distance-regular
graphs that involves R, L, F'

11c. Formulae for the z; constants

12. @-polynomial distance-regular graphs, continued: The structure of an ar-
bitrary irreducible T'(x)-module with endpoint 1 (Chapters 32 - 37)

12a. E{TE7] is commutative and has essentially one generator
12b. Description of the irreducible T'(z)-modules with endpoint 1

12c. There are at most 4 mutually non-isomorphic thin, irreducible T'(z)-
modules with endpoint 1

13. The @Q-polynomial distance-regular graphs of thin type: The ideal T'(z)Ej}
(Chapters 38 - 40)

13a. The constant ¥ = 1(x,y) is independent of the edge xy

13b. EJTEY is spanned by the all 1’s matrix and 4 generalized adjacency
matrices

13c. T(x)y = T(y)z if (z.y) = 1. Complete description of this T'(z,y)-
module in terms of ¢ and the intersection numbers (?)

13d. The z; are constatn functions

13e. Feasibility conditions forced by the integrality and non-negativity of the

z (7)
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13f. Feasibility conditions forced by the integrality and non-negativity of the
multiplicities of the irreducible T'(z)-modules with endpoint 1 (?)

14. The Q-polynomial distance-regular graphs, continued: The structure of
an arbitrary irreducible T'(z)-module with endpoint 2

14a. Similar to 12 (7)
15. The @Q-polynomial distance-regular graphs of thin type: the ideal T'(z)E;
15a. Similar to 13 (?)

16. The classification of the thin @-polynomial distance-regular graphs with
diameter at least (7)

17. Bi-distance-regular graphs
17a. If a bipartite graphs is thin then so are the halved graphs
17b. For any thin T'(x)-module W, my, () = my, (—6)

17¢. Mimic the above sections 4-14 (?) (I desperately hope that @Q-polynomial
bi-distance-regular graphs that are not already distance-regular do not exist)
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Chapter 1

Subconstituent Algebra of a
Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair I' = (X, E),
where

X = finite set (of vertices)
E = set of (distinct) 2-element subsets of X (= edges of ) T.

The vertices x and y € X are adjacent if and only if zy € E.
Example 1.1. Let " be a graph. X = {a,b,¢,d}, E = {ab, ac, bc,bd}.

fa

Set n = | X]|, the order of T".

Pick a field K (= R or C). Then Mat y(K) denotes the K algebra of all n x n
matrices with entries in K. (rows and columns are indexed by X)

13



14 CHAPTER 1. SUBCONSTITUENT ALGEBRA OF A GRAPH

Adjacency matriz A € Matx(K) is defined by
|1 ifayek,
Ay = { 0 else. (1.1)

Example 1.2. Let a,b, c¢,d be labels of rows and columns. Then

(=l

C

o~ o8
[ e

d
1 0
11
0 0
0 0

_QU O o

The subalgebra M of Mat y (K') generated by A is called the Bose-Mesner algebra
of .

Set V= K", the set of n-dimensional column vectors, the coordinates are
indexed by X.

Let (, ) denote the Hermitean inner product:
(u,v) =u" v (u,veV)
V with (, ) is the standard module of T'.

M acts on V: For every x € X, write

&)
Il
—

— T

where 1 is at the x position.
Then
Ai= >
yeX,xyeE

Since A is a real symmetrix matrix,
V=Vy+Vi+-+V, somereZzZ?,

the orthogonal direct sum of maximal A-eigenspaces.

Let E; € Mat x(K) denote the orthogonal projection,

E,:V—=V.
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Then E,, ..., E, are the primitive idempotents of M.
M = Span . (Ey, ..., E,),

E,E; =6k, forall i,j, Ej+--+E =1

Let 0, denote the eigenvalue of A for V, in R. Without loss of generality we may
assume that

Og >0, >>0,.
Let
m,; = the multiplicity of 8, = dimV; = rankF;.

Set
0y, 6y, .., 0O,
my, My, .., M)

Problem. What can we say about I' when Spec(T") is given?

Spec(T) = (

The following Lemma 1.1, is an example of Problem.

For every z € X,

k(x) = valency of x = degree of z = |{y |y € X, zy € E}|.

Definition 1.1. The graph I is regular of valency k if k = k(x) for every z € X.
Lemma 1.1. With the above notation,

(1) 0y < max{k(x) | x € X} = km>*.
(#3) If T is reqular of valency k, then 6, = k.

Proof. (i) Without loss of generality we may assume that 6, > 0, else done. Let
vi=) . a,T denote the eivenvector for 6.

Pick x € X with |a,| maximal. Then |a,| # 0.
Since Av = Oyv,

Opr, = E o
yeX,xycE

v

So,
Oploy| = 0o, < D oyl < k(@)]a,| < k™a,].

yeX,zycE

z|*

(44) All I's vector v =} _ & satisfies Av = kv.
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Let z,y € X and £ € 729,
Definition 1.2. A path of length £ connecting x,y is a sequence
T=T4, T,y =y, x,€X (0<i<)
such that z;x; , € E forall i (0<i</{—1).
Definition 1.3. The distance O(x,y) is the length of a shortest path connecting

x and y.
Iz, y) € Z=° U {o0}.

Definition 1.4. The graph T is connected if and only if d(z,y) < oo for all
z,y € X.

From now on, assume that I' is connected with |X| > 2.

Set
dp = d = max{0(z,y) | v,y € X} = the diameter of T.

Definition 1.5. For each vertex z € X,

d(z) = the diameter with respect to x = max{d(z,y) |y € X} < d.

Fix a ‘base’ vertex x € X.
Observe that
V=V+ Wi+ + Vi, (orthogonal direct sum),

where
Vi = Spang (5| dla.y) = 1) = V;' ()

and V" = V*(x) is called the i-th subconstituent with respect to x.
Let Ef = Ef(x) denote the orthogonal projection

View Ef(x) € Matx(K). So, E}(z) is diagonal with yy entry:

N 1 if d(x,y) =1,
<Ei<x>>yy={0 else< ) for y € X.

Set
M* = M*(x) = Span g (Ej(z), ..., By, ().

Then M*(z) is a commutative subalgebra of Maty(K) and is called the dual
Bose-Mesner algbara with respect to x.
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Definition 1.6 (Subconstituent Algebra). Let I' = (X, E), x, M, M*(z) be as
above. Let T' = T'(z) denote the subalgebra of Mat y(K) generated by M and
M*(x). T is the subconstituent algebra of T’ with respect to x.

Definition 1.7. A T-module is any subspace W C V such that aw € W for all
ac€T and weW.

T-module W is irreducible if and only if W % 0 and W does not properly contain
a nonzero T-module.

For any a € Maty(K), let a* denbote the conjugate transpose of a.
Observe that

(au,v) = (u,a*v) for all a € Maty(K), and for all u,v e V.

Lemma 1.2. LetT'=(X,E), z € X and T =T (z) be as above.
(i) Ifa €T, thena* €T.
(it) For any T-module W C V,

Wti={veV |{wwv) =0, foralwe W}
is a T-module.

(it7) V' decomposes as an orthogonal direct sum of irreducible T-modules.

Proof. (i) It is because T is generated by symmetric real matrices

A, E5(x), Ef(x), ..., By, (2).
(1) Pick v € W+ and a € T, it suffices to show that av € W+. For all w € W,

(w, av) = (a*w,v) =0
asa* €T.

(#i7) This is proved by the induction on the dimension of T-modules. If W is
an irreducible T-module of V', then

V =W + W+ (orthogonal direct sum).



18 CHAPTER 1. SUBCONSTITUENT ALGEBRA OF A GRAPH

Problem. What does the structure of the T'(x)-module tell us about I'?

Study those I whose modules take ‘simple’ form. The I'’s involved are highly
regular.

HS MEMO

1. The subconstituent algebra T is semisimple as the left regular representa-
tion of T is completely reducible. See Curtis-Reiner 25.2 (Charles W. Cur-
tis, 2006).

2. The inner product (a,b); = tr(a'b) is nondegenerate on T'.

3. In general,

T: Semisimple and Artinian < T': Artinian with J(T') =0
< T': Artinian with nonzero nilpotent element
< T C Mat y(K) such that for all @ € T is normal.



Chapter 2

Perron-Frobenius Theorem

Friday, January 22, 1993

In this lecture, we use the Perron Frobenius theory of non-negative matrices to
obtain information on eigenvalues of a graph.

Let K = R. For n € Z°°, pick a symmetric matrix C' € Mat,, (R).

Definition 2.1. The matrix C' is reducible if and only if there is a bipartition
{1,2,...,n} = X* U X~ (disjoint union of nonempty sets) such that C;; = 0 for
alli € X*, and for all j € X—, and for all : € X, and for all j € X, i.e.,

x O
c~<0 )

Definition 2.2. The matrix C is bipartite if and only if there is a bipartition
{1,2,...,n} = X*U X~ (disjoint union of nonempty sets) such that C;; = 0 for
alli,7 € X*, and for all 4,7 € X, i.e.,

O *
(0 3)

1. If C is bipartite, for every eigenvalue 6 of C, —@ is an eigenvalue of C' such
that mult(#) = mult(—0).

Indeed, let C = (O A),

Note.

B O

O A\ (z\ _ 0(%) o O A T\ _ _g(®
B 0)\y) "\y B 0O)\—y) —y )’
where Ay = 0z and Bx = 0y.

19



20 CHAPTER 2. PERRON-FROBENIUS THEOREM

2. If C is bipartite, C? is reducible.

3. The matrix C is irreducible and C? is reducible, if C;; = 0 for all 7, j and
C' is bipartite. (Exercise)

HS MEMO

Note 1. Even if C is not symmetric

OAa:_ex@OA TN __p(®

B 0O)\y) "\y B O)\-y) —y
holds. So the geometric multiplicities of # and —8 coincide. How about the
algebraic multiplicities?
Note 3. Set x ~ y if and only if C,,, > 0. So the graph may have loops. Then

(C’Q)a:y > 0 < if there exists z € X such that v ~ z ~ y.
Note that C' is irreducible if and only if I'(C') is connected. Let
Xt = {y | there is a path of even length from z to y} (2.1)

X~ = {y | there is no path of even length from x to y} # 0. (2.2)

If there is an edge y ~ z in X and w € X~. Then there would be a path from
x to y of even length. So e(X 1, XT) =e(X,X) =0..

Theorem 2.1 (Perron-Frobenius). Given a matriz C' in Mat, (R) such that
(a) C is symmetric.

(b) C is irreducible.

(c) Ci; >0 for alli,j.

Let 6, be the maximal eigenvalue of C' with eigenspace Vi C R™, and let 6, be
the minimal eigenvalue of C with eigenspace V,, C R™. Then the following hold.
Qq
)

(i) Suppose 0 # v = € Vy. Then a; >0 for all i, or a; <0 for all i.

o,
(i4) dimV}, = 1.
(idi) 0, > —0,.
() 0, = 0y if and only if C is bipartite.

First, we prove the following lemma.
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Lemma 2.1. Let (, ) be the dot product in V = R™. Pick a symmetric matriz
B € Mat,,(R). Suppose all eigenvalues of B are nonnegative. (i.e., B is positive
semidefinite.) Then there exist vectors vy, vy, ..., v, € V such that B;; = (v;,v;)
foralli,j (1 <i,j<n).

Proof. By elementary linear algebra, there exists an orthonormal basis
Wy, Wy, ..., w,, of V consisting of eigenvectors of B. Set the i-th column of P is
w; and D = diag(fy, ...,0,). Then PTP =1 and BP = PD.

Hence,
B=PDP'=PDP" =QQ",

where
Q = P -diag(\/0,, /05, ...,\/8,,) € Mat,,(R).
Now, let v; be the i-th column of Q. Then

B;; = v - v; = (v;,0;)-

This proves the lemma. O

Now we start the proof of Theorem 2.1.

Proof. (i) Let {, ) denote the dot product on V' = R™. Set

B=0I-C (2.3)
= symmetric matrix with eigenvalues 6, — 6, > 0 (2.4)
= (<Ui7vj>)1§i,jgn (2.5)

with the same vy, ...,v,, € V by Lemma 2.1.

Observe:

Pf.

since Bv = (6, — C)v = 0.
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Now set
s = the number of indices ¢, where a; > 0.

Replacing v by —wv if necessary, without loss of generality we may assume that
s > 1. We want to show s = n.

Assume s < n. Without loss of generality, we may assume that «; > 0 for
1<i<sand a; <0for s+1<i<n. Set

p= QU+t o, = T Vs T T AUy

Then, for i =1,..., s,

<vi7p> = Z *Ot]<’U“UJ> (<U1?U]> Bz]? B = 90I - C) (210)
= Z (_aij)(_cij> (2.11)
<0. (2.12)

Hence
py = ai{v;p) <0
i=1

as a; > 0 and (v;,p) < 0. Thus, we have (p,p) = 0 and p = 0. For j =

s+1,...,n
0= (p,v;) Za v;,0;) <0,

as (v;,v;) = —C

2] ij°
Therefore,
0= (v, v)——C’ijforlgigs, s+1<j<n.

Y7
x* O
=5 %)

Thus C is reducible, which is not the case. Hence s = n.

Since C' is symmetric,

(#4) Suppose dim V[, > 2. Then,

dim | VN | . > 1.
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So, there is a vector

o
Ofv=|: el
a’ﬂ

with a; = 0. This contradicts ().

)
OFw=|: | eV,.
Bn

(iii) Suppose 6, < —0,. Since the eigenvalues of C? are the squares of those of
C, 62 is the maximal eigenvalue of C2.

Now pick

Also we have C?w = 02w.

Observe that C? is irreducible. (As otherwise, C' is bipartite by Note 3, and we
must have 6, = —6,.) Therefore, 8; > 0 for all 7 or 3; < 0 for all i. We have

(v,w) =D oy # 0.

This is a contradiction, as V,LV,.

(iv) =: Let 6, = —0,. Then 6 = 07 = 02 is the maximal eigenvalue of C?,
and v and w are linearly independent eigenvalues for 6 for C2. Hence, for C?,
mult(0) > 2.

Thus by (ii), C? must be reducible. Therefore, C' is bipartite by Note 3.

<: This is Note 1. O

Let I' = (X, E) be any graph.

Definition 2.3. T is said to be bipartite if the adjacency matrix A is bipartite.
That is, X can be written as a disjoint union of X and X~ such that X+, X~
contain no edges of T.

Corollary 2.1. For any (connected) graph T with

by 0,

my My r

Spec(T') = < 97") with 0y >0, > - >0,.

Let V; be the eigenspace of 0,. Then the following holds.

o51

1. Supppose 0 £ v = ( :

) €Vy € R". Then a;; >0 for all i, or a; <0 for
o

all 7.

2. my=1.
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3. 0, > —0, if and only if I is bipartite. In this case,

, =0, andm;=m,_; (0<i<r).

3

Proof. This is a direct consequences of Theorem 2.1 and Note 3. O



Chapter 3
Cayley Graphs

Monday, January 25, 1993
Given graphs I' = (X, E) and IV = (X', E).
Definition 3.1. A map o : X — X’ is an isomorphism of graphs whenever;

i. o is one-to-one and onto,
ii. zy € E if and only if oxoy € E’ for all z,y € X.

We do not distinguish between isomorphic graphs.

Definition 3.2. Suppose I' = I'V. Above isomorphism o is called an automor-
phism of T'. Then set Aut(T") of all automorphisms of T" becomes a finite group
under composition.

Definition 3.3. If Aut(T") acts transitive on X, I' is called vertex transitive.
Definition 3.4 (Cayley Graphs). Let G be any finite group, and A any gener-
ating set for G such that 1, ¢ A and g € A — g~! € A. Then Cayley graph

I' =T'(G, A) is defined on the vetex set X = G with the edge set E define by
the following.

E ={(hy,hy) | hy,hy € G,hi'hy € A}y = {(h,hg) | h € G,g € A}.

Example 3.1. G = (a|a® =1), A = {a,a}.

25



26 CHAPTER 3. CAYLEY GRAPHS

a
Example 3.2. G = (a|a® =1), A ={a,a ! a% a?}.

a
Example 3.3. G = (a,b | a® =1=10%ab = ba), A = {a,a },b}.

a b a b

a’b

ab a’b
HS MEMO

Aut(T") =~ Dy x Z, contains two regular subgroups isomorphic to Dy and Zg X Z,
and T is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.
Theorem 3.1. The following hold.
(1) For any Cayley graph T'=T(G,A), the map

G — Aut(T) (g g)
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s an injective homomorphism of groups, where

g(x) =gz forall g € G and for all x € X(= G).
Also, the image G is regular on X. i.e., the image G acts transitively on X with
trivial vertex stabilizers.

(#4) For any graph T = (X, E), suppose there exists a subgroup G C Aut(T") that
is reqular on X. Pick x € X, and let

A={geCG|(x,g(z) € E}
Then1¢ A, g€ A — gt €A, and A generates G. Moreover, T ~T'(G,A).
Proof. (i) Let g € G. We want to show that g € Aut(T"). Let hy,h, € X = G.
Then,
(hy,hy) € E— hithy € A

— (ghy) "' (ghy) € A

— (ghy,ghy) € E

— (g(hq),9(hy)) € E.

~ o~ o~
I N I
NN NN

Hence, g € Aut(T").

Observe: g - g is a homomorphism of groups:
lo=1 010 = 9.
Observe: g+ g is one-to-one:
9 =9~ 91 =9(lg) =9%(lg) = go-
Observe: G is regular on X: Clear by construction.

(#4) 1 ¢ A: Since I' has not loops, (z,1.2) ¢ E.
gEA =g lteA:

geEA = (z,9(x) e E—= E> (9 (x),97 (g9(x))) = (g7 (2),z).

A generates G: Suppose (A) C G. Let X = {g(z) | g€ (A} C X. (X C X as
G acts regularly on X.)

Since I' is connected, there exists y € X and z€ X X with yz € E.
Let y = g(x), g € (A), z € h(z), h € G (A). Then

(y,2) = (9(z),h(x)) € E — (x,9 'h(z)) € E — g th € (A) — h € (A).
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This is a contradition. Therefore, A generates G.

Let IV = (X', E’) denote I'(G, A). We shall show that
0: X" - X (g g(a))
is an isomorphism of graphs.
6 is one-to-one: For hy,hy € X' =G,
O(hy) = 0(hy) — hy(x) = hy(x) = hylhy(z) = 2 — hyth, € Stabg(x) = {15} — hy = h,.
(Stabg (z) = {g € G | g(z) = x}.)
0 is onto: Since G is transitive,

X = {g(x) | g € G} = 6(X") = 0(G).

0 respects adjacency: For hy,h, € X' =G,
(hy,hy) € B" < hithy € A & (z,hy hy(@)) € E 4 (hy(2), hy(2)) € E > (0(hy),0(hy)) € E.
Therefore # is an isomorphism between graphs I'(G, A) and T'( X, E). O

How to compute the eigenvalues of the Cayley graph of and abelian group.
Let G be any finite abelian group. Let C* be the multiplicative group on C {0}.

Definition 3.5. A (linear) G-character is any group homomorphism 6 : G —
C*.

Example 3.4. G = (a | a® = 1) has three characters, 6,6, 0,.

2

0;(a’) |1 a a
0, |1 1 1 . —1++/-3
0, |1 w w? with w=—
0y 1 w? w

Here w is a primitive cube root of ¢ in C*, i.e., 1 +w + w? = 0.
For arbitraty group G, let X(G) be the set of all characters of G.
Observe: For 6,,60, € X(G), one can define product 6,6s:

0,05(g) = 01(g9)0,(g) forall geG.

Then 6,0, € X(G).
Observe: X(G) with this product is an (abelian) group.

Lemma 3.1. The groups G and X(G) are isomorphic for all finite abelian
groups G.
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Proof. G is a direct sum of cyclic groups;
G=G, &G, ® &G, where G;=(a;|al =1) (1<i<m).
Pick any element w; of order d; in C*, i.e., a primitive d;-the root of 1. Define
0,: G—C* (al*any = w;® where 0<¢; <d;;1<i<m).
Then 0, € X(G). (Exercise)
Claim: There exists an isomorphism of groups G — X (G) that sends a; to 0;.
Observe: 0?" = 1. For every g = aj' -~ an € G,

0 (9) = (0,(9)" = (W) = (W)= = 1.

Observe: If 071052 -+ 07 =1 for some 0 < ¢; < d;,1 <i <m. Then g, =g, =
=g, =0.

Pf. 1= 07052057 (a;) = w', Since w; is a primitive d;-th root of 1, ¢; = 0 for
1< <m.

Observe: 6, ...,0,, generate X(G). Pick § € X(G). Since a?i =1,1= (‘)(af"') =
0(a;)".

Hence 6(a;) = w® for some ¢, with 0 < ¢, < d,.
Now 6 = Qil anm, since these are both equal to wfi at a; for 1 <i¢<m.

Therefore,
G— X(G) (a;—90,)

is an isomorphism of groups. O

Note. The correspondence above is clearly a group homomorphism.
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Chapter 4

Examples

Wednesday, January 27, 1993

Theorem 4.1. Given a Cayley graph T' = T'(G,A). View the standard module
V = CG (the group algebra), so

<Z a,g, Zﬁgg> = ZO‘!JE’ with ag, B, € C.

geG geG geG

For any 0 € X(G), write
6=> 6g")g.

geG

Then the following hold.

(i) (6,,0,) = |G| if 6, = 6, and O othewise for 0,0, € X(G). In particular,
{010 € X(G)} forms a basis for V.

(i7) A = Agé for 8 € X(QG), where A is the adjacency matriz and

Ay = Z 0(g).

geEA

In particular, the eigenvalues of T are precisely

{Ag |0 € X(G)}.

Proof.
(i) Claim: For every 6 € X(G), let

iG] ie=1
s:=2 0y )_{0 i 0+

geG

31
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Pf. Clear if § = 1.

Let @ # 1. Then 6(h) # 1 for some h € G.

s 0(h) = (Z 9(gl>> O(h) =) 0(g7'h)=) olg") =s.

geG geG g’ eG
Since 8(h) # 1, s = 0.

Claim. 6(g~1) = 0(g) for every § € X(G) and every g € G.

Since 6(g) € C is a root of 1,

On the other hand, since 0 is a homomorphism,

0(g)0(g~") =0(1) = 1.

Hence 6(g') = 0(g).

Now

(B1,02) =Y 01(g7)8,(g ) (4.1)

geG
=Y 0i(g7")b,(9) (4.2)

geG
=2 00519 (43)

geG

; -1 _
_fiel i aept =1 »
0 if 6,051 #1.

Since |G| = | X(G)| by Lemma 3.1, and 8,’s are orthogonal nonzero elements in

V, that form a basis of V.

(#4) Let A ={gy,...,9,}. Then
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_ (Ze ) (45)

geG
=> 0g )99 +-+g9,) (T(9)={991,,99,}) (4.6)
geG
= (Z 9(9‘1)(992»)) (4.7)
i=1 \geG

<

> 0(gi97 ggﬁ) (4.8)

% (2
]

> 0(9,)0((99:) ggz> (4.9)

i geG

1H

0(g:) > O(h~")h (4.10)

i=1 heG
5 0. (4.11)

N

>

Since {f | # € X(G)} forms a basis, the eigenvalues of T are precisely,

{8 [0 € X(G)}.

This completes the proof.

Example 4.1. Let G = (a | a® = 1), and A = {a,a'}. Pick a primitive 6-th
root of 1, w. Then

X(G)={0"|0<i<5} suchthat 0(a)=w, wt+w =1

W.

s
=
Ig

W /
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peX(@) p(a) A, =0(a) + O(a)~*
1 1
0 w wt+wl=1
62 w? -1
63 wd=-—1 -2
6* w? -1
6° w? 1

21 -1 -2
Spec(F):(l 9 9 1).

Example 4.2. D-cube, H(D,2). Let

X ={(ay,...,ap) | a; € {1,-1}, 1 <i < D},

E={ay|x,y € X, z,y: different in exactly one coordinate}.

Also H(D,?2) is a Cayley graph I'(G, A), where
G:GIGBGQ@@GDy
G,={a;|a?=1), A={ay,..,ap}.

K2

Homework: The spectrum of H(D,2) is
0, 60, - 0p
mo ml e mD ’

0, =D—2i (0<i<D), m;= (D>.

where

HS MEMO
Let 0 € X(G). Then 6 : X — {£1}. If

v(0) = [{i | 6(a;) = =1},

then Ay = D — 2i. Since there are (%) such 6, we have te assertion.

We want to compute the subconstituent algebra for H(D,2). First, we make a

few observations about arbitrary graphs.

Let I' = (X, E) be any graph, A, the adjacemcy matrix of I', and V', the standard

module over K = C.

Fix a base v € X. Write Ef = Ef(z), and

T = T'(x) = the algebra generated by A, E§, EY, ...
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Definition 4.1. Let W be any irreducible T-module (C V). Then the endpoint
r = r(W) satisfied
r=min{i | EfW # 0}.

The diameter d = d(W) satisfied

d=|{i| EXW #0}| — 1.

Lemma 4.1. With the above notation, let W be an irreducible T-module. Then

(i) BYAE; =0 if |i—j| > 1, BIAE 40 if li—jl=1, 0<i,j<d().
(i) AEXW C B W + EXW + E; W, 0< j < d(x). (EXW =0 ifi<j or
i>d(x).)

(iii) ESW #0ifr <j<r+d, =0if0<j<rorr+d<j<d(z).

(iv) BIAESW 40, if |i—jl =1 (r <i,j <r+d).

Proof.
(i) Pick y € X with d(z,y) = j. We want to find Ef AE}j. Note,

y if 9(z,y) =j.

By AE:j = E; Aj (4.12)
=E > z (4.13)

zeX,yzeE

= > z (4.14)

zeX,yzeE,0(x,z)=1
=0if [i—j]>1 by triangle inequality. (4.15)
If |i — j| = 1, there exist y,y" € X such that d(z,y) = j, d(z,y') =i, yy € E
by connectivity of I'. Hence (4.14) contains 3’ and (4.14) is not equal to zero.

(71) We have

d(z)
AEIW = (ZO E) AEW (4.16)
=B AEIW + ESAESW + Ef  AETW (4.17)
CELW+EW+E,W. (4.18)

(#ii) Suppose E5W = 0 for some j (r < j <r+d). Then r < j by the definition
of r. Set
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W = E;W + Ef W+ + B W.

Observe 0 C W C W. Also AW Cc W by (i4), and E:V’V C W for every i by

construction.

Thus, TW C W, contradicting W being irreducible.



Chapter 5

T-Modules of H(D,2), 1

Friday, January 29, 1993

Let I = (X, E) be a graph, A the adjacency matrix, and V the standard module
over K = C.

Fix a base z € X and write Ef = Ef(x), and T = T(x).

Let W be an irreducible T-module with endpoint r := min{i | EfW # 0} and
diameter d := |{i | EfW # 0}| — 1.

We have

EXW #0 r<i<r+d (5.1)
=0 0<i<r or r+d<i<d). (5.2)

Claim: EfAEIW #0if |[i — j| =1 for 7 <4,5j <7 +d. (See Lemma 4.1.)
Suppose E7, | AE;W = 0 for some j with 7 < j <r+d. Observe that
W = E:W + -+ EXW

is T-invariant with .
0oCwWcCw.

Becase AW C W since AEYW C E;_,W + EW,
E;W CW  forall k,
we have TW C W.

Suppose E; AETW =0 for some ¢ with r < ¢ <7 +d.

Similarly, .
W=EW+.-+E. W

™
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is a T-module with 0 C W cw.

Definition 5.1. Let I', E, and T be as above. Irreducible T-modules W and
W’ are isomorphic whenever there is an isomorphism o : W — W’ of vector
spaces such that ac = ga for all a € T

Recall that the standard module V' is an orthogonal direct sum of irreducible
T-modules
W, eW,® - & W,, for some .

Given W in this list, the multiplicity of W in V is
{3 [ W; = W}

HS MEMO
It is known that the multiplicity does not depend on the decomposition.
Now assume that I' is the D-cube, H(D,2) with D > 1. View
X ={a,ap|a, €{l,-1},1<i< D}, (5.3)
E={ay|x,y€ X, z,y differ in exactly 1 coordinate}. (5.4)
Find T-modules.
Claim: H(D,2) is bipartite with a partition X = X U X, where
Xt ={a,ap € X |[]a; >0} (5.5)
X~ ={a,ap e X |[]a <0} (5.6)

Observe: for all y,z € X,
0(y,z) =i <y, z differ in exactly in 4 coorinates with 0 <i < D.
Here, the diameter of H(D,2) = D =d for all z € X.

Theorem 5.1. LetI' = H(D,2) be as above. Fixzx € X, and write Ef = Ef(z),
and T =T(z).

Let W be an irreducible T-module with endpoint r, and diameter d with 0 < r <
r+d<D.

(i) W has a basis wy,wy, ..., wg with w; € Ef W for 0 <i < d. With respect
to which the matrix representing A is

0 d 0 0 0 0
1 0 d-1 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 0 2 0
0 0 0 d—1 0 1




(#9) d = D —2r. In particular, 0 <r < D/2.
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(#it) Let W’ denote an irreducible T-module with endpoint v’'. Then W and W’

are isormorphic as T-modules if and only if r =1’.

(iv) The multiplicity of the irreducible T-module with endpoint r is

()-(2) wsesme

Proof. Recall that I' is vertex transitive. It is a Cayley graph.

and 1 if r =0.

. . D
Hence without loss of generality, we may assume that x = 11---1.

Notation: Set 2 = {1,2,..., D}. For every subset S C , let

A -1 if eSS
S=a,a;€X a;= ?‘16
1 ifigS.

In particular, @ =1z and

S| =i dx,8)=isSecEV.

For all S,T C Q, we say S covers T if and only if S D T and |S| = |T| + 1.

Observe that S , T are adjacent in I if and only if either T' coverse S or S coverr

T.

Define the ‘raising matrix’
D
R=YE; AE;.
i=0

Observe that

RE;V C E;,,\V for 0<i<D, and E},,V = 0.

Indeed for any S C Q with |S| =1,

RS = RE;S
= E;HA‘S?
= Z Eig T+ Z Ei, T
T,CQ,S covers T} TCOQ,T covers S

_ § * T
- Ei+1T'
TCQ,T covers S
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Define the ‘lowering matrix’

D
L= E; AE;.
=0

Observe that
LEV CEf |V for 0<i<D, and E*,V =0.

Indeed for any S C €,
LS = > oo
TCQ,S covers T

Observe that A = L + R.

For convenience, set

D

A" =>"(D—2i)E;.

=0

Claim: The following hold.

(a) LR — RL = A".

(b) A*L — LA* = 2L.

(¢) A*R — RA* = —2R.

In particular Span(R, L, A*) is a 'representation of Lie algebra sl,(C).

HS MEMO

sly(C) = {X | Mat(C | tr(X) = 0}.

For X,Y € sl,(C), define a binary operation [X,Y] = XY — Y X.

. (1 0 0 1 0 0
(o 8) e (6 0) ()

Then these satisfy the relations (a) - (¢) above.

Proof of Claim. Apply both sides to S (S CQ). Say |S| =i.
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Proof of (a):
(LR — RL)S = ) U (5.11)
TCQ T covers S UCQ S covers U
(D—1i of them) (3 of them)
=(D—1i)S+ > v (5.12)
VCQ,|V|=i,]SNV]|=i—1
- <z§ + f/) (5.13)
VEQ,|V]=i,|SNV]=i—1
= (D—2i)S (5.14)
= A*S. (5.15)
Proof of (b):
(A*L — LA*)S = (D —2(i —1))LS — (D — 2i)LS (since LS € E* ,V) (5.16)
= 2L8S. (5.17)
Proof of (¢):
(A*R — RA*)S = (D —2(i + 1))RS — (D — 2i))RS  (since RS € E},,V)
(5.18)
= —2RS. (5.19)

Let W be an irreducible T-module with endpoint r and diameter d (0 < r <
r+d<D).

Proof of (i) and (i1):
Pick 0 # w € EXW.
Claim: LRw = (D — 2r)w.

Pf.
LRw = (A*+ RL)w (by Claim (a)) (5.20)
=A*w (LweE! W=0) (5.21)
= (D —2r)w. (5.22)
Define
—le e B W (0<i<d).
Then,
Rw; = (i+1w;,; (0<i<d) (5.23)

Rwy; =0 (by definition of d) (5.24)
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Claim: Lwg = 0 and

Lw; = (D—2r—i+lw,_; (1<i<d).

Pf. We prove by induction on i. The case ¢ = 0 is trivial, and the case i =1
follows from above claim. Let i > 2,

Lw; = %LRU}F1 = %(A* + RL)w;_; (by Claim (a)) (5.25)
(by induction hypothesis) (5.26)

_ %((D Crti—)w,  + (D=2 — (i—1)+ DRw, y (Ruw, , = (i—
(5.27)

= %i(D—2r—i+ Dw,;_4 (5.28)

= (D—2r—i+ D, ,. (5.29)

Claim: wy, ..., w, is a basis for W.

Pf. Let W’ = Span{wy,...,wy}. Then W’ is R and L invariant. So it is
A = R + L invariant.

Also it is E7-invariant for every .
Hence W’ is a T-module.
Since W is irreducible, W’ = W.

As w;’s are orthogonal, they are linearly independent. Note that w, # 0 by the
definition of d and Lemma 4.1 (iv).

Claim: d = D — 2r.

Pf. By (a),
0=(LR—RL— A")wy, (5.30)

=0—(D—-2r—d+1)Rwy_; — (D —=2(r+d))wy (5.31)
=—dD—-2r—d+ 1w, — (D —2(r+d))w, (5.32)
= (—dD +2rd +d*>—d— D+ 2r + 2d)w, (5.33)
=(d®*+ (2r—D+1)d +2r — D)w, (5.34)
=(d+2r—D)(d+ 1w,. (5.35)

Hence d = D — 2r.

Therefore, with respect to a bais wg, wy,...,wg, A=L+ R, w_; = wg,; =0,

Lw; =(d—i+1)w;_;, Rw;=(i+1w;,.

K2

Dw;_y)



0 d 0 0 0

0 0 d—1 0 0
L=1: . : ,

Do . 0 1

00 0 0

This completes the proof of (i) and (7).

—_

o

o

43



44

CHAPTER 5. T-MODULES OF H(D,2), I



Chapter 6

T-Modules of H(D,?2), I1

Monday, February 1, 1993

Proof of Theorem 5.1 Continued.

(#i7) Let r =17,

Wy, ... , Wy a basis for W with w; € EfW, and
W, ..., Wyt a basis for W’ with w; € EfW’.
Thend =D —2r=D—2r" =d’, and

oW =W (w;—~w))

is an isomorsphism of T-modules by (7).

If r # 1/, then
d=D—-2r+D—-2r" =d,

hence, dim W # dim W’.
(iv) Let W; be an irreducible T-module with endpoint ¢. Then

D T
dim EXV = = 16(W;).
imEV (r) ;mu (W)

iy = (7) - ()

Hence, we have that

by induction on 7.

