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About

• Original Hand Written Note Edited by Hiroshi Suzuki: https://icu-hsuz
uki.github.io/lecturenote/

• PDF of this lecturenote: https://icu-hsuzuki.github.io/t-algebra/t-
algebra.pdf

– You can download from the download icon on the top menu.
– The style is a bit different from the HTML version

• This digital book is created by bookdown package on RStudio.
– For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).
– See technical memo

Foreword
April 4, 1995.

This book is a lecture note based on a series of lectures by Paul Terwilliger in
1993. The original is a manuscript written by Paul Terwilliger.

This note was rewritten by Hirosh Suzuki when he studied the lecture note
during the following period.

January 13, 1995 – March 4, 1995.

He had a chance to meet the author for a week after reading through the lecture
note. The author clarified almost everything he asked. So even in the part where
he put “?”, there seems to be no mathematical gap. But sometimes, it requires
lengthy calculations.

In the last part, each result has two numbers because the original lecture note
has duplications. He supposes that this lecture note is already two years old, so
some statements are improved essentially.

Hiroshi Suzuki

hsuzuki@icu.a.jp
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Preface by P. Terwilliger
This book attempts to prepare the way for an eventual classification of the
graphs that are both thin and 𝑄-polynomial. These graphs are distance-regular
or bi-distance-regular, and since the distance-regular case is somewhat easier to
handle, the focus will be on that case. (It is assumed the bi-distance-regular case
is not too different). In the core of this book, we take a vertex 𝑥 in a distance-
regular graph, and study the irreducible modules for the subconstituent algebra
𝑇 (𝑥) that have endpoint at most 2. (The modules with endpoint at most 3 seems
too complicated to consider, and do not seem to play much of a role anyway).
The thin condition and the 𝑄-polynomial property each affect the structure of
these momdules, so these assumptions are first considered separately, and then
jointly.

1. Introduction (Chapters 1 - 8)

1a. The subconstituent algebra 𝑇 (𝑥) associated with any vertex 𝑥 in a graph

1b. Example: The D-dimensional cube and the Lie algebra 𝑠𝑙2(ℂ)
1c. The graphs of thin type: definition and characterizations

2. The structure of a thin 𝑇 (𝑥)-module 𝑊 in an arbitrary graph (Chapters
9 - 11)

2a. The constants 𝑎𝑖(𝑊), 𝑥𝑖(𝑊)
2b. The measure 𝑚(𝑊)
2c. The isomorphism class of 𝑊 determines and is determined by 𝑚(𝑊)
2d. How non-orthogonal thin irreducible 𝑇 (𝑥)-modules and thin, irreducible

𝑇 (𝑦)-modules are related

2e. The matrices 𝑅, 𝐹 , 𝐿, and 𝑅−1, 𝐿−1

3. Distance-regularity (Chapters 12 - 13)

3a. Distance-regularity with respect to a vertex

3b. The trivial 𝑇 (𝑥) modules

3c. A graph is distance-regular with respect to each vertex if and only if
the trivial 𝑇 (𝑥)-module is thin if and only if the graph is distance-regular or
bi-distance-regular

4. The structure of a thin irreducible 𝑇 (𝑥)-module 𝑊 with endpoint 1 in a
distance-regular graph (Chapters 14 - 17)

4a. The isomorphism class of 𝑊 is determined by the intersection numbers
and 𝑎0(𝑊)

4b. Span({𝑣+1 , 𝑣+2 ,… , 𝑣+𝐷}) is thin irreducible 𝑇 (𝑥)-module if and only if
𝑣+𝑖 , 𝑣−𝑖 are dependent, for all 𝑖
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4c. If 𝑚1 < 𝑘1, there exist at least one thin, irreducible 𝑇 (𝑥)-module with
endpoint 1

4d. Formula for 𝑎𝑖(𝑊), 𝑥𝑖(𝑊), 𝛾𝑖(𝑊)
4e. Feasibility conditions arising from the above constants being algebraic

integers

4f. Feasibility conditions arising from |𝑎𝑖(𝑊)| ≤ 𝑎𝑖+1 (?)

4g. A combinatorial characterization of the distance-regular graphs where
every irreducible 𝑇 (𝑥)-module with endpoint 1 is thin

5. Distance-regular graphs where each irreducible 𝑇 (𝑥)-module with end-
point 1 is thin

5a. Formulae for the multiplicities of the isomorphism class of 𝑇 (𝑥)-modules
with endpoint 1

5b. The 𝑏𝑖’s are determined by 𝑐𝑖’s and the structure of the first subcon-
stituent

5c. 𝑎1 = 0 implies 𝑎𝑖 = 0 (1 ≤ 𝑖 ≤ 𝐷− 1)
5d. Distance-regular graphs where the first subconstituent is strongly regular:

restrictions on the parameters and possible classification (?)

5e. Distance-regular graphs where the first subconstituent has 4 distinct
eigenvalues: restrictions on the parameters (?)

5f. Distance-regular graphs where the first subconstituent has 5 distinct
eigenvalues: restrictions on the parameters (?)

5g. What minimal assumption (weaker than Q) implies Z (?)

6. Structure of a thin, irreducible 𝑇 (𝑥)-module with endpoint 2 in a distance-
regular graph

6a. Similar to 4 (?)

7. The distance-regular graphs where each irreducible 𝑇 (𝑥)-module with end-
point at most 2 is thin

7a. The intersection numbers are determined by the structure of the first
and the second subconstituents

7b. The bipartite case

7c. Classification of the examples where there are sufficiently few isomor-
phism classes of irreducible 𝑇 (𝑥)-modules with endpoint 1 or 2 (?)

7d. Classification of the almost-triply-regular graphs

8. The 𝑄-polynomial property (Chapter 28)

8a. Graphs that are 𝑄-polynomial with respect to each vertex (?)
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9. Commutative association schemes (Chapters 17 - 27)

9a. The Bose-Mesner algebra 𝑀 and the dual Bose-Mesner algebra 𝑀∗

9b. The Krein parameters

9c. The fundamental relations between 𝑀 , 𝑀∗

9d. An algebraic characterization of the 𝑄-polynomial schemes

9e. The representation of a commutative association scheme

9f. A representation-theoretic characterization of the 𝑃 - and 𝑄-polynomial
schemes

10. Quantum Lie algebras (Chapter 29)

10a. The generators 𝐴, 𝐴∗ satisfy two cubic polynomial equations

10b. How these equations simplify in the thin case

10c. Complete classification in the thin case

11. 𝑄-polynomial distance-regular graphs (Chapters 30 - 31)

11a. Formulae for the intersection numbers

11b. A combinatorial characterization of the 𝑄-polynomial distance-regular
graphs that involves 𝑅, 𝐿, 𝐹

11c. Formulae for the 𝑧𝑖 constants
12. 𝑄-polynomial distance-regular graphs, continued: The structure of an ar-

bitrary irreducible 𝑇 (𝑥)-module with endpoint 1 (Chapters 32 - 37)

12a. 𝐸∗
1𝑇𝐸∗

1 is commutative and has essentially one generator

12b. Description of the irreducible 𝑇 (𝑥)-modules with endpoint 1
12c. There are at most 4 mutually non-isomorphic thin, irreducible 𝑇 (𝑥)-

modules with endpoint 1
13. The 𝑄-polynomial distance-regular graphs of thin type: The ideal 𝑇 (𝑥)𝐸∗

1
(Chapters 38 - 40)

13a. The constant 𝜓 = 𝜓(𝑥, 𝑦) is independent of the edge 𝑥𝑦
13b. 𝐸∗

1𝑇𝐸∗
1 is spanned by the all 1’s matrix and 4 generalized adjacency

matrices

13c. 𝑇 (𝑥) ̂𝑦 = 𝑇 (𝑦) ̂𝑥 if 𝜕(𝑥.𝑦) = 1. Complete description of this 𝑇 (𝑥, 𝑦)-
module in terms of 𝜓 and the intersection numbers (?)

13d. The 𝑧𝑖 are constatn functions

13e. Feasibility conditions forced by the integrality and non-negativity of the
𝑧𝑖 (?)
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13f. Feasibility conditions forced by the integrality and non-negativity of the
multiplicities of the irreducible 𝑇 (𝑥)-modules with endpoint 1 (?)

14. The 𝑄-polynomial distance-regular graphs, continued: The structure of
an arbitrary irreducible 𝑇 (𝑥)-module with endpoint 2

14a. Similar to 12 (?)

15. The 𝑄-polynomial distance-regular graphs of thin type: the ideal 𝑇 (𝑥)𝐸∗
2

15a. Similar to 13 (?)

16. The classification of the thin 𝑄-polynomial distance-regular graphs with
diameter at least (?)

17. Bi-distance-regular graphs

17a. If a bipartite graphs is thin then so are the halved graphs

17b. For any thin 𝑇 (𝑥)-module 𝑊 , 𝑚𝑊 (𝜃) = 𝑚𝑊 (−𝜃)
17c. Mimic the above sections 4-14 (?) (I desperately hope that𝑄-polynomial

bi-distance-regular graphs that are not already distance-regular do not exist)



12 CONTENTS



Chapter 1

Subconstituent Algebra of a
Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair Γ = (𝑋,𝐸),
where

𝑋 = finite set (of vertices)
𝐸 = set of (distinct) 2-element subsets of 𝑋 (= edges of ) Γ.

The vertices 𝑥 and 𝑦 ∈ 𝑋 are adjacent if and only if 𝑥𝑦 ∈ 𝐸.

Example 1.1. Let Γ be a graph. 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐸 = {𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑏𝑑}.
a

c

b d

Set 𝑛 = |𝑋|, the order of Γ.

Pick a field 𝐾 (= ℝ or ℂ). Then Mat𝑋(𝐾) denotes the 𝐾 algebra of all 𝑛 × 𝑛
matrices with entries in 𝐾. (rows and columns are indexed by 𝑋)

13



14 CHAPTER 1. SUBCONSTITUENT ALGEBRA OF A GRAPH

Adjacency matrix 𝐴 ∈ Mat𝑋(𝐾) is defined by

𝐴𝑥𝑦 = { 1 if 𝑥𝑦 ∈ 𝐸,
0 else. (1.1)

Example 1.2. Let 𝑎, 𝑏, 𝑐, 𝑑 be labels of rows and columns. Then

𝐴 =
𝑎
𝑏
𝑐
𝑑

𝑎 𝑏 𝑐 𝑑

⎛⎜⎜⎜
⎝

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

⎞⎟⎟⎟
⎠

The subalgebra𝑀 of Mat𝑋(𝐾) generated by 𝐴 is called the Bose-Mesner algebra
of Γ.
Set 𝑉 = 𝐾𝑛, the set of 𝑛-dimensional column vectors, the coordinates are
indexed by 𝑋.

Let ⟨ , ⟩ denote the Hermitean inner product:

⟨𝑢, 𝑣⟩ = 𝑢⊤ ⋅ ̄𝑣 (𝑢, 𝑣 ∈ 𝑉 )

𝑉 with ⟨ , ⟩ is the standard module of Γ.
𝑀 acts on 𝑉 : For every 𝑥 ∈ 𝑋, write

̂𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

← 𝑥

where 1 is at the 𝑥 position.

Then
𝐴 ̂𝑥 = ∑

𝑦∈𝑋,𝑥𝑦∈𝐸
̂𝑦.

Since 𝐴 is a real symmetrix matrix,

𝑉 = 𝑉0 + 𝑉1 +⋯+ 𝑉𝑟 some 𝑟 ∈ ℤ≥0,

the orthogonal direct sum of maximal 𝐴-eigenspaces.

Let 𝐸𝑖 ∈ Mat𝑋(𝐾) denote the orthogonal projection,

𝐸𝑖 ∶ 𝑉 ⟶ 𝑉𝑖.
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Then 𝐸0,… ,𝐸𝑟 are the primitive idempotents of 𝑀 .

𝑀 = Span𝐾(𝐸0,… ,𝐸𝑟),

𝐸𝑖𝐸𝑗 = 𝛿𝑖𝑗𝐸𝑖 for all 𝑖, 𝑗, 𝐸0 +⋯+𝐸𝑟 = 𝐼.
Let 𝜃𝑖 denote the eigenvalue of 𝐴 for 𝑉𝑖 in ℝ. Without loss of generality we may
assume that

𝜃0 > 𝜃1 > ⋯ > 𝜃𝑟.
Let

𝑚𝑖 = the multiplicity of 𝜃𝑖 = dim𝑉𝑖 = rank𝐸𝑖.
Set

Spec(Γ) = ( 𝜃0, 𝜃1, … , 𝜃𝑟
𝑚0, 𝑚1, … , 𝑚𝑟

) .

Problem. What can we say about Γ when Spec(Γ) is given?
The following Lemma 1.1, is an example of Problem.

For every 𝑥 ∈ 𝑋,

𝑘(𝑥) ≡ valency of 𝑥 ≡ degree of 𝑥 ≡ |{𝑦 ∣ 𝑦 ∈ 𝑋, 𝑥𝑦 ∈ 𝐸}|.

Definition 1.1. The graph Γ is regular of valency 𝑘 if 𝑘 = 𝑘(𝑥) for every 𝑥 ∈ 𝑋.

Lemma 1.1. With the above notation,

(𝑖) 𝜃0 ≤ max{𝑘(𝑥) ∣ 𝑥 ∈ 𝑋} = 𝑘max.
(𝑖𝑖) If Γ is regular of valency 𝑘, then 𝜃0 = 𝑘.

Proof. (𝑖) Without loss of generality we may assume that 𝜃0 > 0, else done. Let
𝑣 ∶= ∑𝑥∈𝑋 𝛼𝑥 ̂𝑥 denote the eivenvector for 𝜃0.
Pick 𝑥 ∈ 𝑋 with |𝛼𝑥| maximal. Then |𝛼𝑥| ≠ 0.
Since 𝐴𝑣 = 𝜃0𝑣,

𝜃0𝛼𝑥 = ∑
𝑦∈𝑋,𝑥𝑦∈𝐸

𝛼𝑦.

So,
𝜃0|𝛼𝑥| = |𝜃0𝛼𝑥| ≤ ∑

𝑦∈𝑋,𝑥𝑦∈𝐸
|𝛼𝑦| ≤ 𝑘(𝑥)|𝛼𝑥| ≤ 𝑘max|𝛼𝑥|.

(𝑖𝑖) All 1’s vector 𝑣 = ∑𝑥∈𝑋 ̂𝑥 satisfies 𝐴𝑣 = 𝑘𝑣.
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Let 𝑥, 𝑦 ∈ 𝑋 and ℓ ∈ ℤ≥0.