45
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Theorem 6.1. LetI' = H(D,2) with D > 1. Fiz a vertex x € X and write

D
E; = Ei(x), T=T(x), and A*=> (D—2)E;.
=0

Let W be an irreducible T-module with endpoint r with 0 < r < D/2. Then,
(1) W has a basis

wi, wi, ..., wy (d=D—2r), suchthat w; € E; W (0<1i<d)

with respect to which the matrix corresponding to A* is

04 0

1 0 d-—1

02 0
0 2 0
d—1 0 1
0 d 0

In particular,

(i1) B,A"E; =0 if |i— j| # 1 for 0 <4,j < D.

Proof. We use the notation,
[C“?m =af — Pa (Z —[ﬂ, a])

Recall that
(a) [L, R] = A%,
(b) [A*, L] = wL,
(¢) [A", R] = 2R,
and A=L+ R.
Write (a) — (¢) in terms of A and A*, we have,
[A,A*] = [L,A*]+ [R,A*] =2(R—L).
{R+L —A
R—L =]A AY/2.°

Hence,
1
R = Z(2A +[A, A*]) and (6.1)

L:i@A—MAm. (6.2)
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Now (a), (b) become

AZA* —2AA*A+ A* A2 —4A* =0 (6.3)
AP A 24 AA* + AA® —4A =0 (6.4)
Pf. By (b),
2A — AA* + A*A = AL (6.5)
= 2[A*, L] (6.6)
2 2
= A*A— AA* + %(—A*AA* + A A4 AA — AT AAY)
(6.8)
So we have (6.4)
AP A —2A*AA* + AA® —4A = 0.
By (a),
—16A* = [2A + [A, A*],2A — [A, A7) (6.9)
= (24 + [A, A*])(2A — [A, A*]) — (2A — [A, A7) (24 + [A, A*])  (6.10)
= [4A2 — 2A[A, A*] + [A, A%](24) — [A, A2 (6.11)
—4A% —2A[A, A*] + [A, A*](24) + [A, A*)? (6.12)
— —A4A2A* 4 4AATA+AAATA — 4A* A2, (6.13)
So,

A2A* —2AA* A+ A*A? —4A* = 0.

Claim: EfA*E; =01if [i —j| # 1for 0 <i,j < D.

Pf. We have,

0=FE;(A2A" —2AA*A + A*A? — 4A")E; (6.14)

= EiA*Ej(Q? —20,0,+ 912- —4) (6.15)

(AE; =0,E;, E;A= (AE]-)T = (0,E,)T =0,E)) (6.16)

= EA B0, —0;,—2)(0;, — 0, +2) (6.17)

= E,A"E;(D —2i — (D — 2j) — 2)(D — 2i — (D — 2j) + 2) (6.18)

(0, = D —2k) (6.19)

=BEAE; -4(i—j+1)(i—j—1) (6.20)

and i —j+1%0,i—j—1+0. Hence, B A"E; = 0.
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Now define “dual raising matrix”,

D
R* =Y E, A"E,
=0

So,
R'EV CE, |V, (0<i<D, Ep,V=0).

Define “dual lowering matrix”
D
L*=> E, \A'E,.
=0

Then

Observe that

i=0 =0
by Claim 1.
Claim 2. We have
(a) [L*, R*] = A,
(b) [A, L*] = 2L,
(c) [A,R*] = —2R*.
Pf. (b)
D
AL~ L*A =) (AE, \A*E,— E, | A"E;A) (6.21)
i=0
D
= Z E, JAE(6;, 1 —b;) (6.22)
i=0
(0,=D—2k 0, , —0,=2—2(i—1)=2 (6.23)
—2L". (6.24)
(¢) Similar.
HS MEMO
D
AR*—R*A=) (AE, A*E,— E, |A*E;A) (6.25)
i=0
D
= Z Ei+1A*Ei<9i+1 —0;) (6.26)
i=0

= —2R*. (6.27)
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(a) We have, by (b), (¢)
[A,A*] = [A,L*]| + [A,R*] = 2(L* — R"). (6.28)
Since A* = L* + R*,

_2A[ANA] 24— (A A

R*
4 ’ 4

Now (a) is seen to be equivalent to (6.4) upon evaluation. This proves Claim 2.

HS MEMO

[L*, R*] = i((2A* — [A*, A])(24* + [A*, A]) — (24* + [A*, A])(24* — [A, A¥]))

16
(6.29)

= %6(4,4*2 4 2A%[A*, A] — [A*, A]2A* — [A*, A2 — 44*° (6.30)
+ 2A*[A*, A] — [A*, A]24* + [A*, A]?) (6.31)

= i(A*zA — 2A*AA* + AA™?) (6.32)
= A, (6.33)

by (6.4).

Now apply same argument as for (6.3), (6.4) of Theorem 5.1 and observe A*
has D + 1 distinct eigenvalues. So,

generates
M* = Span(Ej§, ..., E}).

Hence, E,, ..., Ep, A* generates T.

Take an irreducible T-module W with endpoint r with 0 < r < D/2. Set
t =min{i | E,W}.

Pick 0 # w§ € E,W. Set
w; = ﬁR wy € B, ;W for all 4.

Then,
Rw; = (i + 1w}, foralli.
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By (a), we get by induction, L*w} = (D — 2t —i + 1)w} 4,

1
Liwi = - L'R*wj, (6.34)
1
= ;(A + R*L*)wi_, (6.35)
1
= g((D —2(t4+i—1)wi 4+ (i —1)(D—2t —i+ 2)w; ;) (6.36)
=(D—-2t—i+ 1w} ;. (6.37)
So Span(wg, w},...) is L*, R*, A*-invariant. Hence, W = Span(wf, wj, ..., w}),
wh, Wy, ..., wh # 0, wi =0 for every ¢ > d by dimension.
Thus d = D — 2t.
Pf.
(D —2(t + d))wl = Aw} (6.38)
= (L*R* — R*L")w}, (6.39)
=—(D—-2t—d+1)R'w}_, (6.40)
=—(D—-2t—d+ 1)dw}. (6.41)
Hence,
0=d?>+(2t—D—-1+2)d—(D—2t)=(d—D+2t)(d+1)
Sod=D —2t. O

Definition 6.1. For any graph I' = (X, E), pick a vertex « € X, and set
Ef =Ef(z)and T =T (x).

(¢) An irreducible T-module W is thin if dim EW < 1 for every i.
(74) T is thin with respet to z, if every irreducible T'(z)-module is thin,
(#4i) An irreducible T-module W is dual thin if dim E;W < 1 for every i.

(iv) T is dual thin with respect to x, if every irreducible T'(z)-module is dual
thin.

Observe: H(D,?2) is thin, dual thin with respect to each z € X.

Definition 6.2. With above notation, write D = D(x).

(1) An ordering Fy, E, ..., Ep of primitive idempotents of I" is restricted if E,
corresponds to the maximal eigenvalue.
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Fix a restricted ordering,

(#4) T is Q-polynomial with respect to x, above ordering if there exists A* =
A*(x) such that

(

(

a) E§V, ..., E5V are the maximal eigenspaces for A*.

b) B, AE, =0if [i — j| > 1 for 0<i,j < R.

Observe H(D,?2) is @-polynomial with respect to the natural ordering of the
idempotents and every vetex.

Program. Study graphs that are thin and Q-polynomial with respect to each
vertex.

(In fact, thin with respect to « implies dual thin with respect to x.)

Get a situation like H(D,2), where T is generated by A, A*. Except sl,(C) is
replaced by a quantum Lie algebra.
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Chapter 7

The Johnson Graph J(D, N)

Wednesday, February 3, 1993

Definition 7.1. The Johnson graph, I' = J(D,N) (1 < D < N — 1) satisfies

X={S|ScQ, |S|=D} where Q={1,2,...,N} (7.1)
E={S8T|S5,TeX, |SNT|=D-1}.

Example 7.1. J(2,4)
23
12 , 34
14

Note 1. The symmetric group Sy acts on Q. Sy C Aut(I') acts vertex transi-
tively on T'.
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Note 2. I' = J(D, N) is isomorphic to IV = J(N — D, N).

I=(X,E) — I' = (X', E) (7.3)
X>8 s S=0 SeXx’

This correspondence induces an isomorphism of graphs.

Pf.
STeE<|SNT|=D—1 (7.5)
& |Q—(SUT)=N-D-1 (7.6)
& |SNT|=N—-D-1 (7.7)
< ST cE (7.8)

Hence, without loss of generality, assume
D<N/2 for J(D,N).

We will need the eigenvalues of J(D, N) for certain problem later in the course.
We can get these eigenvalues from our study of H (D, 2).

Lemma 7.1. The eigenvalues for J(D, N) with 1 < D < N /2 are give by

0,=(N—-D—-i)(D—i)—i (0<i<D), (7.9)
m, = (Jj) - (ZTJ (7.10)
Proof. Let
I,=J(D,N)=(X,,E,) (7.11)
'y =H(N,2) = (Xy, Ey). (7.12)

Set x =111 € Xp.
Define I' = (X, E), where

X ={ye Xy |0y(x,y) =D} 0y :distance in 'y (7.13)
E={yze Xy |04y, 2) =2}. (7.14)
Observe
X, - X (7.15
S s, (7.16)
where

g -1 ifie S
= Q- Q s a;, = i
vy 1 ifi¢gs
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induces an isomorphism of graphs I' ; — I

Pf.
STeE,; < |SNT|=D—1 (7.17)
o 0y5(5,T) =2 (7.18)
& (8, T) e E. (7.19)

Identify, I' ; with . Then the standard module V; of I' ; becomes V= ELVy,
where Vj; is the standard module of T'y, and Ef, = Ej)(x).

Let R be the raising matrix with respect to = in I'y;, and

let L be the lowering matrix with respect to z in I'y;.

Recall
(RL— DE})|y

is the adjacency map in r.

To find eigenvalues of fi, pick any irreducible T'(x)-module W with the endpoint
r < D. Then by Theorem 5.1

diam(W) = N — 2r.
Let wy, wy, ..., wx_g, denote a basis for W as in Theorem 5.1. Then,

wp_, € EpW CV.

Observe:
Awp, , = RLwp , — DE}wp (7.20)
=R(N—2r—D+r+1)wp_,_; —Dwp_, (7.21)
=(N=-D—-r+1)(D—r)—Dwp_,. (7.22)

Note that this is valid for D = r as well.

Hence,
Awp_ ., =(N—D—r)(D—7r)—1r)wp_,.
Let
Vy = Z W (direct sum of irreducible T'(z)-modules).
Then,
V, = EpVy (7.23)
= Y EW (7.24)
W:r(W)<D

— a direct sum of 1 dimensional eigenspaces for A. (7.25)
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The eigenspace for eigenvalue

(N—D—r)(D—r)—r (monotonously decreasing with respec to r)

()-(2)

in this sum by Theorem 5.1 (iv). O

appears with multiplicity

Theorem 7.1. Let T = (X, E) be any graph. For a fixed vertex x € X, let
Ef=Ei(x), T=T(z), D=D(z), and K =C.
Then we have the following implications of conditions:
TH< C<= S< G,

where

(TH) T is thin with respect to x.

(C) EXTE? is commutative for every i, (0 <i < D).

(S) EfTE? is symmetric for every i, (0 <i < D).

(G) For every y,z € X with 0(x,y) = 0(x, z), there exists g € Aut(I') such that

gr =2, gy =2, gz = y.
Proof.
(TH) = (C)
Fix ¢ with 0 <¢ < D. Let
V= Z W. The standard module written as a direct sum of irreducible T-modules.
Then,
EV = Z E;W. The direct sum of 1-dimensional E;T E7-modules.
Since dim EfW = 1, for a,b € E;TE}, ab— ba)g.yy = 0. Hence ab —ba = 0.
(C) = (TH)

Suppose dim E;W > 2 for some irreducible T-module W with some ¢ with
1<:<D.

Claim 1. EfW is an irreducible E;T Ef-module.

Proof of Claim 1. Suppose
0CUCEW,



o7

where U is an E;TE}-module. Then by the irreducibility,
TU =W.
So,
UDETE!U =ETU =EW.
This is a contradiction.

Claim 2. Each irreducible S = E;T E}-module U has dimension 1. In particular,
I' is thin with respect to x.

Proof of Claim 2. Pick
0#a€ ETE;.

Since C is algebraically closed, a has an eigenvector w € U with eigenvalue 6.
Then,

(a—600)U = (a —0I)Sw (7.26)
= S(a—0I)w (7.27)
= 0. (7.28)

Hence,
apy =0l forall a€S.

Thus each 1 dimensional subspace of U is an S-module. We have
dimU = 1.

By Claim 1 and Claim 2, we have (TH).

HS MEMO

Claim 1 shows the following: If W is an irreducible T-module, then E;W is
either 0 or an irreducible E;T E;-module.
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Chapter 8

Thin Graphs

Friday, February 5, 1993

Proof of Theorem 7.1 continued.
(S) = (C)
Fix 7 and pick a,b € E;TE;.
Since a, b and ab are symmetric,
ab = (ab)" =b'a" = ba.
Hence E;TE} is commutative.
(G) = (5)
Fix i and pick a € E;TE}. Pick vertices y,z € X.
We want to show that

We may assume that
Az, y) = 0(x,2) =1,
otherwise

Ay, = Ay = 0.

By our assumption, there exists g € G such that
gy) =2 gz) =y, gl@)=u=
Let g denote the permutation matrix representing g, i.e.,
0
gg]:g/(;) forall ye X, g=|1]|+«uyw.
0

99
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If g € Aut(T"), then
gA=Ag (Exercise).

Also, we have
gE;=FE:g (0<j<D),
since

d(z,y) = d(g(x),g(y)) = 0(x,9(y))-

Hence, § commutes with each element of 7. We have

0 else.

= Z(gil)yy’ay/z’gz’z (82)
y/ Z/

ay. = (571ad),. <§>yz{1 9(z) =y (8.1)

(zero except for g L (y') =y, g(z) = 2.) (8.3)
= %g(y)g(=) 4
=y,

This proves Theorem 7.1.
O

Open Problem: Find all the graphs that satisfy the condition (G) for every
vertex x.

H(N,2) is one example, because

Autl, , ~S,, x=(1-1), T,(z)={S]||S|=i}.

Property (G) is clearly related to the distance-transitive property.

Definition 8.1. Let I' = (X, E) be any graph. I' with G C Aut(I") is said to
be distance-transitive (or two-point homogeneous), whenever

for all z,2",y,y" € X with d(z,y) = d(z’,vy),
there exists g € G such that
glx)=a', gly) =y’
(This means G is as close to being doubly transitive as possible.)

Lemma 8.1. Suppose a graph T = (X, E) satisfies the property (G) = (G(x))
for every x € X. Then,

(i) either

(ia) T' is vertex transitive; or

(ita) T is bipartite (X = XT U X ") with X+, X~ each an orbit of Aut(T").

(ii

i1) if (ia) holds, then T is distance-transitive.
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Proof. (i) Claim. Suppose y, z € X are conneced by a path of even length. Then
y, z are in the same orbit of Aut(T").

Pf of Claim. It suffices to assume that the path has lenght 2, y ~ w ~ z.
Now 9(y,w) = 9(w, z) = 1. So there exits g € Aut(I") such that

gw=w, gy==z, gz=Y.
This proves Claim.

Fix x € X. Now suppose that I" is not vertex transitive, and we shall show (ib).

Observe that X = X U X, where

X+ ={y € X | there exists a path of even length connecting = and y}, (8.6)
X~ ={y € X | there exists a path of odd length connecting x and y}. (8.7)

Also, X* is contained in an orbit O of Aut(T"), and X~ is contained in an orbit

O~ of Aut(I).

Now Ot NO~ =0 (else Ot = O~ = X and vertex transitive). So, X = Ot, and
X =0".

Also X* U X~ = X is a bipartition by construction.
(#) Fix z,y,2’,y" with 0(z,y) = 0(z’, y').
By vertex transitivity, there exists an element

gy € G such that g,z = 2'.
Observe that

o(a’,y') = 0(x,y) = d(g12, 1y) = 0(2’, 91y)-
Hence, there exisits an element
9> € G such that g,2" = 2', 95y = 619, 9201y = ¥

by (G(z")) property.
Set g = g59;. Then
gr=1',9y =y

by construction. O

The following graphs I' = (X, E) are vertex transitive, and satisfy the property
(G(x)) for all z € X.

J(D,N), H(D,r), J(D,N),

where
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H(D,r):
X={a;apla; € F,1<i<D} (8.8)
F : any set of cardinality r (8.9)
E={zy|y,z € X, x and y differ in exactly one coordiate}. (8.10)
J, (D, N):

X = the set of all D-dimensional subspaces of N-dimensional vector space over GF(q).

(8.11)
F': any set of cardinality r (8.12)
E={zy|y,ze X, dim(zny)=D—1}. (8.13)

The following graph is distance-transitive but does not satisify (G(x)) for any
z€G.

H,(D,N):
X = the set of all D x N matrices with entries in GF(q). (8.14)
E={zy|yxeX, rank(x —y) = 1}. (8.15)
HS MEMO

H(D,r): G=8S,wrSp, G, =S,_;wrSp,
For z,y € X with 0(z,y) = 0(z, z) =1,

Y:{jEQ\mj#yj}HZ:{jeQ|mj7ézj} (8.16)
(Y00 95,) € (Ze,s -0 20,) (8.17)

J(D,N): G =Sy, G, = Sp, x Sy_p-

XNY«XnZ (8.18)
(Q X)NY «(Q X)nZ. (8.19)

J (D,N):

XNY < XnZ.
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The theory of a single thin irreducible T-module.
Let I' = (X, E) be any graph.

M = Bose-Mesner algebra over K /C generated by the adjacency matrix A.
(8.20)

= Span(Ey, ..., Fp). (8.21)

M acts on the standard module V = CHI.
Fix z € X, let D = D(z) be the z-diameter, and k = k(z) be the valency of x.
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Chapter 9

Thin 7T'-Module, 1

Monday, February 8, 1993
Let I' = (X, E) be any graph.
M: Bose-Mesner algebra over K /C generated by the adjacency matrix A.
M = Span(Ey, ..., ER).
M acts on the standard module V = C/¥I.
Fix z € X, let D = D(z) be the z-diameter, and k = k(z) be the valency of x.
Definition 9.1. Pick z € X and write Ef = Ef(x) and T = T(z).
Let W be an irreducible thin T-module with endpoint r, diameter d.
Let a; = a;(W) € C satisfying

E:+iAE:+i|E*THW =a;lip: (O<i<d).
Let z; = 2;(W) € C satistying
E;fﬂ—i—lAE:ﬁ-iAE:-&-i—l|Ei_i71W =z llp. (0<i<d).

Lemma 9.1. With above notation, the following hold.

(i) a;, eR (0<i<d).

(ii) z; e 7O (0 < i <d).

(iii) Pick 0+ wy € EXW. Set w; = Ef,;A'w for alli. Then

(tiia) wy, w, ..., wy is a basis for W, w_; = wy, ; = 0.
(#49ib) Aw; = w;y + a,w; + z,w;_; (0 <4 < d).

(i) Define py,py, ..., g1 € R[A] by

65
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po=1 Ap;=pi+ap+x,p,, (0<i<d), p,=0.

(va) p(Aywg =w,, (0<i<d+1),
(1vb) pgyq ts the minimal polynomial of Aly, .

Proof. (i) a; is an eigenvalue of a real symmetric matrix E; ,AEY ;.

(ii) x; is an eigenvalue of a real symmetrix matrix BT B, where

B=FE' AFE

r+ r+i—1°
Hence, z; € R.

Since BT B is positive semidefinite,

x. > 0.

Pf. If BT Bv = ov for some 0 € R, v € R™ {0}, then
0<|Bv|?>=v"B"Bv=0ov'v=o0o|v|? |v|*>0.
Hence, ¢ > 0.

Moreover, z; # 0 by Lemma 4.1 (iv).

(itia) Observe
w; = EGAED qw; (1<i<d).

Sow, #0 (0<i<d)byLemma 4.1 (iv).

Hence,
W = Span(wy, ..., wg)

by Lemma 4.1. (i4i).
(7itb) We have that

Aw; = E7 i Aw; + LG Aw + Ery o Aw, (9.1)
=w;q + By GAE w + Er AET GAET qw,
= Wiy + QW5 + LW,y (9.3)

(tva) Clear for ¢ = 0. Assume it is valid for 0, ..., 1.

Piv1(A)wy = (A —a;w; — x;w; 4 = w; 4.

(ivb) By definition,
Pa1(A)wy = 0.
Moreover, py,;(A)W = 0 because of the following.



For every w € W, write

d
w= Z o, w,
i=0
d
= Z a;p; (A)wg for some a; € C
i=0
= p(A)w, for some p € C[A].

Hence,

Par1(A)w = pgi 1 (A)p(A)w,
= p(A)par1(A)wg
=0.

Note that p,,; is the minimal polynomial.

67

Pf. Suppose gq(A)W = 0 for some 0 # ¢ € C[\] with degq < degp,.; = d+ 1.

Then,
d
q= Zﬂipi for some 3; € C.
i=0
We have,
d
0= q(Aywy = fw;.
i=0
Hence 5y, = -+ = B; = 0 by (é¢ia). Thus ¢ = 0, and a contradiction.

Corollary 9.1. Let I', W, r, d be as above. Then
(i) W is dual thin, that is,

dmE,W <1 (1<i<d).
(id) d = [{i | E;W # 0} — L.
Proof. (i) Set as in Lemma 9.1,
w; = pi(A)wy € By ;W.
Then wy, wy, ... ,w, is a basis for W. We have
W = Muw,.

So,
E,W = E;Mw, = Span(FE,wy).
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Thus,
dim B, W — 1 if Eywy # 0,
0 if Eywy =0.
In particular,
dim EfW < 1.
(74) Immediate as
dimW =d + 1.
This proves the lemma. O

Lemma 9.2. Given an irreducible T (x)-module W with endpoint r = r(W),
diameter d = d(W'). Write

r;=2,(W)(0<i<d), w;=p(Aw,ecE W (0<i<d), 0+#w,eEW.
Then,

A .

TNE =zyzqx; (1 <i<d)

Proof. 1t suffices to show that

lwil® = 25w, [> (1< <d).
Recall by Lemma 9.1 (z3ib) that
Aw; =w; g +aw;+zw;, . (0<5<d), w_y=wz =0.

Now observe,

(w;_1, Aw;) = (w;_1,w; 41 + a;w; + 2,0, 1) (9.10)
= Tillw; 4 |? (9.11)
= z;w; 4 |*. (9.12)

by Lemma 9.1 (43). Also,

(w; 1, Aw;) = (Aw; |, w;) (since AT = A) (9.13)

<wz + a;_1W;_ + Ly 1W;i_9, wz> (914)

= Jlw,]® (9.15)

This proves the lemma. O

Definition 9.2. Let W be an irreducible thin T'(z) module with endpoint r,

The measure m = my, is the function

m:R— R



such that

where 0 #w € EXW
if 8 = 6, is an eigenvalue for T,

if @ is not an eigenvalue for T'.

69
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Chapter 10

Thin 7-Module, 11

Wednesday, February 10, 1993
Let I' = (X, E) be any graph.

Fix a vertex © € X. Let Ef = Ef(x), T = T(z), the subconstituent algebra
over C, and V = CXI the standard module.

Lemma 10.1. With above notation, let W denote a thin irreducible T'(x)-module
with endpoint r and diameter d. Let

0, = a,(W) (0<i<d) (10.1)
v =2, (W) (1<i<d) (10.2)
p=p;,(W) (0<i<d+1) (10.3)

be from Lemma 9.1, and measure m = my;,. Then,

(1) Pos - s Pas1 are orthogonal with respect to m, i.e.,

Zpi(ﬂ)pj(ﬂ)m(ﬂ) = 0;;T1Ty T, (0<4,j<d+1) with x4, =0.

ek
(ia) > p;(0)*m(0) = x; -z, (0<i<d).
0cR
(tia) Zm(@) =1.
0cR
(ita) Zpi(G)QHm(G) =z -z0, (0<i<d).
0cR

Proof. Pick 0 # w, € EXW. Set

w; = p;(A)wy € Ef W

71
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Since E;W and EZW are orthogonal if i # j,

djllwi]? = (w;, w)) (10.4)
= (p;(A)wy, p;(A)wy) (10.5)
R
= <p1 (Z Ez) wy, p;(A) (Z E4> wo> (10.6)
R
= <Zpl 6,) EewO,ZpJ 0, Eew0> (as AE; = 0,E))
£=0 =0
(10.7)
R —_—
= pi(0)p;(00) | Egwy|® (10.8)
=0
(as pj ERP, 0, €R, m(6;)|wo]? = | E;w,l?) (10.9)
Z m(0) wq - (10.10)
eR

Now we are done by Lemma 9.2 as
Jwill? = Jwol*zy 2 ...

For (ia), set ¢ = j, and for (ib), set ¢ = j = 0.
(73) We have

(wy, Aw;) = (w;, wiy + a;w; + z;w;_4) (10.11)
= G w,|? (10.12)
= a;zy 3w, (10.13)

as a; € R by Lemma 9.1.

Also,
(w;, Aw;) = (p;(A)wy, Ap;(A)wg) (10.14)
R R
= <pi(A) (Z Ee) wy, Ap;(A) (Z E@) wo> (asin (7))
£=0 £=0
(10.15)
D
= 0000, By (10.16)
£=0
= i(0)20m(6) wo|*. (10.17)
0eR

Thus, we have (i7). O
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Lemma 10.2. With above notation, let W be a thin irreducible T'(x)-module
with measure m. Then m determines diameter d(W),

c=a;(W) (0<i<d) (10.18)
x, =x,(W) (1<i<d) (10.19)
pi=p (W) (0<i<d+1). (10.20)

Proof. Note that d 4+ 1 is the number of § € R such that m(0) # 0. Hence m
determines d.

Apply (ia), (i) of Lemma 10.1.

> m(o) =1 po=1. (10.21)
0cR
ZGm(G) =a, P =A—ag (10.22)
(4SS
ZP1(9)2m<9) = (10.23)
fer
Zpl(G)QGm(Q) =zya = ay (10.24)
0cR
Py = (A—ay)p; —z1pg (10.25)
> pa(0)?m(0) =z, — (10.26)
ber
> pa(0)20m(6) = w x50, — ay (10.27)
0eR
ps = (A —ay)py — x50y (10.28)
: (10.29)
Zpd<9)2m(9) =TTy Ty — Ty (10.30)
0eR
> pa(0)20m(0) = w12y w40, — (10.31)
0cR
Par1 = (A—ag)pg — TqPq_1- (10.32)
(10.33)
This proves the assertions. O

Corollary 10.1. With above notation, let W, W’ denote thin irreducible T'(x)-
modules. The following are equivalent.

(i) W, W’ are isomorphic as T-modules.
r(W) =r(W’) and my, = myy.

(i)
(i) (W > (W), (W) = W), a(W) = a,(W") and 2,(W) = 2, (")
(0<i<d).
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Proof. (i) = (i) Write r
a; =a;(W), a; =a;,(W’),

r(W), v = r(W’), d = d(W), d = dW’),
z;(W) and z; = x;(W’).

3

Let 0 : W — W’ denote an isomorphism of T-modules. (See Definition 5.1.)

For every 1,
oEfW = EfoW = EXW’.

So,r=1r"and d=4d’.

To show a; = aj, pick w € E;, ;W {0}. Then,

Er JAE .o(W) =o(E: ,AE! ,w) = o(a;w) = a;0(w),

r+1 T+ r+1 r+i

and ocw # 0. So,

a; = eigenvalue of E* ;AEY , on EX W (10.34)

=dal. (10.35)

It is similar to show z = z’.
HS MEMO
Pick we E;,, W {0}, then

Bl ABLGAEL 0(W) = o(B},,  AE:AE;, ) = z,0(w).

r+i—1 r+i r+ r
Hence, x; is the eigenvalue of E' , |AE; AEY , ,on EX . W =ux].
Pick 0 # w, € EXW, 0# wy € EXW'. Let p; be in Lemma 9.1, and set

w; = p;(Awy € B ;W (0<i<d), (10.36)

w) = pi(Ayw) € B W (0<i<d). (10.37)

Define a linear transformation,
oW =W (w, > w)).

Since {w; } and {w}} are bases with d = d’, o is an isomorphism of vector spaces.

We need to show
ac =oca (forall a€T).

Take a = E7 for some j (0 < j < d(z)). Then for all 4, we have

* o, /
Eiow, = Ejw; = 5ijwi,

oEjw; = §;0(w;) = 0;;w]

i3 Vit

* _ * ?
Eiow; = o Ejw,?
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Take an adjacency matrix A of a. Then,

/

o ;o 7o / _ _
Aow; = Aw; = wiyy + ajw; + zjw; ) = 0wy + aw; + 2w, ) = o Aw;.

(#i) = (#91) Lemma 10.2.

(#i1) = (it) Given d, a;, x;, we can compute the polynomial sequence
pOapla 7pd+1

for W.

Show pg, Py, ..., Pg41 determines m = my,. Set

A={0€R]pg(0) =0}

Observe: |A| =d + 1. See ‘An Introcuction to Interlacing’.
m(@)=0if0 ¢ A (0 €R). So it suffices to find m(0), 6 € A.

By Lemma 10.1 (i),
ZQGA m(e)po (6) =1,
ZOEA m(0)p,(0) =0,

> gen (O)pa(0) = 0.
d + 1 linear equation with d + 1 unknowns m(6) (6 € A).

But the coefficient matrix is essentially Vander Monde (since degp; = 7). Hence

the system is nonsingular and there are unique values for m(6) (0 € A). O
HS MEMO
0—a, —1 0 0 Po(0)
—z; O—a 0 0
: - : =0,
0 0 = f—ay, -1 :
0 0 —Ty 9—ad pd(9>

where 6 is an eigenvalue of a diagonalizable matrix

a 1 - 0 0
ry a; - 0 0
L= =~ -~ - :
0 0 - ay, 1
0 0 - x; Hay

with multiplicity dim(Ker(6I — L) = 1).
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Chapter 11

Examples of T'-Module

Friday, February 12, 1993
Let I' = (X, E) be a connected graph.
Let 6, be the maximal eigenvalue of I', and § its corresponding eigenvector.
5= 6,7.
yex
Without loss of generality, we may assume that §, € R* for all y € X.
Lemma 11.1. Fiz a vertex x € X. Write T =T (x), Ef = E} ().
i) T§ =TT is an irreducible T-module.

(i
(i) Given any irreducible T-module W, the following are equivalent:
(ita) W =T6.

(#ib) The diameter d(W) = d(z).

(iic) The endpoint r(W) = 0.

Proof. (i) Observe: there exists an irreducible T-module W that contains 4.

Let V' =3 W, be a direct sum decomposition of the standard module. Then

Span(d) = E,V = ZEOWi.

So, EyW; # 0 for some i. Then,
de E,2W, CW,.

Observe: T'6 is an irreducible T-module.

Since § € W, where W is a T-module. As Td C W and W is irreducible,
T =W.

7
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Observe: T6 = Tz.
Since = 6, 'E}§ € T6, T# C T6. Since T is irreducible, Tz = T'6.
(i7) (a) — (b):

Efo= Y 46,i#0, (0<i<d(x)),

yeX,0(z,y)=1

because 9, > 0 for every y € X.

Hence,
EiT6 #0, (0<i<d(x)).

Thus, d(z) = d(W).
(b)
(©)
By the irreduciblity, we have T% = W. O

— (¢): Immediate.
4>

(a): Since (W) =0, E;W # 0. Hence, z € W and T2 C W.

Lemma 11.2. Assume T is bipartite (X = Xt U X)) (X' and X~ are
nonempty). Then the following are equivalent.

(i) There exist at and o~ € R such that

5o at if xe Xt
T la ifee X .

(ii) There exist k™ and k= € Z°° such that

by [F Xt
TV ifrex

In this zase, k™k™ = 63, and T is called bi-regular.

Proof. (i) — (i1)

/]
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Ab= A (a+ Y ita ) y> (11.1)

reXH yeX—

=a® Y kWit+a Y k)i (11.2)
yeX— reX+t

= 0,6. (11.3)

So,
k(x)a™ =0yat, k(y)at =6

As at #£0and o~ #0,
kT := k(z) is independent of the choice of x € X, and (11.4)
k™ :=k(y) is independent of the choice of y € X~. (11.5)
Moreover, k*k™ = 62.
(#3) — (7) Set

0 = Z a,y where a =

1/VEk= if ye X*
UVEF if ye X

yex
Then one checks
A = A (1_ 7+ ! > g) (11.6)
k™ s \/kjyexf
- +
_ kkyex% kajyexﬁ (11.7)
= Vktk=¢' (11.8)
Since 6’ > 0, ¢’ € Span(é), and 0, = VETk~. O

Definition 11.1. For any graph I' = (X, E), fix a vertex « € X. Set d = d(z).

I' is distance-regular with respect to z, if for all i : (0 <i < d), and all y € X
such that 0(z,y) = i

() ={z€e X |0(x,2)=i—1, d(y,2) =1}, (11.9)
a;(z) = {z € X |0(x,2) =1, Iy, z) =1}, (11.10)
bj(x):=NHz€ X |0(x,z) =i+ 1, 0(y,z) = 1}| (11.11)

depends only on ¢, z, and not on y.

(In this case, co(x) = ag(x) = by(x) =0, ¢1(x) =1, by(z) = k(x) is the valency
of x.)

We call ¢;(x), a;(x) and b,(x) the intersection numbers with respect to x.



80

Example 11.1.

co =1,
ay =0,
by = 2,

CHAPTER 11. EXAMPLES OF T-MODULE

c =1,
a; =1,
b, =1,

cy =1,
ay =1,
by, = 0.

(11.12)
(11.13)
(11.14)



Chapter 12

Distance-Regular

Monday, February 15, 1993

Lemma 12.1. For any connected graph T' = (X, E), the following are equiva-
lent.

(#) The trivial T (x)-module is thin for all x € X.

(44) { Z glo<i< d(x)} is a basis for the trivial T (x)-module for
yeX,0(x,y)=1
every x € X.

(it1) T is distance-regular with respect to x for all v € X.

Note. Let I' = (X, E) be a graph, with X = {x,y;,¥s,Ys, 21, 29,23}, £ =
{zy1, 22, 2y3, Y121, Y120, Yo 23, Y3 23}

Y1 Z;

Y2
X Y47)
V&) Z3

Then (7), (i) are not equivalent for a single vertex x.

EiT3 = (3), (12.1)
EiTZ = (§; + Ya + Us), (12.2)
E5TE = (5, + 2, + 23,). (12.3)

81
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Proof of Lemma 12.1. (i) — (ii) Let § = ZyeX 4,y be an eigenvector for the

maximal eigenvalue 6. Then,

Y §=AieT () ="T(2)5 > E;d (12.4)
yeX,0(z,y)=1
D Y (12.5)
yeX,0(z,y)=1

If the trivial T'(z)-module is thin,
6, =0, for y,z€ X, d(z,y) = 0(v,2) = 1.
Hence, §, =4, if y and 2z in X are connected by a path of even length.

So, I' is regular or bipartite biregular by Lemma 11.2.

In particular, 6, = 6, if d(z,y) = O(z, 2), as there is a path of length 2-9(z,y);
yN"'N‘rN"'NZ.

Hence,

E?6 € Span ( Z g}) .

yeX,0(z,y)=1
Since Ejd, E56, ..., E}6 form a basis for T'(x)d, we have (i4).
(14) — (491) Fix x € X, and let T = T'(x), Ef = E;(z), and d = d(z).