Definition 1.2. A path of length ℓ connecting 𝑥, 𝑦 is a sequence

𝑥 = 𝑥0, 𝑥1,… , 𝑥ℓ = 𝑦, 𝑥𝑖 ∈ 𝑋 (0 ≤ 𝑖 ≤ ℓ)

such that 𝑥𝑖𝑥𝑖+1 ∈ 𝐸 for all 𝑖 (0 ≤ 𝑖 ≤ ℓ − 1).
Definition 1.3. The distance 𝜕(𝑥, 𝑦) is the length of a shortest path connecting
𝑥 and 𝑦.

𝜕(𝑥, 𝑦) ∈ ℤ≥0 ∪ {∞}.

Definition 1.4. The graph Γ is connected if and only if 𝜕(𝑥, 𝑦) < ∞ for all
𝑥, 𝑦 ∈ 𝑋.

From now on, assume that Γ is connected with |𝑋| ≥ 2.
Set

𝑑Γ = 𝑑 = max{𝜕(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑋} ≡ the diameter of Γ.

Definition 1.5. For each vertex 𝑥 ∈ 𝑋,

𝑑(𝑥) = the diameter with respect to 𝑥 = max{𝜕(𝑥, 𝑦) ∣ 𝑦 ∈ 𝑋} ≤ 𝑑.

Fix a ‘base’ vertex 𝑥 ∈ 𝑋.

Observe that

𝑉 = 𝑉 ∗
0 + 𝑉 ∗

1 +⋯+ 𝑉 ∗
𝑑(𝑥) (orthogonal direct sum),

where
𝑉 ∗
𝑖 = Span𝐾( ̂𝑦 ∣ 𝜕(𝑥, 𝑦) = 𝑖) ≡ 𝑉 ∗

𝑖 (𝑥)
and 𝑉 ∗

𝑖 = 𝑉 ∗
𝑖 (𝑥) is called the 𝑖-th subconstituent with respect to 𝑥.

Let 𝐸∗
𝑖 = 𝐸∗

𝑖 (𝑥) denote the orthogonal projection

𝐸∗
𝑖 ∶ 𝑉 ⟶ 𝑉 ∗

𝑖 (𝑥).

View 𝐸∗
𝑖 (𝑥) ∈ Mat𝑋(𝐾). So, 𝐸∗

𝑖 (𝑥) is diagonal with 𝑦𝑦 entry:

(𝐸∗
𝑖 (𝑥))𝑦𝑦 = {1 if 𝜕(𝑥, 𝑦) = 𝑖,

0 else,
for 𝑦 ∈ 𝑋.

Set
𝑀∗ = 𝑀∗(𝑥) ≡ Span𝐾(𝐸∗

0(𝑥),… ,𝐸∗
𝑑(𝑥)(𝑥)).

Then 𝑀∗(𝑥) is a commutative subalgebra of Mat𝑋(𝐾) and is called the dual
Bose-Mesner algbara with respect to 𝑥.
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Definition 1.6 (Subconstituent Algebra). Let Γ = (𝑋,𝐸), 𝑥, 𝑀 , 𝑀∗(𝑥) be as
above. Let 𝑇 = 𝑇(𝑥) denote the subalgebra of Mat𝑋(𝐾) generated by 𝑀 and
𝑀∗(𝑥). 𝑇 is the subconstituent algebra of Γ with respect to 𝑥.
Definition 1.7. A 𝑇 -module is any subspace 𝑊 ⊆ 𝑉 such that 𝑎𝑤 ∈ 𝑊 for all
𝑎 ∈ 𝑇 and 𝑤 ∈ 𝑊 .

𝑇 -module 𝑊 is irreducible if and only if 𝑊 ≠ 0 and 𝑊 does not properly contain
a nonzero 𝑇 -module.

For any 𝑎 ∈ Mat𝑋(𝐾), let 𝑎∗ denbote the conjugate transpose of 𝑎.
Observe that

⟨𝑎𝑢, 𝑣⟩ = ⟨𝑢, 𝑎∗𝑣⟩ for all 𝑎 ∈ Mat𝑋(𝐾), and for all 𝑢, 𝑣 ∈ 𝑉 .

Lemma 1.2. Let Γ = (𝑋,𝐸), 𝑥 ∈ 𝑋 and 𝑇 ≡ 𝑇(𝑥) be as above.

(𝑖) If 𝑎 ∈ 𝑇 , then 𝑎∗ ∈ 𝑇 .

(𝑖𝑖) For any 𝑇 -module 𝑊 ⊂ 𝑉 ,

𝑊⊥ ∶= {𝑣 ∈ 𝑉 ∣ ⟨𝑤, 𝑣⟩ = 0, for all 𝑤 ∈ 𝑊}
is a 𝑇 -module.

(𝑖𝑖𝑖) 𝑉 decomposes as an orthogonal direct sum of irreducible 𝑇 -modules.

Proof. (𝑖) It is because 𝑇 is generated by symmetric real matrices

𝐴,𝐸∗
0(𝑥), 𝐸∗

1(𝑥),… ,𝐸∗
𝑑(𝑥)(𝑥).

(𝑖𝑖) Pick 𝑣 ∈ 𝑊⊥ and 𝑎 ∈ 𝑇 , it suffices to show that 𝑎𝑣 ∈ 𝑊⊥. For all 𝑤 ∈ 𝑊 ,

⟨𝑤, 𝑎𝑣⟩ = ⟨𝑎∗𝑤, 𝑣⟩ = 0
as 𝑎∗ ∈ 𝑇 .
(𝑖𝑖𝑖) This is proved by the induction on the dimension of 𝑇 -modules. If 𝑊 is
an irreducible 𝑇 -module of 𝑉 , then

𝑉 = 𝑊 +𝑊⊥ (orthogonal direct sum).
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Problem. What does the structure of the 𝑇 (𝑥)-module tell us about Γ?
Study those Γ whose modules take ‘simple’ form. The Γ’s involved are highly
regular.

HS MEMO

1. The subconstituent algebra 𝑇 is semisimple as the left regular representa-
tion of 𝑇 is completely reducible. See Curtis-Reiner 25.2 (Charles W. Cur-
tis, 2006).

2. The inner product ⟨𝑎, 𝑏⟩𝑇 = tr(𝑎⊤𝑏̄) is nondegenerate on 𝑇 .
3. In general,

𝑇 : Semisimple and Artinian ⇔ 𝑇 : Artinian with 𝐽(𝑇 ) = 0
⇐ 𝑇 : Artinian with nonzero nilpotent element
⇐ 𝑇 ⊂ Mat𝑋(𝐾) such that for all 𝑎 ∈ 𝑇 is normal.



Chapter 2

Perron-Frobenius Theorem

Friday, January 22, 1993

In this lecture, we use the Perron Frobenius theory of non-negative matrices to
obtain information on eigenvalues of a graph.

Let 𝐾 = ℝ. For 𝑛 ∈ ℤ>0, pick a symmetric matrix 𝐶 ∈ Mat𝑛(ℝ).
Definition 2.1. The matrix 𝐶 is reducible if and only if there is a bipartition
{1, 2,… , 𝑛} = 𝑋+ ∪𝑋− (disjoint union of nonempty sets) such that 𝐶𝑖𝑗 = 0 for
all 𝑖 ∈ 𝑋+, and for all 𝑗 ∈ 𝑋−, and for all 𝑖 ∈ 𝑋−, and for all 𝑗 ∈ 𝑋+, i.e.,

𝐶 ∼ (∗ 𝑂
𝑂 ∗) .

Definition 2.2. The matrix 𝐶 is bipartite if and only if there is a bipartition
{1, 2,… , 𝑛} = 𝑋+ ∪𝑋− (disjoint union of nonempty sets) such that 𝐶𝑖𝑗 = 0 for
all 𝑖, 𝑗 ∈ 𝑋+, and for all 𝑖, 𝑗 ∈ 𝑋−, i.e.,

𝐶 ∼ (𝑂 ∗
∗ 𝑂) .

Note.

1. If 𝐶 is bipartite, for every eigenvalue 𝜃 of 𝐶, −𝜃 is an eigenvalue of 𝐶 such
that mult(𝜃) = mult(−𝜃).

Indeed, let 𝐶 = (𝑂 𝐴
𝐵 𝑂),

(𝑂 𝐴
𝐵 𝑂)(𝑥

𝑦) = 𝜃(𝑥
𝑦) ⇔ (𝑂 𝐴

𝐵 𝑂)( 𝑥
−𝑦) = −𝜃( 𝑥

−𝑦) ,

where 𝐴𝑦 = 𝜃𝑥 and 𝐵𝑥 = 𝜃𝑦.

19
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2. If 𝐶 is bipartite, 𝐶2 is reducible.

3. The matrix 𝐶 is irreducible and 𝐶2 is reducible, if 𝐶𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 and
𝐶 is bipartite. (Exercise)

HS MEMO

Note 1. Even if 𝐶 is not symmetric

(𝑂 𝐴
𝐵 𝑂)(𝑥

𝑦) = 𝜃(𝑥
𝑦) ⇔ (𝑂 𝐴

𝐵 𝑂)( 𝑥
−𝑦) = −𝜃( 𝑥

−𝑦)

holds. So the geometric multiplicities of 𝜃 and −𝜃 coincide. How about the
algebraic multiplicities?

Note 3. Set 𝑥 ∼ 𝑦 if and only if 𝐶𝑥𝑦 > 0. So the graph may have loops. Then

(𝐶2)𝑥𝑦 > 0 ⇔ if there exists 𝑧 ∈ 𝑋 such that 𝑥 ∼ 𝑧 ∼ 𝑦.
Note that 𝐶 is irreducible if and only if Γ(𝐶) is connected. Let

𝑋+ = {𝑦 ∣ there is a path of even length from 𝑥 to 𝑦} (2.1)
𝑋− = {𝑦 ∣ there is no path of even length from 𝑥 to 𝑦} ≠ ∅. (2.2)

If there is an edge 𝑦 ∼ 𝑧 in 𝑋+ and 𝑤 ∈ 𝑋−. Then there would be a path from
𝑥 to 𝑦 of even length. So e(𝑋+, 𝑋+) = e(𝑋−, 𝑋−) = 0..

Theorem 2.1 (Perron-Frobenius). Given a matrix 𝐶 in Mat𝑛(ℝ) such that

(𝑎) 𝐶 is symmetric.

(𝑏) 𝐶 is irreducible.

(𝑐) 𝐶𝑖𝑗 ≥ 0 for all 𝑖, 𝑗.
Let 𝜃0 be the maximal eigenvalue of 𝐶 with eigenspace 𝑉0 ⊆ ℝ𝑛, and let 𝜃𝑟 be
the minimal eigenvalue of 𝐶 with eigenspace 𝑉𝑟 ⊆ ℝ𝑛. Then the following hold.

(𝑖) Suppose 0 ≠ 𝑣 =
⎛⎜⎜⎜
⎝

𝛼1
𝛼2
⋮

𝛼𝑛

⎞⎟⎟⎟
⎠

∈ 𝑉0. Then 𝛼𝑖 > 0 for all 𝑖, or 𝛼𝑖 < 0 for all 𝑖.

(𝑖𝑖) dim𝑉0 = 1.

(𝑖𝑖𝑖) 𝜃𝑟 ≥ −𝜃0.

(𝑖𝑣) 𝜃𝑟 = 𝜃0 if and only if 𝐶 is bipartite.

First, we prove the following lemma.
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Lemma 2.1. Let ⟨ , ⟩ be the dot product in 𝑉 = ℝ𝑛. Pick a symmetric matrix
𝐵 ∈ Mat𝑛(ℝ). Suppose all eigenvalues of 𝐵 are nonnegative. (i.e., 𝐵 is positive
semidefinite.) Then there exist vectors 𝑣1, 𝑣2,… , 𝑣𝑛 ∈ 𝑉 such that 𝐵𝑖𝑗 = ⟨𝑣𝑖, 𝑣𝑗⟩
for all 𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛).

Proof. By elementary linear algebra, there exists an orthonormal basis
𝑤1, 𝑤2,… ,𝑤𝑛 of 𝑉 consisting of eigenvectors of 𝐵. Set the 𝑖-th column of 𝑃 is
𝑤𝑖 and 𝐷 = diag(𝜃1,… , 𝜃𝑛). Then 𝑃⊤𝑃 = 𝐼 and 𝐵𝑃 = 𝑃𝐷.

Hence,
𝐵 = 𝑃𝐷𝑃−1 = 𝑃𝐷𝑃⊤ = 𝑄𝑄⊤,

where
𝑄 = 𝑃 ⋅ diag(√𝜃1,√𝜃2,… ,√𝜃𝑛) ∈ Mat𝑛(ℝ).

Now, let 𝑣𝑖 be the 𝑖-th column of 𝑄⊤. Then

𝐵𝑖𝑗 = 𝑣⊤𝑖 ⋅ 𝑣𝑗 = ⟨𝑣𝑖, 𝑣𝑗⟩.

This proves the lemma.

Now we start the proof of Theorem 2.1.

Proof. (𝑖) Let ⟨ , ⟩ denote the dot product on 𝑉 = ℝ𝑛. Set

𝐵 = 𝜃𝐼 − 𝐶 (2.3)
= symmetric matrix with eigenvalues 𝜃0 − 𝜃𝑖 ≥ 0 (2.4)
= (⟨𝑣𝑖, 𝑣𝑗⟩)1≤𝑖,𝑗≤𝑛 (2.5)

with the same 𝑣1,… , 𝑣𝑛 ∈ 𝑉 by Lemma 2.1.

Observe:
𝑛

∑
𝑖=1

𝛼𝑖𝑣𝑖 = 0.

Pf.

∥
𝑛

∑
𝑖=1

𝛼𝑖𝑣𝑖∥
2

= ⟨
𝑛

∑
𝑖=1

𝛼𝑖𝑣𝑖,
𝑛

∑
𝑖=1

𝛼𝑖𝑣𝑖⟩ (2.6)

= (𝛼1 … 𝛼𝑛)𝐵⎛⎜
⎝

𝛼1
⋮

𝛼𝑛

⎞⎟
⎠

(2.7)

= 𝑣⊤𝐵𝑣 (2.8)
= 0, (2.9)

since 𝐵𝑣 = (𝜃0𝐼 − 𝐶)𝑣 = 0.
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Now set
𝑠 = the number of indices 𝑖, where 𝛼𝑖 > 0.

Replacing 𝑣 by −𝑣 if necessary, without loss of generality we may assume that
𝑠 ≥ 1. We want to show 𝑠 = 𝑛.
Assume 𝑠 < 𝑛. Without loss of generality, we may assume that 𝛼𝑖 > 0 for
1 ≤ 𝑖 ≤ 𝑠 and 𝛼𝑖 ≤ 0 for 𝑠 + 1 ≤ 𝑖 ≤ 𝑛. Set

𝜌 = 𝛼1𝑣1 +⋯+ 𝛼𝑠𝑣𝑠 = −𝛼𝑠+1𝑣𝑠+1 −⋯− 𝛼𝑛𝑣𝑛.

Then, for 𝑖 = 1,… , 𝑠,

⟨𝑣𝑖, 𝜌⟩ =
𝑛

∑
𝑗=𝑠+1

−𝛼𝑗⟨𝑣𝑖, 𝑣𝑗⟩ (⟨𝑣𝑖, 𝑣𝑗⟩ = 𝐵𝑖𝑗, 𝐵 = 𝜃0𝐼 − 𝐶) (2.10)

=
𝑛

∑
𝑗=𝑠+1

(−𝛼𝑖𝑗)(−𝐶𝑖𝑗) (2.11)

≤ 0. (2.12)

Hence

0 ≤ ⟨𝜌, 𝜌⟩ =
𝑠

∑
𝑖=1

𝛼𝑖⟨𝑣𝑖, 𝜌⟩ ≤ 0,

as 𝛼𝑖 > 0 and ⟨𝑣𝑖, 𝜌⟩ ≤ 0. Thus, we have ⟨𝜌, 𝜌⟩ = 0 and 𝜌 = 0. For 𝑗 =
𝑠 + 1,… , 𝑛,

0 = ⟨𝜌, 𝑣𝑗⟩ =
𝑠

∑
𝑖=1

𝛼𝑖⟨𝑣𝑖, 𝑣𝑗⟩ ≤ 0,

as ⟨𝑣𝑖, 𝑣𝑗⟩ = −𝐶𝑖𝑗.

Therefore,
0 = ⟨𝑣𝑖, 𝑣𝑗⟩ = −𝐶𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑠, 𝑠 + 1 ≤ 𝑗 ≤ 𝑛.

Since 𝐶 is symmetric,

𝐶 = (∗ 𝑂
𝑂 ∗)

Thus 𝐶 is reducible, which is not the case. Hence 𝑠 = 𝑛.

(𝑖𝑖) Suppose dim𝑉0 ≥ 2. Then,

dim
⎛⎜⎜⎜⎜⎜
⎝

𝑉0 ∩
⎛⎜⎜⎜
⎝

1
0
⋮
0

⎞⎟⎟⎟
⎠

⊥
⎞⎟⎟⎟⎟⎟
⎠

≥ 1.
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So, there is a vector

0 ≠ 𝑣 = ⎛⎜
⎝

𝛼1
⋮

𝛼𝑛

⎞⎟
⎠

∈ 𝑉0

with 𝛼1 = 0. This contradicts (𝑖).
Now pick

0 ≠ 𝑤 = ⎛⎜
⎝

𝛽1
⋮
𝛽𝑛

⎞⎟
⎠

∈ 𝑉𝑟.

(𝑖𝑖𝑖) Suppose 𝜃𝑟 < −𝜃0. Since the eigenvalues of 𝐶2 are the squares of those of
𝐶, 𝜃2𝑟 is the maximal eigenvalue of 𝐶2.

Also we have 𝐶2𝑤 = 𝜃2𝑟𝑤.
Observe that 𝐶2 is irreducible. (As otherwise, 𝐶 is bipartite by Note 3, and we
must have 𝜃𝑟 = −𝜃0.) Therefore, 𝛽𝑖 > 0 for all 𝑖 or 𝛽𝑖 < 0 for all 𝑖. We have

⟨𝑣, 𝑤⟩ =
𝑛

∑
𝑖=1

𝛼𝑖𝛽𝑗 ≠ 0.

This is a contradiction, as 𝑉0⊥𝑉𝑟.

(𝑖𝑣) ⇒: Let 𝜃𝑟 = −𝜃0. Then 𝜃 = 𝜃21 = 𝜃20 is the maximal eigenvalue of 𝐶2,
and 𝑣 and 𝑤 are linearly independent eigenvalues for 𝜃 for 𝐶2. Hence, for 𝐶2,
mult(𝜃) ≥ 2.
Thus by (𝑖𝑖), 𝐶2 must be reducible. Therefore, 𝐶 is bipartite by Note 3.

⇐: This is Note 1.

Let Γ = (𝑋,𝐸) be any graph.

Definition 2.3. Γ is said to be bipartite if the adjacency matrix 𝐴 is bipartite.
That is, 𝑋 can be written as a disjoint union of 𝑋+ and 𝑋− such that 𝑋+, 𝑋−

contain no edges of Γ.
Corollary 2.1. For any (connected) graph Γ with

Spec(Γ) = ( 𝜃0 𝜃1 ⋯ 𝜃𝑟
𝑚1 𝑚1 ⋯ 𝑚𝑟

) with 𝜃0 > 𝜃1 > ⋯ > 𝜃𝑟.

Let 𝑉𝑖 be the eigenspace of 𝜃𝑖. Then the following holds.

1. Supppose 0 ≠ 𝑣 = ⎛⎜
⎝

𝛼1
⋮

𝛼𝑛

⎞⎟
⎠

∈ 𝑉0 ∈ ℝ𝑛. Then 𝛼𝑖 > 0 for all 𝑖, or 𝛼𝑖 < 0 for

all 𝑖.
2. 𝑚0 = 1.
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3. 𝜃𝑟 ≥ −𝜃0 if and only if Γ is bipartite. In this case,

−𝜃𝑖 = 𝜃𝑟−𝑖 and 𝑚𝑖 = 𝑚𝑟−𝑖 (0 ≤ 𝑖 ≤ 𝑟).

Proof. This is a direct consequences of Theorem 2.1 and Note 3.



Chapter 3

Cayley Graphs

Monday, January 25, 1993

Given graphs Γ = (𝑋,𝐸) and Γ′ = (𝑋′, 𝐸′).

Definition 3.1. A map 𝜎 ∶ 𝑋 → 𝑋′ is an isomorphism of graphs whenever;

i. 𝜎 is one-to-one and onto,
ii. 𝑥𝑦 ∈ 𝐸 if and only if 𝜎𝑥𝜎𝑦 ∈ 𝐸′ for all 𝑥, 𝑦 ∈ 𝑋.

We do not distinguish between isomorphic graphs.

Definition 3.2. Suppose Γ = Γ′. Above isomorphism 𝜎 is called an automor-
phism of Γ. Then set Aut(Γ) of all automorphisms of Γ becomes a finite group
under composition.

Definition 3.3. If Aut(Γ) acts transitive on 𝑋, Γ is called vertex transitive.

Definition 3.4 (Cayley Graphs). Let 𝐺 be any finite group, and Δ any gener-
ating set for 𝐺 such that 1𝐺 ∉ Δ and 𝑔 ∈ Δ → 𝑔−1 ∈ Δ. Then Cayley graph
Γ = Γ(𝐺,Δ) is defined on the vetex set 𝑋 = 𝐺 with the edge set 𝐸 define by
the following.

𝐸 = {(ℎ1, ℎ2) ∣ ℎ1, ℎ2 ∈ 𝐺, ℎ−1
1 ℎ2 ∈ Δ} = {(ℎ, ℎ𝑔) ∣ ℎ ∈ 𝐺, 𝑔 ∈ Δ}.

Example 3.1. 𝐺 = ⟨𝑎 ∣ 𝑎6 = 1⟩, Δ = {𝑎, 𝑎−1}.

25
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1

a a2

a3

a−1 a−2

Example 3.2. 𝐺 = ⟨𝑎 ∣ 𝑎6 = 1⟩, Δ = {𝑎, 𝑎−1, 𝑎2, 𝑎−2}.

1

a a2

a3

a−1 a−2

Example 3.3. 𝐺 = ⟨𝑎, 𝑏 ∣ 𝑎6 = 1 = 𝑏2, 𝑎𝑏 = 𝑏𝑎⟩, Δ = {𝑎, 𝑎−1, 𝑏}.

b

a

ab

a−1b

a2b

a−2b

a2

1 a3 a3b

a−1 a−2

HS MEMO

Aut(Γ) ≃ 𝐷6×ℤ2 contains two regular subgroups isomorphic to 𝐷6 and ℤ6×ℤ2
and Γ is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.

Theorem 3.1. The following hold.

(𝑖) For any Cayley graph Γ = Γ(𝐺,Δ), the map

𝐺 → Aut(Γ) (𝑔 ↦ ̂𝑔)
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is an injective homomorphism of groups, where

̂𝑔(𝑥) = 𝑔𝑥 for all 𝑔 ∈ 𝐺 and for all 𝑥 ∈ 𝑋(= 𝐺).

Also, the image ̂𝐺 is regular on 𝑋. i.e., the image ̂𝐺 acts transitively on 𝑋 with
trivial vertex stabilizers.

(𝑖𝑖) For any graph Γ = (𝑋,𝐸), suppose there exists a subgroup 𝐺 ⊆ Aut(Γ) that
is regular on 𝑋. Pick 𝑥 ∈ 𝑋, and let

Δ = {𝑔 ∈ 𝐺 ∣ ⟨𝑥, 𝑔(𝑥) ∈ 𝐸}.
Then 1 ∉ Δ, 𝑔 ∈ Δ → 𝑔−1 ∈ Δ, and Δ generates 𝐺. Moreover, Γ ≃ Γ(𝐺,Δ).

Proof. (𝑖) Let 𝑔 ∈ 𝐺. We want to show that ̂𝑔 ∈ Aut(Γ). Let ℎ1, ℎ2 ∈ 𝑋 = 𝐺.
Then,

(ℎ1, ℎ2) ∈ 𝐸 → ℎ−1
1 ℎ2 ∈ Δ (3.1)

→ (𝑔ℎ1)−1(𝑔ℎ2) ∈ Δ (3.2)
→ (𝑔ℎ1, 𝑔ℎ2) ∈ 𝐸 (3.3)
→ ( ̂𝑔(ℎ1), ̂𝑔(ℎ2)) ∈ 𝐸. (3.4)

Hence, ̂𝑔 ∈ Aut(Γ).
Observe: 𝑔 ↦ ̂𝑔 is a homomorphism of groups:

̂1𝐺 = 1, 𝑔1𝑔2 = 𝑔1𝑔2.

Observe: 𝑔 ↦ ̂𝑔 is one-to-one:

𝑔1 = 𝑔2 → 𝑔1 = 𝑔1(1𝐺) = 𝑔2(1𝐺) = 𝑔2.

Observe: ̂𝐺 is regular on 𝑋: Clear by construction.

(𝑖𝑖) 1𝐺 ∉ Δ: Since Γ has not loops, (𝑥, 1𝐺𝑥) ∉ 𝐸.

𝑔 ∈ Δ → 𝑔−1 ∈ Δ:

𝑔 ∈ Δ → (𝑥, 𝑔(𝑥)) ∈ 𝐸 → 𝐸 ∋ (𝑔−1(𝑥), 𝑔−1(𝑔(𝑥))) = (𝑔−1(𝑥), 𝑥).

Δ generates 𝐺: Suppose ⟨Δ⟩ ⊊ 𝐺. Let 𝑋̂ = {𝑔(𝑥) ∣ 𝑔 ∈ ⟨Δ⟩} ⊊ 𝑋. (𝑋̂ ⊊ 𝑋 as
𝐺 acts regularly on 𝑋.)

Since Γ is connected, there exists 𝑦 ∈ 𝑋̂ and 𝑧 ∈ 𝑋 � 𝑋̂ with 𝑦𝑧 ∈ 𝐸.

Let 𝑦 = 𝑔(𝑥), 𝑔 ∈ ⟨Δ⟩, 𝑧 ∈ ℎ(𝑥), ℎ ∈ 𝐺 � ⟨Δ⟩. Then

(𝑦, 𝑧) = (𝑔(𝑥), ℎ(𝑥)) ∈ 𝐸 → (𝑥, 𝑔−1ℎ(𝑥)) ∈ 𝐸 → 𝑔−1ℎ ∈ ⟨Δ⟩ → ℎ ∈ ⟨Δ⟩.
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This is a contradition. Therefore, Δ generates 𝐺.

Let Γ′ = (𝑋′, 𝐸′) denote Γ(𝐺,Δ). We shall show that

𝜃 ∶ 𝑋′ → 𝑋 (𝑔 ↦ 𝑔(𝑥))

is an isomorphism of graphs.

𝜃 is one-to-one: For ℎ1, ℎ2 ∈ 𝑋′ = 𝐺,

𝜃(ℎ1) = 𝜃(ℎ2) → ℎ1(𝑥) = ℎ2(𝑥) → ℎ−1
2 ℎ1(𝑥) = 𝑥 → ℎ−1

2 ℎ1 ∈ Stab𝐺(𝑥) = {1𝐺} → ℎ1 = ℎ2.

(Stab𝐺(𝑥) = {𝑔 ∈ 𝐺 ∣ 𝑔(𝑥) = 𝑥}.)
𝜃 is onto: Since 𝐺 is transitive,

𝑋 = {𝑔(𝑥) ∣ 𝑔 ∈ 𝐺} = 𝜃(𝑋′) = 𝜃(𝐺).

𝜃 respects adjacency: For ℎ1, ℎ2 ∈ 𝑋′ = 𝐺,

(ℎ1, ℎ2) ∈ 𝐸′ ↔ ℎ−1
1 ℎ2 ∈ Δ ↔ (𝑥, ℎ−1

1 ℎ2(𝑥)) ∈ 𝐸 ↔ (ℎ1(𝑥), ℎ2(𝑥)) ∈ 𝐸 ↔ (𝜃(ℎ1), 𝜃(ℎ2)) ∈ 𝐸.

Therefore 𝜃 is an isomorphism between graphs Γ(𝐺,Δ) and Γ(𝑋,𝐸).

How to compute the eigenvalues of the Cayley graph of and abelian group.

Let 𝐺 be any finite abelian group. Let ℂ∗ be the multiplicative group on ℂ�{0}.
Definition 3.5. A (linear) 𝐺-character is any group homomorphism 𝜃 ∶ 𝐺 →
ℂ∗.

Example 3.4. 𝐺 = ⟨𝑎 ∣ 𝑎3 = 1⟩ has three characters, 𝜃0, 𝜃1, 𝜃2.

𝜃𝑖(𝑎𝑗) 1 𝑎 𝑎2
𝜃0 1 1 1
𝜃1 1 𝜔 𝜔2

𝜃2 1 𝜔2 𝜔
, with 𝜔 = −1 +

√
−3

2 .