AN Z {ye X |d(y,2) =1, d(z,y) = i}|2 (12.6)

yeX,0(z.y)=1 eX
= Z b, _1(7,2)2 (12.7)
zeX,0(x,z)=i—1
+ Y aw2)z (12.8)
zeX,0(x,z)=1
+ > @2z (12.9)

z€X,0(x,z)=i+1

ESpan{ > oz j:O,l,...,d}. (12.10)

2€X,0(x,2)=7

Hence, b;_,(z,2), a;(z,z) and ¢;,(x,2) depend only on ¢ and z, and not on z.
Therefore, I" is distance-regular with respect to z.
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(#i1) - (4) Fix v € X, and let T = T(x), Ef = E}(x), and d = d(z). By
defintion of distance-regularity, for every ¢ (0 <i <d),

A ( Z ?3) =b;_y(x) Z Y (12.11)
)=t yeX,0(z,y)=i—1

yeX,0(z,y
talr) D @ (12.12)
yeX,0(z,y)=i

ten@ Y@ (12.13)

yeX,0(z,y)=i+1

Hence,

yeX,0(z,y)=i

WSpan{ Z U ng‘gd}

is A-invariant and so T-invariant. Since £ € W, Tz = W is the trivial module
and 7'z is thin. O

Next, we show more is true if (z) — (i4¢) hold in Lemma 12.1.

In fact, d(x), a;(x), ¢;(z), and b,(x) are

independent of X if I is regular; or
constant over Xt and X~ if T is biregular.

Let I' = (X, E) be any (connected) graph. Pick vertices z,y € X.

Let W be a thin, irreducible T'(z)-module, and measure m : R — R determined
by W.

Let W’ be a thin, irreducible T'(y)-module, and measure m : R — R determined
by W’.

Recall W, W’ are orthogonal if

(w,w') =0 foralweW,w e€W’.

We shall show if W and W’ are not orthogonal, then m and m’ are related:
m - poly, = m’ - poly,
for some polynomials with
degpoly, + degpoly, < 2-0(z,y).

Notation. V: standard module of T'.

H: any subspace of V.
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V =H + H*+ orthogonal direct sum,
and for v = vy + vy proj, : V. — H (v vy): linear transformation.
Observe: For every v € V,

v — proj v € HE

So,

(v—rprojyv,h) =0 forall he H or,

(v, h) = (projzv,h) forall ve€V, and forall he H.

Theorem 12.1. Let I' = (X, E) be any graph. Pick vertices x,y € X and set
A =0(x,y). Assume
W : thin irreducible T'(z)-module with endpoint r, diameter d, and measure m.

W’: thin irreducible T (y)-module with endpoint v, diameter d’, and measure

m’.

W and W’ are not orghotonal.

Now pick
0FweEi(x)W, 0#we L, (x)W'.

Then,

. . Jw|
(7) projyw = p(A)—rw
W (ing

for some 0 # p € C[\] with degp < A —r" +r,d’,

[w’]

projyuw’ = p/(4)
W Jul

for some 0 # p” € C[\] with degp < A —r+1',d.

(ii) For all eigenvalues 0; of T',

(Byw, BE;w')

o] = O 0 =m(6:)p(0,)-

(#5i) For all eigenvalues 0, of T,

p(0,)p"(0;)

is a real number in interval [0, 1].



85

Proof. (i) Since W, W’ are not orthogonal, there exist
veW, v € W sich that (v,v") # 0.

Then there exists a € M such that

v =aw’.

(This is because w; = p;(A)wj, and hence for every v' € W’, there is a polynomial
q € C[A], q(A)wg = v.)
We have
0# (v',v) = (aw’,v) = (W', a*v)
and a*v e W.
Hence, projy,w” # 0.
Let py, ..., pg € C[A] be from Lemma 9.1.

Then, w; = p;(A)w is a basis for E ;(x)W (0<1i<d).

r+i
Hence,
L,
proj,,w’ = agwy + -+ agw, for some a; € C.

Set

’ w G
r ||”w'”|| 2 o
Then 0 # p’ € C[A] and degp’ < d.
Claim: o; =0 (A —r+71" <i<d).
In particular, degp’ < A —r+ 177,

Pf. Observe:
w € EN(y)V, weEi(x)V,

for O(z,y) = A.
L)V 0 Bl (@)V =0

by triangle inequality.
(A=0(z,y) <r+i—r"or A+7" <r+iby our choice of i.)

r+i

X«
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Hence,
EL(y)VLE, (a)V,
or
0= (w,w;) (12.14)
= (projw’, w;) (12.15)
d
= a(wj,w,) (12.16)
=0
= ainiHQ- (12.17)

Hence, a;; = 0. Thus,

A+r/—r
proj,,w’ = Z oW, (12.18)
=0
A+r"—r
= Z a;p;(A)wy (12.19)
=0
oyl
(A) (12.20)
]
(73) We have
[l w’] [wllw’] '
(E;w, projy,w’) . [l
=— " as projy,w’ = p'(A)— (12.22)
lewllw’] v ']
(Eyw, p' (A)w)
= 12.23
fu 1229)
Ew, Ep' (A
— < Zw’ lp2< >w> (1224)
[lw]
|E:W]
=/ (6; 12.25
— 7 BIm(0,). (12.26)

Moreover, as m(6;), m’(,) € R,

<Eiwv Eiw/> (Ew,Ew’)

7 ?

ol ~ e - PO 0 = p0)m (6:).

(#41) Sicne,
Eiw’Eiw/ 2 / ’
T = (O (6)m(0)m (6,
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(Byw, Eaw')|?

6, (6,) [w]? [w' ]2
(Byw, Eaw')|?
|2

w2 .
ol H HwaUu%" [[w]?]w’(?

p(0;)p"(0;) =

o eR (12.27)

= (12.28)

By Cauchy-Schwartz inequality,

(Ka, 0 < allo],)

(Baw, B _ |
[BwlPTEw e =

Hence, we have the assertion. O
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Chapter 13

Modules of a DRG

Wednesday, February 17, 1993
Lemma 13.1. Let T = (X, E) be any graph. Pick an edge xy € E.
Assume the trivial T'(z)-module T'(x)d is thin with measure m,,

and the trivial T (y)-module T'(y)d is thin with measure m,,.

Then,
(ia) m,(9) = my (0) for all 6 € R\ {0}.
k, k)
(ib) m”(g) —1_ my(z) ~ 1 or i 9 € R\ {0}
@ y

(6= Z 6,y eigenvector corresponding to the maximal eigenvalue)
yeX

Proof. Apply Theorem 12.1,

Take w =2, w' = 7.
Claim. proj, ;% = k,tAg.

Pf. Since
yeT(y)s, AyeT(y)s.

Show
(& —k, "AD)L(T(y)9).

89



90 CHAPTER 13. MODULES OF A DRG

Recall
Aj= > Z
zeX,yze &
&—k, Ay € Bi(y)V.
So,

F oA LB )T it #1(0< < Ky)).

And we have,

1 . - 1 A
<x— k—yAy, Ay> = <x, Z z> T z
zeX,yzekE Y l|zeX,yzeE
=1-1
=0
This proves Claim.
Similarly,
proij&Q = kgE*lA:E.
Hence, the polynomials p,p” € C[A] from Theorem 12.1 equal
A A
2 d =
K, an i
respectively.
By Theorem 12.1,
m,(0)0 —  m,(0)8
00 0 @) = m, 050 = "
x Y
If 6 # 0, we have (ia).
Also,
1— 0 1
Lm0 ( ) m£<o>) L by (ia)
x 9ER {0} @
1
= ( 2 my<o>) "
0€R {0} Y
~1—m,(0)
N k

Hence, we have (ib).

(13.6)

(13.7)

(13.8)
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Theorem 13.1. Suppose any graph T' = (X, E) is distance-reqular with respect
to every verter x € X. (SoT' is reqular or biregular by Lemma 12.1.)

Then,

Case T' is regular: the diameter d(x) and the intersection numbers a;(x), b;(z),
¢;(z) (0 <i<d(z)) are independent of x € X.

(And T is called distance-regular.)

Case T is biregular: (X = XTUX™)

d(z) and a;(x), b;(x), ¢;(z) (0 < i <d(z)) are constant over X and X~. (And
I is called distance-biregular.)

Proof. We apply Lemma 13.1.

Case I': regular.

Then m, = m, for all zy € E. Hence, the measure of the trivial T'(x)-module
is independent of x € X.

Case I is biregular.
Then m,, = m,, for all x,2" € X with 9(z,z") = 2.
Hence, the measure of the trivial T'(z)-module is constant over x € X1, X .

Fix z € X. Write T = T'(z), Ef = Ef(z), W = T'§ with measure m, diameter
d =d(x).

We know by Corollary 10.1 that m determines
d, a;(W)(0<i<d), x;(W)(1<i<d)

(as d = D(z) = d(W) by Lemma 11.1.)

We shall show that m determines

Observe:

a;(W)=gqa,(z) (0<i<d) (13.9)
1<i<d) (13.10)

HS MEMO

a; = a;(W) is an eigenvalue of

E;AE; on E;W = ( ) ).

(See Lemma 12.1.)
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Ty

= z,;(W) is an eigenvalue of
E* AE;AE | on EX ,W,
and

A YD G=bia@ Y (13.11)

yeX,0(x,y) yeX,0(z,y)=i—1
taz) > 7§ (13.12)

yeX,0(z,y)=1
o@D, (13.13)

yeX,0(z,y)=i+1
So x; = b;_y(x)c;(x).
Set kt = k,. Define
— 902
=5
where 6, is the maximal eigenvalue. (See Lemma 11.1.)

b

(So, kT =k~ is the valency, if T is regular.)
For every ¢ (0 <i < d) and for every z € X with d(z, z) = 1,

k. = ci(x) + a;(x) + by(z) (13.14)
= ki i? i.ié even, (13.15)
k if 7 is odd.

Now m determines
co(x) = ag(x) =0, ci(z)=1,
bo(x) = by(x)cy (x) = 2 (W),

k™ = by(z) (13.16)
k™ =6, /k* (13.17)
¢i() =2;(W)/b_1(x) (1<i<d) (13.18)
N AN .
()= 4 & @) meiln) i even, (13.19)
k™ —a;(z) —c;(x) i odd.
This proves the assertions. O

Proposition 13.1. Under the assumption of Theorem 13.1, the following hold.
Case I': regular.

(1) dim E,V = | X|m(6,).
(#3) T has exactly d + 1 distinct eigenvalues
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(d = diamI’ = d(x), for all z € X).
Case T': biregular.

(i) dim B,V = | X*|m* (6;) + | X~ |m~(6,).

(#1) T has exactly d* + 1 distinct eigenvalues (d* > d ™).
(#42) If dt is odd, the T is regular.

(v )d*zd ,ordt =d” 41 is even.

(v) a;(x) =0 for all i and for all x.

Proof. (i) Suppose I is regular.
Let m, be the measure of the trivial T'(z)-module,

m,(0;) = |EZ[?, as|Z] = 1.

Now,
X |m,(6;,) = m,(6;) (13.20)
reX
=Y |E#|? (13.21)
reX
=D (B, (13.22)
y,2€X
—T
= traceE; E; . (13.23)
Since A is real symmetric and
Ez‘ET =E}=FE,
with E; symmetric
I O
50 o)

tracely; = rankF; = dim E,;V.

Thus, we have the assertion in this case.
Suppose I is biregular.
Then, same except,

> mg(0;) = [XFm*(9;) + | X" |m~ ().

zeX
(#4) T: regular. Immediately, if 0 is an eigenvalue of T, then m(6) # 0.
I': biregular. For each § =0, € R {0},

m~ () #0< m™(0) #£0 (13.24)

< 0 is an eigenvalue of I' (13.25)

(0 o) 1526,
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(iv) and (v) are clear.

HS MEMO

(#42) If d* is odd, d* = d~ and T has even number of eigenvalues, i.e., 0 is not
an eigenvalue. So A is nonsingular, and I' is regular.

O



Chapter 14

Parameters of Thin
Modules, 1

Friday, February 19, 1993
Summary.

Definition 14.1. Assume I' = (X, F) is distance-regular with respect to every
vertex x € X.

Notation: Let € X. The data of the trivial T'(z)-module.

Case DR Case DBR
kT if X+
valencyk,, k n €
- kL~ ifze X
Dt if X+
z-diameter D, D 1 T
D~ ifrxre X~
mt fzxeXT
measure m,, m o )
m fzeX
+ if X+
int. number c;(x) c; Ci 1 z €
c; ifrxeX™
b ifxe Xt
int. number b, (x) b; i 1 RS
by ifreX™
int. number a,(z) a; 0

Call m, m*! the measure of T.

Assume T' = (X, E) is distance-regular.

95
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To what extent do a;’s, b,’s and ¢,’s determine the structure of irreducible T'(x)-
modules? In general, the following hold.

Lemma 14.1. Assume I' = (X, E) is distance-regular. Pick x € X. Let W be
a thin irreducible T (x)-module with endpoint r, diameter d and measure my,.

(1) There is a unique polynomial fy, € C[A] with the following properties.
(ia) deg fyy < D (diameter of T).
(1b) my, (0) = m(0) fiyy (0) for every 0 € R, where m is the measure of T.
Moreover, fy, € R[A], and

(7i) deg fy < 2r.
(i4i) For all eigenvalues 0, of T, X — 0, is a factor of fy, whenever, E,;W = 0.

In particular, 2r — D+ d > 0.

Proof. Let §,,...,0p denote distinct eigenvalues of I'. Then m(6;) #0 (0 < i <
D) by Proposition 13.1.

There exists a unique fy, € C[A\] with deg f;, < D such that

furlt) =" (0<i< D)

by polynomial interpolation.

fw € R[] since

Ogs - ,0p €ER and  fi,,(0y), ..., fwr(0p) € R.
(7i) Without loss of generality, we may assume r < D/2, else trivial.
Pick 0 # w € EX(z)W.

w= Z a,y for some «, € C.
yEW,0(z,y)=r

Pick y € X such that a,, # 0.
Set W’ be the trivial T'(y)-module. ({w,g) # 0, as WiW’)

=0, m' =m, A=r.

Apply Theorem 12.1, we have

degp<A—7r"+r=2r, p+#0 (14.1)
degp’ <A—r+7r" =0, p #0. (14.2)

my (0)p’(6) = m(0)p(d) ( for all 6 € R).
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So,
degp/p’ < 2r,

and p/p’ satisfies the conditions of fy .

(p(9) mw(9)>

PO m(0)

(i)
EW =0=my (6, =0= fi,,(6,) =0.

that is, E,/W = 0. Hence 0, is a root of fy;;(A) = 0. So,
2r > deg fiy > {0, | EEW =0} =D —d.

Hence,
2r—D+d>0.

This proves the assertions. O

Lemma 14.2. Let T’ = (X, E) be any distance-reqular graph with valency k,
diameter D (D > 2), measure m, and eigenvalues

k:00>01>"‘>9D.

Pick x € X. Let W be a thin irreducible T'(z)-module with endpoint r = 1,
diameter d and measure my, = mfy,. Then one fo the following cases (i) — (iv)
occurs.

Case d fw ) ag(W)
. A—k)(A—0 b
() [ D2 (15125;%”) o
(i) | D=2 | S | —apsa — 1
(iii) | D—1 A —1
. A—k)A—B b
(i) [ D—1] W;(H : s

for some B € R with § € (—00,0p) U (6;,00). Moreover, the isomorphism class
of W is determined by ay(W).

Note. By (éii), the possible “shapes” of a thin irreducible T'(z)-modules are:
r=0 d=D, (14.3)

r=1 d=D-—1, (14.4)
r=1 d=D-2. (14.5)
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Chapter 15

Parameters of Thin
Modules, 11

Monday, February 22, 1993

Proof of Lemma 14.2 Continued.

We have deg fyr < 2 by Lemma 14.1 (44).

Also by Lemma 11.1, E;W = 0.

(As otherwise () = E,V C W and r(W) =0.)

Hence, A — 0, = A — k is a factor of fy, by Lemma 14.1 (44).

Let pg,py,-..,pp denote the polynomials for the trivial T'(z)-module from
Lemma 9.1.

Recall,
Zm(e)pi(e)pj(e) =0,;r1xyx; (0<4,5< D) (15.1)
0eR
- 51jb0b1 se biilclc2 se Ci' (15.2)
Note that z; = b;,_; ¢, is in the proof of Theorem 13.1.
By construction,
po(A) =1, (15.3)
pa(A) =A% —a; A —k. (15.5)

Apparently,
fw = 0opg + 01p1 + 03P,

99
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for some 0, 0,05 € C.

Claim:
og =1,
o = ao(W)
1 L ’
_ 1+4ay(W)
72 b,
Pf of Claim.
1= me(9>
0cR
= m(0) fw(9)
OcR
2
-0, (Z mw)pJ(e))
3=0 0cR
= 0g-

(15.6)

(15.7)

(15.8)

(15.9)

(15.10)

(15.11)

(15.12)

We applied Lemma 10.1 (ib), Lemma 14.1 (ib), and Lemma 10.1 (¢) in this order.

Next by Lemma 10.1 (i), and p,(0) = 0,
ag(W) = my (6)6

(2SN

= > ml6) fw(9)0

0eR
2
= 0, m(0)p;(0)p, (0)
7=0 6eR
= o,2,(T9)
= 01bycy

=o,k.

So far,

Fw) =1+ @A Foy(A2 —ajh— k).

But,

0= fw(k)
=14+ag(W)+ok(k—a; —1)
=1 + a0<W> + Ukal'
Thus,
_1+ay(W)

72 = kb,

(15.13)

(15.14)

(15.15)

(15.16)
(15.17)
(15.18)

(15.19)
(15.20)
(15.21)



This proves Claim.
Case: ay(W) = —1.

Here, 0, =0 and

Also,

d+1=1{6]0 isan eigenvalue of ", fy,(0) # 0}| = D.

Case: ag(W) # —1.
Here, 0, # 0, and deg fy, = 2. So,

fw) = A =k)(A =B
for some o, B € C, a # 0.

Comparing the coefficients in

W W)+1
(A—k)(A—ﬂ)a:H“O(k >/\—a0(kb)1+ (A —a;A—k),
we find
a77a0<W)+1
n kb, ’
_ _ag(W) | ag(W)+1
(ke Bla= ==+
kﬂa:1+M
by
Hence,

—B(ag(W) +1) = by + (ag(W) + 1).

Thus, we have
(L4 ao(W))(L+B) = —b;.

In particular, 8 # —1, and

Llta(W) 1
kb, GRS

Also, by Definition 9.2,

0 < myy(6)
=m(0) fy(0) (for all 0 € R).

But if 0 is an eigenvalue of T,
0 < m(6).
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(15.22)
(15.23)

(15.24)

(15.25)

(15.26)
(15.27)
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So,
0 < fw(0) (15.28)
_0-K-5
a7 (15.29)
Either
B+1>0—-0—-5<0 or 8>6,,
or
b+1<0—=0—-5>0 or f<0p.
If =6y,
_ Y _ by
aO(W)__5+1_1__91+1_1 (15.30)
_ A=K =0)
fw(A) = W+ (15.31)
and we have ().
If B = eDa
—_ bl
ag(W) = P (15.32)
_ A=K =0p)
fw(X) = W, 11 (15.33)
and we have (7).
If B ¢ {917 9D}7
B € (—OO, GD) U (917 OO),
we have (iv).
Note using (15.25), we have (iv).
O

Note. Using (15.25),
ag(W) — 8 — fy — my, — isomorphism class of W.

Note on Lemma 14.2. In fact, §; > -1, 0, < —1if D > 2.

Definition 15.1. The complete graph K, has n vertices and diameter D =1,
i.e., xy € E for all vertices z,t.
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K, is distance-regular with valency k =n—1and a; = n—2, D = 1. Moreover,
it has two distince eigenvalues 6, 6.

Recall, 6y, ...,0p are roots of pp_ q, i.e., D + 1 st polynomial for the trivial
module.

po = 1, (15.34)

P = A, (15.35)

Py =N —a N —k (15.36)

=X —-n—-2)A—(n—1) (15.37)

=A=(m—=1)\+1). (15.38)

The roots are , =n—1=Fk and §; = —1.
Lemma 15.1. Let T' = (X, E) be distance-reqular of diameter D > 1 with

distinct eigenvalues

k=60y>60, > >0p.
(i) 0p < —1 with equality if and only if D = 1.
(it) 0, > —1 with equality if and only if D = 1.
Proof. (i) Suppose 0, > —1.

Then I + A is positive semi-definite.

By Lemma 2.1, there exists vectors {v, | x € X} in a Euclidean space such that

(Vyyv,) = (I 4+ A),, (15.39)

1 ifz= E
_ it x .yora:ye s (15.40)
0 othewise.
For every zy € E,
(Vg vy) = v v, | = 1.
Hence, v, = v,, and v, is independent of z € X.
Thus (v,,v,) =1 for all z,y € X.
We have I + A =J, (all 1’s matrix), and D = 1.
(ii) Let m be the trivial measure. Then,
1= "m(0)+ > m(0)6 (15.41)
O<R (4SS
=> m(6)(0+1) (15.42)
0cR
=m(k)(k+1)+ Y _ m(0)(6+1) (15.43)
0+k

< (k+1)X|. (15.44)



104 CHAPTER 15. PARAMETERS OF THIN MODULES, 11

Note that m(k) = | X[t dim E,V = | X| L.
Sok+12>|X|ork=|X|—1. Thus, zy € E for every z,y € X,and D=1. [

Note. Lemma 15.1 does not require distance-regular assumption.



Chapter 16

Thin Modoles of a DRG

Wednesday, February 24, 1993
Let I' = (X, E) denote any graph of diameter D.
Definition 16.1. For all integers 4, the i-th incidence matrix A, € Maty(C)

satisfies
1 if I(x,y) =1,
A = ,y € X).
(A, {0 o @yeX)
Observe,
Ay =1 (identity) (16.1)
A=A (adjacency matrix) (16.2)
A+ A ++Ap=J (all 1’s matrix). (16.3)

In general, A, may not belong to Bose-Mesner algebra.

Lemma 16.1. Assume ' = (X, E) is distance-regular with diameter D > 1 and
intersection numbers c;, a;,b;

(i)
AA; =i Ay +a; A+ 0 Ay, (0<i< D, A, =Ap,=0).

(A
€12 C
trivial module from Lemma 9.1.
(#91) Ay, Ay, ..., Ap form a bais for Bose-Mesner algebra M.

(iv) For all distances h,i,j (0 <,4,j,h < D), and for all vertices x,y € X with
d(x,y) = h, the constant

(0 <i < D), where py,py,...,pp are polynomials for the
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pl; =z € X[ 0(x,2) =1, 0y, 2) = j}
depends only on h,,j and not on x,y.

1
(v) By = —J.
b

Proof.
(1) Pick z € X. Apply each side to Z, we want to show that

AAL = ¢ A T+ a A+ b 1 A T

LHS = A ( > ;7) (16.4)

yeX,0(z,y)=i

:cHl( > 2>+ai< > 2)+bi1< > 2)
z€X,0(x,z)=i+1 zeX,0(x,z)=1 zeX,0(x,z)=i—1

(16.5)
— RHS. (16.6)

(1) Recall (Lemma 9.1)

Api(A) = pi1(A) + a;pi(A) + b;_1ep; 1 (A) (0<i< D).
Dividing by ¢; ¢y - ¢;, we have
(4) ) nA), paA)

p.
A— =Ciy1 +a;
C1Cy 0 G C1C " Ciyy €G3 G C1Ca G

So, A;, p;(A)/(cqycq -+ ;) satisfy the same recurrence.

Also boundary condition,

Ay =po(A) =1
Hence,
A=A o
C1Ca G

(#4i) Since Ey, Ey, ..., Ep form a basis for M, dimM = D + 1.

Observe Ay, Ay, ..., Ap € M by (ii), Ay, Aq,..., Ap are linearly independent,
since pg, Py, .-, Pp are linearly independent.

Thus, Ay, A4, ..., Ap form a basis for M.
(iv) Ay, Aq, ..., Ap form a basis for an algebra M,
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D
AA; = prjAl for some pfj e C. (16.7)
=0

Fix h (0 <h < D). Pick z,y € X with 0(z,y) = h.
Compute z,y entry in (16.7),

zeX

_ 1.1 (16.9)
2€X,0(z,2)=1,0(y,2)=

12)=]J
={z € X | 0(z,2) =,0(y, 2) = j}|. (16.10)
On the other hand,

D
=0 2

Y

(v) ﬁJ is the orthogonal projection onto Span(d) = E;V. Hence,

This proves the assertions.

O

Theorem 16.1. Let ' = (X, E) be distance-regular with diameter D > 2 and
intersection numbers c;, a;,b;. Pick a vertex x € X. Let W be a thin irreducible

T (x)-module with endpoint r = 1 and diameter d (d = D —2 or D —1). Set
Yo = ag(W) + 1.

(i) The scalars
CoC3 - Cipqbabs b1

W o) ==Y et

a;(W),z;(W) are algebraic integers in Q[vy]. In particular, if v, € Q, then =,
a;(W) and x;,(W) are integers for all i.

(i) The numbers, v;,a;,(W),xz,(W) can all be determined from -y, and the in-
tersection numbers of T in order

xl(W)a’Ylv al(W)vxZ(W>’72a GQ(W)a

using (1),

z,(W)=cb; +v;1(a; +¢;— ¢y —a, (W) (1<i<D-1), (16.12)
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and

Note.

(16.13)

pi =Y +%ap — (0 +viapls), (=7 2=0,0<i<d+1).

Proof. Set
Aj=Ag+A +++4, (0<i<D).

Claim 1. A/L = Ci+1f‘L‘+1 + (a; —ciq + cl)/L + biﬁi_l (0<i<D-1).

Proof of Claim 1.

LHS = 3 A4,

3=0
i
= Z(cj+1Aj+1 +aA;+b; 145 )
=0
—1

~ <~

Aj(cj+a; +bj) + Aj(e; +a;) + Aypycing

(o]

j
k(Ag+ -+ A q) + (a; + ;) A+ ¢ Ayiq

RHS =¢;  (Ag+ A1+ + 4,1+ 4, +4,1)
+(a; =i+ ) (Ag+ Ay + -+ A, + A
+0;(Ag+ Ay + 4+ A, )
=k(Ag+ -+ A )+ Ayla; +¢;) + Appicig
This proves Claim 1.
Now pick 0 # w € Ef(x)W and let

w = g Q,z.

zeX,0(x,z)=1
Pick y, where o, # 0.
For all i (0 < < D), define
B; = A2 )
-y =y s
z€X,0(x,2)<i 2€X,0(y,2)<i

zZ— Z zZ.
z€X,0(x,z)=1,0(y,z)=i+1 z€X,0(y,2)=i+1,0(y,z)=i

(16.14)

(16.15)

(16.22)
(16.23)

(16.24)
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Note that B, = O, By =& — ¥, and
(By, wy) = —a,, # 0.
From Claim 1,
AB; = ¢; By +(a; — ¢y +¢)B+ 6B, , (0<i<D), B, =0.
Let p/, ... ,p}i/V denote polynomials for W from Lemma 9.1. So,
w, = p¥ (Ayw € Ef, (@)W, (0<i<d).

Claim 2. (w;, B;) = 01if j ¢ {i,i+ 1}, (0<i<d,0 <j< D).
Proof of Claim 2.

w; € By, (x)W,  B; € Ei(x)W + B (z)W.

Bo B, B,

Wo Wi

Vertical lines indicate possible non-orthogonality.

Compute

(Aw;, Bj) = (w;, AB,), (0<i<D,0<j<D-1). (16.25)

LHS = (w; 1, B;) + a;,(W)(w;, B;) + 2;(W){w, 4, B;) (16.26)
RHD = b(w;, B, 1) + (a; — ¢j41 + ¢;)(w;, Bj) + ¢j1 (w;, Byyy).  (16.27)
Evaluate for i = j—2,7—1,7,7+ 1.

Set i = j— 2.

Bj1 B
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Then (16.25) becomes
(wj_1, Bj) =bj(w;_5,B; 1) (2<j<D-1).
By induction,

<wj717Bj> = bzbg "'bj<w07B1> (1 <j<D-— 1)'

Define
_ {wg, By)
70 - B .
(wo, By)
(We will show v, =1+ ag(W).)
Then,
(wj 1, Bj) = babg by (wo, By)- (16.28)

Set 4 = j+ 1. Then (16.25) becomes
i1 (W) wy, Bj) = ¢, (wg, Bjy) (07 < d).

Hence,
z (W) w](W)

C1Cy - €5

(w;,B;) = (wg, By) (0<j<d). (16.29)

Set i = j — 1. Then (16.25) becomes
(wy, By) + a;_ (W) {w;_q, B;) = (a; — ¢j1 + ;) (wjq, By) + bj{w;_q, Bj_y).
Evaluate this using (16.28) and (16.29). ((wy, By) # 0). Then we have

wy (W) - ,(W) (W) -z (W)
—J + (a1 (W) —a; + ¢juq —¢j)by by = by ] ’
Cq C] - CJ_I

(7‘ = C2C3"'¢z‘+1b253"'bi+170>
i xl(W)$2(W) %(W)
€15 Cj_1babg by

=b, ) e
c; J+xl(W)xQ(W)...xjil(W)(aJ+c] Cii1 — 1)

So,

z; (W) =c;b; +yj_1(a; +¢; — ¢ — a;_1 (W)).
This proves (16.12).
Set ¢ = j. Then (16.25) becomes

a;(W)(w;, Bj) +x;(W){w;_y, Bj) = (a; — cjq + ¢;){wy, By) + ¢jq(w;, Bjyq)-

ay (W) -z (W)
(%‘(W) - (aj —Cjt Cj))#%(w)% = bivo = Cjpaby by = 0.
J
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Thus,
Cl ';'Cjb2.-. bj’yo Cl ;'ocjcj+lb20.-b‘7+1’yo
a;(W)—(a,—c.,.1+c;)+ — =0,
W =@ G T G Gy W) T W) a0
or
a;(W)=a;+c;—ci1 — 71+

This proves (16.13).
Also by setting i = j = 0, we have

ag(W){wg, By) = (ag — ¢ + ¢o)(wy, By) + 1 (wy, By) (16.30)

= —(wy, By) + vo(wo, By)- (16.31)

Hence,

Yo =1+ ag(W).
Both a;(W) and x,(W) are algebraic integers, since they are eigenvalues of
matrices with integer entries, namely,

E; (x)AE; (x) and Ej(x)AE; (x)AE(z).
Also vy = 14+ a(W) is an algebraic integer, and 7; —y,_; is an algebraic integer
by (16.12).
Hence, +; is an algebraic integer by induction.

This completes the proof of Theorem 16.1. O

Example 16.1 (D=2).
D = 2 & strongly regular.

Free parameters are k,a;,cy. Let W be an irreducible module of endpoint 1.
The matrix representation of Al is

1 ay (W)
ag(W): free.

2 (W) = c1by + (ag(W) + 1)(ay + ¢ — ¢ — ag(W)) (16.32)
=k—a, —1+ajay(W) +ag(W) — cyag(W) — ag(W)? (16.33)
+a,+a—cy—ay(W) (16.34)
= ayag(W) — coag(W) + k — ¢y — ag(W)?, (16.35)
v =0, (16.36)
a; (W) =—(aq(W)+ 1) +a; +c¢; —cy (16.37)
=—ag(W) +ay — cy. (16.38)

Then the matrix has eigenvalues 6,6,. There is one feasible condition: ay(WV)
is an algebraic integer.
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Example 16.2 (D=3). Free parameters c,,cs, k, a1, a,. The matrix represen-

tation becomes
ag(W)  x(W) 0
Aly = 1 ar (W) zo(W) |-
0 1 as (W)
Here, ay(W) is free (=v—1)

2 (W) =k—1—a; +7(a, +1—cy—ay(W)) (16.39)
=0(a; — g — ag(W)) + k —ay + ag(W). (16.40)
Set )
€292
W) =220

’71( ) Il(W)
al(W) =7 % + aq +1— Co (1641)
2o(W) = 7(ag — ¢z — a; (W) + ca(y9 + by — ag + a, (W) (16.42)
G,Q(W) = —’71 + G:Q + 02 — Cz. (1643)

The matrix has eigenvalues, 6, 0,,05.
There are two feasibility conditions; v,,y; are algebraic integers.

For arbitrary D, there are D — 1 feasibility conditions; 7q, vy, ..., Yp_1 are alge-
braic integers.

Lemma 16.2. With the notation of Theorem 16.1, suppose

k—A
fw === (s0, ap(W)=—-1).
Then,
a;(W)=a;+¢;—c;y (0<i<D—1) (16.44)
z;(W)=bic; (1<i<D-1) (16.45)
7 (W)=0 (0<i<D-1). (16.46)

Proof. Since vy, = ag(W) + 1, v, = 0. O
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Association Schemes

Monday, March 1, 1993
Review

Let I' = (X, E) be a distance-regular graph of diameter D > 2. Pick a vertex
r e X.

Let W be a thin irreducible T'(z)-module with endpoint r = 1, diameter d =
D—1orD—2,and ry = ag(W) + 1.

Show
CoCy+ Cipqbobs by 17

Vi = )
a;(W) and z;(W) are all algebraic integers in Q[,], where

?

(W) = eib; + v (a; + ¢ — ¢y — a; (W) (I<i<d) (17.1)

a;(W) =7 =71 ta+¢—cipg (I<i<d) (17.2)
Certainly, z;(W), ~,, and a;(W) are in Q[y,] by the above lines and so on.

Yo = ag(W) = &, (W) = v = ay(W) = 2, (W) — .
Recall some B € Mat,,(C) is integral whenever
B € Mat,,(2).

In this case, the characteristic polynomial

det(A\] — B) = A" + a, ;A" 1+ + q, forsome ay,...,q, ; € Z.

Hence, eigenvalues of B are algebraic integers. But a,(W) is an eigenvalue of
an integral matrices,

B=E}, (x)AEfﬂ ().
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Hence, a;(W) is an algebraic integer.

Also, z;(W) is an eigenvalue of an integral matrix
B = B} (2) A}, (v) A (2).
So z;(W) is an algebraic integer.
Vi — Vi1 =a;(W) —a; —¢; + ¢4
is an algebraic integer.

Since v, = ao(W) + 1 is an algebraic integer, we find v, is an algebraic integer
for all 4.

Definition 17.1. A (commutative) association scheme is a configuration ¥ =
(X, {R;}o<i<p), where X is a finite nonempty set (of vertices), Ry, Ry, ..., Rp
are nonempty subsets of X x X such that

(i) R = {(w.2) | 2 € X},

(14) RyU-+-URp =X xX (disjoint union),

(iii) for every i, R} = {(y,z) | zy € R} = R, for some i’ € {0,1, ..., D},

(iv) for every h,i,j (0 < h,i,57 < D), and every z,y € X such that (z,y) € Ry,

pzhj =[{ze X |(z,2) € R, (2,y) € R;}|
depends only on h, %, j and not on z,y; and
(v) plhj = p?i for all h,1, .