Here 𝜔 is a primitive cube root of 𝑞 in ℂ∗, i.e., 1 + 𝜔 + 𝜔2 = 0.
For arbitraty group 𝐺, let 𝑋(𝐺) be the set of all characters of 𝐺.

Observe: For 𝜃1, 𝜃2 ∈ 𝑋(𝐺), one can define product 𝜃1𝜃2:

𝜃1𝜃2(𝑔) = 𝜃1(𝑔)𝜃2(𝑔) for all 𝑔 ∈ 𝐺.

Then 𝜃1𝜃2 ∈ 𝑋(𝐺).
Observe: 𝑋(𝐺) with this product is an (abelian) group.

Lemma 3.1. The groups 𝐺 and 𝑋(𝐺) are isomorphic for all finite abelian
groups 𝐺.
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Proof. 𝐺 is a direct sum of cyclic groups;

𝐺 = 𝐺1 ⊕𝐺2 ⊕⋯⊕𝐺𝑚, where 𝐺𝑖 = ⟨𝑎𝑖 ∣ 𝑎𝑑𝑖
𝑖 = 1⟩ (1 ≤ 𝑖 ≤ 𝑚).

Pick any element 𝜔𝑖 of order 𝑑𝑖 in ℂ∗, i.e., a primitive 𝑑𝑖-the root of 1. Define

𝜃𝑖 ∶ 𝐺 → ℂ∗ (𝑎𝜀1
1 ⋯𝑎𝜀𝑚𝑚 ↦ 𝜔𝜀𝑖

𝑖 where 0 ≤ 𝜀𝑖 < 𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑚).

Then 𝜃𝑖 ∈ 𝑋(𝐺). (Exercise)
Claim: There exists an isomorphism of groups 𝐺 → 𝑋(𝐺) that sends 𝑎𝑖 to 𝜃𝑖.
Observe: 𝜃𝑑𝑖

𝑖 = 1. For every 𝑔 = 𝑎𝜀1
1 ⋯𝑎𝜀𝑚𝑚 ∈ 𝐺,

𝜃𝑑𝑖
𝑖 (𝑔) = (𝜃𝑖(𝑔))𝑑𝑖 = (𝜔𝜀𝑖

𝑖 )𝑑𝑖 = (𝜔𝑑𝑖
𝑖 )𝜀𝑖 = 1.

Observe: If 𝜃𝜀1
1 𝜃𝜀2

2 ⋯𝜃𝜀𝑚𝑚 = 1 for some 0 ≤ 𝜀𝑖 < 𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑚. Then 𝜀1 = 𝜀2 =
⋯ = 𝜀𝑚 = 0.
Pf. 1 = 𝜃𝜀1

1 𝜃𝜀2
2 ⋯𝜃𝜀𝑚𝑚 (𝑎𝑖) = 𝜔𝜀𝑖

𝑖 , Since 𝜔𝑖 is a primitive 𝑑𝑖-th root of 1, 𝜀𝑖 = 0 for
1 ≤ 𝑖 ≤ 𝑚.

Observe: 𝜃1,… , 𝜃𝑚 generate 𝑋(𝐺). Pick 𝜃 ∈ 𝑋(𝐺). Since 𝑎𝑑𝑖
𝑖 = 1, 1 = 𝜃(𝑎𝑑𝑖

𝑖 ) =
𝜃(𝑎𝑖)𝑑𝑖 .

Hence 𝜃(𝑎𝑖) = 𝜔𝜀𝑖 for some 𝜀𝑖 with 0 ≤ 𝜀𝑖 < 𝑑𝑖.
Now 𝜃 = 𝜃𝜀1

1 ⋯𝜃𝜀𝑚𝑚 , since these are both equal to 𝜔𝜀𝑖
𝑖 at 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑚.

Therefore,
𝐺 → 𝑋(𝐺) (𝑎𝑖 ↦ 𝜃𝑖)

is an isomorphism of groups.

Note. The correspondence above is clearly a group homomorphism.
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Chapter 4

Examples

Wednesday, January 27, 1993

Theorem 4.1. Given a Cayley graph Γ = Γ(𝐺,Δ). View the standard module
𝑉 ≡ ℂ𝐺 (the group algebra), so

⟨∑
𝑔∈𝐺

𝛼𝑔𝑔, ∑
𝑔∈𝐺

𝛽𝑔𝑔⟩ = ∑
𝑔∈𝐺

𝛼𝑔𝛽𝑔, with 𝛼𝑔, 𝛽𝑔 ∈ ℂ.

For any 𝜃 ∈ 𝑋(𝐺), write
̂𝜃 = ∑

𝑔∈𝐺
𝜃(𝑔−1)𝑔.

Then the following hold.

(𝑖) ⟨ ̂𝜃1, ̂𝜃2⟩ = |𝐺| if 𝜃1 = 𝜃2 and 0 othewise for 𝜃1, 𝜃2 ∈ 𝑋(𝐺). In particular,
{ ̂𝜃 ∣ 𝜃 ∈ 𝑋(𝐺)} forms a basis for 𝑉 .

(𝑖𝑖) 𝐴 ̂𝜃 = Δ𝜃 ̂𝜃 for 𝜃 ∈ 𝑋(𝐺), where 𝐴 is the adjacency matrix and

Δ𝜃 = ∑
𝑔∈Δ

𝜃(𝑔).

In particular, the eigenvalues of Γ are precisely

{Δ𝜃 ∣ 𝜃 ∈ 𝑋(𝐺)}.

Proof.

(𝑖) Claim: For every 𝜃 ∈ 𝑋(𝐺), let

𝑠 ∶= ∑
𝑔∈𝐺

𝜃(𝑔−1) = {|𝐺| if 𝜃 = 1
0 if 𝜃 ≠ 1.

31
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Pf. Clear if 𝜃 = 1.

Let 𝜃 ≠ 1. Then 𝜃(ℎ) ≠ 1 for some ℎ ∈ 𝐺.

𝑠 ⋅ 𝜃(ℎ) = (∑
𝑔∈𝐺

𝜃(𝑔−1)) 𝜃(ℎ) = ∑
𝑔∈𝐺

𝜃(𝑔−1ℎ) = ∑
𝑔′∈𝐺

𝜃(𝑔′−1) = 𝑠.

Since 𝜃(ℎ) ≠ 1, 𝑠 = 0.

Claim. 𝜃(𝑔−1) = 𝜃(𝑔) for every 𝜃 ∈ 𝑋(𝐺) and every 𝑔 ∈ 𝐺.

Since 𝜃(𝑔) ∈ ℂ is a root of 1,

|𝜃(𝑔)|2 = 𝜃(𝑔)𝜃(𝑔) = 1.

On the other hand, since 𝜃 is a homomorphism,

𝜃(𝑔)𝜃(𝑔−1) = 𝜃(1) = 1.

Hence 𝜃(𝑔1) = 𝜃(𝑔).

Now

⟨𝜃1, 𝜃2⟩ = ∑
𝑔∈𝐺

𝜃1(𝑔−1)𝜃2(𝑔−1) (4.1)

= ∑
𝑔∈𝐺

𝜃1(𝑔−1)𝜃2(𝑔) (4.2)

= ∑
𝑔∈𝐺

𝜃1𝜃−1
2 (𝑔−1) (4.3)

= {|𝐺| if 𝜃1𝜃−1
2 = 1

0 if 𝜃1𝜃−1
2 ≠ 1. (4.4)

Since |𝐺| = |𝑋(𝐺)| by Lemma 3.1, and 𝜃𝑖’s are orthogonal nonzero elements in
𝑉 , that form a basis of 𝑉 .

(𝑖𝑖) Let Δ = {𝑔1,… , 𝑔𝑟}. Then
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𝐴 ̂𝜃 = 𝐴(∑
𝑔∈𝐺

𝜃(𝑔−1𝑔)) (4.5)

= ∑
𝑔∈𝐺

𝜃(𝑔−1)(𝑔𝑔1 +⋯+ 𝑔𝑔𝑟) (Γ(𝑔) = {𝑔𝑔1,… , 𝑔𝑔𝑟}) (4.6)

=
𝑟

∑
𝑖=1

(∑
𝑔∈𝐺

𝜃(𝑔−1)(𝑔𝑔𝑖)) (4.7)

=
𝑟

∑
𝑖=1

(∑
𝑔∈𝐺

𝜃(𝑔𝑖𝑔−1
𝑖 𝑔−1)(𝑔𝑔𝑖)) (4.8)

=
𝑟

∑
𝑖=1

(∑
𝑔∈𝐺

𝜃(𝑔𝑖)𝜃((𝑔𝑔𝑖)−1)𝑔𝑔𝑖) (4.9)

=
𝑟

∑
𝑖=1

𝜃(𝑔𝑖)∑
ℎ∈𝐺

𝜃(ℎ−1)ℎ (4.10)

= Δ𝜃 ⋅ ̂𝜃. (4.11)

Since { ̂𝜃 ∣ 𝜃 ∈ 𝑋(𝐺)} forms a basis, the eigenvalues of Γ are precisely,

{Δ𝜃 ∣ 𝜃 ∈ 𝑋(𝐺)}.

This completes the proof.

Example 4.1. Let 𝐺 = ⟨𝑎 ∣ 𝑎6 = 1⟩, and Δ = {𝑎, 𝑎−1}. Pick a primitive 6-th
root of 1, 𝜔. Then

𝑋(𝐺) = {𝜃𝑖 ∣ 0 ≤ 𝑖 ≤ 5} such that 𝜃(𝑎) = 𝜔, 𝜔 + 𝜔−1 = 1.

w3

w4 w5

1

w2 w
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𝜑 ∈ 𝑋(𝐺) 𝜑(𝑎) Δ𝜑 = 𝜃(𝑎) + 𝜃(𝑎)−1

1 1 2
𝜃 𝜔 𝜔 + 𝜔−1 = 1
𝜃2 𝜔2 −1
𝜃3 𝜔3 = −1 −2
𝜃4 𝜔4 −1
𝜃5 𝜔5 1

Spec(Γ) = (2 1 −1 −2
1 2 2 1 ) .

Example 4.2. 𝐷-cube, 𝐻(𝐷, 2). Let

𝑋 = {(𝑎1,… , 𝑎𝐷) ∣ 𝑎𝑖 ∈ {1,−1}, 1 ≤ 𝑖 ≤ 𝐷},

𝐸 = {𝑥𝑦 ∣ 𝑥, 𝑦 ∈ 𝑋, 𝑥, 𝑦: different in exactly one coordinate}.
Also 𝐻(𝐷, 2) is a Cayley graph Γ(𝐺,Δ), where

𝐺 = 𝐺1 ⊕𝐺2 ⊕⋯⊕𝐺𝐷,

𝐺𝑖 = ⟨𝑎𝑖 ∣ 𝑎2𝑖 = 1⟩, Δ = {𝑎1,… , 𝑎𝐷}.

Homework: The spectrum of 𝐻(𝐷, 2) is

( 𝜃0 𝜃1 ⋯ 𝜃𝐷
𝑚0 𝑚1 ⋯ 𝑚𝐷

) ,

where
𝜃𝑖 = 𝐷− 2𝑖 (0 ≤ 𝑖 ≤ 𝐷), 𝑚𝑖 = (𝐷

𝑖 ).

HS MEMO

Let 𝜃 ∈ 𝑋(𝐺). Then 𝜃 ∶ 𝑋 → {±1}. If

𝜈(𝜃) = |{𝑖 ∣ 𝜃(𝑎𝑖) = −1}|,

then Δ𝜃 = 𝐷− 2𝑖. Since there are (𝐷𝑖 ) such 𝜃, we have te assertion.

We want to compute the subconstituent algebra for 𝐻(𝐷, 2). First, we make a
few observations about arbitrary graphs.

Let Γ = (𝑋,𝐸) be any graph, 𝐴, the adjacemcy matrix of Γ, and 𝑉 , the standard
module over 𝐾 = ℂ.
Fix a base 𝑥 ∈ 𝑋. Write 𝐸∗

𝑖 = 𝐸∗
𝑖 (𝑥), and

𝑇 ≡ 𝑇(𝑥) = the algebra generated by 𝐴,𝐸∗
0, 𝐸∗

1,… .
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Definition 4.1. Let 𝑊 be any irreducible 𝑇 -module (⊆ 𝑉 ). Then the endpoint
𝑟 ≡ 𝑟(𝑊) satisfied

𝑟 = min{𝑖 ∣ 𝐸∗
𝑖𝑊 ≠ 0}.

The diameter 𝑑 = 𝑑(𝑊) satisfied

𝑑 = |{𝑖 ∣ 𝐸∗
𝑖𝑊 ≠ 0}| − 1.

Lemma 4.1. With the above notation, let 𝑊 be an irreducible 𝑇 -module. Then

(𝑖) 𝐸∗
𝑖𝐴𝐸∗

𝑗 = 0 if |𝑖 − 𝑗| > 1, 𝐸∗
𝑖𝐴𝐸∗

𝑗 ≠ 0 if |𝑖 − 𝑗| = 1, 0 ≤ 𝑖, 𝑗 ≤ 𝑑(𝑥).
(𝑖𝑖) 𝐴𝐸∗

𝑗𝑊 ⊆ 𝐸∗
𝑗−1𝑊 + 𝐸∗

𝑗𝑊 + 𝐸∗
𝑗+1𝑊 , 0 ≤ 𝑗 ≤ 𝑑(𝑥). (𝐸∗

𝑖𝑊 = 0 if 𝑖 < 𝑗 or
𝑖 > 𝑑(𝑥).)
(𝑖𝑖𝑖) 𝐸∗

𝑗𝑊 ≠ 0 if 𝑟 ≤ 𝑗 ≤ 𝑟 + 𝑑, = 0 if 0 ≤ 𝑗 ≤ 𝑟 or 𝑟 + 𝑑 < 𝑗 ≤ 𝑑(𝑥).
(𝑖𝑣) 𝐸∗

𝑖𝐴𝐸∗
𝑗𝑊 ≠ 0, if |𝑖 − 𝑗| = 1 (𝑟 ≤ 𝑖, 𝑗 ≤ 𝑟 + 𝑑).

Proof.

(𝑖) Pick 𝑦 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 𝑗. We want to find 𝐸∗
𝑖𝐴𝐸∗

𝑗 ̂𝑦. Note,

𝐸∗
𝑗 ̂𝑦 = {0 if 𝜕(𝑥.𝑦) ≠ 𝑗

̂𝑦 if 𝜕(𝑥, 𝑦) = 𝑗. .

𝐸∗
𝑖𝐴𝐸∗

𝑗 ̂𝑦 = 𝐸∗
𝑖𝐴 ̂𝑦 (4.12)

= 𝐸∗
𝑖 ∑
𝑧∈𝑋,𝑦𝑧∈𝐸

̂𝑧 (4.13)

= ∑
𝑧∈𝑋,𝑦𝑧∈𝐸,𝜕(𝑥,𝑧)=𝑖

̂𝑧 (4.14)

= 0 if |𝑖 − 𝑗| > 1 by triangle inequality. (4.15)

If |𝑖 − 𝑗| = 1, there exist 𝑦, 𝑦′ ∈ 𝑋 such that 𝜕(𝑥, 𝑦) = 𝑗, 𝜕(𝑥, 𝑦′) = 𝑖, 𝑦𝑦′ ∈ 𝐸
by connectivity of Γ. Hence (4.14) contains 𝑦′ and (4.14) is not equal to zero.

(𝑖𝑖) We have

𝐴𝐸∗
𝑗𝑊 = ⎛⎜

⎝

𝑑(𝑥)
∑
𝑖=0

𝐸∗
𝑖⎞⎟
⎠

𝐴𝐸∗
𝑗𝑊 (4.16)

= 𝐸∗
𝑗−1𝐴𝐸∗

𝑗𝑊 +𝐸∗
𝑗𝐴𝐸∗

𝑗𝑊 +𝐸∗
𝑗+1𝐴𝐸∗

𝑗𝑊 (4.17)
⊆ 𝐸∗

𝑗−1𝑊 +𝐸∗
𝑗𝑊 +𝐸∗

𝑗+1𝑊. (4.18)

(𝑖𝑖𝑖) Suppose 𝐸∗
𝑗𝑊 = 0 for some 𝑗 (𝑟 ≤ 𝑗 ≤ 𝑟+𝑑). Then 𝑟 < 𝑗 by the definition

of 𝑟. Set
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𝑊 = 𝐸∗
𝑟𝑊 +𝐸∗

𝑟+1𝑊 +⋯+𝐸∗
𝑗−1𝑊.

Observe 0 ⊊ 𝑊 ⊊ 𝑊 . Also 𝐴𝑊 ⊆ 𝑊 by (𝑖𝑖), and 𝐸∗
𝑖𝑊 ⊆ 𝑊 for every 𝑖 by

construction.

Thus, 𝑇𝑊 ⊆ 𝑊 , contradicting 𝑊 being irreducible.



Chapter 5

𝑇 -Modules of 𝐻(𝐷, 2), I

Friday, January 29, 1993

Let Γ = (𝑋,𝐸) be a graph, 𝐴 the adjacency matrix, and 𝑉 the standard module
over 𝐾 = ℂ.
Fix a base 𝑥 ∈ 𝑋 and write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), and 𝑇 ≡ 𝑇(𝑥).

Let 𝑊 be an irreducible 𝑇 -module with endpoint 𝑟 ∶= min{𝑖 ∣ 𝐸∗
𝑖𝑊 ≠ 0} and

diameter 𝑑 ∶= |{𝑖 ∣ 𝐸∗
𝑖𝑊 ≠ 0}| − 1.

We have

𝐸∗
𝑖𝑊 ≠ 0 𝑟 ≤ 𝑖 ≤ 𝑟 + 𝑑 (5.1)

= 0 0 ≤ 𝑖 < 𝑟 or 𝑟 + 𝑑 < 𝑖 ≤ 𝑑(𝑥). (5.2)

Claim: 𝐸∗
𝑖𝐴𝐸∗

𝑗𝑊 ≠ 0 if |𝑖 − 𝑗| = 1 for 𝑟 ≤ 𝑖, 𝑗 ≤ 𝑟 + 𝑑. (See Lemma 4.1.)

Suppose 𝐸∗
𝑗+1𝐴𝐸∗

𝑗𝑊 = 0 for some 𝑗 with 𝑟 ≤ 𝑗 < 𝑟 + 𝑑. Observe that

𝑊̃ = 𝐸∗
𝑟𝑊 +⋯+𝐸∗

𝑗𝑊

is 𝑇 -invariant with
0 ⊊ 𝑊̃ ⊊ 𝑊.

Becase 𝐴𝑊̃ ⊆ 𝑊̃ since 𝐴𝐸∗
𝑗𝑊 ⊆ 𝐸∗

𝑗−1𝑊 +𝐸∗
𝑗𝑊 ,

𝐸∗
𝑘𝑊̃ ⊆ 𝑊̃ for all 𝑘,

we have 𝑇𝑊̃ ⊆ 𝑊 .

Suppose 𝐸∗
𝑖−1𝐴𝐸∗

𝑖𝑊 = 0 for some 𝑖 with 𝑟 ≤ 𝑖 < 𝑟 + 𝑑.
Similarly,

𝑊̃ = 𝐸∗
𝑖𝑊 +⋯+𝐸∗

𝑟+𝑑𝑊

37
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is a 𝑇 -module with 0 ⊊ 𝑊̃ ⊊ 𝑊 .

Definition 5.1. Let Γ, 𝐸∗
𝑖 , and 𝑇 be as above. Irreducible 𝑇 -modules 𝑊 and

𝑊 ′ are isomorphic whenever there is an isomorphism 𝜎 ∶ 𝑊 → 𝑊 ′ of vector
spaces such that 𝑎𝜎 = 𝜎𝑎 for all 𝑎 ∈ 𝑇 .
Recall that the standard module 𝑉 is an orthogonal direct sum of irreducible
𝑇 -modules

𝑊1 ⊕𝑊2 ⊕⋯⊕𝑊ℓ, for some ℓ.
Given 𝑊 in this list, the multiplicity of 𝑊 in 𝑉 is

|{𝑗 ∣ 𝑊𝑗 ≃ 𝑊}|.

HS MEMO

It is known that the multiplicity does not depend on the decomposition.

Now assume that Γ is the 𝐷-cube, 𝐻(𝐷, 2) with 𝐷 ≥ 1. View
𝑋 = {𝑎1 ⋯𝑎𝐷 ∣ 𝑎𝑖 ∈ {1,−1}, 1 ≤ 𝑖 ≤ 𝐷}, (5.3)
𝐸 = {𝑥𝑦 ∣ 𝑥, 𝑦 ∈ 𝑋, 𝑥, 𝑦 differ in exactly 1 coordinate}. (5.4)

Find 𝑇 -modules.

Claim: 𝐻(𝐷, 2) is bipartite with a partition 𝑋 = 𝑋+ ∪𝑋−, where
𝑋+ = {𝑎1 ⋯𝑎𝐷 ∈ 𝑋 ∣ ∏𝑎𝑖 > 0} (5.5)

𝑋− = {𝑎1 ⋯𝑎𝐷 ∈ 𝑋 ∣ ∏𝑎𝑖 < 0} (5.6)

Observe: for all 𝑦, 𝑧 ∈ 𝑋,
𝜕(𝑦, 𝑧) = 𝑖 ⇔ 𝑦, 𝑧 differ in exactly in 𝑖 coorinates with 0 ≤ 𝑖 ≤ 𝐷.

Here, the diameter of 𝐻(𝐷, 2) = 𝐷 = 𝑑 for all 𝑥 ∈ 𝑋.

Theorem 5.1. Let Γ = 𝐻(𝐷, 2) be as above. Fix 𝑥 ∈ 𝑋, and write 𝐸∗
𝑖 = 𝐸∗

𝑖 (𝑥),
and 𝑇 = 𝑇(𝑥).
Let 𝑊 be an irreducible 𝑇 -module with endpoint 𝑟, and diameter 𝑑 with 0 ≤ 𝑟 ≤
𝑟 + 𝑑 ≤ 𝐷.

(𝑖) 𝑊 has a basis 𝑤0, 𝑤1,… ,𝑤𝑑 with 𝑤𝑖 ∈ 𝐸∗
𝑖+𝑟𝑊 for 0 ≤ 𝑖 ≤ 𝑑. With respect

to which the matrix representing 𝐴 is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 𝑑 0 ⋯ 0 0 0
1 0 𝑑 − 1 ⋯ 0 0 0
0 2 0 ⋯ 0 0 0
0 0 3 ⋯ 0 0 0
⋯ ⋯ ⋯ ⋱ ⋱ ⋯ ⋯
0 0 0 ⋱ 0 2 0
0 0 0 ⋯ 𝑑 − 1 0 1
0 0 0 ⋯ 0 𝑑 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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(𝑖𝑖) 𝑑 = 𝐷 − 2𝑟. In particular, 0 ≤ 𝑟 ≤ 𝐷/2.

(𝑖𝑖𝑖) Let 𝑊 ′ denote an irreducible 𝑇 -module with endpoint 𝑟′. Then 𝑊 and 𝑊 ′

are isormorphic as 𝑇 -modules if and only if 𝑟 = 𝑟′.
(𝑖𝑣) The multiplicity of the irreducible 𝑇 -module with endpoint 𝑟 is

(𝐷
𝑟) − ( 𝐷

𝑟 − 1) if 1 ≤ 𝑟 ≤ 𝑅/2,

and 1 if 𝑟 = 0.

Proof. Recall that Γ is vertex transitive. It is a Cayley graph.

Hence without loss of generality, we may assume that 𝑥 =
𝐷

⏞11⋯1.
Notation: Set Ω = {1, 2,… ,𝐷}. For every subset 𝑆 ⊆ Ω, let

̂𝑆 = 𝑎1 ⋯𝑎𝑑 ∈ 𝑋 𝑎𝑖 = {−1 if 𝑖 ∈ 𝑆
1 if 𝑖 ∉ 𝑆.

In particular, ̂∅ = 𝑥 and

|𝑆| = 𝑖 ⇔ 𝜕(𝑥, ̂𝑆) = 𝑖 ⇔ ̂𝑆 ∈ 𝐸∗
𝑖𝑉 .

For all 𝑆, 𝑇 ⊆ Ω, we say 𝑆 covers 𝑇 if and only if 𝑆 ⊇ 𝑇 and |𝑆| = |𝑇 | + 1.
Observe that ̂𝑆, ̂𝑇 are adjacent in Γ if and only if either 𝑇 coverse 𝑆 or 𝑆 coverr
𝑇 .
Define the ‘raising matrix’

𝑅 =
𝐷
∑
𝑖=0

𝐸∗
𝑖+1𝐴𝐸∗

𝑖 .

Observe that

𝑅𝐸∗
𝑖𝑉 ⊆ 𝐸∗

𝑖+1𝑉 for 0 ≤ 𝑖 ≤ 𝐷, and 𝐸∗
𝐷+1𝑉 = 0.

Indeed for any 𝑆 ⊆ Ω with |𝑆| = 𝑖,

𝑅 ̂𝑆 = 𝑅𝐸∗
𝑖 ̂𝑆 (5.7)

= 𝐸∗
𝑖+1𝐴 ̂𝑆 (5.8)

= ∑
𝑇1⊆Ω,𝑆 covers 𝑇1

𝐸∗
𝑖+1𝑇1 + ∑

𝑇⊆Ω,𝑇 covers 𝑆
𝐸∗

𝑖+1 ̂𝑇 (5.9)

= ∑
𝑇⊆Ω,𝑇 covers 𝑆

𝐸∗
𝑖+1 ̂𝑇 . (5.10)
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Define the ‘lowering matrix’

𝐿 =
𝐷
∑
𝑖=0

𝐸∗
𝑖−1𝐴𝐸∗

𝑖 .

Observe that

𝐿𝐸∗
𝑖𝑉 ⊆ 𝐸∗

𝑖−1𝑉 for 0 ≤ 𝑖 ≤ 𝐷, and 𝐸∗
−1𝑉 = 0.

Indeed for any 𝑆 ⊆ Ω,
𝐿 ̂𝑆 = ∑

𝑇⊆Ω,𝑆 covers 𝑇
̂𝑇 .

Observe that 𝐴 = 𝐿+𝑅.

For convenience, set

𝐴∗ =
𝐷
∑
𝑖=0

(𝐷 − 2𝑖)𝐸∗
𝑖 .

Claim: The following hold.

(𝑎) 𝐿𝑅 − 𝑅𝐿 = 𝐴∗.
(𝑏) 𝐴∗𝐿 − 𝐿𝐴∗ = 2𝐿.
(𝑐) 𝐴∗𝑅 −𝑅𝐴∗ = −2𝑅.

In particular Span(𝑅,𝐿,𝐴∗) is a ’representation of Lie algebra sl2(ℂ).

HS MEMO

sl2(ℂ) = {𝑋 ∣ Mat(ℂ ∣ tr(𝑋) = 0}.

For 𝑋,𝑌 ∈ sl2(ℂ), define a binary operation [𝑋, 𝑌 ] = 𝑋𝑌 − 𝑌𝑋.

𝐴∗ ∼ (1 0
0 −1) , 𝐿 ∼ (0 1

0 0) , 𝑅 ∼ (0 0
1 0) .

Then these satisfy the relations (𝑎) - (𝑐) above.

Proof of Claim. Apply both sides to ̂𝑆 (𝑆 ⊆ Ω). Say |𝑆| = 𝑖.
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Proof of (𝑎):

(𝐿𝑅 − 𝑅𝐿) ̂𝑆 = 𝐿
⎛⎜⎜⎜
⎝

∑
𝑇⊆Ω,𝑇 covers 𝑆
(𝐷−𝑖 of them)

̂𝑇
⎞⎟⎟⎟
⎠

−𝑅
⎛⎜⎜⎜
⎝

∑
𝑈⊆Ω,𝑆 covers 𝑈

(𝑖 of them)

̂𝑈
⎞⎟⎟⎟
⎠

(5.11)

= (𝐷 − 𝑖) ̂𝑆 + ∑
𝑉⊆Ω,|𝑉 |=𝑖,|𝑆∩𝑉 |=𝑖−1

̂𝑉 (5.12)

−⎛⎜
⎝
𝑖 ̂𝑆 + ∑

𝑉⊆Ω,|𝑉 |=𝑖,|𝑆∩𝑉 |=𝑖−1
̂𝑉 ⎞⎟
⎠

(5.13)

= (𝐷 − 2𝑖) ̂𝑆 (5.14)
= 𝐴∗ ̂𝑆. (5.15)

Proof of (𝑏):

(𝐴∗𝐿 − 𝐿𝐴∗) ̂𝑆 = (𝐷 − 2(𝑖 − 1))𝐿 ̂𝑆 − (𝐷 − 2𝑖)𝐿 ̂𝑆 (since 𝐿 ̂𝑆 ∈ 𝐸∗
𝑖−1𝑉 ) (5.16)

= 2𝐿 ̂𝑆. (5.17)

Proof of (𝑐):

(𝐴∗𝑅 −𝑅𝐴∗) ̂𝑆 = (𝐷 − 2(𝑖 + 1))𝑅 ̂𝑆 − (𝐷 − 2𝑖)𝑅 ̂𝑆 (since 𝑅 ̂𝑆 ∈ 𝐸∗
𝑖+1𝑉 )

(5.18)
= −2𝑅 ̂𝑆. (5.19)

Let 𝑊 be an irreducible 𝑇 -module with endpoint 𝑟 and diameter 𝑑 (0 ≤ 𝑟 ≤
𝑟 + 𝑑 ≤ 𝐷).
Proof of (𝑖) and (𝑖𝑖):
Pick 0 ≠ 𝑤 ∈ 𝐸∗

𝑟𝑊 .