If i/ =i for all 4, we say Y is symmetric. We call D the class of scheme and R;,
the ith relation of Y. We say vertices x,y € X are i-related, or ‘at distance 7’,
whenever (z,y) € R;.

We always assume that a ‘scheme’ is a commutative association scheme.
Let Y = (X, {R;}y<;<p) be an association scheme.

Definition 17.2. The i-the association matrix A, € Maty(C)
(x,ye X,0<i< D) (17.3)

Then,

(i) Ay = 1.

(i) Ag+ A+ + Ap = J (= all I’s matrix).
(4ii’) A] = A, (0<i< D).
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D
(') A,A; = plA,  (0<i,j< D).
h=0

(v') A A; = AA,.

M := Spang(Ay,...,Ap) (Bose-Mesner algebra of Y) is a commutative
C-algebra of dimension D + 1.

Observe:

Y is symmetric <> A] = A, for all i <» M is symmetric.

Example 17.1. Let I' = (X, E) be distance-regular of diameter D. Set
Ry ={(z,y) | 0(z,y) =i} (0<i< D). (17.4)

Then,
Y = (X, {Ri}ogigD)

is a symmetric scheme.

i-th association matrix = i-th distance matrix for all <.

Example 17.2. Suppose a group G acts transitively on a seet X. Assume G
is generously transitive, i.e.,

for all x,y € X, there exists g € G such that gz =y, gy = x.
Then G acts on X x X by rule;
g(z,y) = (gz,gy), forall g€ G, and for all z,y € X.
Let Ry, ..., Rp denote orbits of G on X x X.
Observe that R = R, for all i by generously transitivity, and
Y = (X, {R;}o<i<p)
is a symmetric scheme.

Exercise 17.1. In Example Example 17.2, Bose-Mesner algebra

M = {B € Matx(C) | Bg = gB, for all g € G} (17.5)
= the commuting algebra of G on X. (17.6)

Here, we view each g € G as a permutation matrix in Mat y(C) satisfying

gt =gr forallz e G.
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Example 17.3. Let G be any finite group. G acts on X = G by conjugation.
GxX—X, (g9,2) grg L

Let Cy,Cy,...,Cp denote orbits (i.e., conjugacy classes), and let Cy = {1,}.
Claim that Y = (X, {R;}o<;<p) is a commutative scheme (not symmetric in
general).

(i) R ={zz |z € X} as Cy = {14}

(i4) Ry, ..., Rp is a partition of X x X since Cj, ..., Cp is a partition of X = G.
(iii) R] = R/, where C;, = {g7' | g € C;}.

(iv) Set H = G @ G, the direct sum. Then H acts on X = G-

for all h = (g, gz),for all z € X, h(z) = gx(gz)~! = grzlg L.
R, ={(z,y) |2 'y € C;}, h € C;, ™ty = ghyg .

(z,y) = (z,2gh;g") (17.7)
= (zgg~ " xghig™") (17.8)
= (29,9)(1, hy). (17.9)

So, Ry, ..., Rp are the orbits of H on X x X.
h _ . h
(v) Py = pji?
Fix ¢,j,h and z,y € X with (z,y) € R),. Set
S={ze€eX|(z,2) € R, (2,y) € R;} (17.10)
T={2€X|(z,2) € R}, (z,y) € R;}. (17.11)

Show |S| = |T.
For all z € S, set 2 = 22" 1y.

Observe, z € T.

tlzeC vli=atuzly ey (17.12)
2 lye C; Fly =yl o ly =y ta(at2)a "y € C. (17.13)
Observe

S —T (zr 2z7') is one-to-one and onto.
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Polynomial Schemes

Wednesday, March 3, 1993

Lemma 18.1. Let Y = (X,{R;}¢<;<p) denote the symmetric scheme with
associated matrices Ay, Ay, ..., Ap. Then the following are equivalent.

(i) The graph T' = (X, R;) is distance-regular, and Ry, ..., Ry are labelled so
that

R, ={zy | 0(z,y) = i}.

(#4) There exists f; € C[\], deg f;, = i such that f,(Ay) = A, for all i with
0<i<D.

(it7) The parameter p?j

=0 if one of h,i,7j is larger than the sum of the other two,
#+0 if one of h,i,7 is equal to the sum of the other two.

Proof.
(i) = (i2): Lemma 16.1.
(#4) = (4i7): Define

ki Ep?i = |{Z ‘ ZEX’ 6(3),2) :i7 ((JI,Z) € Rz)}|
forany z € X. Then k; #0 (0<i < D), ky = 1.

(By symmetricity, (z,y) € R, if and only if (y,z) € R;.)
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Claim.
knply = kil = kpl, (18.1)
= X[ {zyz € X* | 0(x,y) = h,0(x, 2) = i,0(y, 2) = j}|. (18.2)
Pf. The number of xyz € X3, d(x,y) = h,d(z,2) = 1,0(y, z) = j is equal to

|X|khp£bj = |X|k2PZJ = kjpfh-

In particular, _
p%:Oszjzoﬁpgh:O.
Hence, it suffices to show
ply=0 if h>i+j
Pl #0 if h=i+j.

Fix 4,j. Without loss of generality, we may assume that i + j < D as trivial
otherwise.

D D
fi(A)fj<A) = AiAj = prjAe = prjfe(A)-
=0

=0
i+ j = deg LHS (18.3)
= deg RHS (18.4)
= max{/ | pfj #+ 0}. (18.5)
Let A = A, and consider a graph I' with adjacency matrix A.
AA; =" phiA, (18.6)
h
= p{}rlAj-o—l =+ p{jAj + p{;‘lAj_y (18.7)

Then, pﬁ-l +0+# pi;-l.

Fix a vertex « € X, and set R;(z) = {y | (z,y) € R;}.
Then each y € R,(z) is adjacent in I' to exactly

Pl #0 vertices in R, (x), (18.8)
Pl vertices in R, (z), (18.9)
pii1 #0 verticesin R, ;(z). (18.10)
Hence, by induction,
R,(z)={y|0(z,y) =iin T} (0<i< D), (18.11)

and T is distance regular.



Chapter 19

Commutative Association
Schemes

Friday, March 5, 1993

Lemma 19.1. Let Y = (X,{R;}o<;<p) be a commutative scheme with Bose-
Mesner algebra M.

Then there exists a basis Ey, E, ..., Ep for M such that
(i) By = |X|71J.

(ii) E;E; = E;E; = 6,E; (0<i,j<D).
(iii) By + Ey + -+ Ep = I.

(iv) BEf =E, = F; for somei € {0,1,..., D}.

Proof. M acts on Hermitean space V =C" (n = | X|).
If W is an M-module, so is W+.

Each irreducible M-module is 1 dimensional by commutativity of M. So V is
orthognal direct sum of 1-dimensional M-modules.

Let vy, ...,v, be an orthonormal basis for V' consisiting of eigenvectors for all
m &€ M.

Set P € Mat x(C) so that the i-th column of P is equal to v;. So,
P'P=1=pPP"=PPT,
and P is unitary.
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Also, for all m € M,

P~'mP = diagonal (19.1)
= diag(6,(m), ..., 0,,(m)). (19.2)
for some functions
0,: M — C.

Observe: each 6 = 0, is a character of M, i.e.,
0: M —C

is a C-algebra homomorphism.

Observe: the 6, ..., 0, are not all distinct.

Let oy, ..., 0, denote distinct elements of

0,,...,0

n*

Say o; appears m; times. Without loss of generality, we may assume that

oo(m)1,,, 0 O @)
_ (@) o1(m)I 0] 0
1 _ 1 my
Prmp = 9, 9, 9,
o O O o.(m),

Set

where I,,, is in the i-th block.

Then,

E,+E +++E.=1
Hence for all m € M,

r

m =Y _o,(m)E; € Span(E, ..., E,).
=0

So,
M C Span(E,, ..., E,).

Since Ey, ..., E, are linearly independent, » > D.
Show E, € M.

Claim 1. For all distinct 4,5 (0 < 4,5 < D), there exists m € M such that
0(m) £ 0, 0,(m) = 0.
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Pf of Claim 1. o; # o; implies that there exists m’ € M such that o,(m’) #

a;(m’).

Set m =m’ —o;(m’)I. Then,

Claim 2. E; e M (0<i< D).

Pf of Claim 2. Fix a vertex x € X. For all j # i, there exists m; € M such that

o;(m;) #0, o;(m;)=0, i+#j.

Observe
s=o0; (Hﬂu) # 0.
P
Set
m' = (H me> s L.
0+
Observe
o;(m*) =1, o;(m*)=0, forallj#i (0<j<D).
So
O O O
P'mP=10 I, O].
O O O
We have
E,=m*¢ec M.
Now r = D, M = Span(E,, ..., Ep) and Ey, ..., Ep, is a basis for M.
Observe
O O O
PlEP=|0O L, O
O O O
implies
T - T—T 0 0 Oy
P'E, P=P'E, P1 =|0O L, O] = PlE,P.
O O O
Hence,
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EOT e ,EB are nonzero matrices satisfying

TrT — T
B]E] =6,E],

Ey +E] +-+E} =1

Each ElT is a linear combination of E, ..., Ep with coefficientss that are 0 or 1,
and for no two E;’s are coefficients of any E; both 1’s.

So, Ey , ..., E], is a permutation of Ej, ..., Ep.
Observe J = Ay + -+ Ap € M.
The matrix | X|~1J is an idempotent of rank 1.

So, without loss of generality we may assume that

1
Ey=——J.
° X

We have the assertions. O

Define entry-wise product o on Mat y(C).
Apo A =64,

So, M is closed under o.

1 D
Eio b= > dliEy.
X1 =

The numbers ¢/ is called Krein parameters of Y.

Claim. qlhj eR.

Pf.
1 &— 1 GK—— 7
E, = — h 19.5
|X|;Q1g h IX‘;(]” h ( )
= (Ez °© Ej)T (19 6)
=E;°E; 19.7
1 &,
=X hZ_O qE), (19.8)

h _ h
Hence, ¢;5 = ¢;}-
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Observe Ay, ..., Ap, Ey, ..., Ep are bases for M. Hence, there exist p;(j), ¢;(j) €
C such that

D
A; = Zpi(j)Ej (19.9)
=0
1 & .
E= 50 ;qi(J)Aj- (19.10)

Taking transpose and conjugate we find,

pi(5) = p;(j) = pir (J) (0<i,j<D) (19.11)
%:(7) = ¢;(5) = 4;(j") (0<4,j< D). (19.12)

Fix a vertex x € X. Define
Ef = Ef(z) € Mat(C)

to be a diagonal matrix such that
1 if(z,y) € R, .
(B} )ay = { ) (z,9) s (0=isDyeX)

Then,
ErE; =6,,E;,
Ey+-+Ep=1,
() =T = B;.
Definition 19.1. Dual Bose-Mesner algebra : M* = M*(z) with respect to x

is
Span(E, ..., EY).

Define dual associate matrices Aj, ..., A},. Indeed Af = Aj(z) € Matx(C) is a
diagonal matrix with

(A7)yy = [XI(Ey)gy  (y € X).

zy
A} is a diagonal matrix having the row x of E} on the diagonal.

Observe

D 1 2
Aj = Z%(])E; (Ei = m Zqi(j>Aj> (19.13)

1 &2 D
L = ﬁZPZ(J)A; (Ai = Zpi(j)Ej) : (19.14)
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So, A}, ..., A}, form a basis for M*.

Also,
AE} = q;())Ej.

D
(A:E; =Y a(WE;E; = qu)E;.)
h=0

So, g;(j) are dual eigenvalues of A}.

Observe, o
Ay=T, Aj+-+Ap = |X|E;, A = AL,
D
ATAr =) qhA; (0<i,j< D).
h=0
HS MEMO
Proof.
D D
Aot A = DS a,()E; = X,
i=0 j=0
Note that
1 2.2
I:EO+ +ED_7ZZQ’L(J)A‘]
Ry i=0 j=0
D
Z%‘(j) = ]0|X|
L D D
A=Y a(E; =D G()E; = A
7=0 7=0
= |X[(E; 0 E)),, (19.16)
D
= X1 dls(Bp)ay (19.17)
h=0
D
= qi(A}),, (19.18)
h=0

The following statements will be proved after a couple of lemmas in the next
lecture.

Lemma. Let Y = (X,{R;}q<;<p) be a commutative scheme. Fix a vertex
x € X, and set E* = Ef(z) and A} = A*(x). Then the following hold.
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(i) B A B} = O if and only ifpfj =0for 0<i,j,k<D.
(i1) B;A5E), = O if and only if ¢; = 0 for 0 <4,j,k < D.
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Chapter 20

Vanishing Conditions

Monday, March 15, 1993 (Monday after Spring break)

Lemma 20.1. Let Y = (X, {R;}g<;<p) be a commutative scheme.

(1) po(i) = 1.
(13) p;(0) = k;, where
k=1 ={ye X |(z.y) e R} (z€X).
(491) qo(i) = 1.
(1v) ¢;(0) =m,;, where
m; = rankF,.

Proof.
(7) Since A, = I and

Ay =po(0)Ey + po(1)Ey + -+ + po(D)Ep (20.1)
I[=Ey+E, ++Ep, (20.2)

po(i) =1 for all 4.
(i) Since
A; =pi(0)Ey + pi(L)E) + -+ pi(D)Ep,
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A,Ey =p,;(0)E,, and
k,J=A;J =p;(0)J

as there are k; 1’s in each row of A4,, we have k; = p,(0).

(iii) Since E, = |X|™1J and

Ey = X" (qp(0)Ag + go(1)A; + -+ qo(D)Ap) (20.3)
[X|7HT = XN (A + Ay + -+ Ap), (20.4)

qo(i) =1 for all 4.

(iv) B, = | X|7%(q;(0)Ag + ¢;(1) Ay + - + ¢;(D)Ap), E? = E;, and E; is similar
to a matrix

So,
m; = rankl; = tracel; = Z(Ez)xm = [X]|1X|"¢;(0) = ¢;(0).
reX

Note that as

By = 3 G0, = (B = —=q,(0)(A0)
1 ‘X‘ J70 1 j 1/ ‘X‘ 1 0 Trxr

Hence, we have all formulas.

Lemma 20.2. With the above notation
(Z) pzhj = p?/i/'
R

oo h _
(vi1) 45 = 4

; h _ Jj o i
(iv) myq;; = Mg, = Mg, -

Proof.
(1) We have



(#4) Count the following number,

nyz € X3 | (xay> € Rha ((E,Z) € Riv (Zvy) € RJ}'

= |X|khp1}fj = |X|kjpg/h = \X\k?;j/-

(iid)

1 & 1 & |

_ hp — | — h @
|X|hz:0q” h ‘X‘;qz] h

:(EioEj)T

—_ T T

_Ej OEi

:ETET

J 3

1 D
— h .
" 2

(iv) Let 7(B) denote the sum of the entries in the matrix B.
Observe: 7(Bo C) = trace(BCT).

Observe

129

(20.5)

(20.6)
(20.7)
(20.8)

(20.9)

(20.10)
(20.11)

(20.12)

(20.13)
(20.14)
(20.15)

(20.16)

T(EiOEjOEk):T((EiOEjOEk)T)ZT(EZTOEICOEJT):T(EkOEfOE{).
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Compute each one.

1
7(E; o Ej o E;) = trace((E; o E,)E,) = trace ( (|X| > q{;Eh> Ek> (20.17)
h
1 k 1 k
= trace mqijEk = mmkqij, (20.18)

1
T(E; 0 E}, o E;) = trace((E; o By ) E;) = trace ( <|X| zh: q?kEh) Ec) (20.19)

1 1 ;

1
T(Ey o E; 0 E}) = trace((Ey, o E7) E;) = trace ( <|X| Zh: quEh) EZ-> (20.21)

1, 1 ;
= trace (qufEi) = mmiqkj. (20.22)

Hence, we have (iv).

Lemma 20.3. LetY = (X,{R;}o<i<p) be a commutative scheme. Fiz a vertex
x € X, and set Ef = Ef(x) and Af = A*(x). Then the following hold.

(i) B A B = O if and only ifpfj =0 for0<14,5,k<D.

(ii) B, AGE), = O if and only if qu =0 for0<i,5,k<D.

Proof.

(¢) Partition rows and columns by Ry(x), Ry(x),..., Rp(x). Then,

Ej(x)A;E; (x)
is the (i, h) block of A,.

Hence this submatrix is zero if and only if there exists no y,z € X such that
(z,y) € R;, (v, 2) € R, and (y,2) € R;. This is exactly when pzhj =0.

(44) The sum of the squares of norms of entries in E; A} E),
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— (BB - (B, A Ey) (2023)
= trace(E; A} By (E;ATE,) ) (20.24)
= trace(E, A} E,AYE,) (20.25)
= trace(F; A*EkA*) as trace(XY') = trace(Y X)
(20.26)
=) (B A BAY),, (20.27)
yeX
=2 (Z o IXI(E)), z)(Ek)zy(X(Ej)ya:)> (20.29)
yeX \zeX
= | X[2(E;(E; 0 E}))Ej) gy (20.30)
= |X|¢, (B))... (20.31)
— ¢l m, (20.32)
= myql;. (20.33)

Note that since | X|E; = ¢;(0) Ay + ¢;(1)A; + - q;(D)Ap,

1 mj

Thus, we have (i7).

O
Corollary 20.1 (Krein Condition). For any commutative scheme Y =
(X, {R;}o<i<D) qlhj s a mon-negative real number for 0 < h,i,j < D.
Proof. Since g/smy, is a non-negative real by the proof of Lemma 20.3 (i).
Note that m,, is a positive integer. O

An interpretation of the Krein parameters.
Let Y = (X, {R,;}¢<;<p) be a commutative scheme with standard module V.

Pick a vector v € V with

View v as a function
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View V as the set of all functions V' — C. Then the vector space V together
with product of functions is a C-algebra.

For
write

to represent the product of v and w viewed as functions.
Lemma 20.4. With the above notation,

(i) Aj(z)v = |X[|(E;Z o) for allv €V and for all z € X.
(i) B,V o E;V C Zh:q?ﬁo E,\V forall0<i,j5<D.

(iii) Ey(E; o B;V) = E,V if qf5 # 0 for all 0 < h,i,j < D.
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Norton Algebras

‘Wednesday, March 17, 1993

Proof of Lemma 20.4.
(i) Suppose

v = E Q,T.

Pick a vertex z € X and compare z-coordinate of each side in (7).
(45 (x)v), = (Aj(2)) v, = [X|(E)),0..
(X|(E;E o), = |X|(EfE), - a, = | X[(E)),.0,.
Note that Ejf is the column x of qu which is the row z of E,.
(i) Fix i, j, h such that ¢ = 0.
Claim. E,(E;V o E;V)=0.

E,(E;V o E;V)=E,(Span(vew | v € E;V,w € E;V))
= E,(Span(E;y° E;Z | y,z € X))
= Span(Ey,(E;z0 E;y |y, 2 € X)

= Span((E, AX(2)E)y | y, 2 € X) by ().

But qihj = 0 implies qj% =0.
So, by Lemma 20.3 (ii),
0= (E;A}E;l)T = EhA;iEi.
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Hence, By, (E;V o E;V) = 0.

(iii) Fix 4, j, h such that gf; # 0. Then,

E,(E;V o EjV) CE,\V
is clear. We show the other inclusion. Since

E;jo E;y = (column y of E; o column y of £;)
= column y of E; o E;
= (E;° Eg)?}

1 &, .
= (|X| g%ﬂ%) Y,
we have,
E,(E;V o E,V) = E,Span(E;jo E;Z | y,z € X)

D E,Span(E;ye Ey |y € X)
= Span(¢/;E, g | y € X)

= Span(E,j |y € X) since qzhj #0

== EhV.

This proves the assertion.

Lemma 21.1. Given a commutative scheme Y = (X, {R;}o<i<p), fixr j (0 <

j < D). Define a binary multiplication:

EVXEV — EV ((vw)i=vxw=E;(vow)).

j
Then,
(i) v*w=wx*v, for all v,w € E,;V,
(41) v* (w+w') =vsw+vxw forallv,w,w" € E;V, and

(7i1) (aw) * w = a(v*w) for all a € C.

In particular, the vector space E;V together with x is a commutative C-algebra,

(not associative in general).

(N; : (E;V, ) is called the Norton algebra on E;V.)

(iv) vk w =0 for all v,w € E;V if and only if q;:j =0.
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Proof.
(i) — (¢i7) Immediate.

(4v) Immediate from Lemma 20.4 (i), (¢ii).

Let Y, j, N, be as in Lemma 21.1, and M Bose-Mesner algebra of Y. Let

AutY = {0 € Mat(C) | o : permutation matrix ,oc-m=m-o for all m € M}

(21.16)
= {0 € Maty(C) | 0 : permutation matrix , (21.17)
(z,y) € R; = (ox,0y) € R;, for all 4, and for all z,y € X}
(21.18)
Aut(N;) ={o: E;V — E;V | 0 is a C-algebra isomorphim, i.e., (21.19)
o(vxw) = o(v)*o(w) for all v,w € E;V}. (21.20)

Lemma 21.2. Let Y, j,* be as in Lemma 21.1.

(i) E;V is a module for Aut(Y').

(#4) U\Ejv € Aut(N;) for all o € Aut(Y).

(iii) AutY — Aut(N;), (o = U‘|EJ_> is a homomorphism of groups,

(i.e., a representation of Aut(Y)).

(iv) Suppose Ry, ..., Rp are orbits of Aut(Y) acting on X x X, (so, we are in
Ezample 17.2) then above representation is irreducible.

Proof.

(7) Pick ¢ € AutY and v € V. Then,

ob;v = E;ov,
since o commutes with each element of M.

(44) 0|E7_V : E;V — E;V is an isomorphism of a vector space. Since o is
invertible,for all v, w € E;V,

o(vxw) = o(E;(Ejve Bw)) = Eo(Eve Bjw) = E;(Ejove Ejow) = o(v)*a(w).

(#4¢) Immediate from (7) and (it).

(iv) Here, Bose-Mesner algebra M is the full commuting algebra, i.e.,
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M ={meMaty(C)|o-m=m-o, for all o0 € Aut(Y)}.

Suppose there sia a nonzero proper subspace 0 # W C E;V that is Aut(Y)-
invariant.

Set
Wt ={veEV|{(wv)=0, forall we W}

Then, W+ is a module for Aut(Y), since Aut(Y) is closed under transpose
conjugate.

Let e : V — W and f : V — W' be the orthogonal projection such that
e+ f = Ej7
e?=e, f?=f,ef = fe=0,eE, =0, if h # j.

Since e commutes with all o € Aut(Y), e € M and

D
e= E o, B
i=0

If b # j, then 0 = eE), and o), = 0. Thus, e = a,;E;, i.e, e=0or f =0.
A contradiction.
O

Norton algebras were used in original construction of Monster, a finite simple
group G.
Compute character table of G,

— pﬁ‘j, q?j of group scheme on G,

— find j where m; = dim F;V is small and qgj +0,

— guess abstract structure of N; using the knowlege of p/;’s and ¢}3’s,

— compute Aut(N;),

— G.
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X-Polynomial Schemes

Friday, March 19, 1993

Lemma 22.1. Let Y = (X, {R;}g<;<p) be a commutative scheme.
(i) p; = Pjo = 0

(#1) pY; = 0;5 Ky
(#i7) qo; = qJ0 = 5
(

iv) q” ZJm

D
V) 2 pl=
=0
D
(vi) Y gl =
=0

Proof.
(i), (i%) These are trivial.
(7i7) We have

D
X! ZQéjEl =EyoE; = |X["'J o E;=|X|'E;.

(iv) Recall from Lemma 20.2

|X|_1mhqf’j =7(E; 0 E;o E;),
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(where 7(B) is the sum of entries in matrix B.)

X" gty = T(E; © Ej o Ey) (22.1)
= | X7 (E; o Bj) (Bo=1XI"'))  (22.2)
—|x|-1 X
= | X | trace(E; E;) (22.3)
= | X|719,straceE; (22.4)
— x|l
= |X|70,;m;. (22.5)
(v) Pick z,y € X with (z,y) € R;. Then,
D
szhj =|{z € X |(z,2) € R;, (2,9) € R; for some j}| (22.6)
=0
=N{{z€ X | (z,z2) € R} (22.7)
= k. (22.8)
(vi)
D
E; o E; = |X['Y diE,.
h=0
So,
D D [/ D
Do BB =X ) (z q;;) B (229)
=0 h=0 \j=0
D
— B0y E (22.10)
=0
—Eol (22.11)
= [X"H(q:(0)Ag + ¢;() Ay + 4+ ¢,(0)Ap) o 1 (22.12)
= |X| g, (0)1 (22.13)
= |X|"'m;(Ey+ Ey + -+ Ep). (22.14)
This proves the assertions.
O

Definition 22.1. Let Y = (X, {R,}o<;<p) be a commutative scheme.
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Y is @-polynomial with respect to ordering E, E, ..., E of primitive idempo-
tents, if

n J =0 ifoneof h,i,jis greater than the sum of the other two,
% #+ 0 if one of h,i,j is equal to the sum of the other two.

In this case, set

¢ = ql1‘,¢71a a; = qzi,iv b = qzi,z‘ﬂ (0<i< D), (cg=0bp=0).

Observe: @-polynomial — Y is symmetric.
Suppose i # i for some . Then, by the condition in Definition 22.1,
0= g2 =m, (#0)

by Lemma 22.1 (4v). This is a contradiction.
Hence, EZ-T = E; = E; for all 4.
Therefore, M is symmetric and Y is symmetric.
Observe: If Y is @Q-polynomial,

cg+al+bi=my (0<i<D)
(just as ¢; + a; + b; = k for P-polynomial.)
By Lemma 22.1 (iv),

my = qio +qiy + o+ qli,i—l +ai; + qli,i+1 + o

and qzio = qil =0, qi,iq =c;, q:iu‘ = aj, and qi,z‘ﬂ =b;.

Lemma 22.2. Assume Y = (X,{R;}q<;<p) is a symmetric scheme. Pick
x € X, and set Ef = Ef(x), A* = A*(z). Then the following are equivalent.

(2) T is Q-polynomial with respect to E, ..., Ep.
(it) The condition

0<h,7<D).
40 i h—j=1. O=MI=D)

(23i) There exists ff € C[\], deg ff =i, and

1y

. {—0 if |h—j]>0

Ap= 1A} (0<i<D).

(iv) EV, ..., ELV are mazimal eigenspaces of A}, and

EATE; =0 if [i—jl>0, (0<i,j<D).
(Compare (iv) with the definition of Q-polynomial in Definition 6.2.)
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Proof.
(i) = (i1) Clear.
(11) — (ii1) Af =1,

A Ay = iqﬁjA;;, (22.15)

ALAS = gl 1A* VAT AL, (gt #£0,1< i< D—1). (22.16)
Hence A7 is a polynomial of degree exactly j in Aj by induction on j.
/\f;(/\) =bj 4 ;71(/\) + a;‘-f;-‘()\) + ¢ ;+1</\) with ¢}, # 0,

and f*; =0, fg(\) =
(7i1) — (i) Pick 4,7, h with 0 < ¢,5,h < D and h > i+ j. Since

ho ;L .
mpQ;; = quzj'h = miq;zj
by Lemma 20.2, it suffices to show that

W =0 i it
W£0 i h=i+]

ALAS = thA* (22.17)
D
FrADf( Z L f (A7) (22.18)
Hence,
D
=> difiN)
h=0

Note that since Af, A7, ..., A}, are linearly independent, f(Aj) = 0 implies
deg f > D.

degLHS—z—i—j—>qusé0 gy =0, if h>i+j.
(#4i) — (iv) Recall

Al =q(0)E5 + ¢, (1) E] +

Each A7 is a polynomial in A. Then A generates the dual Bose-Mesner algebra.
So, ¢1(0),¢;(1),...,q,(D) are distinct.
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So, E§V, ..., E},V are maximal eigenspaces.

Also, |i — j| > 1 implies q{l =0.

Thus, E;ATE; =0 by Lemma 20.3 (i7).

() — (i1) ¢i; = 0 if [i — j| > 1, since in this case,

E;AE; = O implies ¢j; = 0 by Lemma 20.3 (ii).

Suppose q{}rl =0 for some j (0<j< D—1).

Without loss of generalith, choose j minimum. Then Aj is a polynomial of

degree h in A (0 < h <j), and

A A — Q{j Aj o — Q{jAj =0.
the left hand side is a polynomial in Aj of degree j + 1.

Hence, the minimal polynomial of A7 has degree less than or equal to j+1 < D.
But A} has D + 1 distince eigenvalues.

This is a contradiction.
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Chapter 23

Representation of a Scheme

Monday, March 22, 1993

Theorem 23.1. Let Y = (X,{R;}o<i<p) be a symmetric scheme. (View the
standard module V' as an algebra of functions from X to C.) Then the following
are equivalent.

1) Y is Q-polynomial with respect to ordering Ey, Ey, ..., Ep of primitive idem-
Y g L, Ly D
potents.

(#4) For alli (0 <i< D),

E)V+EV+(E\V)?+-+ (B, V) =EV+EV+-+E,V.

Proof.
By Lemma 20.4 (i7), (4i7).

E,(E;V o E;V) =0 if and only if qzhj =0 (0<4,5,h< D).

(i) — (i) By our assumption,

qt; =0if [h—j| > 1, and gt +o.

15
So,
E, Vo EjV - Ej,IV + EjV + EjHV (0<j< D), (23.1)
EjH(ElV ° EjV) = EjHV (0<j<D-1), (23.2)

by Lemma 20.4.
Also E,V C Span(9), where ¢ is all 1’s vector, i.e., 1 as a function X — C. So,

E)VoEV=EV (0<j<D) (23.3)

143



144 CHAPTER 23. REPRESENTATION OF A SCHEME

Show (44) by induction on 4.

The cases i = 0,1 are trivial.

1> 1: C.
E)V +E\V + (EV)?2+ -+ (E V)
= E,)V + E,Vo(E)V+EV+-+ (E,V)™1
=E,V+EVo(E,V+EV+-+E_,V)
CEV+EV+-+EV
by (23.1).
D.

Claim. B,V CE,VoE, \V+E, ,V+E, ,V (2<i<D,).
Proof of Claim. By (23.2),

E,(E\VoE, \V)=EV.

For all v € E,V, there exists u € B,V o E;, |V such that F,u = v.
On the other hand, by (23.1),

E\VoE, \VCE, ,V+E, ,V+E,,V.
So, u =w+v, where w € E;, ,V + E;, ;V. We have,
w=u—v€eEEVE V+E_V+E ,V

as desired.

HS MEMO

E;V o E;V =Span(uov|u€ E;V,ve E;V).

By claim,

BV + B,V + -+ BV
CEVA+EVA+-+E_V+EVoE, |V

(23.8)
(23.9)

CE)W+EV+-+ (EV) L+ EV(E)V+EV+-+ (B, V)1

CE)V + E\V +-+ (B, V)"t + (B, V).

(#1) — (1)
Claim 1. Pick 4,5 (0 < i, < D) with j > i+ 1. Then ¢}, = 0.

(23.10)
(23.11)
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Proof of Claim 1.

Ej(Ey0E,V) C E,(E\V o (E\V + E\V + (E,V)? + -+ (E,V)) (23.12)
C E;(E)V 4+ E\V+ (EV)? +-+ (E, V)™ (23.13)
= E;(E)V +E\V 4+ E,V) (23.14)
=0. (23.15)

So Q{i = 0 by Lemma 20.4.
Claim 2. ¢{f' #0 (0 <i < D).
Proof of Claim 2.

EZV+ BV +-+ BV (23.16)
= EyV + E\V o (E)V + EV 4+ (EV)) (23.18)
=E\V +E Ve (EV+EV+-+EV) (23.19)
=E,V+EVo(E,V+-+E]V). (23.20)

So,
B, 1V =E 1 (E\Vo (E)V +-+ E}V)) (23.21)
=E; 1 (E,\VeEYV) (23.22)

by Claim 1 and Lemma 20.4.
Hence, ¢i* # 0 by Lemma 20.4.

Let Y = (X, {R,;}o<;<p) be a commutative scheme with standard module V.

Definition 23.1. A representation of Y is a pair (p, H), where H is a non-zero
Hermitean space (with inner product ( , )) and p : X — H is a map satisfying
the following.

R1. H = Span(p(z) |z € X).
R2. (p(z), p(y)) depends only on ¢ for which (z,y) € R, (x,y € X).
R3. For every z € X and for all ¢ (0 <i < D),

> ply) € Span(p()).

yeX,(y,x)ER;

Above representation is nondegenerate if {p(x) | € X} are distinct.
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Example 23.1. Y = H(D,2), X = {ay-~ap | a; € {1,—1},1 < i < D}. Let
H =CP and (, ) usual Hermitean dot product.

For a vertex = ay --ap € X, define
p(x)=ayap € H.

Then, R1 — R3 hold.

HS MEMO

R1,R2 are obvious. For R3, we may assume that z = 1---1. Restrict

R0

yeX,(y,x)ER;
on the first coordinate. Then,
D—-1
—1 appears < , 1) times (23.23)
i—
D—-1
1 appears < ) ) times. (23.24)
)

enee yex,(;x)e&p(y) = ((D P 1) - (?_11» el

Let (p, H) be a representation of arbitrary commutative scheme Y. Set

E = ({p(x), p(9))) s yex

Gram matrix of the representation.

Definition 23.2. Representations (p, H), (p’, H') of Y are equivalent, when-
ever, Gram matrices are related by

E’ € SpanFE.

We do not distinguish between equivalent representations.

Note. Suppose (p, H) is a representation of a symmetric scheme Y. Pick
z,y € X with (z,y) € R;.

Then (y,z) € R;. So, by R2,

since ( , ) is Hermitean.

Hence, the Gram matrix E of p is real symmetirc. Without loss of generality,
we can view H as a real Euclidean space in this case.
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Lemma 23.1. Let Y = (X,{R,;}o<;<p) be a commutative scheme and V a
standard module.

Let E; be any primitive idempotent of Y.

(i) (p, H) is a representation of Y, where H = E;V (with inner product inherited
fromY).

p: X = H (v E2)
(i.e., p(x) is the x-th column of E;.)

(i1) (p(x), p(y)) = |X|"q; (i), if (x,y) € R;, (w,y € X).
(#it) For0<i<D and x,y € X,

> py) =pie).

yeX,(y,x)ER,;

(iv) (p, H) is nondegenerate if and only if q;(i) # ¢;(0) for all i, (0 <i < D).
(v) Every representation of Y is equivalent to a representation of the above type
for some j (0 < j < D), and j is unique.

Proof.

R1: Span(pX) is the column space of E; which is equal to H.

R2:

(p(z), p(y)) = (E;Z, E;y) (23.25)
= (E;2) B3 (23.26)
—3TE, E;j (23.27)
=2'Ey (23.28)
= (Ej)y- (23.29)

—T
Note that F; = E; by Lemma 19.1.

Recall
E; = |X|(g;(0)A + -+ ¢;(D)Ap).
So,
(B})py = |X|*1qj(i), where (z,y) € R;.
R3: Recall

A; =p;(0)Ey + -+ p;(D)Ep.
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So, E;A; = p;(j)E;, and

p;(J)p(x) = pi(j)Ej‘% = Einf = Ej Z Y= Z p(y)-
(y,z)e (y,z)ER,;

yeX, R; yeX,

Note.

Az= > 0

yeX,(z,y)ER/

Pf.
z entry of LHS = (A,z),

= Z (Ai)zw‘%w

weX
_J1 if(z,2) € Ry
10 else.
z entry of RHS = Z 1

yeX,(z,y)ER;r 2=y

B {1 if (x,2) € Ry

)0 else.

(iv) By (ii),

lo(@)]? = (p(x), p(y))
= |X[q;(0)
= ‘X‘ilmja
as m; = dim E;V, and is independent of z € X.
Pick distinct «,y € X such that (z,y) € R; with ¢ # 0.
Then,
p(x) = p(y) < (p(x), p(y)) = |p()]* = [X]"q;(0)
< [X[7q;(i) = | X[ 1q;(0)
< q;(i) = ¢;(0).

Hence, we have (iv). To be continued.

(23.30)
(23.31)

(23.32)

(23.33)

(23.34)

(23.35)

(23.36)
(23.37)
(23.38)

(23.39)
(23.40)
(23.41)



Chapter 24

Balanced Conditions, I

Wednesday, March 23, 1993
No Class on Friday (another conference).
Proof of Lemma 23.1 continued. Let E; be a primitive idempotent, H = E,V

and
p:X—H (v E;7).

(v) Every representation (p, H) of Y is equivalent to a representation of above
type, for some j (0 < j < D) and j is unique.

Let £ := (<p(x>ap(y))$,y€X

By R2,

D
E:E 0,A4;, someo,,0q,..,0p€C.
i=0

Hence, F belongs to the Bose-Mesner algebra M of Y.
We want to show that E is a scalar multiple of a primitive idempotent.
Fix z € X and fix i (0 <¢ < D).

By R3,
p(y) = ap(xz), some « € C. (24.1)
yeX,(y,x)ER;

So,
kio; = < > p(y)m(x)> = a(p(z), p(z)) = aoy.
yeX,

(y,z)ER;

Hence, « is independent of z. In maatrix form (24.1) becomes

EAz =aFEzZ.

149
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HS MEMO

Eu=FEv< (z,Eu) = (z,Ev) for all z€ X < (Eu), = (Ev), for all z € X.

(EAioz>z=<p<z>, 3 p<y>> (24.2)
yeX, JER;

(y,@

— a(p(2), p(a)) (24.3)

= (aFZ),. (24.4)
Hence,

EA;z =aFEx
Since x is arbitrary,
FA, =aF
So,
EA, € SpanE and EM = SpanFE.

We have E € E; for unique j (0 < j < D). O
HS MEMO

E=1FE,+-+71pEp, ;€C (0<j<D).
And, at least one of 7; is nonzero, and
7,B; = FE; € Spank.
So,
B =E
as E, ..., Ep are linearly independent.

Let Y = (X,{R;}g<;<p) be a symmetric scheme, and let £ be a primitive
idempotent.

Definition 24.1. Y is Q-polynomial with respect to F, if and only if Y is
@-polynomial with respect to some ordering E,, Ey, ..., Ep of primitive idempo-
tents, where E, = |X|~'J, and E, = E.

Theorem 24.1. AssumeY = (X, {R,;}o<;<p) is P-polynomial (i.e., (X, R,) is
distance-reqular). Let E be any primitive idempotent of Y. Let (p, H) be the
corresponding representation.

(i) The following are equivalent.

(ia) Y is Q-polyonimial with respect to E.
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(ib) (p, H) is nondegenerate and for allz,y € X, and for alli,5 (0 <i,j < D),

p(z) — > p(z") € Span(p(z) — p(y)).
zeX,(ac,z)ERi,(y,z)eRj z’EX,(:c,z’)eRj,(y,z’)eR,i

(ic) (p, H) is nondegenerate and for all x,y € X,

plz) — > p(2) € Span(p(x) — p(y)).
2€X,(2,2)€ Ry (y,2)E Ry SEX (2.2 )Ry, )Ry
(i) Write
D
B-1x Y0,
=0

and suppose (ia) — (ic) hold. Then the coefficient in (ib) is

it
98—,

(1<h<D,0<i,57<D).

Proof.

(ia) — (ib) Without loss of generality, assume E = F;, and Y is Q-polynomial
with respect to F.

Then by Lemma 22.2, 6, ..., 0%, are distinct. So 6}, # 65 for all h € {1,2..., D},
and (p, H) is nondegenerate.

Fix © € X, write Ef = Ef(z), A} = Al (x), A* = A].
Let M be the Bose-Mesner algebra. Set

L={mA'n—nA*m|m,n € M}.

Claim 1. dim L < D.
Proof of Claim 1.
L = Span(E,A*E; — E;A"E; |0 < i < j < D) (24.5)
= Span(F;A*E; |, — E; JA'E; |0<i<D—1). (24.6)
Since E;A*E; = 0 if ¢j; = 0 by Lemma 20.2 and Lemma 20.3, and this occurs if
|i — 7] > 1 by @-polynomial property.
Hence, dim L < D.
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Claim 2. (i) {A*A4, — A,A* |1 < h < D} is a basis for L. In particular,

(i1) there exist r?j €eC(1<h<D,0<4,j<D)such that

D
A A A — A AR A = el (AT Ay, — Ay AY).
h=1
Proof of Claim 2.

(i) The column x of A*A;, — A, A* is a nonzero scalar ¢}, — 6§ times the column
x of Ay.

HS MEMO

Also the column x of A\, A, ..., Ap are linearly independent.
Hence, the matrices given are linearly independent.
They are in L by construction, so they form a basis for L by Claim 1.

(#4) This is immediate since

A ATA; — AATA € L, for all i, 5.

Clai]ll :;
r = pt il 1<¢<D,0<i,j<D
Zj p” 08 02 ( = = ) _Zaj = )'

Proof of Claim 3. Fix 1, j,

)

AATA; — AARA =N el (AR A, — A A%) = 0.
h=1

Pick £ (1 < ¢ < D). Pick y € X such that (z,y) € R,.

zeX

= > (A7).. (24.8)
2€X,(z,2)€R,;,(y,2)ER;

— —1,.0 p*

= |X]| 1pij0i' (24.9)

Similarly,
(A]A*AZ>JE’U = |X|_1p1[]9;
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(A*A, — AL AY),, = (AgA" Ay — A AT Ag),, (24.10)
— |X[ 9l (65 — 0}) (24.11)
_ 0 if £ h (24.12)

X705 —60;) if €= h.

Hence,

D
> (AT A, — Ay AT, = X7 (05— 6;).
h=1

Comparing terms, we have

Py (0; = 8) = 14,8, — 0) = 0

Claim 4. For all h (1 < h < D), for all i,57 (0 < 4,5 < D), for all w,y € X,
(’U}7y) € Rh?

> p(z) — > p(2') = ri(p(w) = p(y)) = 0.

z€X,(w,2)ER;,(y,2)ER; e X, (w,2")eR;,(y,2)ER;

(24.13)
Proof of Claim 4. Set L = (LHS of (24.13), p(z)) It suffices to show that L = 0.
Note that since x is arbitrary, if LHS of (24.13) is zero.

L= > (p(2),p(x)) — > (p(z),p(x)) (24.14)
2€X,(w,2)ER;,(y,2)ER; 2'e X, (w,2")ER;,(y,2)ER;
—ri5(p(w) — p(y), p(x)) (24.15)
D
= [ X[THAA Ay — X THAGAT Ay — XD rf (AT A — AGAY),,
=1
(24.16)
= | X | times wy entry of a matrix known to be zero by Claim 2 (24.17)
= 0. (24.18)
Thus we have the claim.
O
HS MEMO
D
1 X[TED rb(ATA, — AGAT),, = X[ (ARA), — Ay AT, (24.19)
=1

=r5({p(@), p(w)) — (p(x), p(y)))  (24.20)
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Chapter 25

Balanced Conditions, 11

Monday, March 29, 1993

Proof of Theorem 24.1 continued.

(ib) — (ic) Obvious.

(ic) — (ia) Without loss of generality, we may assume D > 3, else trivial.
HS MEMO

The case D = 2 should be treated somewhere, but the assumption D > 3 is not
used.

Fix w € X, and write Ef = Ef(w), Af = Af(w), A* = A%, and A,, i-th distance
matrix. Set

D
E=E, =[X["') 6;A,.
=0
Since (p, H) is nondegenerate,
0y #+ 65 for all h € {1,2,...,D}

See Lemma 23.1 (iv).
Claim 1. Pick h (1 < h < D), and z,y with (z,y) € Rj,. Then

p(z) — > p(2') = riy(p(a) — p(y)),
zeX,(x,2)ERy,(y,2)ER, zeX,(x,2’)ER,,(y,2" )ER,
where
h h 99{ — 0;

i =D .
12 12 g« "
05 — 0},

155
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Proof of Claim 1. By our assumption,

> p(z) — > p(z') = alp(x) — p(y)).
zeX,(z,2)ER,(y,2)ERy ZeX,(x,2")ER,y,(y,2 )ER,
Hence,
X[~y (07 — 03) = < > p(z) — > p(Z’),p($)>
zeX,(xz,z)eR,(y,z)ER, z’eX,(x,z')eR,y,(y,2' )R,
(25.1)
= afp(z) — p(y), p(x)) (25.2)
= ol X710 — 03). (25.3)
We have
07 — 0%
_ b 1 2
o = piy o —0; .

D
Claim 2. A, A*Ay — Ay A* Ay =Y 1l (A" A, — A, AY).
h=1

Proof of Claim 2. The xy entry of the LHS — RHS is

| X < > p(z) — > p(2') = riy(p(a) — p(y))yp(w)> :
zeX,(

z,2)ER,,(y,2)ER, 2 eX,(x,2")ER,,(y,2" )ER,
where (x,y) € Ry, h = 1,2,..., D, and the xy entry of the LHS — RHS is 0 if
T =y.

But the vector on the left in the above inner product is 0 by Claim 1, so the
inner product is 0.

Thus, the zy entry of the LHS — RHS is always 0, and we have Claim 2.
Claim 3. A*A; — A;A* € Span(AA*A, — A, A* A, A* A, — A A" A A — AAY).

Proof of Claim 8. Since p, = 0, if h > 3, and pf, # 0, if h = 3, we have rl, =0
if h >0, and rf, # 0, if h = 3. Note that 0} # 603.

Now we are done by Claim 2.

Claim 4. There exist 8,v,d € R such that

0=[A, A2A" — BAA*A + A*A? — v(AA* + A*A) — 6 A*] (25.4)
= ABA* — A"A3 — (B4 1)(A2A*A — AA*A?) — y(A2A" — A*A%) — 5(AA* — A*A).
(25.5)

Proof of Claim 4. There exists f; € R[A], deg f; = i such that A, = f,(A;).
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Writing A,, A5 as polynomials in A in Claim 3 and simplifying, we find
A3A* — A*A3 € Span(A2A*A — AA* A% A2A* — A A% AA* — A% A).

HS MEMO

Let Ay = 3A° + B,A? + 1A+ Byl with B3 # 0, and Ay = 1, A% + 1, A+ 7,1,
with vy # 0. Then

AT Ay — Az A" = A (B3 A% + By A® + B1A + Bl ) — (B3 A® + B A% + By A + By T) A

(25.6)

ABA* — A*A3 € Span(A* A, — AgA*, A2A* — A*A2, AA* — A*A) (25.7)
C Span(AA*A, — Ay A*A, A*Ay — Ay A* A2 A* — A* A% AA* — A*A)

(25.8)

A*Ay — AgA* = A* (A% + A+ yl) — (1247 + 1 A+ D) A* (25.9)
AAT Ay — Ap A" A = AAY (7, A% + A+ 9D) — (1A + 1 A+ 7)) A*A

(25.10)

A*A, — A, A* € Span(A2A* — A* A2 AA* — AA¥) (25.11)

AA*Ay — AyA*A € Span(A2A*A — AA*A2, AA* — AA¥) (25.12)
ABA* — A*A3 € Span(A2A*A — AA*A2, A2A* — A*A%, AA* — A*A).

(25.13)

Hence, we can find §,, § satisfying
0= A3A*—A*A3 — (B+1)(A2A*A— AA*A?) —y(A2A* — A* A?) —§(AA* — A% A).
On the other hand,

[A, A2A* — BAA*A + A* A% — y(AA* + A*A) — §AY] (25.14)
= A3A* — A2A*A — BA?A* A+ BAA*A? + AA*A? — A* A3 (25.15)
— YA2A* — yAA*A + yAA* A+ yA*AZ — SAA* + 5ATA (25.16)

= A3BA* — A*A3 — (B+1)(A%2A"A — AA*A?) — y(A%A* — A*A%) — §(AA* — A% A).
(25.17)

Thus we have (¢) and (i7).

Define a diagram Dy on nodes 0,1, ..., D.

Connect distinct nodes , by undirected arc if ¢j; # 0. (Note gj; = qj;).
Since qéj = 0y, the O-node is adjacent to the 1-node and no other node.
Y is @Q-polynomial with respect to E if and only if Dy is a path.

Claim 5. Dy is connected.

Proof of Claim 5. Suppose there exists A

C {0,1,..., D} such that 4,5 not
connected for every i € A and j € {0,1,..., D} A.
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Set

f=> E.

IEA

Observe

fA* = E,A* (f: Ej> (25.18)
j=0

iEA

= Y  EAE; (since BEA'E; =0 if g}, =0) (25.19)
1EAJEA

=fA"f. (25.20)

Also, A*f = fA*f.
Hence, f commutes with A*.

But f is an element of the Bose-Mesner algebra

D
f= E oA, for some oy, ...,ap € C.
=0

We have
D
0=fA"— A" f = a,(AA" — A*A,).

=1
But {A; A* — A*A, | 1 < h < D} are linearly independent. (The column w of
A AT — A* Ay, is 0 — 6 times the column w of A4,.)

Hence, a; = -+ = ap =0, and f = ayl. Since f2 = f, o or 1.
If oy =0, f=0 and A = 0.

fag=1, f=Iand A={0,1,...,D}.

This proves Claim 5.

HS MEMO
Claim 5 proves the following in general.

Let Y = (X, {R;}¢<i<p) be a symmetric association scheme. Fix a vertex z € X,
and let

1 & .
E= mzejAj (9; =q () if E=E))
j=0

be a primitive idempotent and £} = E7 ().

D
A* = Z O5E:.
=0
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If 0y =0;, h=1,...,D, then the following hold.
(i) {A,A* — A*A,, | 1 < h < D} are linearly independent.
(#i) The diagram Dy on nodes 0,1, ..., D defined by

i~je E(E°E;)#0
is connected.
(iii) Cyy(A*) = {L € M | LA* = A*L} = Span(1).
Proof.
(7) The column x of A, A* — A*(A,) is 6 — 6;, times the column z of A4,.

D
= Z a,(A,A* — A*A;). Hence, ay = - = ap = 0.
h=1

D
(#77) 0 = {Z ay Ay, A*
h=0

(44) A is a connected component. Let f =3 _, E;, then f € Cy(A").

Let Y = (X, {R,;}o<;<2) be a symmetric association scheme with D = 2. Let

be a primitive idempotent.

Suppose 6 # 07,65. Then Y is Q-polynomial with respect to E.
Proof. By the previous lemma, D is connected.

Note. It seems 0] # 03 is necessary. Clarify the condition 0] = 65.

Terwilliger claims that 67 = 65 does not occur under the assumption (ic).
(March 7, 1995)
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Chapter 26

Representation Diagrams

Wednesday, March 31, 1993

Proof of Theorem 24.1 continued. Assume Y = (X, {R;}o<i<p) is P-
polynomial. Let E be a primitive idempotent of Y such that the corresponding
representation (p, H) is nondegenerate.

Show for all z,y € X,
> p(z) — > p(2') € Span(p(z) — p(y))

2€X,(2,2)ERy,(y,2)ER, 2/ €X,(x,2/ )Ry, (y,2 )ER,
implies that Y is @Q-polynomial with respect to FE.
Define a diagram Dy on nodes 0,1, ..., D, for i # j,

R R qilj #0

by setting E = E.
We showed that 0 ~ j <> j=1 (1 < j < D) and Dp, is connected.
Now it is sufficient to show the following.
Claim 6. Let ¢ be a node in Dp. Then ¢ is adjacent to at most 2 arcs.
Proof of Claim 6. Suppose the node j is adjacent to ¢ in Dy. By Claim 4,
0=FE;(A3A* — A*A3 — (B+1)(A2A"A — AA*A?) — y(A%2A* — A*A) — §(AA* — A*A))E;

(26.1)
= EiA*Ej(Qf’ - 95»’ —(B+ 1)(629j - 91»632) — (07 — 9?) —4(0,—0,)) (26.2)
= E,A"A;(0; — 0;)p(0;,6;), (26.3)

where
p(s,t) = 52 — Bst + 12 — (s +t) — 4.
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HS MEMO
(0, — 0,)(67 — 30,6, + 9§ —(0; 4 0;) — 6) (26.4)
= 03 —03—(B+1)(6%0,—0,03) — (07 —07) — (6, — 0,) (26.5)

Since ¢ is adjacent to j, qilj #+ 0 and
EAE; #0
by Lemma 20.3 (i7). Since Y is P-polynomial,
0; #0; if i+#j.

Hence p(6;,0,) = 0. But p is quadratic in ¢. So p(6,,t) = 0 has at most two

solutions for 6.
Now Dy is a pth, and I' is @-polynomial with respect to E.
This proves Theorem 24.1. O

Corollary 26.1. Assume Y = (X, {R;}oci<p) is P-polynomial, and Q-
polynomial with respect to a primitive idempotent

1 D
E=— 04,
|X] ;

Then,
5= 07 =051+ 00— 073
G:H - 9;;2

is independent of i (0 <i < D —3).

Proof. Fix i. Without loss of generality, D > 3, else vacuous.
Pick z,y € X with (z,y) € R5.
Let (p, H) be the representation for E.

3 ® %
S - >y o) = P28 oy ),

* _ O*
z€X,(z,2)€R,(y,2)ER, 2’eX,(x,2/)ERy,(y,2" )ER, 05 — 03

and p3, = 5.
Since p§,i+3 # 0, there exists w € X such that (z,w) € R, 3, (y,w) € R;.
Take inner product of (26.6) with p(w). We have

Piy(x,y) C Piidy(z,w) N Py oy, w) (26.7)
P231<337 y) C Pg:il(x, w) N P2i,1+1(y» w). (26.8)
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Hence,
< > p(z) — > p(Z’),p(w)> = | X[ es (07 2—0511),
26X, (x,2)ERy,(y,2)ERy z’eX,(x,2’)ERy,(y,2")ER,
cs (07 — 65 cq (07 — 65 1 .
(S o) = o) gty = S x) 20 010,
0o Y3 0o Us
We have,
00 063
0 0y Oy 05
HS MEMO

Note that since Y is P and ) with respect to A, and E;, 6§,67,...,605,
09,01, ...,0p are all distinct.

So
gL GO 0 O By 040, 6
o 071 — 0740 07 — 05
We have the assertion. O

Given the intersection number of a distance-regular graph I'. The following two
lemmas give an efficient method to determine if I" is @-polynomial with respect
to some primitive idempotent.

Lemma 26.1. Let I' be a distance-reqular graph of diameter D > 1. Pick
0,085,603, ...,05 € R such that 65 # 0, and set

1 D
E=—Y 04
(Xl ="

(i) The following are equivalent.

(ia) 0 is an eigenvalue of T', and E is a corresponding primitive idempotent.

(ib)

ag by O 0 05 05
¢ a; b 0 0 07 07
0 ¢ ay by g : . :
0 -« 0 ¢py apy bp, :
0 o e 0 cp ap 0% 0%,

and 0f = rankFE.
(#i) Suppose (ia), (ib) hold. Then,
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ﬁ %
6 O
can be computed from 0 using
0; pi(0) .
05 kby--bi_y ( i< D),

where py = 1, p;(A) = A, and

Ap;(A) = pip1(N) +a;p;(N) +b,_1¢,p,1(A)  (0<i < D).

Proof.
(1) We have
(ia) +» (A—0I)E=0and E*>=E (26.9)
D
0= Z(A — 006t A, and rankE = traceE = 6}, (26.10)
=0
D
= Z 0;(cip1Aips + a; A +b; 1A —04) (26.11)
=0
D
=" Ajlc;05y +a;0; +b,05,, —06)) (26.12)
=0
< cth g a0+ 0,07, =007 (0<j<D)and rankEl =05  (26.13)
< (ib). (26.14)
HS MEMO

The first <+. — is clear.

<: By the first condition, AE = 0E. So FE is a scalar multiple of the primi-
tive idempotent corresponding to 6. Hence, rankE = traceFE implies F is the
primitive idempotent.

(i) We prove by induction on 4.

i = 0 is trivial.

i =1: Set j = 0 above ¢y =0,ay = 0,b, = k. We have
kO = 00.

So




i>2: Set j =1i— 1 above. We have

C;o0i o+ a; 1071 +b,_ 107 =007_,.

So,
0 00— a0, —ciab;y
05 bi—165
o 0: 1
= 0 - ] Ll - ] -
pi_l(e) Di—2 (0) 1
=|l—-a, ) F7————C 177
(( az—l) kbl bi72 €i1 kbl bi,3 bifl
I 210
Kby by ob; 1
as desired.

165

(26.15)
(26.16)
(26.17)

(26.18)
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Chapter 27

P-and ()-Polynomial
Schemes

Friday, April 2, 1993
Theorem 27.1. LetT' = (X, E) be a distance-regular graph of diameter D > 3.

Let 6 denote an eigenvalue of ' with associated primitive idempotent

Then the following are equivalent.
(i) T is Q-polynomial with respect to E.

(13) 05 # 05, for all h € {1,2,...,D} and fori € {3, ..., D},

(01 —0;1)° (67 — ;)
G ( 2 7 06 - 9:: + 1—1 2 i—1 98 o 9:71 ( 7 )
= (k—0)(05 + 05— 05, — 07) — (0 +1)(6 — 05) (27.2)

(130) 6 + 65 for all h € {1,2,...,D} and (27.2) holds for i = 3.
HS MEMO

Note (27.2) is trivial for i = 1, 2.
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1= 1:
* k)2
LHS = (93 — 07 — W) + k(65 — 93) (27.3)
00 - 91
= 05— 0; — 05+ 0% + k(0 — 03) (27.4)
=(k+1)(05—6) (27.5)
RHS = (k—0)(0; + 605 — 05— 07) — (0 + 1)(05 — 65) (27.6)
=(k+1)(65— 98). (27.7)
1= 2:
* k)2
LHS = b, <0§ — 07 — (91*9'8> (27.8)
90 - 91
= b, (03 — 91)(90*_ 91*_ 05 +67) (27.9)
0 — 07
(05 — 07)(65 — 63)
=b 27.1
RHS = —(0 + 1)(6; — 03). (27.11)
Hence,
03 — 01
LHS = RHS < b, = -+ 0+1)=0 (27.12)
05 — 67
& by (05— 07) + (0 +1)(0; — 03) = 0. (27.13)
On the other hand,
b,05 + a,07 + ¢, 05 = 007 (27.14)
b0 + a,0; + 107 = kb7, (27.15)

as 005 = kf7. We have
by(6 —61) + (65 — 61) = 6(61 — 65)-

Proof. Immediate from the proof of Theorem 2.1 in ‘A new inequality for
distance-regular graphs’ (Terwilliger, 1995) and Theorem 24.1. O

Note. Suppose (i) — (i9i) hold. In particular, 65,67, ..., 6%, are distinct. Then,

by +a,8; +b,607,, =60 (0<i<D).

7 1—1 Vit
0F — 0% o*, ., — 0" .
- H*l + H*Z 3 s independent of i (0 <i < D —3).
Oi1 — 0712
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* __ % 2 k __ px 2
c; (9; — 9;? _ M) + bifl (9; _ 9:71 _ M) (27.16)

06 — 0% 0 —0i 1
=(k—0)0;+05—07_, —05)—(0+1)(6; —03). (27.17)
Furthermore, we can solve for ¢y, ...,cp, ay,...,ap, by, by, ... ,bp_; in terms of

five free parameters.

In general, we can take the five parameters to be

*
DaQaS yT'15 T2

and get
h(l _ q'LfD)(l s* z+l)(1 Z+l)(1 _ ,,,2qi+l) )
e <i<D 27.1
b; (1— s )(1—s qzz+2) (0<i< D), (27.18)
h(1—q") (1 —sq"" ") (r) — 5°¢")(ry — 5°¢") :
e <i<D 27.1
“ P (L= 5" (1= 5" ) Wsrsbh B
a; =by—c; —b, (0<i<D), (27.20)

where h variable is chosen so that ¢; = 1.
(We must also consider limiting cases h — 0, s* — 0, ¢* — £1.)

See Theorem 2.1 in “The subconstituent algebra of an association scheme, I, II,
III, (Terwilliger, 1992), (Terwilliger, 1993a), (Terwilliger, 1993b).

Definition 27.1. Let I" = (X, F) be a distance-regular graph of diameter D > 3.
Choose ¢ € R {0,—1}, set

i

. ) qfl 1
7 q=1.

Definition 27.2. T" has classical parameters if

[l (ef )
(el

(This happens for essentially all known families of distance-regular graphs with
unbounded diameter, and is essentially equivalent to s* = 0.)

Lemma 27.1. With above notation, suppose (27.21), (27.22) hold. Then,

for some o, a € R.

(i) 6 = 22 — 1 is an eigenvalue of T with 0 + k.

(ii) Let E = |X|™! Ei:O 0t A, be associated primitive idempotent. Then
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07

%:1—1—(9—1) mq“ (0<i< D).

k
In particular, 0F #+ 64 for alli € {1,2...,D}.

(731) T is Q-polynomial with respect to E.

Proof.

(1), (#3). Need to check

¢;ti 1 +a;0; + 0,07, =00 (0<i<D),
where a;, =k —c¢; —b;, (0<i¢<D,).
(equivalently: check
(074 —07) +b;(0; —07,) = (0—K)0; (0<i<D),

where ¢;,b;, 07,0 are as given.)

HS MEMO

b 0; 0 i 1o, _ |D
9—5— ,6‘76_1+<%_1> [1:|q abo_[l]a'

(27.23)



)+ by( )(

g0 ool
(Bl (P oo

-3 (Lo (1
(5]

Check 6 # k. Suppose § = k. Then

b
|
q

By (27.21), (27.22),

HS MEMO

) i)/0

Joo e (1B (L)

N RN i

=k, and g > 0.
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With the notation of Lemma 27.1, we have the above equality in general.

qc; —b; —qlqe; 1 —b; 4

)@ e[

o[ O [ - (R (e

qc; —b; = qlqe;_; —b;4) (1<i<D)
= q'(qco — by)
= —¢'k.

If i = D, qcp = —q¢Pk, cp = —qP~'k < 0, a contradiction.

(#3i) Check the equation (i7) of Theorem 27.1 holds for ¢ = 3.

HS MEMO

(27.33)

(27.34)

=)

(27.35)

(27.36)
(27.37)
(27.38)
(27.39)
(27.40)
(27.41)

(27.42)

(27.43)

(27.44)

(27.45)
(27.46)
(27.47)
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0 # 05 for all h € {1,2,..., D} and

Cs (9; — 05— (99%_9053)3 — b, (%;6—%;2 = (k—0)(0; —65) — (0 +1)(65 — 65).
ER [ 1) o
_Qﬂ_m) (J_a:?D (1—9 (m[qﬂql) (27.49)
T () 5 L
(-9 (el B BT
il
(o oo )6 (e
_ D1 1] (0—a) (1 - %) m (27.54)
T e e (N
e P ")) -

(=) ([ B 3 e B T

Example 27.1. @Q-polynomial distance-regular graphs with classical parame-
ters.

D-cube: ¢; =4, b, =D —i

has classical parameters: (¢,a,0) = (1,0,1).

Johnson graph J(D,N) (N > 2D):

c; =%, b; = (D—1i)(N — D—1) has classical parameters (¢, o, o) = (1,1, N— D).
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g-analogue of Johnson graph J (D, N) (D > 2D):

oo () =[] -

has classical parameters

(¢.a,0) = <q7q, (quD_Hl1> —1) = (q,q, {N_erl] —1).

HS MEMO

(rlf])
(o) e

= . (27.60)




Chapter 28

The First Eigenspace of a
Q-DRG

Monday, April 5, 1993

Lemma 28.1. Let ' = (X, E) be distance-regular of diameter D > 3 with
standard module V. Suppose T' is Q-polynomial with respect to a primitive
idempotent E,. Pick a vertex x € X. Then

E\V = Span{E,7 | 0(z,y) < 2}.

In particular,
dim B,V <1+ ky + ks.

Proof. Let A ={E\y | 0(x,y) < 2}.
E,V D SpanA: clear.
E,V C SpanA: Pick a vertex y € X. Show that E;§ € SpanA.
Induction on h = 9(x, y).
Case h < 2.
E,y € SpanA follows from construction.
Case h > 3.
Pick a vertex z” € X such that

O(z,z')=h—-3, J(',y)=3.
By Theorem 24.1.

Z Bz — Z Ele/ = T?Q(EI‘TA/ —Ey),
zeX,(z,2)ER,(y,2)ERy z’eX,(z,2")ER,,(y,2" )ER,

175
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el —05)
2 * *
! 05 — 03

+0.
So, B9 € Span{f,g7E1.L:’}, where

f‘: Z Elg, g = Z EIZ’,’\’.

zeX,(xz,z)eR,(y,2)ER, 2/ eX,(x,z’)ERy,(y,2' ) ER,
Observe that each z in the f-sum satisfies d(z,z) = h — 2.

So, by induction hypothesis

E,Z € SpanA, or f & SpanA.

Observe that each 2’ in the g-sum satisfies 9(x,2") = h — 1.
So by induction hypothesis

Ele’ € SpanA, or g € SpanA.

Also d(x,2’) = h — 3 implies E;2’ € SpanA.
Therefore E;§ € SpanA. O

Note. Let I', E;, x be as in Lemma 28.1.

Assume D > 4.

Observe that there are many linear dependences among
{Ey|ye A},

where A ={y € X | d(z,y) < 2}.

Take any y € X such that d(z,y) > 4.

More than one choice for z’ in the proof of Lemma 28.1 implies
“more than one way to put E,y € SpanFE; A

Open Problem:

(1) Give a precise description of the linear dependences among

{E1y|ye A}

(74) Find a subset A’ C A such that

{EwlyeA}

is a basis for E,V, (or find some other ‘nice’ basis for E, V).
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Conjecture 28.1. LetI', £, x be as in Lemma 28.1. Set

X={yeX|a(xy) <2},
d = the restriction of the distance function 0 to X.

Then T is determined by X and d.

(There should be some canonical way to reconstruct T' from X and 5)
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Chapter 29

Tridiagonal Pair A, A"

Wednesday, April 7, 1993
Introduction to Theorem 29.1
Let I' = (X, E) be distance-regular with diameter D > 3.
Assume I' is )-polynomial with respect to E;.
Fix a vertex x € X. Write Ef = Ef(z), Af = Aj(z), A* = A}.
We know for h,4,5 (0 < h,i,7 < D),
E;AE; =0 < pli =0
EAJE; =0 thj =0.
Also, for h,i,j (0 < h,i,j < D),
h<l|i—jl—=pl=0,q}=0
h=li—jl = pl#0, ¢ #0.

Some A, (resp. Aj}) is a polynomial of degree exactly h in A (resp.

follows, for h,i,7 (0 < h,i,j < D),

=0 ifh<l|i—j

BiAME:, EAE, _ Y
#0 ith=|i—j

We saw that there exist 3,+,0 € R such that
0=[A,A2A* — BAA*A + A* A% — y(AA* + A*A) — §AY).
In fact, there exist 5,7*,§* € R such that

0=[A*, A A — BA*AA* + AA™ — y*(A*A+ AA*) — §* A]

179
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as well as we will now show.

Let K denote any field. Let V denote any vector space over K of finite positive
dimension. Let End (V) denote the K-algebra of all K-linear transformations
V—=V.

Theorem 29.1. Given semi-simple elements A, A* € Endg(V), suppose

0 ifh<li—i
E,(A)'E, Fh<li=il o <pnij<p) (20.5)
#0 ifh=li—j|
0 ifh<li—i
ErAME; Fh<li=il (o <nij<mr (29.6)
I\£0 ifh=li—jl.
for some ordering Ey, E, ..., Ep of the primitive idempotents for A, and some

ordering Ej, E5, ..., Eg of primitive idempotents for A*. Then
(i) R=D.
(i) There exist B,v,7*,0,6" € K such that

0=[A, A2A* — BAA* A+ A* A2 — y(AA* + A*A) — 6 A%] (29.7)
= ASAT — A*A3 — (B4 1)(A2A"A — AA*A?) (29.8)
— y(A2A* — A*A2) — §(AA* — A*A) (29.9)
0=[A", A" A — BATAA* + AA” — y* (A" A+ AA*) — §* A] (29.10)
= AP A— AL — (B+1)(APAA" — A*AA*P) (29.11)
— V(AP A— AA) — §7(ATA — AAY). (29.12)

(13i) Let 0, (resp. 0F) denote the eigenvalue of A (resp. A*) associated with E;
(resp. EY). Then,

0, — 0,1 +06,0—0,.3

8= : : (0<i<D-—3) (29.13)
i+1 7~ Yi+2
_ B0 6 m s (0<i<D-3) (29.14)
9j+1 - 67;';2 -

v=0;— B0 +0;s (0<i<D-—2) (20.15)
v =0; =B, +0;,, (0<i<D-2) ( )
§=0?—£0,0, 1 +0,—~0,+0,,) (0<i<D-1) (29.17)
0 =07 = RO + 0 — (0, +0%,,) (0<i<D-—1) ( )

In particular, B,~,v*,9,0* are uniquely determined by A, A* and the above
ordering of their primitive idempotents, whenever D > 3.
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Proof.
(i) By symmetry, it suffices to show D > R. Suppose R > D.

Since A is semisimple with exactly D + 1 distinct eigenvalues, the minimal
polynomial of A has degree D + 1.

Since R > D + 1,
AR € Span{A4’ | 0 < j < D}.

Multiplying each term on the left by E7% and on the right by Ej, we find
ERARES € Span{ELATES | 0 < j < D}. (29.19)

But by (29.6), the left side of (29.19) is nonzero and the right side of (29.19) is
0, a contradiction.

Hence D > R.
Recalling the definitions, we have
D
A=Y "0,E, (29.20)
i=0
D
A =" 0;E;, (29.21)
i=0
AE, =E,A=0,E, (0<i<D), (29.22)
A*E! =FEfA*=0EF (0<i<D,). (29.23)

Claim 1. For all integers 4, j,k,¢ (0 <4,4,k,£ < D) such that j+ k <i—¢,

0, EfATTRES i j k=i — 1,

B3tk =i (20.24)
@) ifj+k<i—4

ﬂmmM@:{

Proof of Claim 1. The product (29.24) eqia;s

D D
Er A7 (Z 9;;E;;> ARE; = 05 B; AVE; AFE;.

h=0 h=0
Now pick any h (0 < h < D), where
E:ATE; AYE; 4 0.
Then by (29.6), j > |i — h|, otherwise

E;AE; =0
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and by (29.5), k > |h — {| otherwise
EfARE; = 0.
Hence,
jHk>li—hl+|h—L>]i—C] >i—¢.
Now if j 4+ k < i — ¢, we see there is no such h, so (29.24) holds.
(Pf. Suppose i = j+ k+ £ with 0 < ,7,k,¢,h < D.