Claim: 𝐿𝑅𝑤 = (𝐷 − 2𝑟)𝑤.
Pf.

𝐿𝑅𝑤 = (𝐴∗ +𝑅𝐿)𝑤 (by Claim (𝑎)) (5.20)
= 𝐴∗𝑤 (𝐿𝑤 ∈ 𝐸∗

𝑟−1𝑊 = 0) (5.21)
= (𝐷 − 2𝑟)𝑤. (5.22)

Define
𝑤𝑖 =

1
𝑖!𝑅

𝑖𝑤 ∈ 𝐸∗
𝑟+𝑖𝑊 (0 ≤ 𝑖 ≤ 𝑑).

Then,

𝑅𝑤𝑖 = (𝑖 + 1)𝑤𝑖+1 (0 ≤ 𝑖 ≤ 𝑑) (5.23)
𝑅𝑤𝑑 = 0 (by definition of 𝑑) (5.24)
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Claim: 𝐿𝑤0 = 0 and

𝐿𝑤𝑖 = (𝐷 − 2𝑟 − 𝑖 + 1)𝑤𝑖−1 (1 ≤ 𝑖 ≤ 𝑑).

Pf. We prove by induction on 𝑖. The case 𝑖 = 0 is trivial, and the case 𝑖 = 1
follows from above claim. Let 𝑖 ≥ 2,

𝐿𝑤𝑖 =
1
𝑖 𝐿𝑅𝑤𝑖−1 = 1

𝑖 (𝐴
∗ +𝑅𝐿)𝑤𝑖−1 (by Claim (a)) (5.25)

(by induction hypothesis) (5.26)

= 1
𝑖 ((𝐷 − 2(𝑟 + 𝑖 − 1))𝑤𝑖−1 + (𝐷 − 2𝑟 − (𝑖 − 1) + 1)𝑅𝑤𝑖−2 (𝑅𝑤𝑖−2 = (𝑖 − 1)𝑤𝑖−1)

(5.27)

= 1
𝑖 𝑖(𝐷 − 2𝑟 − 𝑖 + 1)𝑤𝑖−1 (5.28)

= (𝐷 − 2𝑟 − 𝑖 + 1)𝑤𝑖−1. (5.29)

Claim: 𝑤0,… ,𝑤𝑑 is a basis for 𝑊 .

Pf. Let 𝑊 ′ = Span{𝑤0,… ,𝑤𝑑}. Then 𝑊 ′ is 𝑅 and 𝐿 invariant. So it is
𝐴 = 𝑅 + 𝐿 invariant.

Also it is 𝐸∗
𝑖 -invariant for every 𝑖.

Hence 𝑊 ′ is a 𝑇 -module.

Since 𝑊 is irreducible, 𝑊 ′ = 𝑊 .

As 𝑤𝑖’s are orthogonal, they are linearly independent. Note that 𝑤𝑖 ≠ 0 by the
definition of 𝑑 and Lemma 4.1 (𝑖𝑣).
Claim: 𝑑 = 𝐷− 2𝑟.
Pf. By (𝑎),

0 = (𝐿𝑅 −𝑅𝐿−𝐴∗)𝑤𝑑 (5.30)
= 0 − (𝐷 − 2𝑟 − 𝑑 + 1)𝑅𝑤𝑑−1 − (𝐷 − 2(𝑟 + 𝑑))𝑤𝑑 (5.31)
= −𝑑(𝐷 − 2𝑟 − 𝑑 + 1)𝑤𝑑 − (𝐷 − 2(𝑟 + 𝑑))𝑤𝑑 (5.32)
= (−𝑑𝐷 + 2𝑟𝑑 + 𝑑2 − 𝑑 −𝐷+ 2𝑟 + 2𝑑)𝑤𝑑 (5.33)
= (𝑑2 + (2𝑟 − 𝐷+ 1)𝑑 + 2𝑟 − 𝐷)𝑤𝑑 (5.34)
= (𝑑 + 2𝑟 − 𝐷)(𝑑 + 1)𝑤𝑑. (5.35)

Hence 𝑑 = 𝐷− 2𝑟.
Therefore, with respect to a bais 𝑤0, 𝑤1,… ,𝑤𝑑, 𝐴 = 𝐿+𝑅, 𝑤−1 = 𝑤𝑑+1 = 0,

𝐿𝑤𝑖 = (𝑑 − 𝑖 + 1)𝑤𝑖−1, 𝑅𝑤𝑖 = (𝑖 + 1)𝑤𝑖+1.
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𝐿 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 𝑑 0 ⋯ 0 0
0 0 𝑑 − 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋯ ⋯ 0 1
0 0 0 ⋯ 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑅 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ⋯ 0 0
1 0 0 ⋯ 0 0
0 2 0 ⋯ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ 0 1
0 0 0 ⋯ 𝑑 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

This completes the proof of (𝑖) and (𝑖𝑖).
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Chapter 6

𝑇 -Modules of 𝐻(𝐷, 2), II

Monday, February 1, 1993

Proof of Theorem 5.1 Continued.

(𝑖𝑖𝑖) Let 𝑟 = 𝑟′,
𝑤0,… ,𝑤𝑑: a basis for 𝑊 with 𝑤𝑖 ∈ 𝐸∗

𝑖𝑊 , and

𝑤′
0,… ,𝑤′

𝑑: a basis for 𝑊 ′ with 𝑤′
𝑖 ∈ 𝐸∗

𝑖𝑊 ′.

Then 𝑑 = 𝐷− 2𝑟 = 𝐷− 2𝑟′ = 𝑑′, and

𝜎 ∶ 𝑊 → 𝑊 ′ (𝑤𝑖 ↦ 𝑤′
𝑖)

is an isomorsphism of 𝑇 -modules by (𝑖).
If 𝑟 ≠ 𝑟′, then

𝑑 = 𝐷− 2𝑟 ≠ 𝐷− 2𝑟′ = 𝑑′,
hence, dim𝑊 ≠ dim𝑊 ′.

(𝑖𝑣) Let 𝑊𝑖 be an irreducible 𝑇 -module with endpoint 𝑖. Then

dim𝐸∗
𝑟𝑉 = (𝐷

𝑟) =
𝑟

∑
𝑖=0

mult(𝑊𝑖).

Hence, we have that

mult(𝑊𝑟) = (𝐷
𝑟) − ( 𝐷

𝑟 − 1)

by induction on 𝑟.

45
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Theorem 6.1. Let Γ = 𝐻(𝐷, 2) with 𝐷 ≥ 1. Fix a vertex 𝑥 ∈ 𝑋 and write

𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑇 = 𝑇(𝑥), and 𝐴∗ ≡
𝐷
∑
𝑖=0

(𝐷 − 2𝑖)𝐸∗
𝑖 .

Let 𝑊 be an irreducible 𝑇 -module with endpoint 𝑟 with 0 ≤ 𝑟 ≤ 𝐷/2. Then,

(𝑖) 𝑊 has a basis

𝑤∗
0, 𝑤∗

1,… ,𝑤∗
𝑑 (𝑑 = 𝐷 − 2𝑟), such that 𝑤∗

𝑖 ∈ 𝐸𝑖+𝑟𝑊 (0 ≤ 𝑖 ≤ 𝑑)
with respect to which the matrix corresponding to 𝐴∗ is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 𝑑 0
1 0 𝑑 − 1
0 2 0

⋱ ⋱ ⋱
0 2 0

𝑑 − 1 0 1
0 𝑑 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In particular,

(𝑖𝑖) 𝐸𝑖𝐴∗𝐸𝑗 = 0 if |𝑖 − 𝑗| ≠ 1 for 0 ≤ 𝑖, 𝑗 ≤ 𝐷.

Proof. We use the notation,

[𝛼, 𝛽] = 𝛼𝛽 − 𝛽𝛼 (= −[𝛽, 𝛼]).

Recall that

(𝑎) [𝐿,𝑅] = 𝐴∗,

(𝑏) [𝐴∗, 𝐿] = 𝑤𝐿,
(𝑐) [𝐴∗, 𝑅] = −2𝑅,

and 𝐴 = 𝐿+𝑅.

Write (𝑎) − (𝑐) in terms of 𝐴 and 𝐴∗, we have,

[𝐴,𝐴∗] = [𝐿,𝐴∗] + [𝑅,𝐴∗] = 2(𝑅 − 𝐿).

{𝑅 + 𝐿 = 𝐴
𝑅 − 𝐿 = [𝐴,𝐴∗]/2. .

Hence,

𝑅 = 1
4(2𝐴 + [𝐴,𝐴∗]) and (6.1)

𝐿 = 1
4(2𝐴 − [𝐴,𝐴∗]). (6.2)
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Now (𝑎), (𝑏) become

𝐴2𝐴∗ − 2𝐴𝐴∗𝐴+𝐴∗𝐴2 − 4𝐴∗ = 0 (6.3)
𝐴∗2𝐴− 2𝐴∗𝐴𝐴∗ +𝐴𝐴∗2 − 4𝐴 = 0 (6.4)

Pf. By (𝑏),

2𝐴 − 𝐴𝐴∗ +𝐴∗𝐴 = 4𝐿 (6.5)
= 2[𝐴∗, 𝐿] (6.6)

= 𝐴∗ 2𝐴 − [𝐴,𝐴∗]
2 − 2𝐴 − [𝐴,𝐴∗]

2 𝐴∗ (6.7)

= 𝐴∗𝐴−𝐴𝐴∗ + 1
2(−𝐴∗𝐴𝐴∗ +𝐴∗2𝐴+𝐴𝐴∗2 −𝐴∗𝐴𝐴∗)

(6.8)

So we have (6.4)
𝐴∗2𝐴− 2𝐴∗𝐴𝐴∗ +𝐴𝐴∗2 − 4𝐴 = 0.

By (𝑎),

−16𝐴∗ = [2𝐴 + [𝐴,𝐴∗], 2𝐴 − [𝐴,𝐴∗]] (6.9)
= (2𝐴 + [𝐴,𝐴∗])(2𝐴 − [𝐴,𝐴∗]) − (2𝐴 − [𝐴,𝐴∗])(2𝐴 + [𝐴,𝐴∗]) (6.10)
= [4𝐴2 − 2𝐴[𝐴,𝐴∗] + [𝐴,𝐴∗](2𝐴) − [𝐴,𝐴∗]2 (6.11)

− 4𝐴2 − 2𝐴[𝐴,𝐴∗] + [𝐴,𝐴∗](2𝐴) + [𝐴,𝐴∗]2 (6.12)
= −4𝐴2𝐴∗ + 4𝐴𝐴∗𝐴+ 4𝐴𝐴∗𝐴− 4𝐴∗𝐴2. (6.13)

So,
𝐴2𝐴∗ − 2𝐴𝐴∗𝐴+𝐴∗𝐴2 − 4𝐴∗ = 0.

Claim: 𝐸∗
𝑖𝐴∗𝐸𝑗 = 0 if |𝑖 − 𝑗| ≠ 1 for 0 ≤ 𝑖, 𝑗 ≤ 𝐷.

Pf. We have,

0 = 𝐸𝑖(𝐴2𝐴∗ − 2𝐴𝐴∗𝐴+𝐴∗𝐴2 − 4𝐴∗)𝐸𝑗 (6.14)
= 𝐸𝑖𝐴∗𝐸𝑗(𝜃2𝑖 − 2𝜃𝑖𝜃𝑗 + 𝜃2𝑗 − 4) (6.15)
(𝐴𝐸𝑗 = 𝜃𝑗𝐸𝑗, 𝐸𝑖𝐴 = (𝐴𝐸𝑗)⊤ = (𝜃𝑖𝐸𝑖)⊤ = 𝜃𝑖𝐸𝑖) (6.16)

= 𝐸𝑖𝐴∗𝐸𝑗(𝜃𝑖 − 𝜃𝑗 − 2)(𝜃𝑖 − 𝜃𝑗 + 2) (6.17)
= 𝐸𝑖𝐴∗𝐸𝑗(𝐷 − 2𝑖 − (𝐷 − 2𝑗) − 2)(𝐷 − 2𝑖 − (𝐷 − 2𝑗) + 2) (6.18)
(𝜃𝑘 = 𝐷− 2𝑘) (6.19)

= 𝐸𝑖𝐴∗𝐸𝑗 ⋅ 4(𝑖 − 𝑗 + 1)(𝑖 − 𝑗 − 1) (6.20)

and 𝑖 − 𝑗 + 1 ≠ 0, 𝑖 − 𝑗 − 1 ≠ 0. Hence, 𝐸∗
𝑖𝐴∗𝐸𝑗 = 0.
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Now define “dual raising matrix”,

𝑅∗ =
𝐷
∑
𝑖=0

𝐸𝑖+1𝐴∗𝐸𝑖.

So,
𝑅∗𝐸𝑖𝑉 ⊆ 𝐸𝑖+1𝑉 , (0 ≤ 𝑖 ≤ 𝐷, 𝐸𝐷+1𝑉 = 0).

Define “dual lowering matrix”

𝐿∗ =
𝐷
∑
𝑖=0

𝐸𝑖−1𝐴∗𝐸𝑖.

Then
𝐿∗𝐸𝑖𝑉 ⊆ 𝐸𝑖−1𝑉 (0 ≤ 𝑖 ≤ 𝐷, 𝐸−1𝑉 = 0).

Observe that

𝐴∗ = (
𝐷
∑
𝑖=0

𝐸𝑖)𝐴∗ (
𝐷
∑
𝑗=0

𝐸𝑗) = 𝐿∗ +𝑅∗

by Claim 1.

Claim 2. We have

(𝑎) [𝐿∗, 𝑅∗] = 𝐴,

(𝑏) [𝐴, 𝐿∗] = 2𝐿∗,

(𝑐) [𝐴,𝑅∗] = −2𝑅∗.