Then ¢ > j,k,£. Since k = |h—¥|,if h # L+ k, h =¢—Fk and j—i— h,
£—h+i—h=14i—Limpliesh=4¢k=0and h=/{+k.)

This proves Claim 1.

Let M denote the subalgebra of End (V) generated by A. Observe that M has
a basis Ey,..., Ep as a vector space over K. Set

L := Span{mA*m —nA*m | m,n € M}.

Claim 2. dim L < D.
Proof of Claim 2. Since E,, ..., Ep span M,

L= Span{EiA*Ej — E,A'E; |0<i<j<D} (29.25)

= Span{E; A"E;, — E;A"E; ;|1 <j< D} (29.26)
by (29.5).
In particular, L has a spanning set of order D.
So, Claim 2 holds.
Claim 3. {A?A* — A*A" | 1 < i < D} is a basis for L.
Proof of Claim 3. Since
ATA* — A AT = APA'] — TA*A?

is contained in L (1 < ¢ < D), and since dim L < D, it suffices to show the
given elements are linearly independent.

Suppose they are dependent. Then there exists an integer ¢ (1 < ¢ < D) such
that
APA* — A*A' € Span(A7A* — A*AT |1 < j < ). (29.27)

Multiplying each term in (29.27) on the left by E}, and on the left by Ej, and
simplifying using

Ej(A'A* — A*AYE, = (6, — 07 B AYES,

we find
ErA'E} € Span(E;AVES | 1< j <4). (29.28)



But the left side of (29.28) is nonzero.

A contradiction.

Since A2A*A — AA*A? is contained in L, we find by Claim 2,
D

A2A*A — AA* A% = a;(ATA* — A AY)

-1

for some «), ...,ap € K.

Claim 4. o; =0 (3<i< D).

Proof of Claim 4. Suppose not, and set

t=max{i|3<i<D, o; # 0}.

Then by (29.29), and Claim 1,

D
0=E; (A?A*A — AATAZ = 0, (ATAT — A*Ai)> E:
i=1
= oy (07 — 05) By A'E

£0.

(Since a; = 0 if 7 > ¢,
EfA2A*AEy = E;AAA’E; =0 (as2+1<t—0)
EfA'A*Ey = EfA*A'ES = O
E;A'A*E} = 0 Ef A'ES,
EfA*A'E} = 0:Ef A*A'E?)

A contradiction. This proves Claim 4.
Claim 5. Suppose D > 3. Then

0r g
g = L 2 forall i, (0<i< D-—3).

* *
01‘ - 0i+3

In particular, o # 0.
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(29.29)

(29.38)

Proof of Claim 5. Fix and integer ¢ (0 < ¢ < D — 3). Then by (29.24) and

(29.29),

3
O=E:, (A?A*A —AATAZ = o (ATAT — A*Ai)) E:
J=1
= (0711 — 0740 — as(0; — HZ+3))E;’F+3A3E;F'

(29.39)

(29.40)
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But E}, ;A3E; # O by (29.6), so (29.38) holds.

This proves Claim 5.

Claim 6. Lines (29.7), (29.9), (29.14) hold.

Proof of Claim 6. First suppose D > 3. Then by (29.29), Claims 4, and 5,

AZA*A — AA*A? = ag(ABAY — A*A3) + iy (A2A" — A*A2%) + o (AA* — A*A),
(29.41)

where a3 # 0. Hence

ABA*— A* A3 — i (A2A*A—AA*A2) + %(AQA* —A*AQ) + i (AA*—A*A) = O.
Qg Qg Qg

Now (29.9) is immediate, where

1
B=——1, (29.42)
Qs
y=—22 (29.43)
a3
5= (29.44)
Q3

The line (29.7) follows from the definition of [, |].

The line (29.14) is immediate from (29.38) and (29.42).

Now suppose D < 3. Then the line (29.14) is vacuously true, so consider (29.9).
Let a5 denote any nonzoro element of K.

Then A2A* — A*A?, AA* — A* A certainly span L by Claim 3.

So, (29.41) holds for appropriate o; and a5, € K.

Now, (29.9) holds, where 3, 7, § are given by (29.42), (29.43), (29.44).

Claim 7. Lines (29.13), (29.15), (29.17) hold.

Proof of Claim 7. Pick an integer ¢ (0 <i < D —1).

By (29.9), we have

O = E;(ASA* — A*A% — (B + 1)(A2A"A — AA*A%) — y(A2A* — A*A%) — §(AA* — A*A))E,,,

(29.45)
=B AE; (07 =03, — (B+1)(0;0,, —0,071) — (07 —07.,) —6(0; — 0;,1))

(29.46)
=EAE; (0, —0,,1)(0; + 0,0, +67, — (B+1)0,6,, —v(0;, +0,.1) —9)

(29.47)
=B, AE; (0, —0;,,)(07 — 0,0, 1 + 07,1 —~(0; +0,,,) —9). (29.48)
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But E;A*E;,, # O by (29.5), and of course, §; # 6,,,, so
0=07 —B0,0;1 + 07 —(0; +0;1) — 6.

This proves (29.17).
To obtain (29.15), pick any integer ¢ (0 < ¢ < D — 2). Then by (29.17),

0=07 = B0;0; 1 + 07, —7(0; +0;11) — 6 (29.49)
— (021 — B0 10,0+ 025 — (0,1 +0,,0) — 0) (29.50)
=02 — $0,0,.1 — 70; + B9;10i10 — Oin” + 0,1 (29.51)
=(0; = 0;.0)(0; — B0y + 6,0 — 7). (29.52)
S0 0=0;—B0;11+0;—7.
This gives (29.15).
To see (29.13), pick an integer ¢ (0 <i < D —3).
Then by (29.15),
0=(0; —Bb;11 +0;0—7) — (001 — BO 0+ 0,5 — ) (29.53)
=0, —(B+1)0,1 +(B+1)0,,0—0,,3. (29.54)
We have
8= 0; — 0,5 - 0; — 0,1+ 0.9 _9i+37
Oip1—0i10 Oip1 —0it0
as desired.

This proves Claim 7.

We have now proved (29.7), (29.9), (29.13), (29.14), (29.15), (29.17).

Interchanging the roles of A and A*, we obtain (29.10), (29.12), (29.16), (29.18).
O
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Chapter 30

R, F,L Matrices

Monday, April 12, 1993
Let I' = (X, E) be distance regular of diameter D > 3 with standard module V.

Assume T" is Q-polynomial with respect to the ordering
EyE, ..., Ep

of primitive idempotents. Let A, be an i-th adjacency matrix, and A = A;.

D D
A= ;GZ—Ai7 E, = |X|* ;92‘&-.

Fix a vertex x € X, write
Ef = Ef (z), Al=Al(x), A*=A4;, T=T(x).

Then

D
A =>"0;E;.
=0

By Theorem 29.1, there exist 3,v,7*,9,0" € R such that

0=[A,A%A* — BAA*A + A* A% — y(AA* + A*A) — §AY] (30.1)
0=[A", A" A — B*A*AA* + AA*® — v*(A*A + AA*) — 5" A] (30.2)

Recall raising matrix

D
R=Y Ej AE;
=0

187
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satisfies
R(E;V)CE;,,V (0<i<D), Ej,V=0,

lowering matrix
D
L=>Y E; AE;
i=0
satisfies
and flat matrix

D
F =Y E;AE;
i=0

1=

satisfies
F(EXV)CEV (0<i<D).

Also,
A=R+F+ L.

Theorem 30.1. With the above notation and assumptions,

(1) For alli (2<1i< D),

g FL> + LFL + g/ L*F —yL*)E; = O,

where
0, — 1)0% 0
g~+ — 1—2 (B"’ ) 1—1 +5 i (303)
T 6* _ 9*
i—2 i
0+ (B0 -0
=2 L L, 30.4
l 0,0 (309
(1) For alli (0 <i< D),
[F,LR — h,RLIE} = O,
where
9r . _
h, =1 (1<i<D-1), (30.5)
9;‘ - 9z+1

and hy, hp are indeterminants.

(2i1) For alli (1 <1i < D),

(e RL*+(B+2)LRL+e} L2R+ LF?—BFLF+F?*L—~(LF+FL)—8L)E; = O,
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where

ot — 0; 1 —(8+2)0; +(B+1)0;,

1<i<D .
T (1<i<D) (30.6)
— 1)6* 20 . — @*
-1 Vi

and ef,e7 are indeterminants.

Proof. We have
O=A3A"—A*A3— (B+1)(A2A*A— AA* A?) —y(AZA*— A* A?) —§(AA*— A* A).
(7) Fix ¢ (2 <14 < D), and multply above on the left by E} ,, and on the right

by E;. Now reduce.

For example,
Er JASA*E; = 0:E; ,A3ES,

where
D D
Er JA3Er = E7 ,A (Z E:) A (Z E) AE; (30.8)
=0 s=0
= E; ,AE;AE;AE; (30.9)
= > Ef ,AE*AE*AE: (30.10)

r,8,/i—2—r|<1,|r—s|<1,|s—i|<1
= B ,AE: ,AE; | AE: + Ef JAE! |AE; \AE: + Ef ,AE: | AE: AE;
(30.11)
= (FL? + LFL + L2F)E". (30.12)

Reducing the other terms in a similar manner, and simplifying, we obtain (7).

HS MEMO

E; A APE; = 07 LB} ,A°E} (
=07 ,(FL? + LFL + L*F)E:, (
Er ,A2A*AE; = (6;_,(FL? + LFL) + 0, L*F)E; (30.15
E; ,AA*A2E = (6; ,FL>+0; (LFL + L*F))E;, (
Ef (A2A* — A" A%)E} = (0; — 07_,) L*E, (
Ef ,(AA* — A*A)E? = O. (
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Then we have

O = ((6: — 07 ,)(FL? + LFL + L2F) (30.19)

—(B+1)(6;_(FL? + LFL) + 0:L?F — 0 ,FL*> — 6:_,(LFL + L>F))
(30.20)
o~ 0 )L E; (30.21)
=((0; —0;_o — (B+1)(0;_ — 0;_5))FL* + (0; — 0;_,)LFL (30.22)
+(0; — 075 — (B+1)(0; — 0;_,))L*F —~(0; — 6;_,)L*)E; (30.23)
— (0, —6) (<_”3 bis ;*(ﬁ + 19)*@*1 il ) FI? + LFL (30.24)

i — 0;
0;_5 —0;

= (0 — 9;‘72)(9;FL2 + LFL + g;LzF — ’yLQ)E;-“. (30.26)

(i%), (i1) are obtained in a similar manner replacing ¢ — 2 by ¢ (resp. ¢ — 1).

HS MEMO

(73) We have

O = B (ASA*— A" A3—(B+1)(A2A* A— AA* A2)—~(A2A*— A* A2)—§(AA*— A*E))E?.

Since B+ 1+ 0, by (29.42) if D > 3,

O =E(A2A*A — AA*A?)E; (30.27)
= ((0; =07, ) RLF + (6; — 0;,,)LRF) + (0;_, — 0;)FRL + (0}, — 0;)FLR)E}

(30.28)

= [F,(0;y —0;)RL — (67 — 07, ) LR]E; (30.29)
0r . — pr

= (0, —0;)|F,LR— ——"RL| E} (30.30)
0; =0

= (07, —0;)[F,LR — h,RL]E;. (30.31)

(731) We have
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O = E; [(A3A* — A" A3 — (B+ 1)(A2A*A — AA*A?) — y(A2A* — A*A?) — §(AA* — A*A))E;

(
= ((6; —6; 1)(RL®*+ LRL + L*R+ LF?> + FLF + F?L)) (
— (B+1)((6;_y — 07 ) RL? + (07 — 0;)LRL + (0},, — 0;) L*R  (
+ (07 —6; ) FLF (
— (0 — 07 ,)(LF + FL) (
—06(0; — 0, L)E; (
= ((6; —0;_1) — (B+1)(6;_1 — 0;_5))RL? (
+((0; —0;_1) — (B+1)(0;_, — 07))LRL (30.39
+((0; —0;_1) — (B+1)(6;,1 — 0))L°R (
+(0; — ;) LF? + (07 — 07, ) F°L (
+(0; =0, — (B+ 1)(6; —0;_1))FLF (
— (07 —6; ) (LF + FL) (
—0(0; — 0,1 L)E; (
= (0 -0 ) <_(6 + 1)0:*92*+ (B; 2)0; — 6 RL*+ (B+2)LRL (
i—1 A

0; 1 —(B+2)0; + (B+1)6;

+ —" “LI2R + LF? — BFLF + F?L  (30.46)
i—1 "~ Y4
—y(LF + FL) — 5L) E: (30.47)
= (e; RL>+ (B+2)LRL + ¢/ L?R+ LF?> — BFLF + F?L —~(LF + FL) — 0L)E;
(30.48)
=0. (30.49)
Lemma 30.1. With the notation of Theorem 30.1,
Ui 0 :
0; =01
0 . — .
e =1L 3 (3<i<D) (30.51)
971—1 - 91
LU0 :
g =11l (9<i<D-1) (30.52)
0; =0 o
N -
g7 = = = (3<i<D). (30.53)
91’—2 - 91

In particular, ef, g are non-zero for the range of i given above.

Proof. In each case, equate the above expression with the corresponding expres-
sion in Theorem 30.1. The resulting equation is equal to (29.13). O
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HS MEMO
By Corollary 26.1 and Therem 29.1,

o 6 — (B2 + (B+ 16,

e. = s

! T — 0]
and « % * * * *
6+1:9j—1_9j+9j+1_9j+2 :M
0 — 0%, 05 — 05
Hence,
N 1 " . * *
ei = W(gifl - 9i - (6 + 1)<01 - 0i+1))
i-1 Y%
1 " . " «
- m(9i71 =07 = (01— 0;15))
_ =i
o 0 —6r )’
1
e, = W(_(ﬁ +1)0; o+ (B+2)0;_, —0;)
i-1 Y
1
- = (9, — O — @ 0%
e
0ia—0is
R
1
9 = g (0o — (B+1)0] 1 + 56
i—2 Y
1
= m(aj - 0;‘12 + 9;‘12 - 9?+1)
6 -0,
S0 —0r,’
1
g9, = ﬁ<—ﬁef—2 +(B+ 1)%—1 - 9:)
i-2 Y%
1
07 5 — 9:< e OO0
_ Vi -0
o0, -0

(30.54)
(30.55)
(30.56)
(30.57)
(30.58)
(30.59)
(30.60)
(30.61)
(30.62)
(30.63)
(30.64)

(30.65)

Corollary 30.1. Let I' = (X, E) be dostance-reqular of diameter D > 3, Q-
polynomial with respect to Ey, E,,...,Ep. Fiz a vertex x € X, write E] =

Ei(z),R=R(z),L = L(x),F = F(x). Then the following hold.
. 2 % * 2 * 2 % .

(i) FR2E; € Span(RFRE;, R*FE}, R2E}), (0< j < D —3).
- 2 Ed * 2 1% 2 1% .

(1) R°FE; € Span(RFRE}, FRE;, R°EY), (1 <j< D —2).
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(iii) LR?E; € Span(RLRE?, R2LE}, F°RE}, FRFE?, RF*E%, RFE;, FRE}, RE}),
(0<j<D-3).

(iv) R?LE; € Span(RLRE;, LR*E;, F?RE}, FRFE!, RF*E}, RFE;, FRE}, RE?),
(1<j<D).

Proof. Immediate from Theorem 30.1, and Lemma 30.1. O

HS MEMO

By Theorem 30.1, and Lemma 30.1, we have the following, but similarly we can
obtain above.

. 2 x * 2 * 2 Ix .
(i) FL°E} € Span(LFLE}, L°FE}, L°EY), (3 < j < D).
iy 2 * * 2% T2 1% .
(ii) L°FE} € Span(LFLE}, FL°E;, L°EY), (2<j<D-—1).
(iii) RL*E} € Span(LRLE;, L>RE}, F2LE}, FLFE}, LF*E;, LFE}, FLE}, LE?),
(3<j<D).
E;v)< L?iz%f)e Span(LRLE;, RL*E}, F2LE}, FLFE;, LF*E}, LFE}, FLE}, LE}),
AR .



194 CHAPTER 30. R,F,L MATRICES



Chapter 31

The “Inverse” of R

Wednesday, April 14, 1993

Let I' = (X, E) be any graph of diameter D > 2. Fix a vertex x € X. Let
Ef = Ef(z), and T = T'(z).

Recall adjacency matrix

A=R+L+F (31.1)
D

R=> E; AE; (31.2)
i=0
D

L= E; AE}, (31.3)
=0
D

F =Y E;AE}. (31.4)
=0

Observe R is not invertible (indeed RE}, = O.) So, R™! does not exist.

Below we find a matrix “R™'”€ T(x) such that R"!Rv = v for “almost all”
veV.

Lemma 31.1. Let T’ = (X, E) denote any graph, and the standard module V
over C.

Fiz a vertex x € X, write
R=R(z), L=L(x), Ef=E!x) foralli.

Then,
(i) There exists unique “R~' 7€ Mat y(C) such that;

195
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(ia) R"'v=0if Lv=0 forve V.

(ib) R"*RLv = Lv for allv e V.
(i) RRYEV)CE ,V (0<i< D), EX,V =0.
(4ii) R™' € Maty(Q).
(iv) R°Y € T(x).

Proof.

(7) Consider the orthogonal direct sum.

V = (KerL) + (KerL)*.

Claim 1. RL(KerL)* C (KerL)" .
Proof of Claim 1. Pick v € (KerL)*, and w € KerL. Show

(RLv,w) = 0.

But

.
D D

RT=RT = (Z E;HAE;) =Y EjAE;, =L
i=0 i=0

So,
(RLv,w) = (Lv, R"w) = (Lv, Lw) = 0.

Claim 2. RL : (KerL)* — (KerL)! is an isomorphism of vector spaces.
Proof of Claim 2. It suffices to show above map is one-to-one.
Suppose there is a vector v € (KerL)* such that RLv = 0.

Then, ~
0 = (RLv,v) = (Lv, RTv) = | Lv|%.

So Lv = 0.

Hence v € KerL N (KerL)* = 0.

This proves Claim 2.

Now “R~! denote the unique matrix in Mat(C) such that

R y=

if KerL
{O if v € Ker (31.5)

L(RL) ' ifve (KerL)™:.

Observe that (RL)™! : (KerL)* — (KerL)* exists by Claim 2.
Observe R™! satisfies (ia) by (31.5).
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Claim 3. R™! satisfies (ib).
Proof of Claim 3. Tt suffices to check

R 'RLv=1ILv

for v € KerL and v € (KerL)*.

The case v € KerL is clear. So assume v € (KerL)* by Claim 1. So,
RY(RLv) = L(RL)'RLv = Lv

as desired.

Uniqueness: Suppose a matrix R1le Mat x (C) satisfies (¢a), (ib). Then, R!
satisfies (31.5) above.

(Pf. The first part is clear. Let v € (KerL)*. By Claim 2, there exists w €
(KerL)* such that v € RLw. So R"'v = R"'RLw = Lw = L(RL) 'v.)

Therefore, R~ agrees with R~* on a basis for V, and R+ = R~

(ii) Pick v € E;V. Show R v € E; |V.

Without loss of generality we may assume that v € KerL or v € (KerL)*.
If v € KerL, then R'v=0¢€ E; |V.

If v € (KerL)*, then

RYw=L(RL)“we LE'V C Ef V.

(#i1) Observe R, L € Mat(Q).
So V, KerL, each has basis consisting of vectors in Q.

Replacing the construction of R~! with the base field replaced by Q, we find a
matrix R~ € Mat y(Q) satisfying (ia), (ib).

Now R~ and R~! agree on a basis, and hence R~ = R
(iv) RL = L' L is a real symmetric matrix. So it is diagonalizable.

Let 6 be any eigenvalue of RL. Let V, denote the corresponding maximal
eigenspace in V. Then

V= Z Vy  (orthogonal direct sum).

O:eigenvalue for RL

Let Eg : V — V, denote the orthogonal projection. Then Fj, is a complex
polynomial in RL.

Thus E, € T'(x).
HS MEMO
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E, isreal. Since RL is an integral matrix, every eigenvalue of RL is an algebraic
integer.

Claim 4. We have
R = > 0-'LE,. (31.6)

0:eigenvalue of RL
In particular, R~! € T(z).

Proof of Claim 4. Show two sides of (31.6) agree, when applied to arbitrary
veV.

Without loss of generality, we may assume that v € Vj for some eigenvalue 6 of
RL.

Let 6" denote any eigenvalue of RL.

Eyv— 0 Tf@ +0,
v if9 =0.

RHS of (31.6) applied to v equals

0 if =0,

O~ 1Ly if 6+ 0.
Show this equals R~ 1v.
Case 6 = 0: Since RLv = 0,

0 = (v, RLv) = ||Lv|?.
Hence Lv = 0, or v € KerL. By (ia), R~v = 0.
Case 0 # 0: Since RLv = Ov, v = 6~ RLv. Hence,
R Ww=0"'"R'RLuv=6"1Lv

by (ib).



Chapter 32

Irreducible Modules of
Endpoint ¢

Monday, April 19, 1993

Lemma 32.1. LetI' = (X, E) be any graph. With the notation of Lemma 31.1,
the following hold.

(i) Let W denote a thin irreducible T-module with endpoint v, diameter d. Pick

i (0<1i<d), and pickv e EX;W. Then,

BBy — v ifi <d,
0 ifi=d.

(#1) AssumeT is distance reqular and thin with respect to x. Pickt (0 <1i < D/2),
and pick v € E;V. Then

R'Rw=R"1 (1<i<D-2t).

In particular, R"'Rv = v.

(#it) Assume T is distance regular and thin with respect to x. Then

R:EV > E,V (0<i<D/2)

s one-to-one.

Proof.

(1) Let wg, wy, ..., wy be a basis for W and w; € E;, W,
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Rw;,=w;; (0<i<d), Lw,=z;,W)w,_, (1<i<d).
So,

(See Lemma 9.1.)
We want to find R~! Rw,.
Ifi=d, R'Rw, = 0.
Ifo<i<d,
R'Rw; = R 'w; (32.1)
=2 (W) 'R RLw; (322)
=21 (W) Lwgy (32.3)
(W)™ (W )w (32.4)
(32.5)

=T i

=w;,.

Thus, we have (i).

HS MEMO
RLw; = Rx,(W)w,_; = x;(W)w;, (32.6)
LRw; = Lw; y =z (W)w, (32.7)
[L, Rlw; = (21 (W) —z;(W))w;, (0<1i<d), (32.8)
(W) =0, a4 (W) =0, (32.9)
d
[L, R]|lw = Z(%H —z;(W)Eyilw- (32.10)
i=0
(i) Let

V= Z W orthogonal direct sum of thin irreducible T-modules.

Then,
EV = Z EfW  (orthognal direct sum).
r(W)<t

Without loss of generality, we may assume
ve BfW

for some thin irreducible T-module with endpoint at most ¢.



Now if i < D — 2t, then

t+i1<D—t
<D—r(W)
<r(W)4+dW) (D<2r+d),
by Lemma 14.1 (7).

So
t+i—1<r(W)+dW)—1.

Hence,

R1Riv=RR(R") (R™WweE},, W)
= R"1v by (i).

(3i) Suppose Rv = 0 for some v € EfV (0 <i < D/2). Then

0=R 'Rv=v,
by (i) with ¢t = ¢ and i = 1.
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(32.11)
(32.12)
(32.13)

(32.14)
(32.15)

O

Definition 32.1. Let I' = (X, E') denote any graph with the standard module

V. Fix a vertex x € X. Write Ef = Ef(z), T =T(x), L = L(z).
1. For every i (0 < ¢ < D), define subspace V; := V,(z) C V by

Vi=) W,

where the sum begin over irreducible T-modules W with endpoint .

Observe:

V=Vy+V,+-+Vpy (orthogonal direct sum.)
Vy is the trivial T-module.
2 (BiV)pew = E;V; (0<i< D).

In general,

(ErV) CKerLNEV CKerLNE;V C Ker(LEY).

new

If each irreducible T-module with endpoint strictly less than ¢ is thin,

(E*V), 0 = KerL N EXV C Ker(L - E}).

new

We have the assertion.
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HS MEMO

EV =) V;+V,.

j<i

For V; part, take w,_; € W irreducible with endpoint j <. Then,

Lw, j=z; ;(W)w;,_; 1 #0,

and
Ly, mv, ZE*V =V

j<i
is one to one.

Lemma 32.2. Let I' = (X, E) be distance regular of diameter D > 3. Fiz a
verterx € X, R= R(x). L = L(x), F = F(x). Pickv € (E}V),,e,- Then,

(i) RE;A;_yv=c¢Ef Ay (1<i<D).

(it) FEfA;_jv= RE; {A;V+(a;_y—c;+c;_1)EfA;_ v+ Ef A v (1 <i<D).
(

i) LETA, yv=FE! JAV + (%;1 —c¢;+c¢ )Ef JAv+b, Ef A v (2<
i< D).

(iv) LE;A; v =b;E (Av (1<i<D-1).

1i—1

Proof.
(1) Let
v= Z a,y for some {a,} C C.
yeX,0(z,y)=1
Then
Lv = ( Z ay> =0
yeX,0(z,y)=1
So,
Z a, =0

yeX,0(z,y)=1

Thus,
v=" > aj—2).

yeX,0(z,y)=1

Let

A =Aj+A ++A, (0<i<D).
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Then
Ap=" > a,d{G-1) (32.16)
yeX,0(z,y)=1
yeX,0(z,y)=1 2€X,0(y,2)=0,0(z,2)=i+1  Z€X,0(y,2)=i+1,0(z,2')=i
(32.17)
= Y o (B AY - EiA L) (32.18)
yGX,B(:L’,y)Zl
= Ei 1A = B Ao (32.19)

Recall (Claim 1 in the proof of Theorem 16.1.)
ALy = i Ay + (@, = + ) A+ b A, (0<i<D-1).

(This is valid for i = 0 as A/IO = Al = clfi — Ao = A by setting /L;l =0.)

Now (i) — (iv) are obtained by applying this to v on the right and multiplied by
Ej (0 < j < D) on the left.

O
HS MEMO
Afiiflv =AFE;A,_jv—AEf (Av. For 1 <i< D,
(c;A;+(a; g —ci+ci1)A 1 +b 1A o) (32.20)
=B Ay — G EF A v (32.21)
+(a;y —ci+e 1 )EfA_jv—(a,y —c¢;+¢; 1) Ef A (32.22)
T b Ef A v —b 1 B A . (32.23)

1) REFA._ jv=FE' AEfA. . v=c.Ef  Av(1<i<D).
1 4ti—1 1+1 3 4i—1 1 i+14
(#i) For 1 <4 < D,

FE!A, ,v=FE;AE’A, v (32.24)
= RE' ;A — ¢;Bi A, 0+ (a; | —¢; + ¢ )EXA, v, (32.25)
(#i7) For 2 <i < D,

LE'A, yv=E; JAE'A;, v (32.26)
= FE" [ Av—(a; | —¢;+¢; )E [ Ajo+b, (Ef (A, yv. (32.27)
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(Even if ¢ = 1, this is valid by setting A, 5, = O.)
(iv) For 1 <i< D—1, LEfA; ,,v=E; JAEfA, | =b,Ef [Av.

3

Lemma 32.3. Let T' = (X, E) be distance regular of diameter D > 3. Fiz a
verterx € X, T =T(x), Ef = Ef(z), R= R(x), F = F(x), L = L(z).

For every v € (E;V)
(i) EfA;,_v, EfA; v are linearly dependent for every i (1 <i< D —1).

news the following are equivalent.

(1i) There exists a thin irreducible T-module W with endpoint 1 that contains v.
If (i), (i) hold then
W = Span(EjAgv, E5Av, ..., EhA,_qv).

Proof. (ii) — (i). Clear as
ErA;,_ v, EfA, v e EfW = Span(w;_;).

(1) — (ii) Consider the sequence

EiAg, E5A v, B3 Ay, ... BT, Apv.
The first term is nonzero and the last term is 0. So there exists
n:=min{i|1<i< D, Ef jA;v=0}.

Now
Ef Av=0 (n<j<D). (32.28)

HS MEMO

Use induction and Lemma 32.2 (i),

E; 1A € Span(REFA; qv) (j>1).

By our assumption (4), and the definition of n,

E3A; v € Span(EjA; jv) #0 (1 <j<n).

By Lemma 32.2 (4),
REZA; v € Span(Ej ;1 Ajv) (1 <j<n).

By Lemma 32.2 (i),
FE;A; v € Span(RE; A, EXA; v, EjA;4v) (32.29)
C Span(RE? 1 A; v, ESA; 1v) (32.30)

Span(Ej 1A, qv) (1<j<n). (32.31)



By Lemma 32.2 (ii7),

FE;A; v e Span(FE}LlAjv, B A, E;LlAj_zv)
C Span(FEj’LlAjfzv,E;[lAjfzv)

C Span(E;_;A; 5v) (2<j<n).

Hence,
W = Span(EjAgv, E3A v, ..., EX A, v).

is R, F, L invariant.

Therefore W is a thin T-module with endpoint 1 that contains v.
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(32.32)
(32.33)
(32.34)
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Chapter 33

Algebra on First
Subconstitutent

Wednesday, April 21, 1993

Lemma 33.1. LetY = (X, {R;}o<i<p) be a commutative scheme. Fix a vertex
x € X, write Ef = Ef(x), M* = M*(x), T = T(x). Then the following hold.

(i) EsMM* = E;M

(i) BT = EM.

(iii) TEZT = ME;M.

(i) EyEEy = |X| ;.

(v) B3 EoE; = |X| 1B,

(vi) Lines (i)-(iv) hold if we interchange (Eq, Ef), (M, M™).
Moreover, ME§M = M*E,M*.

Proof.
(i) O: 1 € M* implies M C M M*.

C: Pick o« € EgMM*. Show oo € E§M. Since Ay, Ay, ..., Ap span M, and since
E§, By, ..., B} span M*, without loss of generality we may assume that

a = EjAE;

for some 4,5 € {0, ..., D}.

Without loss of generality we may assume taht ¢ = j, else « = 0 by Lemma
20.3.

207
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(B} AE; # 0 < pj, #0.)

D
a=EA,; (Z E;;) = E;A; € E5M.
h=0

(74) D: This is clear.
C: E§T is the minimal right ideal of 7" containing EJ.
So, we just have to show that EjM is a right ideal of T' containing Ej.

It clearly contains Ejj since I € M, and is a right ideal of T' by (i), and the fact
that T is generated by M abd M*.

(7i1) By the transpose of (i),

TE: = ME;,

S0,

TE;T = (TE})(E;T) = MEJE;M = ME;M.

(1v) We have

1 L 1
BiEo By = 57 B > A, | Es= o AcE; = | X|1E.
X[ \i= | X]
(v) The first part is clear by using Lemma 20.3 (i3),

B ALE; #+ 0 < ql, #0,
and Lemma 22.1 (3i7), .
B = 0y
Also,
ME:M = TE{T = TESE,E5T C TE,T = M*E,M*,

and
M*EyM* C MESM

by dual argument. So,
M*E\M* = ME;M.

This proves the lemma.
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Lemma 33.2. Let I' = (X, E) be distance regular of diameter D < 3, Q-
polynomial with respect to Ey, F,...,Ep. Pick a verter x € X, write B} =
Ef(z), M* = M*(z), T = T(x).

(i) EtMM* = E*M + E{E,M* + E;E, M*.
(ii) E,M*M = E,M* + E,EM + E,E; M.

Proof.

(i) View E* |, E},,, as O.

View 0" |, 0, as indeterminates.
Let A denote RHS in (7).

D: I € M* implies M C MM*.

C: Suppose not. Then there exists

a€ EXMM* A. (33.1)

Since Ay, A,...,Ap span M, since Ej, Ej,..., E}, span M*, without loss of
generality we may assume that

a = EjAE;
for some 4,5 € {0, ..., D}.
Observe |i — j| < 1, else & = 0 by Lemma 20.3.

Without loss of generality, assume ¢ + j is minimal subject to the above con-
straints.

First assume

j=i+1. (33.2)
Observe

E;AE;,, + EJAE + E}A,Er, (33.3)

D
= EiA, (Z E;;) (33.4)

h=0
= EiA, (33.5)
€A (33.6)

Also, observe
EfAE!, ETAE; | € A

2 1)

by the minimality of ¢ + j, so

a=FEAE;,, €A
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by (33.6). Hence, (33.2) cannot occur.
Since i — j| <1,

ie{j,j+1}
Observe
E{AjHE]*- + E}‘AJE; + E{Aj_lE]’f
D
~5(Ym) 5
h=0
= |X|E{EOE;
€ A,
and

J

D
= E; (Z 9;;Ah> E;
h=0
= [X|ETE, Ej
€ A.
Since ETA;_ | E; € A by the minimality of i 4 j, so
EiA; B + EYAES € A,
0*

L EiA B + 0B A € A,
But, 6§,07, ..., 0% are distinct by Lemma 22.2 (iv), so
EiA; E, EiAE; € A,

But « is one of these two matrices, so

a € A.

Hence, (33.7) cannot occur either, and we have a contradiction.

(74) Dual argument.

Lemma 33.3. With the above notation, set

J:=E{JE;, A:=E;AE}.

(i) J2 = kJ. (k = valency of T)

0: Ei A B} + 0B AES + 63 E{A, | E}

(33.7)

(33.8)
(33.9)

(33.10)
(33.11)

(33.12)
(33.13)

(33.14)
(33.15)



(i) JA=AJ = a,J. (a, = pi, forT)

(iii) BiE,Ef = | X|71J.

(iv) B{Ey B} = X7 (B{ (05 — 03) + A(67 —03) + J(63)-
Proof.

(i) The first subconstituent has k vertices.

(#t) The first subconstituent is regular of valency a;.

(iii) Since E, = | X|71J,

EiE E; = |X| 1.

(iv) We have

D
ﬁ&ﬂ-ﬂ(Xlz%M>ﬂ
h=0

= |X|" (0BT A BT + 01 E{ A EY + 03 E1 Ay BY)
= | X|7L(O,E; + 07 A+ 03E; ALE?).
Also,
J=E:JE;
= E{AE; + E; A E} + E{A,E
— E; + A+ E; A,FE;.
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(33.16)

(33.17)
(33.18)

(33.19)
(33.20)

(33.21)

Eliminating the F{ A, E7 term in (33.18) using equation (33.21), we get (iv).

Lemma 33.4. With the above notation,

(i) BiT = E}E,M* + E{M + EiE,M* + E;E, E{M + .
(i) BiTE; = Span(E; E,E;, Bt BB, B, (BB, B2, ...).
(iii) E{TE; = Span(J, E;, A, A2, ..).

(iv) EfTEY is symmetric (in particular, commutative).
Proof.

(i) D: Clear.
C: EjT is the minimal right ideal of I' that contains Ej.

O
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RHS contains E7, so show RHS is a right ideal of T'.
Show RHS is closed with respect to multiplication on right by M, M*.

We have
EfE,M*(M) = EyE,M*, EfE,M*(M*) = E{E,M*

by dual of Lemma 33.1 (4).
By Lemma 33.2,

EiE\Ef - EXM(M*) (33.22)
= E{E,\E - E,(EfMM*) (33.23)
= E{E\Ef - E|(EFiM + E{E,M* + EfE, M*) (33.24)
€ RHS, (33.25)
because
Ei{E\E} - E\E{E,M* C E{TE)T = EyM*E,M* = E{E,M*.
By Lemma 33.2,
EE\E; - E;M*(M) (33.26)
= FE{E\Ef- Ef({M*M) (33.27)
= E{E\E; - Ef(E,M*+ E,E;M* + E\E;M) (33.28)
€ RHS, (33.29)
because by the last part of Lemma 33.1,
EfE\Ef - EYE\ESM C EiTET = EYMESM = E{EyM*.
(74) Multiply (i) on the right by E}, we have
EiTE} = BEfE,M*E} + EYME} + E{E,M*Ej (33.30)
+-+EE, - E\M*E}] + EYE, - ETME] (33.31)
= Span(E;E,E;, B}, E{E,E;, (E;E E})?, ...). (33.32)
HS MEMO
Note that by Lemma 29.1,
EfMEY = Span(E A ET, E{AEf, E{ A, EY) (33.33)
= Span(EY, EfE,Ef, E{EyEY). (33.34)

Moreover,

E} - E{E,E! C E;TE,TE; = E;M*E,M*E; € Span(E;E,E}).
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~

(#9¢) By (i), EYTET is generated by J = |X|EfEyE} and EjE, E7.
By Lemma 33.3 (iv), E;TE; is generated by J, A

But, Span.J is a 2-sided ideal by Lemma 33.3 (i), (ii).

Hence, we have (ii).

(iv) A, J are symmetric commuting matrices, we have the claim.
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Chapter 34

Modules of Endpoint One

Friday, April 23, 1993
Let I' = (X, E) be distance-regular of diameter D > 3.

Assume I' is -polynomial with respect to Ey, £y, ..., Ep. Write
Aj=Ay+ A ++A4, ie{0,1..,D}.
Fix a vertex x € X, write Ef = Ef(z), M* = M*(x), T = T(z).

Pick 0 # v € (E1V),y0n- Set v* = | X|E;v. We will show that

Tv= Mv+ M*v*.
We need a preliminary lemma.
Lemma 34.1. With the atove notation, we have the following.
(i) Ayv = Ej, Ayo— Ef A, v, h € {0,1,...,D}.
(Epi1=Ap =0).

(i1) Epv* = (0),_1—05)E} Ay _v—(05,—0; 1) Ej Ay v, he {0,1,...,D}. (A =
Apy=0).

(iii) (6] — 9:+1>EH1Av—(Z<9* 0:1) A )v—(ZEh) . i«
h=0

{0,1,...,D —1}.

(iv) (07 9:+1)E Av= (

1}.
(v) Mv+ M*v* = Span{E;A, v, Ef {A;v|1<1i<D}.

> 5
*M
=}

(0; —01)A )v— (ZE) ,ie{0,1,...,D—

215
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Proof.
(¢) Tt is already done in Lemma 32.2.

(i)

Eiv* = |X|ELEv (34.1)
D

=B (Z a*Ai> v (34.2)
1=0

= B} (XDJ 0; (A, — fL_o) v (34.3)
1=0

D-1

=E; ( (0; —071)A; ) v+ E; 63, ADv (34.4)
i=0
D-1

- E; (Z(@* 01) (1 Ao — E:Aiﬂv)) (34.5)
i=0

= (05, — 05 B Ap_yv— (0], — 92+1)E2Ah+1”- (34.6)

(i44), (iv) Call the equation in (i), it and call the equation in (iv) i~. Prove
in order,

0-,0%,17,1+,27,2%, ...

0~: Trivial.
HS MEMO
LHS = (65 — 07)E;Av (34.7)
= (0", —0;)EA_jv— Ejv*  (by (i7)) (34.8)
= —Egv* (34.9)
= RHS. (34.10)
i": using (¢) and 7.
LHS = (07 — 0%, ) El,, Ajv (34.11)
= (07— 0;,)) B Ao+ (6; — 07, Aw - (by (i) (34.12)
i—1 7
( (07 —0:)A ) v— (Z Eh) + (6 —6:,1) (Z Ah) v (by i)
h=0 h=0

- ( i (07 —67,)A )v— (ZEh) (34.14)
h=0



i7: using (i¢) and (i —1)*.

LHS = (0; — 0;,,)Ef A; v
=(0;_,—0;)EfA;_jv—Ejv* (by (i)

I
M1
5
>%
|
)
: oE
=
< >
N——
(4
|
N
M
&)
> %
N———
@*
|
o
*
(o4
*

(v) Immediate from (i) — (iv).

HS MEMO

Muv + M*v* C Span{A, v, Ejv*|0<h< D}
C Span{E; A, _v,Ef Av|1<h<D}
by (i) and (i7).
On the other hand,

E*hA, v, Ei_ Ay e Mo+ M v ie{l,2,..,D}

by (#i%) and (iv).

Lemma 34.2. With the notation of Lemma 34.1, assume 0 # v € (E;V)

an eigenvector for A= EfAE;. Then
(i) Tv= Mv + M*v, where v* = | X|E;v.
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(34.15)
(34.16)

(34.17)

(34.18)

(34.19)
(34.20)

new s

. _ + o TR - + o s - _
(17) Tv = Span{vy,vy,..., v}, V5, V5, ..., Up_1}, where v; = EfA; v, v; =

¥
EfA; qv.

(791) dim E5Tv = 1, dim EfTv < 2 fori € {2,...,D — 1}, and dim E},Tv < 1.

(iv) Tv is an irreducible T-module.

Proof.
(i) D: v € Tw. So Mv C Twv, and

v e Mv C Tw.
Hence, M*v* C Tv.

C: Tt suffices to show that Mv + M*v* is a T-module (since it clearly contains

v).
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Show:
(a) M*Mv C Mv + M*v*.
(b) MM*v C Mv + M*v*.
Proof of (a). By the transpose of (i) in Lemma 33.2,
M*ME} = ME; + M*EyE} + M*E, EY.
Since v € EJV, Ejv = v and
M*Mv=Mv+ M*Eyv+ M*E|v.

But also Eyv = 0 since v is orthogonal to the trivial 7-module. Since E,v =
|X|_1U*,

M*Mv = Mv+ M*v*
as desired.

(b) is obtained from the traspose of (i7) in Lemma 33.2.

HS MEMO

MM*v = MM*E,v* (34.21)
= M*Byv* + MESE,v* + ME{E,v* (34.22)
= M*v* + ME{v* + M Ejv*. (34.23)
Ejv* € Tvand EfTv=0as v € (EfV),e- S0, Ejv* = 0.
Efv* = |X|E{E,v (34.24)
= |X| BB, Efv (34.25)
— (05— 03)E; + (6; — 05) B AE; + 03 X|E{E, )y (34.26)
= (6 — 05)v + (05 — 03) 3 AE v + 05| X | Bt Egv (34.27)
€ Span{v}, (34.28)
as Eyv =0, and v is an eigenvector of EAET.
* U E (ETV)en- If v is an eigenvector of EfAET,
Eiv* € Span{v}.
(i7) We have
Tv = Mv+ M*v* (34.29)
= Span{EfA, v, Ef jA,v|1<i< D} (34.30)
= Span{v;,v;_, |1 <i < D} (34.31)
= Span{v}, vy, ..., U, Vg, - s V1 } (34.32)



by Lemma 34.1 (v).
But vy = EjA;v =0 since v € (EfV)
Indeed,

new?

vy = EjAyv = (=1 — ay(Tw))vf.

where ay(Tv) is the eigenvalue of v associated with A.

To see this, observe

0=Jv

D

= Bt (Z AZ) Efv
=0
2

= E; ( Ai> Erv
=0

= v+ ay(Tv)v + vy .

Therefore,
Tv = Span{v],v], ..., U}, Vg, .. ,Up_1 }-

(i1i) v],v; € EfV.

177

and vy € Span{v] }.
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(34.33)

(34.34)

(34.35)

(34.36)

1) Suppose T is reducible, i.e., Tv = W; + W,. (orthogonal direct sum of
1 2

nonzero T-modules)

E;Tv = E;W, + E;W,

has dimension 1 by (#i7). Assume v € EfW;. Then Twv C W, a contradiction.

O

Lemma 34.3. With the notation of Lemma 34.1, assume 0 # v € (E;V) 18

an eigenvector for A= ETAE;.
(i) Tv is thin if and only if M*v* C Mwv.

(74) Let W denote any irreducible T-module with endpoint 1. Then

W =TV
for some 0 # v € (EV)

new

that is an eigenvector of A.

new

(#it) Denote eigenvalue of A associated to v (resp. V') by ay(Tw) (resp. ag(TV')).

Then Tv, TV are isomorphic T-module if and only if ag(Tv) = ag(TV').

(iv) EfTET has basis
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J E; A A2 A

)

where £ is the number of mutually nonisomorphic T-modules with endpoint 1.

Proof.
(¢) If Tv is thin, then by Lemma 9.1, Tv = Mv. Hence M*v* C Mw.
HS MEMO

Originally, the statement was T'v is thin if and only if M*v* = Mwv. This is not
the case in general. Suppose I' is thin. Let W be an irreducible T-module of
endpoint 1. Then, that W N EJV 3 v # 0 implies v* € W N E;V gives one to
one and k < m.

However, by ‘Distance-Regular Graphs’ (A.E. Brouwer, 1989),
J(v,d): v>2d

b= (d—jv—d—j), ¢ =7 (34.37)

J

0;=(d—j)lv—d—j)—j, m;= (j)—(]fJ (34.38)

In particular,
k=by=dlv—d)>my=v—1 ifd>2,

and J(v,d) is thin.

So | X|Eyv = v* may be 0 sometimes. But as Tv is dual thin of diameter at
least D —2. The dual endpint 7* < 2, so in that case, Fyv # 0. Hence, if D > 3,
Eyv # 0 always.

HS MEMO

Now assume M*v* C Mv = Twv. Then
Muv={f(A)v ]| f(N) € C[A]}.

So,
E,Tv = E;Mv € Span(E,v).

Hence, Tv is dual thin.

Now we can construct a basis, 0 # wj, € E,..W, where * is the dual endpoint,
and

wy, Wi, ..., wy €W =Tu,
* * -
where w; = E7. ;AT wj.

X,k * %,k X,k
Ajw; = wiy + ajw] + ziw;_q,
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* ok * *
and w} = pf(A")w}.
* * %
Er*+7}A1ET*+i|ET*+iW =a; - 1|ET*+1-W7
* * * ok
Bl AE. A Er*+i71|Er*+i,1W =Z; - 1|Erw,1W-

See Lemma 9.1, and Lemma 22.2.

From above, T'v = M*w{. So,
E;Tv = E; M*w; € Span{E;w}.
Thus, Tv is thin.

*Need to write down the dual at least for Lemma 9.1, Corollary 9.1.

(491) EYW is an A-module. So, there exists 0 # v’ € E;W that is an eigenvalue
for A. Also Tv' C W.

Since W is irreducible, Tv = W.
(#i7) Suppose Tv — T’ is an isomorsphism of T-modules.
Recall 0s = so for all s € T'.

Span{ov} = o EiTv = EjoTv = E{Tv" = Span{v’}.
Hence,

ag(Tv)ov = o(ag(Tv)v) = 0 Av = Aov = ag(TV )ov.
Since ov # 0, ag(Tv) = ay(TV').

Now suppose ay(Tv) = ay(Tv"). Show
o:Tv—=Tv (svsv) (seT)

is an isomorphism of T-modules.

Pick s € T. Require sv = 0 if and only if sv” = 0.
Without loss of generality , s € TE}, since v,v” € EfV.
Now 0 = sv if and only if

TgT

0= |sv?> =275 sv.
But, 5's € E;TE;.
Hence, by Lemma 33.4 (iii),

§Ts=aJ +p(/1)

for some a € C and p(A) € C[\].
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Thus, using the fact that Jv = 0,
0= [sof? = 3" (a] + p(A)v = [v]*p(ay(T))

if and only if 0 = p(ay(Tv)).

Replacing v by v’, we have

0=sv" <> 0=p(ay(Tv")) (34.39)
< 0 =p(ag(Tv)) (34.40)
0 =sv (34.41)

as desired.

(iv) The following hold.

{ = the number of mutually nonisomorphic T-modules with endpoint 1

(34.42)
= the number of distinct eigenvalues of A : (BiV ) new = (BiV ) ew  (34.43)
— the degree of minimal polynomial of A : (E;V), .., — (E;V), 0. (34.44)
Claim 1. jEi‘, /I, vy A1 are linearly independent.
Proof of Claim 1. Suppose not. Then
aJ +p(A) =0
for some o € C and p(X\) € C[\] with degp < ¢ —1.
But j|(E;V)nmu = O lmplles p<A>|<E§V)n€11) = O
Since B
degp < the degree of minimal polynomial of A|< BiV), o0
we find p is identically 0.
Then « is identically 0 also.
Claim 2. jET, fI, . Al span EITE?.
Proof of Claim 2. It needs to show
j.E{, A, e A’ are linearly dependent. (34.45)

Let m denote the minimal polynomial of fi\( BV, S50

w

~

m(Algv),,,) =0

new
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Observe that
EjV = (EfV)

(direct sum of E;T Ej-modules.)

+ Span{Az}.

new

m(/I)A:% = f-AZz for some f € C.

On the other hand,
JAz = kA% (K : valency of I).

Therefore,

and (34.45) holds.
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Chapter 35

dimE,{ TE{ <5

Monday, April 26, 1993

Theorem 35.1. LetT' = (X, E) be distance reqular of diameter D > 3. Assume
I' is Q-polynomial with respect to Ey, By, ..., Ep. Fiz a vertex x € X, and write
Ef=E(z), T=T(x).

(i) Up to isomorphism, there are at most four thin irreducible T-modules with
endpoint 1.

(#i) Suppose T is thin with respect to x. Then
dim FiTE} <5.

Proof.

(49) is immediate from () and part (iv) of Lemma 34.3.
(4)
Claim 1. EfME; = Span(J, E}, A).
Proof of Claim 1.
EME} = Span{E;, Bt AE}, B A, Ef, B Ay B}, ..
But EfA,E; = O if h > 2 (by Lemma 16.1). So,
E:ME; = Span{E;, Bt AE}, E; A,E}}.

225
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Also,
J=FE;JE; (35.1)
D
= E; (Z Ah) E: (35.2)
h=0
= E} + EtAE; + Ef A E?. (35.3)
So,

EiME; = Span{E}, B AE;, J}.
We are done, since A = EAE;.
Claim 2. E;MM*ME}; = Span(.J, B, A, A2).
Proof of Claim 2. D: Clear.
C: In Lemma 33.4 (i), we say
E:T = E}E\M* + E;M + E{E,M* + E*E,E{M + ---.

In fact, the proof of that lemma gives a sequence;

E;MM* = E;E\M* + E;M + E;E,M*, (35.4)

E;MM*M = E{E,M* + E{M + E;E,M* + E*E,E; M, (35.5)
E;MM*MM* = E;E,M* + E{M + E;E,M* + E*E,E;M + E*E, E;MM*,

(35.6)

(35.7)

Multiply (35.5) through on the right by E to get

EXMM*ME; = E{ME; + EXE,E; ME} = Span{J, E}, A, A%},
since J2, AJ = JA € Span{J}.
This proves Claim 2.

Now, let W denote any irreducible T-module with endpoint 1, and pick 0 # v €
E;W. Set

vi = EfA;_1Ejv, v; =EfA; Ejv, i €{1,...,D}.

We know by Lemma 34.2 (i7) that W is thin if and only if v}, v; are linearly
dependent for all ¢ € {2,...,D —1}.

(R @)
®; = det <<vr,vi> o2 ) =0

with equality if and only if v;",v; are linearly dependent, (because @, is the
determinant of a Gram matrix).

In general,



Let i be an integer in {2, .

..D—1}.
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Claim 3. There exists p™ € C[}\], degp™ < 2 (that depends only on the
intersection numbers) such that

Proof of Claim 3.

?

But,

EjA, \E!A, \E; € E{MM*ME; = Span(.J, E}, A, A%)

by Claim 2.

So, there exists @ € C, and p™" € C[\] with degp™™ < 2 such that

E1A;, E;A;_ET = Olj+p++(fi)7

Now,

[ 2 = (] +p** (A))o = [olPp** (ag(W)),

[0 17 = Tol*p** (ag (W)

since Jv =0, and Av = ag(W)v.

This proves Claim 3.

(A° = E7).

||UJ'FH2 = 7TETA1‘71E:E§A1‘71ETU = @TETAinfAiAETU-

Similarly, there exist p~—,p™~ € C[\] with degp™—,degp™ < 2 such that

lor 1 = WIp~"plag(W)), (v, vi) = [v]*p™ (ag(W)).

Claim 4. EfA;, |EfA, Ef=(J— A-— Eiﬂ)pil,wr In particular,

Proof of Claim 4. Pick vertices y, z € X such that d(z,y) = d(z, z) = 1.

(LHS),,

~

P\ = _pzz—l,iJrl()‘ +1).

= Z (EIAiflE:)yw<E'zﬂAi+lEI)wz

weX

weX,0(y,w)=i—1,0(z,w)=1,0(w,z)=i+1

0 if d(y, 2) =0,
=<0 if (y, z)
pi{l,iﬂ if d(y, z)

= RHS,..

1

(35.8)

(35.9)

(35.10)

(35.11)
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Note that B} A,E} = J — A — E}.
Now,
(v, v7) = 0" B{A; EfA; , Efv
= Pizfl,iﬂ(iﬂ(j —A—E7)v)
= —(ag(W) + )pi_1 i alvl*.

+

Claim 5. degp degp~™ = 2. (only need for some %)
Proof of Claim 5. We need to calculate p™, p~—.
HS MEMO

Pick vertices y, 2 € X such that 9(x,y) = 9(x,z) = 1. Then
(BYA, 1 Ef A, B}, =01 (y) NT(z) N T (2)],
which is equal to p} , ; if d(y,z) = 0.
(BYA EfA By, = D (y) NT(2) N Dy (2],

which is equal to p},, ; if d(y,2) = 0.
Conclusion.
o711 <U-+av*>>
@, =det [ 1T WiV 5 g
((ﬁﬂf— I
= I* (NP~ () = (PF1,501)* (A + 1)
>0,
where A = ay(W).
W is thin if and only if ®;(A\) =0 for all 4 € {2,...,D —1}.

(35.12)

(35.13)
(35.14)

(35.15)

(35.16)
(35.17)

Each @, is degree 4 solutions for A. Since A determines the isomorphism class of
W by Lemma 34.3 (iii), there are at most 4 different thin irreducible modules

W of endpoint 1 up to isomorphism.

O

Note. In fact ®,(A) is independent of 7 up to scalar multiple for i € {2,..., D —

1}.
If T has classical parameters (g, D, «, 3), the roots are;
qul -1

- 1.
qg—1

ﬂ_a_]-v_l,_q_]-vdq



Chapter 36

Dual Endpoint

Wednesday, April 28, 1993

Let I' = (X, E) be distance regular of diameter D > 3, Q-polynomial with
respect to Ey, Fy, ..., Ep. Fix a vertex « € X, write Ef = Ef(z), T =T (z).

Let W be an irreducible T-module of diameter d.
Recall that the endpoint

r(W)=min{i | 0 <i < D,EfW # 0}.

Definition 36.1. The dual endpoint (with respect to above ordering
Ey, E,,...,Ep),

r*(W) =min{i |0 <i < D, E,W # 0}.
r(W)=0+ (W) =0+ W: trivial T-module,
(by Lemma 10.1).

Suppose W is thin. Then W is dual thin. (See Corollary 9.1.)

Moreover, {i | E;W # 0} is a subinterval of {0,1,...,D}. (same proof as for
distance regular)

HS MEMO
Dual version of Lemma 4.1.

Lemma 4.1 Let A* = Aj(z), W an irreducible T-moduoe, and d* = {i |
E,W # 0} — 1.

(i) B,A'E; =0 if [i—j| > 1, BAE; #0 if [i—jl=1, 0<i,j<d(x).
(i1) j(E)jI;V CE W +EW+E; W,0<j<d (). (E;W=0ifi<jor
> d*(x).

229
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(vi1) EjW#Oifr*gjgr*+d*,EjW:Oif0§j§r* or r*+d* < j < d*(x).

(iv) BLATEW #0,if |i— j| =1 (¥ <d,j < + d").
Proof of 4.1°
(1) By Lemma 20.3,

E,A*E; =0 + g, = 0.
By Lemma 22.2,

=0 if|j—il>1,

T: Q-pol ial < ¢’
(-polynomi i1 {#0 if |[j—1i| =1.

=0 if|j—il>1,

& E,AE, ty
#0 if|j—i =1

(7i) We have
D
AE;W = (2; E) A*E;W
1=

= B, JA"E,W + E,A"E;W + E; , A"E,W
CE,_\W+EW+E W

(36.1)

(36.2)

7i3) Suppose E.W = 0 for some j € {r*,....,r" +d*}. Then r* < j by the
J

definition of r*. Set

W =E.W+E, W+ +E,_W.

Observe 0 C W C W. Also AW C W by (1), and E;‘W C W for every i by

construction.

Thus, TW C W, contradicting W being irreducible.

(4v) Suppose E; 1 A*E;W = 0 for some j € {r*,...,r* +d* —1}. Then,

W =E.W+E,. W+ +EW

is T-invariant. If £, ; A*E,W = 0 for some j € {r* +1,...,7" +d"}, then

W =EW +E, W+ +E. W

is T-invariant. Moreover, 0 C w C W in both cases. A contradiction.
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Definition. Let W be an irreducible dual thin T-module with dual endpoint
r* and diameter d*.

Let af = aj(W) € C satisfying

W

* %
E,. A Er*+i|ET*+iW =a; - 1|Er*ﬂ

Let o} = x} (W) € C satisfying

* * ok
E. i AE. ;A Er*+i71|ET*H‘ W= Ty 1\|Erm W

Lemma 9.1°. With above notation, the following hold.
(i) a} € R for all i € {0,...,d*}.
(ii) x; € R70 for all i € {1,...,d"}.

(#ii) Pick 0 # w € ELW. Set w} = E,.,; A" w} for all i. Then
(itia) wy, wy, ..., wy. is a basis for W, w* | = wj. ; = 0.
(itib) A*w; = wi,, + ajw; + xjwj_, for all i € {0,...,d"}.

(iv) Define py,pi, ..., 0} 1 € R[A] by

*

po =1, Ao} =p;, +ap;+aip; forallie{0,..,d}, p',=0.

(iva) pf(A*)wh = wi, for all i € {0,...,d* + 1}.
(ivb) pjg.,, is the minimal polynomial of A*|y,.
Proof of Lemma 9.1°
(7) Recall

D
AT =) 0E;, 07 =q(j) = |X|(Ey),, €R, O(a,y) = j.
7=0

a;j is an eigenvalue of a real symmetric matrix E,. ;A" E,._;.
(17) Let B=E;. AE". ., ;.

Then, z} is an eigenvalue of a real symmetrix matrix B' B. Let Span{v, ;} =
E,..;. W, and Bv, | # 0 by Lemma 4.1’ (iv) for i € {1,...,d*}. So, z; € R
for all i € {1,...,d*}.

(#ita) Observe

wi=FE,. ;AE. ; w;_, forallie{l,..  d}.
So wi # 0 for all ¢ € {1,...,d*} by Lemma 4.1’ (iv).
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Hence,
W = Span(w, ... ,w})

by Lemma 4.17 (4i1).
(7itb) We have that

A'wi = Ep i Awi + B A"y + By AT (36.6)
=wig +E. AE. wi + B JAE. GAE. w (36.7)
=wi,, +ajw; + xjw;_,. (36.8)

(iva) Clear for ¢ = 0. Assume it is valid for 0, ..., .

Pip (AN wp = (A" — ajDwj — wjwi_; = wi;.

(ivb) By definition,
P yq (A" )wy = 0.

Since W = {p(A")wj | p € C[A]}, pl (A )W = 0, and pj}.., is a minimal
polynomial, as wj, wj, ... ,w}. is a basis of W.

Corollary 9.1°. With the notation above, let W be a dualthin irreducible
T-module with dual endpoint r*(W), and dual diameter d*. Then,

(1) W is thin,

() d*=d=1|{i| EfW #0}| — 1.
Proof of Corollary 9.1’

Set as in Lemma {4.1}".

wi = pi(A)wp € By W
Then, w, wi, ..., w}. is a basis for W. We have W = M*wy.
So, EfW = EfM*w} = Span(Efwp).
Thus, W is thin, and so, we have (i7).

Suppose (W) = 1. Then d(W) = D—2 or D —1 by Lemma 14.1 (iii). See also
Lemma 14.2.

Case d(W) = D — 2. Then
E\W = 0 implies (W) = 2.
E\W # 0 implies (W) = 1.

Case d(W) =D — 1. Then
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(W) =1.
Up to isomorphism,
there are at most 3 thin irreducible T-modules with (W) =1 and (W) =1,
there are at most 1 thin irreducible T-module with (W) = 1 and (W) = 2,
there are none thin irreducible T-modules with r(WW) =1 and +*(W) > 2.
By dual argument,
there are at most 3 thin irreducible T-modules with r*(W) =1 and (W) = 1,
there are at most 1 thin irreducible T-module with r*(W) = 1 and (W) = 2,
there are none thin irreducible T-modules with r and r(W) > 2.

Conjecture 36.1. LetT' = (X, E) be a thin distance regular graph of diameter
D > 3. Let E; be any primitive idempotent not equal to E.

Then the following are equivalent.

(i) For every vertex x € X, there is no irreducible T-module W with r(W) > 2,
and E\W # 0, there exists at most 1 irreducible T-module with r(W) = 2, and
E\W # 0, and there exist at most 3 irreducible T-modules W with r(W) = 1,
and E;W # 0.

(i) T is Q-polynomial with respect to E;.

Conjecture 36.2. Let I' = (X, E) be distance reqular of diameter D > 3,
Q-polynomial with respect to Ey, Ey,...,Ey. Fiz o verter x € X, and write
Ef=E!(z), T =T(x). Let W denote an irreducible T-module with endpoint r,
dual endpoint r*, diameter d and dual diameter d*.

Then the following hold.
(i) d =d*.

(#9) there exists s € {r,...,r +d} such that

1 =dim E;W <dim E; |\ W < <dim EXW > - > dim E; ;W

(791) there exists s* € {r*,...,r* +d*} such that

1=dimE, W < dimE,.,,W < - < dim E.W > - > dim E,., ;W

Let I' = (X, E) be distance regular of diameter D > 3, Q-polynomial with
respect to Ey, Ey, ..., Ep. Fix a vertex z € X, write Ef = Ef(z) and T = T'(z).
Let W denote an irreducible module with endpoint 1.
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Conjecture 36.3. The following are equivalent.

(i) The sequence dim EfW,dim EXW, ..., E, W equals

1,2,2,...,2,1.

(1) v, Av, Ayu, ..., Ap_qu, v*, A*0*, ASv*, ..., A 50" is a basis for W, where

0+#wve EW, and v* = | X|Ev.

(iv) v{,v3, ..., V5, Vg, Vs, ..., U i a basis for W, where

vi = EjA v, v = Ef A 0.
Problem. Let B denote the orthogonal basis for W obtained by applying the
Gram-Schemidt procedure to be basis in (iv).
Find the matrix representation A with respect to this basis.

I believe the entries are necely foctorable expressions in the basic variables,
Qa878*7r1ar1'

(Hint: use Theorem 35.1.)

If not, find some nice basis for W, and find the matrices representing A, A*
with respect to this basis.

Perhaps, some orthogonal basis based on (4i7).
Algebraically, everything is determined by the intersection numbers and ay(W).

Combinatorically, certain quantities mulst be nonnegative integers. Does this
give some new bounds, or other information on a,(W)?



Chapter 37

Generalized Adjacency
Matrix

Friday, April 30, 1993

Lemma 37.1. Let I' = (X, E) be a distance-regular graph of diameter D > 3,
and Q-polynomial with respect to Ey, Ey, ..., Ep. Fiz a vertex x € X, and write
Ef = EX(x), and T = T(z). Let W be an irreducible T-module of endpoint 1.
If dim E5W =1, then W is thin.

Proof. Pick 0 # v e E5W.

We want to show that

e FR'w € Span(R'v) for i € {0,..., D — 1}.
e LRw e Span(R"v) fori € {1,...,D —1}.

We have that
(1) FRQE; € Span(RFRE;f,R2FE;f,R2E;f) for i € {0,...,D — 3}.

(2) LR2E; € Span(RLRE}, R®LE!, F2RE, FRFE!, RF*E*, RFE}, FRE}, RE!)
for i € {0,...,D — 3}

by Corollary 30.1.

Claim (a) FR'v € Span(R'v) for i € {0, ..., D — 2},
(b) LR'v € Span(R*"1v) for i € {1,..., D — 2}.

HS MEMO
Proof of Claim.

(a) By Lemma 34.2, and our assumption
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dim EfW = dim E5W = 1.
So, Rv # 0, and E5W = Span(Rv).
We may assume i > 2. Then R 2v € E; W,

FRv = FR?2R" 2y, if i< D—2, (37.1)
= R(FR+ RF + R)R""?v (37.2)
€ R(Span(R" 1)) (37.3)
= Span(R%v), (37.4)
by the induction hypothesis.
(b) If i < D — 2, then R"2v € Ef ;W with i —1 < D — 3. Hence,
LR'v = LR*(R"2v) (37.5)
=(RLR+ R?’L+ F?R+ FRF + RF?>+ RF + FR+ R)R"2v (37.6)
€ Span(R" 1), (37.7)

by induction and (a).
Suppose RP~1v = 0. Then,
Span(v, Rv, ..., RP~%y) = W
is invariant under M and M*, hence, under 7.
Since W is irreducible, W = W, and W is thin in this case.
Suppose RP~1v + 0.
Observe: v, Av, ..., AP~1v € Span(v, Rv, ..., RP~1v).
Hence, each R'v is a polynomial of degree 7 in A applied to v, and

Span(v, Av, ..., AP~1v) = Span(v, Rv, ..., RP~'v) = Span(v, A,v, ..., Ap_v).

Also,
D—1
Apv=Juv— (Z Ah> v € Span(v, Ajv, ..., Ap_q0).
h=0
Thus,
Mv = Span(v, Rv, ..., RP~1v).
Therefore,

Span(v, Ru, ..., RP~1v) = W
is invariant under M, M*, and hence T. We have W = W and W is thin. O
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Definition 37.1. Let I' = (X, E) be any regular graph (not necessarily con-
nected).

Let A be the adjacency matrix of ', and let J be the all 1’s matrix.
Pick O # B € Mat(C).

B is a generalized adjacency matrix , if

(i) for all vertices z,y € X, B,, # 0 implies A, # 0 or z =y,

(#i) B is in the subalgebra of Mat(C) generated by A and J.

Example 37.1. Any nonzero matrix of form
aA+ BT (a,f€C)

is a generalized adjacency matrix.
If T is distance regular, all generalized adjacecy matrices are of this form.

Let ' = (X, E) be a distance-regular graph of diameter D > 3. Assume T is
thin, and @Q-polynomial.

Pick a vertex = € X, and write Ef = E}(x), T = T(z). Then,
E;TE; = Span(J, E}, A, A2, A3),

and dim EXTE; < 5.
We will produce a ‘nice’ spanning set

E;TE; = Span(J, B}, A, At (= R\E}AE;), AT A).
Lemma 37.2. Let T' = (X, E) be a thin distance-reqular graph of diameter
D> 4.
Fix a verter v € X, and write Ef = E(z) and R = R(z).

Let 'y denote the vertex subgraph induced on the first subconstituent of I' relative
to x. Then,
A= (R Y)EAE]

is a generalized adjacency matriz for T'y for alli € {1,...,D — 3}.
Proof. Write T'=T(x). Fix i € {1,...,D — 3}.
Recall R~! € T by Lemma 31.1 (iv).
Since Ef {R'E; = R'E} by Lemma 31.1 (44),
A € ETE = Span(J, Ef, A, A2, ..)

by Lemma 34.3 (iv).
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Hence, A satisfied the condition (i7) of Definition 37.1.
To show (i), pick vertices vy, 2 € X such that
O(z,y) =0(x,2) =1, J(y,z)=2.

We need to show
A . =0.

Suppose A, # 0. Then,
(Ag,z) # 0.

We will show this cannot occur.

Notation: Set
E}; = E{(2)Ei(y), i,j €{0,1,...,D}.

Then,
BV = Span(w | w € X,d(z,w) = i,0(y,w) = j) for i,j € {0,1,..., D}.
Let 6 denote the all 1’s vector in V. Let

8= E50 = Z W.
weX,8(x,w)=1,0(y,w)=j

Now,
Ay € Ef(z)V = E},V + E{;V + E{,V  (orthogonal direct sum).
So, there exist 6}, € Ej,V, 6;; € Ef,V, and 47, € Ef,V such that

Ay = 0y + 01, + 055

Observe: z € E},V is not orthogonal to Ay.

So, 61, # 0.
Observe:
R7Y61, + 641+ 65) = R1Ag (37.8)

= RN R Y TIEAET) (37.9)
=ErAETy (37.10)
=0, (37.11)
e L,V. (37.12)

HS MEMO

It is because on each irreducible thin module with standard basis w,., w,.,q, ... , W, 4,

-1 . —1
Rw, =w,_q,1>r, Rw, =0,
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and E;V is an orthogonal direct sum of irreducible modules and r < 1.
But we can control R*"1§{,, R16],, also.

Claim. REZV CE:, W VHEL V. JE {1,...,D—1}.

Proof of Claim. Clear.

By Claim
R, € Ef, |V, and (37.13)
R e Ef, \V+E;,V. (37.14)

Hence, we conclude that
R7167, = RYAy — RS — R716f, € E;, \V+E;V.
But now ‘ ‘
0= E;,i+1Ri71§1+2 = EZHlA%lEE‘SE = R(y)" 167, (37.15)

By Lemma 32.1 (i), _
R(y)' ™' : E3(y)V — B[,V

is one-to-one, since I' is thin, and i — 1 < D — 4.
So, 67, = 0 by (37.15).

But this contradicts (2). Hence our assumption A, # 0 is false, and the
condition (4) of the definition of generalised adjacency matrices is satisfied.

This proves the lemma. O
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Chapter 38

An Injection from Ell* to
*
Fa2

Monday, May 3, 1993

Lemma 38.1. Let I' = (X, E) be a thin distance-regular graph of diameter
D > 5, and Q-polynomial with respect to Ey, Ey, ..., Epn. Pick vertices x,y € X
such that d(x,y) = 1, and write E}; := E;(x)E;(y) fori,j € {0,1,..., D}. Then
the following hold.