Pf. (𝑏)

𝐴𝐿∗ − 𝐿∗𝐴 =
𝐷
∑
𝑖=0

(𝐴𝐸𝑖−1𝐴∗𝐸𝑖 −𝐸𝑖−1𝐴∗𝐸𝑖𝐴) (6.21)

=
𝐷
∑
𝑖=0

𝐸𝑖−1𝐴∗𝐸𝑖(𝜃𝑖−1 − 𝜃𝑖) (6.22)

(𝜃𝑘 = 𝐷− 2𝑘, 𝜃𝑖−1 − 𝜃𝑖 = 2𝐼 − 2(𝑖 − 1) = 2 (6.23)
= 2𝐿∗. (6.24)

(𝑐) Similar.

HS MEMO

𝐴𝑅∗ −𝑅∗𝐴 =
𝐷
∑
𝑖=0

(𝐴𝐸𝑖+1𝐴∗𝐸𝑖 −𝐸𝑖+1𝐴∗𝐸𝑖𝐴) (6.25)

=
𝐷
∑
𝑖=0

𝐸𝑖+1𝐴∗𝐸𝑖(𝜃𝑖+1 − 𝜃𝑖) (6.26)

= −2𝑅∗. (6.27)
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(𝑎) We have, by (𝑏), (𝑐)

[𝐴,𝐴∗] = [𝐴, 𝐿∗] + [𝐴,𝑅∗] = 2(𝐿∗ −𝑅∗). (6.28)

Since 𝐴∗ = 𝐿∗ +𝑅∗,

𝑅∗ = 2𝐴∗ + [𝐴∗, 𝐴]
4 , 𝐿∗ = 2𝐴∗ − [𝐴∗ −𝐴]

4 .

Now (𝑎) is seen to be equivalent to (6.4) upon evaluation. This proves Claim 2.

HS MEMO

[𝐿∗, 𝑅∗] = 1
16((2𝐴

∗ − [𝐴∗, 𝐴])(2𝐴∗ + [𝐴∗, 𝐴]) − (2𝐴∗ + [𝐴∗, 𝐴])(2𝐴∗ − [𝐴,𝐴∗]))
(6.29)

= 1
16(4𝐴

∗2 + 2𝐴∗[𝐴∗, 𝐴] − [𝐴∗, 𝐴]2𝐴∗ − [𝐴∗, 𝐴]2 − 4𝐴∗2 (6.30)

+ 2𝐴∗[𝐴∗, 𝐴] − [𝐴∗, 𝐴]2𝐴∗ + [𝐴∗, 𝐴]2) (6.31)

= 1
4(𝐴

∗2𝐴− 2𝐴∗𝐴𝐴∗ +𝐴𝐴∗2) (6.32)

= 𝐴, (6.33)

by (6.4).

Now apply same argument as for (6.3), (6.4) of Theorem 5.1 and observe 𝐴∗

has 𝐷+ 1 distinct eigenvalues. So,

𝐴∗ =
𝐷
∑
𝑖=0

(𝐷 − 2𝑖)𝐸∗
𝑖

generates
𝑀∗ = Span(𝐸∗

0,… ,𝐸∗
𝐷).

Hence, 𝐸0,… ,𝐸𝐷, 𝐴∗ generates 𝑇 .
Take an irreducible 𝑇 -module 𝑊 with endpoint 𝑟 with 0 ≤ 𝑟 ≤ 𝐷/2. Set
𝑡 = min{𝑖 ∣ 𝐸𝑖𝑊}.
Pick 0 ≠ 𝑤∗

0 ∈ 𝐸𝑡𝑊 . Set

𝑤∗
𝑖 = 1

𝑖!𝑅
∗𝑖𝑤∗

0 ∈ 𝐸𝑡+𝑖𝑊 for all 𝑖.

Then,
𝑅∗𝑤∗

𝑖 = (𝑖 + 1)𝑤∗
𝑖+1 for all 𝑖.
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By (𝑎), we get by induction, 𝐿∗𝑤∗
𝑖 = (𝐷 − 2𝑡 − 𝑖 + 1)𝑤∗

𝑖−1,

𝐿∗𝑤∗
𝑖 = 1

𝑖 𝐿
∗𝑅∗𝑤∗

𝑖−1 (6.34)

= 1
𝑖 (𝐴 + 𝑅∗𝐿∗)𝑤∗

𝑖−1 (6.35)

= 1
𝑖 ((𝐷 − 2(𝑡 + 𝑖 − 1))𝑤∗

𝑖−1 + (𝑖 − 1)(𝐷 − 2𝑡 − 𝑖 + 2)𝑤∗
𝑖−1) (6.36)

= (𝐷 − 2𝑡 − 𝑖 + 1)𝑤∗
𝑖−1. (6.37)

So Span(𝑤∗
0, 𝑤∗

1,…) is 𝐿∗, 𝑅∗, 𝐴∗-invariant. Hence, 𝑊 = Span(𝑤∗
0, 𝑤∗

1,… ,𝑤∗
𝑑),

𝑤∗
0, 𝑤∗

1,… ,𝑤∗
𝑑 ≠ 0, 𝑤∗

𝑖 = 0 for every 𝑖 > 𝑑 by dimension.

Thus 𝑑 = 𝐷− 2𝑡.
Pf.

(𝐷 − 2(𝑡 + 𝑑))𝑤∗
𝑑 = 𝐴𝑤∗

𝑑 (6.38)
= (𝐿∗𝑅∗ −𝑅∗𝐿∗)𝑤∗

𝑑 (6.39)
= −(𝐷 − 2𝑡 − 𝑑 + 1)𝑅∗𝑤∗

𝑑−1 (6.40)
= −(𝐷 − 2𝑡 − 𝑑 + 1)𝑑𝑤∗

𝑑. (6.41)

Hence,

0 = 𝑑2 + (2𝑡 − 𝐷 − 1 + 2)𝑑 − (𝐷 − 2𝑡) = (𝑑 − 𝐷+ 2𝑡)(𝑑 + 1)

So 𝑑 = 𝐷− 2𝑡.

Definition 6.1. For any graph Γ = (𝑋,𝐸), pick a vertex 𝑥 ∈ 𝑋, and set
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥) and 𝑇 ≡ 𝑇(𝑥).

(𝑖) An irreducible 𝑇 -module 𝑊 is thin if dim𝐸∗
𝑖𝑊 ≤ 1 for every 𝑖.

(𝑖𝑖) Γ is thin with respet to 𝑥, if every irreducible 𝑇 (𝑥)-module is thin,

(𝑖𝑖𝑖) An irreducible 𝑇 -module 𝑊 is dual thin if dim𝐸𝑖𝑊 ≤ 1 for every 𝑖.
(𝑖𝑣) Γ is dual thin with respect to 𝑥, if every irreducible 𝑇 (𝑥)-module is dual
thin.

Observe: 𝐻(𝐷, 2) is thin, dual thin with respect to each 𝑥 ∈ 𝑋.

Definition 6.2. With above notation, write 𝐷 ≡ 𝐷(𝑥).
(𝑖) An ordering 𝐸0, 𝐸1,… ,𝐸𝑅 of primitive idempotents of Γ is restricted if 𝐸0
corresponds to the maximal eigenvalue.
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Fix a restricted ordering,

(𝑖𝑖) Γ is 𝑄-polynomial with respect to 𝑥, above ordering if there exists 𝐴∗ ≡
𝐴∗(𝑥) such that

(𝑎) 𝐸∗
0𝑉 ,… ,𝐸∗

𝐷𝑉 are the maximal eigenspaces for 𝐴∗.

(𝑏) 𝐸𝑖𝐴∗𝐸𝑗 = 0 if |𝑖 − 𝑗| > 1 for 0 ≤ 𝑖, 𝑗 ≤ 𝑅.

Observe 𝐻(𝐷, 2) is 𝑄-polynomial with respect to the natural ordering of the
idempotents and every vetex.

Program. Study graphs that are thin and 𝑄-polynomial with respect to each
vertex.

(In fact, thin with respect to 𝑥 implies dual thin with respect to 𝑥.)
Get a situation like 𝐻(𝐷, 2), where 𝑇 is generated by 𝐴, 𝐴∗. Except sl2(ℂ) is
replaced by a quantum Lie algebra.
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Chapter 7

The Johnson Graph 𝐽(𝐷,𝑁)

Wednesday, February 3, 1993

Definition 7.1. The Johnson graph, Γ = 𝐽(𝐷,𝑁) (1 ≤ 𝐷 ≤ 𝑁 − 1) satisfies

𝑋 = {𝑆 ∣ 𝑆 ⊂ Ω, |𝑆| = 𝐷} where Ω = {1, 2,… ,𝑁} (7.1)
𝐸 = {𝑆𝑇 ∣ 𝑆, 𝑇 ∈ 𝑋, |𝑆 ∩ 𝑇 | = 𝐷 − 1}. (7.2)

Example 7.1. 𝐽(2, 4)

12

14

13

34

23

24

Note 1. The symmetric group 𝑆𝑁 acts on Ω. 𝑆𝑁 ⊆ Aut(Γ) acts vertex transi-
tively on Γ.
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Note 2. Γ = 𝐽(𝐷,𝑁) is isomorphic to Γ′ = 𝐽(𝑁 −𝐷,𝑁).

Γ = (𝑋,𝐸) ⟶ Γ′ = (𝑋′, 𝐸′) (7.3)
𝑋 ∋ 𝑆 ⟼ ̄𝑆 = Ω � 𝑆 ∈ 𝑋′ (7.4)

This correspondence induces an isomorphism of graphs.

Pf.

𝑆𝑇 ∈ 𝐸 ⇔ |𝑆 ∩ 𝑇 | = 𝐷 − 1 (7.5)
⇔ |Ω − (𝑆 ∪ 𝑇)| = 𝑁 −𝐷− 1 (7.6)
⇔ | ̄𝑆 ∩ ̄𝑇 | = 𝑁 −𝐷− 1 (7.7)
⇔ ̄𝑆 ̄𝑇 ∈ 𝐸′ (7.8)

Hence, without loss of generality, assume

𝐷 ≤ 𝑁/2 for 𝐽(𝐷,𝑁).

We will need the eigenvalues of 𝐽(𝐷,𝑁) for certain problem later in the course.
We can get these eigenvalues from our study of 𝐻(𝐷, 2).
Lemma 7.1. The eigenvalues for 𝐽(𝐷,𝑁) with 1 ≤ 𝐷 ≤ 𝑁/2 are give by

𝜃𝑖 = (𝑁 −𝐷− 𝑖)(𝐷 − 𝑖) − 𝑖 (0 ≤ 𝑖 ≤ 𝐷), (7.9)

𝑚𝑖 = (𝑁
𝑖 ) − ( 𝑁

𝑖 − 1). (7.10)

Proof. Let

Γ𝐽 ≡ 𝐽(𝐷,𝑁) = (𝑋𝐽 , 𝐸𝐽) (7.11)
Γ𝐻 ≡ 𝐻(𝑁, 2) = (𝑋𝐻 , 𝐸𝐻). (7.12)

Set 𝑥 ≡ 11⋯1 ∈ 𝑋𝐻 .

Define Γ̃ ≡ (𝑋̃, ̃𝐸), where

𝑋̃ = {𝑦 ∈ 𝑋𝐻 ∣ 𝜕𝐻(𝑥, 𝑦) = 𝐷} 𝜕𝐻 ∶ distance in Γ𝐻 (7.13)
̃𝐸 = {𝑦𝑧 ∈ 𝑋𝐻 ∣ 𝜕𝐻(𝑦, 𝑧) = 2}. (7.14)

Observe

𝑋𝐽 → 𝑋̃ (7.15)
𝑆 ↦ ̂𝑆, (7.16)

where
̂𝑆 = 𝑎1 ⋯𝑎𝑁 , 𝑎𝑖 = {−1 if 𝑖 ∈ 𝑆

1 if 𝑖 ∉ 𝑆
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induces an isomorphism of graphs Γ𝐽 → Γ̃.
Pf.

𝑆𝑇 ∈ 𝐸𝐽 ⇔ |𝑆 ∩ 𝑇 | = 𝐷 − 1 (7.17)
⇔ 𝜕𝐻( ̂𝑆, ̂𝑇 ) = 2 (7.18)
⇔ ( ̂𝑆, ̂𝑇 ) ∈ ̃𝐸. (7.19)

Identify, Γ𝐽 with Γ̃. Then the standard module 𝑉𝐽 of Γ𝐽 becomes ̃𝑉 = 𝐸∗
𝐷𝑉𝐻 ,

where 𝑉𝐻 is the standard module of Γ𝐻 , and 𝐸∗
𝐷 ≡ 𝐸∗

𝐷(𝑥).
Let 𝑅 be the raising matrix with respect to 𝑥 in Γ𝐻 , and

let 𝐿 be the lowering matrix with respect to 𝑥 in Γ𝐻 .

Recall
(𝑅𝐿 −𝐷𝐸∗

𝐷)| ̃𝑉

is the adjacency map in Γ̃.
To find eigenvalues of ̃𝐴, pick any irreducible 𝑇 (𝑥)-module 𝑊 with the endpoint
𝑟 ≤ 𝐷. Then by Theorem 5.1

diam(𝑊) = 𝑁 − 2𝑟.

Let 𝑤0, 𝑤1,… ,𝑤𝑁−2𝑟 denote a basis for 𝑊 as in Theorem 5.1. Then,

𝑤𝐷−𝑟 ∈ 𝐸∗
𝐷𝑊 ⊆ ̃𝑉 .

Observe:

̃𝐴𝑤𝐷−𝑟 = 𝑅𝐿𝑤𝐷−𝑟 −𝐷𝐸∗
𝐷𝑤𝐷−𝑟 (7.20)

= 𝑅(𝑁 − 2𝑟 −𝐷+ 𝑟 + 1)𝑤𝐷−𝑟−1 −𝐷𝑤𝐷−𝑟 (7.21)
= ((𝑁 −𝐷− 𝑟 + 1)(𝐷 − 𝑟) − 𝐷)𝑤𝐷−𝑟. (7.22)

Note that this is valid for 𝐷 = 𝑟 as well.

Hence,
̃𝐴𝑤𝐷−𝑟 = ((𝑁 −𝐷− 𝑟)(𝐷 − 𝑟) − 𝑟)𝑤𝐷−𝑟.

Let
𝑉𝐻 = ∑𝑊 (direct sum of irreducible 𝑇 (𝑥)-modules).