(1) E5,AEY, : E},V — E5,V is one-to-one.
(ii) For every z € X such that O(x,z) = d(y,z) = 1, there is w € X such that

Oo(w,z) =0(w,y) =2, O(w, z) = 1.

Proof.
(1) Write Ef = Ef(z), R=R(z), F = F(z), L= L(z), and T = T(z).

Suppose there exists
0#v e Ej,;V such that E},AE},v=0. (38.1)
Claim 1. E},A?E;,AE; v # 0.
Proof of Claim 1. Recall by Lemma 32.1 (i), (3 <5—2< D —2t),
R(y)*: E{(y)V — Ej(y)V
is one-to-one.

241
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Since v € Ef(y)V, we find
0 # R*(y)v
= Ej(y)AE{(y)v
— Bj(y) A2E}(y) AE},v

D
= Ej(y)A? ( E?;,z) AEqv
h=0

= Ej(y)A*(Ef, + E3y) AE} v
— Ej(y) AEj A}, v
= I3, (y) A’E[, AE v,

by (38.1). This proves the claim.

By Theorem 30.1 (7),

0 = (g5 R*F + RFR + g{ FR2 — yR?)E;.

HS MEMO
Theorem 30.1 (i) states
(9 FL? + LFL + gt L*F —yL2)E* = O fori € {2,..., D}.

For ¢ = 3,
Ei(g5FL? + LFL + gf L*F — yL?)E} = O.

Taking the transpose, we have

E3(g3 R*F + RFR + g3 FR* — yR*)E; = O.
Hence, we have (38.9).

(38.2)
(38.3)
(38.4)

(38.5)

(38.6)
(38.7)
(38.8)

(38.9)

Multiplying each term on the left by Ej(y), on the right by Ej(y), we find

O = g5 E5,R*FEY, + B3 RFREY, + g3 E5, FR*E}, — vE5,R*EY,

(38.10)

= g3 B3, A°E}LAEY | + B3 AE53 AES, AEY, + g5 B3 AE33AES, AET, .

Applying this to v, we find by (38.1) that
0= g5 E5, A’ BT, AET v.
So, g5 = 0 by Claim 1. But by Lemma 30.1,

01 — 65
935 = o ——, #0,
8 61_93

a contradiction.

(38.11)



Let T', ,y be as in Lemma 38.1. We saw in Lemma 37.2,

R B3 AL BT = 61y + 01y,

where

&y € EfV = Span(y), 61, € E;,V.

Definition 38.1. Define ¥ = ¥(z,y) € C by &}, = Ug.
We will show that ¥(z,y) is independent of z,y.
Observe R, A, Ef € Maty(Q). So ¥ € Q.

Firstly, show
U(z,y) = ¥(y, ).

Lemma 38.2. With the notation of Lemma 38.1, the following hold.

(i) E3,AEY0{; = 65y

(i1) B3 AE] 017 = —W(2,1)0y
(i) (51, 61) = 2 — U(x,y).
(iv) U(z,y) = Uy, z).

(v) B AET, 01y = —U(2,9)d,.

Proof. Write ¥ = ¥(z,y), R = R(z), Ef = Ef(x), etc.

(i) We have
R(51+1 + \I/Q) - R(‘sﬂ + 52—0)
= R(R1(E3A,EY))j
= E3A, By
= 9.
So,

522 = R<5T1 + ‘I’@
= E;AE;(0); + ¥9)
= E3, AET 07, + VE3, AE ).
The second term is zero.

(7i) We have
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0= E309
= E§1R(51+1 +Vy)
= ESIAETI(SE + ‘I’E%AEIOQ
= E5 AET, 4 Yoy,

(7i1) We have

P%z = ||522”2

= (029, 01 + G + 0a3)

= (R(0); + ¥Y), 051 + 0o + do3)

= (07, + WG, L(J51 + 0o + da3))
by (07, + UG, 019 + 011 + 012)
by ({91, 011) + ).

So,

a
(011,011) = b7 'pge — W = 072 - Vv.
2

HS MEMO

_ Lk .1 b
by 1p%2 =b; 11?1]9%2 =0b; 1]?]*’21’%2 = by =
1 1

Ca

(iv) Interchanging roles of x,y above, we find there exists 5;’1/ € E7,V such that

R(y) "' B3 (y) Ay By (y)7 = 67, + U(y,2)].

Then,
E§2AET1(51+1/) = 0g9.

So,

B3 ABY (67, = 01) = 0.
Hence, 6, = &7, since

E5,AE;, BV — E5V
is one-to-one.
Now,

)

a ’
?2 —V(r,y) = <51+1v511> = (51+1,511> = o
2 2

—U(y,x).
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Thus,
V(z,y) =V(y, ).

(v) Immediate from (i), (iv).
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Chapter 39

AT and A~

Wednesday, May 5, 1993

Assume T' = (X, E) is thin, distance regular of diameter D > 5, and Q-
polynomial with respect to Ey, Ey, ..., Ep.

Fix a vertex « € X, write Ef = Ef(z), R= R(z), T =T (x).
Pick y € X with d(z,y) = 1. Write Ef;, = E*(2)E*(y), §;; = Ej;0, and
A= ErAE:.
Recall that 6], € Fj;V and

R B3 AL BT = 671 + ¥(z, )7
We saw U(z,y) = ¥(y,z). We shall show below that ¥(x,y) is independent of
edge xy.

Lemma 39.1. With the above notation, set ¥ := U(x,y). Then the following
hold.

(i) 6, = Ad}, — (%2 -0)j+ W5, € B}, V.

(i) 0y (x,y) = 611 (y, ).

Proof.

(1) 015 € Ef,V, 617 € Ef{V and 67, € Ef,V, and

A8, = 655 + 671 + 610, (39.1)
0o = 1 AE} 0], = —¥(2,9)d19, (39.2)
by Lemma 38.2 (v).
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Also, 67, = oy for some ¢ € C, where

~ - ~ a
o = (Ad)1,§) = (011, AJ) = (013, 011) = Cf - V. (39.3)

Solving for 677 in (39.1), using (39.2) and (39.3), we have

0ny = Asfy — o5, — o (39.4)
= AS, + U6,y — (2‘2 - m) . (39.5)
2

(#4) Since

o = BT AE 01,
we have 6, (z,y) = 67, (y, z).
O

Lemma 39.2. With the above noation, ¥V = ¥(u,v) is independent of u,v,
where u,v € X, with 0(u,v) = 1.

Proof. Let x,y be as above (z ~ y), and pick z € X such that d(z,z) = 1, but
z # y. Then it suffices to show:

U(z,y) = V(z,z).

Case: 0(y,z) = 2.

Set A := AR 'E}A,E;.

Observe: A € EfTE} and E;TE] is symmetrix by Lemma 33.4.
Hence, A, = A,

Since A € Mat x(R),
(Ay,2) = (Az,).

But,
(A,2) = (A5}, + ¥(x,9)3, ) (39.6)

= (A}, 2) (39.7

= (67, + (ij - q/) J— U(z,y)0p0, 2> (39.8)

= —U(z,y). (39.9)

Note that d(z,y) = 2 by Lemma 39.1 (4).



Similarly,
(AZ,9) = —U(z, 2).
Hence, ¥(z,y) = ¥(x, 2).
Case: d(y,z) = 1.
By Lemma 38.1 (i), there exists w € X such that
d(z,z) =1, O(w,y) =2, O(w,z) =2.

1 84

Now,
U(z,y) = ¥(z,w) = V(z,2)
from the first case.
Lemma 39.3. With the above notation, the following hold.
(i) AT := RT'E;AE; — VE;, and
(i) A~ = AAT — (%2 —0) By + O(] — A~ E})
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are both generalized adjacency matrices for the subgraph induced on the first

subconstituent with respect to x.

Moreover, AT, A~ have 0 diagonal.

Proof. Pick vertices y, z € X such that d(z,y) = 9(x,z) = 1.
Show that Af , A, are both 0 if d(y,2) = 0 or 2.
Since A}, = RT'E3A,Ey) — VEy = 61,
A, = (A%9,5) = (611, 5) =0,
if O(y,z) =0 or 2.

Since

Ag:fbﬁg—(a @)E;g U(J—A—Ep
2

= Aéﬂ - (2 ) + Wiy,

= 51_1’

(39.10)

(39.11)

(39.12)
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A;z =(A7y,2) = <5I17 z) =0,
if d(y,z) =0 or 2.
Since EiTE; = Span(j, E{,fi, Az’ ...) by Lemma 33.4.
A*, A~ are both generalized matrices for the adjacency subgraph induced on
the first subconstituent concerning x. O
Similarly,

EiTE;> J,Ef,A AT A,
and dim EfTET < 5.

Fact: With the above assumption,
E;TE; = Span(J, E}, A, At, A™)

(may not be independent).
Lemma 39.4. If O(x,y) =1, then

Proof.
T(2)i = T(2)Ej (39.13)
= M(E{+ E})T(x)Ety (asT is thin) (39.14)
= Mi + METE (39.15)
= MZ + MSpan(J, E;, A, AT, A7) (39.16)
= M2 + MSpan(0y5 + 011 + 019, 910, 011, 011, 611) (39.17)
= MSpan(8y;, 10, 0115011, 077)- (39.18)

But the identity of these conditions does not change if we interchange x and y.

Hence,

This proves the lemma. O



Chapter 40

Structure of 1-Thin DRG

Friday, May 7, 1993

Lemma 40.1. With the above notation, let W denota a thin irreducible T'-
module of endpoint 0 or 1. Pick 0 v € EJV. Then the following hold.

(i) Eigenvalue for J is 0 if r(W) =1, and k if r(W) = 0.
(i1) Figenvalue for Ef is 1 if r(W) =1, and 1 if r(W) = 0.
(#i1) Figenvalue for A is ag(W) if r(W) =1, and ay if r(W) = 0.

(iv) Figenvalue for A* is a™(W) = Z—; —1—9 ifr(W) =1, and ‘;—; — U f
r(W) =0.

(v) Eigenvalue for A~ is a= (W) = ag(W) (Z—; —1- 2\IJ> — a—; if r(W) =1,

C

where
b0
by +7(a; +2—cy) =3

Yo =1+ ag(W), and v, =

as in Theorem 14.2. (The eigenvalue for A~ on v will be discussed later in this
lecture.)

Proof.
(i) — (413) Clear.
(iv) We have
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At = R\ES A B — VES, (40.1)
2 _ _
4, = Ao wAZ M (40.2)
c
2
A% —a A—kI
E3;A,Ef = Ej (612) E; (40.3)
1
~ —(RF + FR— a,R)E}. (40.4)
2
If r(W)=1,
1
Aty = C—(R’lRFU—l—R’lFRU—alR’lRU) — Uy (40.5)
2
1
= C—(R_lRaO(W)v + R ta;(W)Rv—a; R 'Rv) — v (40.6)
2
1
= (ag(W) +a; (W) —ay) = ¥) . (40.7)
2
But,
ay(W)=7 = +a+1-c v =0a(W)+1
by Theorem 16.1.
So,
1
Ato = (C(aO(W)—i-’yl—70+a1+1—02—a1)—\11)) v (40.8)
2
= (”l —1- \D) . (40.9)
Ca
If r(W) =0,
Aty = i(R’lRF’u + R1FRv—a; R 'Rv) — Yo (40.10)
C2
1
= c—(RflRalv + R tayRv—a; R"'Rv) — Yv (40.11)
2
- <a2 - \I/> v (40.12)
C2
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HS MEMO
If r(W) =1,

Av= (aO(W) (71 —1- \IJ) - (CQ - \1/) + U (—ag (W) — 1)) v (40.13)

- (aO(W) (Zz —1-— 2@) — 2’5) v, (40.14)

If r(W) =0,
A v = <a1 (Z - ) - (‘C‘z - \1:) +U(k—a, — 1)) v (40.15)
_ ((al - 1)2‘—2 +(k— 2a1)\11> v. (40.16)

This completes the proof.

O

Let W, W,, W5, W, denote 4 possible isomorphism classes of T-modules of end-
point 1. Then ay(W), ag(Wy), ag(Ws), aq(W,) are roots of a fourth degree
polynomial whose coefficients are determined from intersection numbers of T'.

So, ay(W7), ag(Wy), ag(W3), aq(W,) are determined by intersection numbers.

Let m; denote the multiplicity of W, (1 < i < 4), which is equal to the multi-
plicity of ay(W) as eigenvalue 1 of A gy .

Lemma 40.2. With the above notation, we have the following.
(1) My, My, My, My are determined from intersection numbers and V.
(#4) ™, is independent of vertex x. (1 <1i <4).

111) £ := dim ESTE7 is independent of x.
11 £

Proof.

(i) Let e; € EfTET (1 < i < 4) denote the orthogonal projection on to the
maximal eigenspace of (E;V) corresponding to A;. (e = 0 if and only if A,
does not appear.) Set

new

Enl
Al

60:



254 CHAPTER 40. STRUCTURE OF 1-THIN DRG

Then eigenvalues for each e}, e;, e5, e, are as follows.

€0 €1 €2 €3 €4
J k 0 0 0 0
E3 1 1 1 1 1
A ap ag(Wy)  ag(Wy)  ag(W3)  ag(Wy)
AT 2=V o (W) a*(Wy) a"(Ws) a™(W,)
A” * a(Wy) a(Wy) a(Ws) a”(Wy)

Observe that €? = e;, trace ¢; = rank e, = M, (1 < i < 4), and trace ¢, =
rank e = 1.

By taking the trace of J, Ex, fi, AT, A, we have

k=k, (40.17)
k=14 my +my+ mg + My, (40.18)
0 =ay + ag(Wy)my + ag(Wa)fy + ag(Ws)fg + ag(W,)y, (40.19)

= (ch B qj) + at (W) + a*(Wy)ing + a* (Ws)fg + a™ (Wy)fny, (40.20)
2

0= () +a (Wy)m, +a” (Wy)imy +a (Wy)ing +a” (Wy)my. (40.21)

The coefficient matrix for mq, My, Mg, M, is nonsingular (this is what you need
to check and show).

HS MEMO
Complutation is not completed.
(74) U is independent of base vertex x.

(741) We have

dmE;TE; = |{i |[1<i<4, ¢, 0} +1 (40.22)
= {i|1<i<4, m;+0}+1. (40.23)

This completes the proof of the lemma.

O

Let T' = (X, E) be thin distance regular of diameter D > 5, and @Q-polynomial
with respect to Ey, Ey, ..., Ep.

Fix vertices x,y € X with d(z,y) = 1,

Ej = Ej(2)Ej(y), 0y =Ej;0.



We saw

Hence,

T(2)j = T(y)z.

H = T(w)j = T(y)i

255

is a T(x,y) module. T(x,y) C Mat(C) is generated by M, M*(x), M*(y).

Lemma 40.3. With the above notation, we have the following.

(i) Ef; H =Span(d,;,,) (0<i<D—1).

3

(1) Efyy ;H = Span(é;,, ;) (0<i<D—1).
(iii) B}, H=0-2<3 (1<i<D-1).

Proof.

(i) D: We have

C: Pick h e E}

7,14

8iiv1 = Ef A 9 €T(2)y=H.

(H. Then h = R v, where v = (R7')""'h € E;V.

So, v € Span(d,5,0,1,010,017,017)-

HS MEMO

ve BV NT(x)y

= EiT(z)EYy

= Span(J, E, A, At A7)}

= Span(dy + dy; + 19,010,011, 011, 07;)
(

= Span(dyg, 011,019,071, 011)-

Hence, there exists o € C such that

So,

Hence,

v —adyy € Span(dyg, 013,01y, 011) = Bf H + EfpH.

v— (b9 + 11 + 1) € Ef H + EfH.

E;H + E;-_lH > Ri71<v — 06(612 + 511 + 610))

h —

K2

=h—a'(6;;11 +0; +0;,-1)-

60 € (BFH+E;, H)NES,, H.

(40.29)
(40.30)
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Thus,
h=a'6;;,, € Span(d; ;1)
(#4) By symmetry, we have the assertion.
(iti) BiH = Ef; H + Ej,H + Ef,_ H, and dim EH = ¢, dim Ef, H = 1,
and dim F, | H = 1.

N

Hence, dim E} ,H = { — 2.

HS MEMO
Since H = T'(x)y C T'(z)E;j(z)V, and

(RYFY:E'H — EfH

is one-to-one and onto if 1 < D.

Theorem 40.1. Let T' = (X, E) be thin distance reqular of diameter D > 5,
and Q-polynomial with respect to Ey, E,, ..., Ep.

Picki (2 <1i < D), and pick x,y,z € X such that d(z,y) =1, d(y,2) =i —1,
oz, z) =1i.

Then,
is independent of x,y, z.

Proof. Observe that z; is the zx entry in
A=E; (YA Ei(y)AEL (y)

as
Az = Z z;(z,y,2)Z.
z€X,0(x,z)=1,0(y,z)=i—1

Hence, z;(x,y, z) is independent of z.

So, z;(x,y, z) is determined by intersection numbers and ¥ = ¥(z,y), which is
independent of x,y as well. O



Appendix A

Open Problems

Some Open Problems Concerning Distance-Regular Graphs, the Thin
Condition, and the Q-Polynomial Property

Paul Terwilliger

The questions below are unsolved as of May, 1993 (to my knowledge). A com-
plete solution (or even a significant partial solution in some cases) to any one
of these problems would be publishable. I have tried to estimate the level of
difficulty of each problem listed below. A * means I believe the problem is rela-
tively easy in the sense that it can be solved using ideas from the course. There
are no conceptual gaps to overcome that I am aware of (but the calculations
might be quite difficult, however!). A %*x* means I have no idea how to begin
to attack the problem. I am only mentioning problems of this kind to give you
an idea about what is known in this field.

Dist: T' is distance-transitive.

Q: I is Q-polynomial with respect to the ordering E, E1, ..., Ep of the primitive
idempotents.

Bip: T is bipartite.
Th: T is thin (over the field of complex numbers).

FewI: The subgraph induced on the first subconstituent of I" with respect to x
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has at most 5 distince eigenvalues.

Few?2: The subgraph induced on the second subconstituent of I' with respect to
x has at most 16 distinct eigenvalues.

Z: For all integers i (2 < i < D), and all triples u,v,w (u,v,w € X) such that
O(u,v) =1, d(v,w) =i —1, and I(v,w) = i, the number

zi=Hylye X,0(y,u) = 0(y,v) = 1,0(y, w) = i — 1}
is a constant that does not depend on u, v, w.
The following implications are known:
Q+ Bip—~ TH, Q-+ TH — Fewl, Few2, Z.

(1) #**x* Classify all the distance-regular graphs (with sufficiently large diam-
eter). If necessary, assume some combination of the above properties. (My
personal goal is to classify all the graphs I' satisfying @, TH. I expect this will
take a number of years.)

(2) *x Assume @, Bip, and classify T.

(3) » Find generalization to the theorems of the course for non-regular, bipartite
distance-regular graphs.

(4) * Assume, @, and let W denote an irreducible T-module with endpoint 1
that is not thin. Find a nice basis for W and find the matrices representing the
adjacency matrix A and the dual adjacency matrix A* with respect to this basis.
Perhaps assume classical parameters. Theorem 30.1, and Lemma 31.1 should
be useful.

(5) x Is it true that T' is thin over the field of complex numbers if and only
if T' is thin over the field of real numbers? What does it mean for I' to be
thin over the field of rational numbers? The examples suggest that if I" is thin
over the complex numbers then it is already thin over the rational numbers. If
this is true, it would be nice to have a proof. For the moment, suppose it is
not true. Assume I is thin over the field of complex numbers, and define the
splitting field of I' to be the minimal extension of the rational field over which
I" is thin. Then the elements of the Galois group of the splitting field act on
the standard module, and permute the isomorphism classes of irreducible T-
modules. How are the isomorphism classes of T-modules involved related? Can
the permutations be nontrivial?
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(6) xx Assume @, and assume there is a second @Q-polynomial ordering of the
primitive idempotent. Prove TH. I believe in this case the first subconstituent
has at most 4 distinct eigenvalues, and the constant ¥ from class if determined
by the intersection numbers. It may be possible to classify all such T'.

(7) x* Assume @, and assume there is a second P-polynomial ordering of the
distance matrices. I believe the same thing happens as in (6) above.

(8) »x A path y = yy, ¥y, ..., y; = z In I is said to be geodetic whenever d(y, z) =
t. Let us say a subset A of X is geodetically closed whenever all vertices on all
geodetic paths with endpoints in A are also in A. For any vertices y,z € X,
observe there exists a unique minimal geodetically closed subset containing vy, z,
denoted [yz].

If the diameter of [yz] equals J(y, z), we say [yz] is a subspace. Furthermore,
show the subgraph induced on [yz] is distance-regular, and satisfies @, TH. If
this proves not to be the case, find a simple additional assumption on I' under
which it is true. (It seems to hold for the known examples). I believe these
subspaces are the key to an eventual classification of the graphs satisfying @,
TH (and possibly all distance-regular graphs with sufficiently large diameter).
In the examples, the partially ordered set of all subspaces, ordered by reverse
inclusion, is some classical geometry. There are many classification theorems
in the area of finite projective geometry. My hope is that given any T', the
partially ordered set of all subspaces is some highly regular geometry that can
be classified using one of these theorems, leading us to a classification of the
original I". (By the way, I intend to explore this area in the course I am teaching
next fall on partiallly ordered sets).

(9) xx Assume @, TH. Find a nice basis for E3TEj in a way that generalized
what we did in class for E{TEY.

(10) x Assume B, TH, and that the dimension of E;TE} is at most 4. Show
that @ holds. Find a nice basis for E5TE3.

(11) It is not hard to show that in general

c;>cq (1<i<D), (A.1)
b, <b,_, (0<i<D-1). (A.2)

It is known that if I has at least one cyle y1,y2,y3, y4, y1 such that d(yl,y3) =
0(y2,y4) = 2 then

¢;—Ciq1+b_1—b>a,+2 (1<i<D).
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This bound has proved to be quite fndamental. For example, the graphs I where
equality holds for all 4 all satisfy @, and in fact they are precisely the graphs of
type ITA or IIC (refereng to p.10, 11 in the thick paper I handed out in class).
These graphs have all been classified. I have some papers describing some more
general bounds of the above sort, but they are unsatisfactory in the sense that
the class of graphs for which equality is attained is not interesting, and may even
be empty. Hence one problem (xx) is to find a bound that controls the growth
of the ¢,;’s and the decrease of the b,’s, where equality is attained for some nice,
large class of graphs. Ideally, this class would contain all the known examples of
I" with sufficiently large diameter, or perhaps all the graphs I' satisfying @ + TH.
Specific proble (x): Assume Z and redo the arguments in the above-mentioned
papers. Dramatic improvements in the bounds obtained are expected (I did
not realise the significance of Z and redo the arguments in the above-mentioned
papers). Since @ + TH — Z, the new bounds are expected to give important
feasibility conditions on the intersection numbers of any I' satisfying @ and TH.

(12) x Explore the class of graphs that are Q-polynomial with respect to each ver-
tex. but not assumed to be distance-regular. Are these graphs in fact distance-
regular or bi-distance-regular? (This result would be very esthetically pleasing
to me, since as we have seen, the sibling property of being thin does not imply
distance-regularity or bi-distance-regularity). If the answer to the above ques-
tion is “no”, just what sort of regularity do these graphs have? For a graph
that is @-polynomial with respect to each vertex, how must the orderings of
the primitive idempotents associated with adjacent vertices be related? Is it
possible for a distance-regular graph to be Q-polynomial with respect to each
vertex, but still not be @-polynomial? (This is a completely new area. Up until
now, the Q-polynomial property was only defined for distance-regular graphs.)

(13) %* To what extent do the polynomial relations on R, L, F' given in Theorem
30.1 actually characterize the -polynomial property? For example, suppose

(4) L2FE;*, LFLEY, FLQE;*, LQE;‘ are linearly dependent for all i (2 < ¢ < D).
(19) FLRE}, FRLE? are linearly dependent for all i (0 < ¢ < D), and

(iii) RL2E}, LRLE!, L2RE*, LF?E}, FLFE*, LFE!, F*LE}, FLE!, LE} are
linearly dependent, for all ¢ (1 <i < D).

Then does @ hold? what if we assume TH? If not, what other graphs can
one get? are they “almost” @-polynomial in some sense (pserhaps many Krein
parameters vanish, but not quite enough to imply Q). What is the essential
assumption about the coefficients in the above dependencies that is needed to
insure Q.

(14) *4* Assume ) and TH. Find the abstract structure of the Norton algebra
N. My intuition says that this structure can be computed in terms of the
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intersection numbers and a small list of additional parameters such as 1. The
examples suggest that IV is “almost associative” in some sense. Specific problem
(x) Find the precise structure of the Norton algebra for the examples J(d,n),
J,(d,n), ..., and find some pattern. The dual of Theorem 30.1 is relevent to this
problem. My intuition says that the idempotents of N should correspond to the
subspaces of T" referred to in problem 8, and that somehow the multiplication
operation in N should be related to the meet and join operations in the geometry
of subspaces referred to in that problem.

(15) % Assume @ and TH, and pick y € X. Show

T(x)y =T(y)z.

(I can show this for d(x,y) = 1.) If the above line holds, then apparently
H :=T(x)y =T(y)Z is a module for the algebra T'(x,y) generated by the Bose-
Mesner algebra M, the dual Bose-Mesner algebra M*(z), and M*(y). Observe
the elements of M*(z), M*(y) mutually commute, and in fact that the maximal
common engenspaces of M*(z), M*(y) are the E;;V (0 < i,j < D), where
E}; = E;(z)E;(y). Find a nice orthogonal basis for each E;;H. Observe the
union B of these bases is a basis for H. Find the matrices representing A,
A*(x), A*(y) with respect to B. Choose B so that the entries in these matrices
are nice, factorable expressions in the intersection numbers and whatever other
parameters are needed. In the case 0(z,y) = 1, these entries can be deteermined
from the intersection numbers and the parameter . If 0(z,y) > 2, presumably
there are some more free parameters analoguous to v that play a role. My
intuition says that as a T'(x,y)-module, H is determined from the intersection
numbers of I" and ¢ free parameters, where t = 9(z, y).

(16) xx Does TH and Fewl! imply Z? If not, what extra assumption is needes?

(17) ** Does TH, Fewl, Few2, imply Q7 If not, what extra assumption is
needed?

(18) xx Let T" be an arbitrary grarph, not assumed to be distance-regular. Con-
jecture: I' is thin if and only if for all integers 14, j, k, and all vertices x,y,z € X
such that 0(z,y) = d(x, z) = 4, the number of vertices w € X with d(w,x) = j,
d(w,y) =1, O(w, z) = k equals the number of vertices w’ € X with d(w’, z) = j,
Ow',z) =1, 0(w',y) = k. If T assumed to be distance-regular, then the con-
jecrure is true and there is a long proof in the thick paper I handed out in
class (Theorem 5.1 (iii)) . A short, slick proof (assuming distance-regularity or
not) is very much needed. If the conjecture turns out not to be true in the
bi-distance-regular case, find some similar combinatorial characterization of the
thin property.
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There are a number of additional problems in section 7 of the thick paper I
handed out in class. Essentially all the known examples of thin, Q-polynomial
distance-regular graphs are listed in section 6 of that paper.

For each of the above problems, I have a good deal of background information
to communicate, but unfortunately in most cases it is not in published form! If
you tell me what problem you want to focus on, I can tailor a series of lectures
this summer towards communicating what I know on the subject. But one key
point: Often “I don’t know what I know”. If you are constantly asking probing
questions of me it makes my job a lot easier: it often reminds me of information
that is relevant that I had forgotten, or that I had forgotten was relevant.



Appendix B

Comparison Table

We list Definitions, Theorems, Lemmas, etc. with the numbers in the original
handwritten note.

Old
Chapter New Numbering Numbering
1 Example 1.1 Example
Example 1.2 Example
Definition 1.1 Definition
Lemma 1.1 Lemma 1
Definition 1.2 Definition
Definition 1.3 Definition
Definition 1.4 Definition
Definition 1.5 Definition
Definition 1.6 Definition
Definition 1.7 Definition
Lemma 1.2 Lemma 2
2 Definition 2.1 Definition
Definition 2.2 Definition
Theorem 2.1 Theorem 3
Lemma 2.1 Lemma 4
Definition 2.3 Definition
Corollary 2.1 Corollary 5
3 Definition 3.1 Definition
Definition 3.2 Definition
Definition 3.3 Definition
Definition 3.4 Definition
Example 3.1 Example
Example 3.2 Example
Example 3.3 Example
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Old
Chapter New Numbering Numbering
Theorem 3.1 Theorem 6
Definition 3.5 Definition
Example 3.4 Example
Lemma 3.1 Lemma 7
4 Theorem 4.1 Theorem 8
Example 4.1 Example
Example 4.2 Example
Definition 4.1 Definition
Lemma 4.1 Lemma 9
5 Definition 5.1 Definition
Theorem 5.1 Theorem 10
6 Theorem 6.1 Theorem 11
Definition 6.1 Definition
Definition 6.2 Definition
7 Definition 7.1 Definition
Example 7.1 Example
Lemma 7.1 Lemma 12
Theorem 7.1 Theorem 13
8 Lemma 8.1 Lemma 14
9 Lemma 9.1 Lemma 15
Corollary 9.1 Corollary 16
Lemma 9.2 Lemma 17
Definiton 9.2 Definition
10 Lemma 10.1 Lemma 18
Lemma 10.2 Lemma 19
Corollary 10.1 Corollary 20
11 Lemma 11.1 Lemma 21
Lemma 11.2 Lemma 22
12 Lemma 12.1 Lemma 23
Theorem 12.1 Theorem 24
13 Lemma 13.1 Lemma 25
Theorem 13.1 Theorem 26
Proposition 13.1 Proposition 27
14 Lemma 14.1 Lemma 28
Lemma 14.2 Lemma 29
15 Definition 15.1 Definition
Lemma 15.1 Lemma 30
16 Definition 16.1 Definition
Lemma 16.1 Lemma 31
Theorem 16.1 Theorem 32
Lemma 16.2 Lemma 33*
17 Definition 17.1 Definition
Definition 17.2 Definition



265

Old
Chapter New Numbering Numbering
Example 17.1 Example 1
Example 17.2 Example 2
Exercise 17.1 Exercise
Example 17.3 Example 3
18 Lemma 18.1 Lemma 33
19 Lemma 19.1 Lemma 34
Definition 19.1 Definition:
20 Lemma 20.1 Lemma 34-a
Lemma 20.2 Lemma 34-b
Lemma 20.3 Lemma 35
Corollary 20.1 Corollary 36
Lemma 20.4 Lemma 37
21 Lemma 21.1 Lemma 38
Lemma 21.2 Lemma 39
22 Lemma 22.1 Lemma 40
Definition 22.1 Definition
Lemma 22.2 Lemma 41
23 Theorem 23.1 Theorem 42
Definition 23.1 Definition
Example 23.1 Example
24 Definition 23.2 Definition
Lemma 23.1 Lemma 43
Definition 24.1 Definition
Theorem 24.1 Theorem 44
26 Corollary 26.1 Corollary 45
Lemma 26.1 Lemma 46
27 Theorem 27.1 Theorem 47
Definition 27.1 Definition
Definition 27.2 Definition
Lemma 27.1 Lemma 48
Example 27.1 Example
28 Lemma 28.1 Lemma 49
Conjecture 28.1 Conjecture
29 Theorem 29.1 Theorem 50
30 Theorem 30.1 Theorem 51
Lemma 30.1 Lemma 52
Corollary 30.1 Corollary 53
31 Lemma 31.1 Lemma 54
32 Lemma 32.1 Lemma 55
Lemma 32.2 Lemma 56
Lemma 32.3 Lemma 57
33 Lemma 33.1 Lemma 58
Lemma 33.2 Lemma 59
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Old
Chapter New Numbering Numbering
Lemma 33.3 Lemma 60
Lemma 33.4 Lemma 61
34 Lemma 34.1 Lemma 62
Lemma 34.2 Lemma 63
Lemma 34.3 Lemma 64
35 Theorem 35.1 Theorem 65
36 Conjecture 36.1 Conjecture
Conjecture 36.2 Conjecture
Conjecture 36.3 Conjecture
37 Lemma 37.1 Lemma 66
Definition 37.1 Definition
Example 37.1 Example
Lemma 37.2 Lemma 67
38 Lemma 38.1 Lemma 68
Definition 38.1 Definition
Lemma 38.2 Lemma 69
39 Lemma 39.1 Lemma 70
Lemma 39.2 Lemma 71
Lemma 39.3 Lemma 72
Lemma 39.4 Lemma 73
40 Lemma 40.1 Lemma 74
Lemma 40.2 Lemma 75
Lemma 40.3 Lemma 76
Theorem 40.1 Theorem 77




Appendix C

Technical Memo

This note is created by bookdown package on RStudio.
For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).
The following is a memo.
A. Install R and R Studio with necessary packages if needed
B. Create and setup ssh key by ssh-keygen
C. Setup Git-GitHub connection

1. Create a GitHub account if needed

2. Set ssh key by copying the value of the public SSH key to the clipboard
using pbcopy and paste it into SSH Keys in the GitHub account

D. Remote Repository

—_

Log-in to the GitHub account

Go to RStudio/bookdown-demo repository: https://github.com/rstudio
/bookdown-demo

Use This Template

Input Repository Name

Select Public - default

Create a repository from the template

Set Pages: Branch main, docs

o

oot w

E. Local Repository

. Copy: Code > Clone > SSH from the GitHub repository
. Create a new project by Version Control Git

. Change directory name _book to docs
. Edit YAMLs

= N =

267


https://github.com/rstudio/bookdown-demo
https://github.com/rstudio/bookdown-demo
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All source files are in the GitHub Repository.

C.1 To Do List

e Environment align in ePub_ book.
— It may be better to give up ePub book mode.
o https://github.com/rstudio/bookdown /issues/530

e See also bookdown ePub version page 33. I could not retrieve the same.
(See page 32 as well.)

e Environment of align

1. align

h
[
oy

2. egqnarray*

A = B
= C

3. array in equation with minus spacing

A= B
= C
4. split in equation
A=DB
C3
. (€3)

¢ Shaded Box using frame with environment hs in PDF
¢ Controlling top icons
e My template of bookdown

Minor

o Difference in numbering; HTML and PDF
¢ bs4_book format

e bookdown template and doc directory

e Style of citation in PDF


https://github.com/icu-hsuzuki/t-algebra
https://github.com/rstudio/bookdown/issues/530
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Q-polynomial, 139, 150 path, 16

association matrix, 114 reducible, 19

association scheme, 114 regular, 15
automorphism, 25 restricted, 50

bipartite, 19 subconstituent algebra, 17
bipartite graph, 23 symmetrix, 114

Cayley graph, 25 thin, 50

character, 28

complete graph, 102 valency, 15

connected, 16 vertex transitive, 25

diameter, 35

diameter of I, 16

diameter wrt x, 16

distance, 16

distance-regular, 79
distance-transitive, 60

dual associate matrix, 123
dual Bose-Mesner algebra, 123
dual endpoint, 229

dual thin, 50

endpoint, 35

generalized adjacency matrix, 237
graph, 13

irreducible, 17
isomorophism, 25
isomorphic, 38

measure, 68
module, 17
multiplicity, 38

Norton algebra, 134
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