Then,

𝑉𝐽 = 𝐸∗
𝐷𝑉𝐻 (7.23)

= ∑
𝑊∶𝑟(𝑊)≤𝐷

𝐸∗
𝐷𝑊 (7.24)

= a direct sum of 1 dimensional eigenspaces for ̃𝐴. (7.25)
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The eigenspace for eigenvalue

(𝑁 −𝐷− 𝑟)(𝐷 − 𝑟) − 𝑟 (monotonously decreasing with respec to 𝑟)

appears with multiplicity
(𝑁

𝑟 ) − ( 𝑁
𝑟 − 1)

in this sum by Theorem 5.1 (𝑖𝑣).

Theorem 7.1. Let Γ = (𝑋,𝐸) be any graph. For a fixed vertex 𝑥 ∈ 𝑋, let

𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥), 𝐷 ≡ 𝐷(𝑥), and 𝐾 = ℂ.

Then we have the following implications of conditions:

TH ⇔ C ⇐ S ⇐ G,

where

(TH) Γ is thin with respect to 𝑥.

(C) 𝐸∗
𝑖𝑇𝐸∗

𝑖 is commutative for every 𝑖, (0 ≤ 𝑖 ≤ 𝐷).
(S) 𝐸∗

𝑖𝑇𝐸∗
𝑖 is symmetric for every 𝑖, (0 ≤ 𝑖 ≤ 𝐷).

(G) For every 𝑦, 𝑧 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧), there exists 𝑔 ∈ Aut(Γ) such that

𝑔𝑥 = 𝑥, 𝑔𝑦 = 𝑧, 𝑔𝑧 = 𝑦.

Proof.

(TH) ⇒ (C)

Fix 𝑖 with 0 ≤ 𝑖 ≤ 𝐷. Let

𝑉 = ∑𝑊. The standard module written as a direct sum of irreducible 𝑇 -modules.

Then,

𝐸∗
𝑖𝑉 = ∑𝐸∗

𝑖𝑊. The direct sum of 1-dimensional 𝐸∗
𝑖𝑇𝐸∗

𝑖 -modules.

Since dim𝐸∗
𝑖𝑊 = 1, for 𝑎, 𝑏 ∈ 𝐸∗

𝑖𝑇𝐸∗
𝑖 , 𝑎𝑏 − 𝑏𝑎|𝐸∗

𝑖𝑊 = 0. Hence 𝑎𝑏 − 𝑏𝑎 = 0.
(C) ⇒ (TH)

Suppose dim𝐸∗
𝑖𝑊 ≥ 2 for some irreducible 𝑇 -module 𝑊 with some 𝑖 with

1 ≤ 𝑖 ≤ 𝐷.

Claim 1. 𝐸∗
𝑖𝑊 is an irreducible 𝐸∗

𝑖𝑇𝐸∗
𝑖 -module.

Proof of Claim 1. Suppose
0 ⊊ 𝑈 ⊊ 𝐸∗

𝑖𝑊,
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where 𝑈 is an 𝐸∗
𝑖𝑇𝐸∗

𝑖 -module. Then by the irreducibility,

𝑇𝑈 = 𝑊.

So,
𝑈 ⊇ 𝐸∗

𝑖𝑇𝐸∗
𝑖𝑈 = 𝐸∗

𝑖𝑇𝑈 = 𝐸∗
𝑖𝑊.

This is a contradiction.

Claim 2. Each irreducible 𝑆 = 𝐸∗
𝑖𝑇𝐸∗

𝑖 -module 𝑈 has dimension 1. In particular,
Γ is thin with respect to 𝑥.
Proof of Claim 2. Pick

0 ≠ 𝑎 ∈ 𝐸∗
𝑖𝑇𝐸∗

𝑖 .
Since ℂ is algebraically closed, 𝑎 has an eigenvector 𝑤 ∈ 𝑈 with eigenvalue 𝜃.
Then,

(𝑎 − 𝜃𝐼)𝑈 = (𝑎 − 𝜃𝐼)𝑆𝑤 (7.26)
= 𝑆(𝑎 − 𝜃𝐼)𝑤 (7.27)
= 0. (7.28)

Hence,
𝑎|𝑈 = 𝜃𝐼|𝑈 for all 𝑎 ∈ 𝑆.

Thus each 1 dimensional subspace of 𝑈 is an 𝑆-module. We have

dim𝑈 = 1.

By Claim 1 and Claim 2, we have (TH).

HS MEMO

Claim 1 shows the following: If 𝑊 is an irreducible 𝑇 -module, then 𝐸∗
𝑖𝑊 is

either 0 or an irreducible 𝐸∗
𝑖𝑇𝐸∗

𝑖 -module.
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Chapter 8

Thin Graphs

Friday, February 5, 1993

Proof of Theorem 7.1 continued.

(S) ⇒ (C)

Fix 𝑖 and pick 𝑎, 𝑏 ∈ 𝐸∗
𝑖𝑇𝐸∗

𝑖 .

Since 𝑎, 𝑏 and 𝑎𝑏 are symmetric,
𝑎𝑏 = (𝑎𝑏)⊤ = 𝑏⊤𝑎⊤ = 𝑏𝑎.

Hence 𝐸∗
𝑖𝑇𝐸∗

𝑖 is commutative.

(G) ⇒ (S)

Fix 𝑖 and pick 𝑎 ∈ 𝐸∗
𝑖𝑇𝐸∗

𝑖 . Pick vertices 𝑦, 𝑧 ∈ 𝑋.

We want to show that
𝑎𝑦𝑧 = 𝑎𝑧𝑦.

We may assume that
𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 𝑖,

otherwise
𝑎𝑦𝑧 = 𝑎𝑧𝑦 = 0.

By our assumption, there exists 𝑔 ∈ 𝐺 such that
𝑔(𝑦) = 𝑧, 𝑔(𝑧) = 𝑦, 𝑔(𝑥) = 𝑥.

Let ̂𝑔 denote the permutation matrix representing 𝑔, i.e.,

̂𝑔 ̂𝑦 = 𝑔(𝑦) for all 𝑦 ∈ 𝑋, ̂𝑦 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
⋮
1
⋮
0

⎞⎟⎟⎟⎟⎟⎟
⎠

← 𝑦.
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If 𝑔 ∈ Aut(Γ), then
̂𝑔𝐴 = 𝐴 ̂𝑔 (Exercise).

Also, we have
̂𝑔𝐸∗
𝑗 = 𝐸∗

𝑗 ̂𝑔 (0 ≤ 𝑗 ≤ 𝐷),
since

𝜕(𝑥, 𝑦) = 𝜕(𝑔(𝑥), 𝑔(𝑦)) = 𝜕(𝑥, 𝑔(𝑦)).
Hence, ̂𝑔 commutes with each element of 𝑇 . We have

𝑎𝑦𝑧 = ( ̂𝑔−1𝑎 ̂𝑔)𝑦𝑧, ( ̂𝑔)𝑦𝑧 = {1 𝑔(𝑧) = 𝑦
0 else.

(8.1)

= ∑
𝑦′,𝑧′

( ̂𝑔−1)𝑦𝑦′𝑎𝑦′𝑧′ ̂𝑔𝑧′𝑧 (8.2)

(zero except for 𝑔−1(𝑦′) = 𝑦, 𝑔(𝑧) = 𝑧′.) (8.3)
= 𝑎𝑔(𝑦)𝑔(𝑧) (8.4)
= 𝑎𝑧𝑦. (8.5)

This proves Theorem 7.1.

Open Problem: Find all the graphs that satisfy the condition (G) for every
vertex 𝑥.
𝐻(𝑁, 2) is one example, because

AutΓ1⋯1 ≃ 𝑆Ω, 𝑥 = (1⋯1), Γ𝑖(𝑥) = { ̂𝑆 ∣ |𝑆| = 𝑖}.

Property (G) is clearly related to the distance-transitive property.

Definition 8.1. Let Γ = (𝑋,𝐸) be any graph. Γ with 𝐺 ⊆ Aut(Γ) is said to
be distance-transitive (or two-point homogeneous), whenever

for all 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 𝜕(𝑥′, 𝑦′),

there exists 𝑔 ∈ 𝐺 such that

𝑔(𝑥) = 𝑥′, 𝑔(𝑦) = 𝑦′.

(This means 𝐺 is as close to being doubly transitive as possible.)

Lemma 8.1. Suppose a graph Γ = (𝑋,𝐸) satisfies the property (G) = (G(𝑥))
for every 𝑥 ∈ 𝑋. Then,

(𝑖) either
(𝑖𝑎) Γ is vertex transitive; or
(𝑖𝑖𝑎) Γ is bipartite (𝑋 = 𝑋+ ∪𝑋−) with 𝑋+, 𝑋− each an orbit of Aut(Γ).
(𝑖𝑖) if (𝑖𝑎) holds, then Γ is distance-transitive.
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Proof. (𝑖) Claim. Suppose 𝑦, 𝑧 ∈ 𝑋 are conneced by a path of even length. Then
𝑦, 𝑧 are in the same orbit of Aut(Γ).
Pf of Claim. It suffices to assume that the path has lenght 2, 𝑦 ∼ 𝑤 ∼ 𝑧.
Now 𝜕(𝑦, 𝑤) = 𝜕(𝑤, 𝑧) = 1. So there exits 𝑔 ∈ Aut(Γ) such that

𝑔𝑤 = 𝑤, 𝑔𝑦 = 𝑧, 𝑔𝑧 = 𝑦.

This proves Claim.

Fix 𝑥 ∈ 𝑋. Now suppose that Γ is not vertex transitive, and we shall show (𝑖𝑏).
Observe that 𝑋 = 𝑋+ ∪𝑋−, where

𝑋+ = {𝑦 ∈ 𝑋 ∣ there exists a path of even length connecting 𝑥 and 𝑦}, (8.6)
𝑋− = {𝑦 ∈ 𝑋 ∣ there exists a path of odd length connecting 𝑥 and 𝑦}. (8.7)

Also, 𝑋+ is contained in an orbit 𝑂+ of Aut(Γ), and 𝑋− is contained in an orbit
𝑂− of Aut(Γ).
Now 𝑂+ ∩𝑂− = ∅ (else 𝑂+ = 𝑂− = 𝑋 and vertex transitive). So, 𝑋 = 𝑂+, and
𝑋− = 𝑂−.

Also 𝑋+ ∪𝑋− = 𝑋 is a bipartition by construction.

(𝑖𝑖) Fix 𝑥, 𝑦, 𝑥′, 𝑦′ with 𝜕(𝑥, 𝑦) = 𝜕(𝑥′, 𝑦′).
By vertex transitivity, there exists an element

𝑔1 ∈ 𝐺 such that 𝑔1𝑥 = 𝑥′.

Observe that

𝜕(𝑥′, 𝑦′) = 𝜕(𝑥, 𝑦) = 𝜕(𝑔1𝑥, 𝑔1𝑦) = 𝜕(𝑥′, 𝑔1𝑦).

Hence, there exisits an element

𝑔2 ∈ 𝐺 such that 𝑔1𝑥′ = 𝑥′, 𝑔2𝑦′ = 𝑔1𝑦, 𝑔2𝑔1𝑦 = 𝑦′

by (G(𝑥′)) property.

Set 𝑔 = 𝑔2𝑔1. Then
𝑔𝑥 = 𝑥′, 𝑔𝑦 = 𝑦′

by construction.

The following graphs Γ = (𝑋,𝐸) are vertex transitive, and satisfy the property
(G(𝑥)) for all 𝑥 ∈ 𝑋.

𝐽(𝐷,𝑁), 𝐻(𝐷, 𝑟), 𝐽𝑞(𝐷,𝑁),

where
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𝐻(𝐷, 𝑟):

𝑋 = {𝑎1 ⋯𝑎𝐷 ∣ 𝑎𝑖 ∈ 𝐹, 1 ≤ 𝑖 ≤ 𝐷} (8.8)
𝐹 ∶ any set of cardinality 𝑟 (8.9)

𝐸 = {𝑥𝑦 ∣ 𝑦, 𝑥 ∈ 𝑋, 𝑥 and 𝑦 differ in exactly one coordiate}. (8.10)

𝐽𝑞(𝐷,𝑁):

𝑋 = the set of all 𝐷-dimensional subspaces of 𝑁 -dimensional vector space over 𝐺𝐹(𝑞).
(8.11)

𝐹 ∶ any set of cardinality 𝑟 (8.12)
𝐸 = {𝑥𝑦 ∣ 𝑦, 𝑥 ∈ 𝑋, dim(𝑥 ∩ 𝑦) = 𝐷 − 1}. (8.13)

The following graph is distance-transitive but does not satisify (G(𝑥)) for any
𝑥 ∈ 𝐺.

𝐻𝑞(𝐷,𝑁):

𝑋 = the set of all 𝐷×𝑁 matrices with entries in 𝐺𝐹(𝑞). (8.14)
𝐸 = {𝑥𝑦 ∣ 𝑦, 𝑥 ∈ 𝑋, rank(𝑥 − 𝑦) = 1}. (8.15)

HS MEMO

𝐻(𝐷, 𝑟): 𝐺 = 𝑆𝑟wr𝑆𝐷, 𝐺𝑥 = 𝑆𝑟−1wr𝑆𝐷,

For 𝑥, 𝑦 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 𝑖,

𝑌 = {𝑗 ∈ Ω ∣ 𝑥𝑗 ≠ 𝑦𝑗} ↔ 𝑍 = {𝑗 ∈ Ω ∣ 𝑥𝑗 ≠ 𝑧𝑗} (8.16)
(𝑦𝑗1 ,… , 𝑦𝑗𝑖) ↔ (𝑧ℓ1 ,… , 𝑧ℓ𝑖) (8.17)

𝐽(𝐷,𝑁): 𝐺 = 𝑆𝑁 , 𝐺𝑥 = 𝑆𝐷 × 𝑆𝑁−𝐷.

𝑋 ∩ 𝑌 ↔ 𝑋 ∩ 𝑍 (8.18)
(Ω � 𝑋) ∩ 𝑌 ↔ (Ω � 𝑋) ∩ 𝑍. (8.19)

𝐽𝑞(𝐷,𝑁):

𝑋 ∩ 𝑌 ↔ 𝑋 ∩ 𝑍.
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The theory of a single thin irreducible 𝑇 -module.

Let Γ = (𝑋,𝐸) be any graph.

𝑀 = Bose-Mesner algebra over 𝐾/ℂ generated by the adjacency matrix 𝐴.
(8.20)

= Span(𝐸0,… ,𝐸𝑅). (8.21)

𝑀 acts on the standard module 𝑉 = ℂ|𝑋|.

Fix 𝑥 ∈ 𝑋, let 𝐷 ≡ 𝐷(𝑥) be the 𝑥-diameter, and 𝑘 = 𝑘(𝑥) be the valency of 𝑥.
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Chapter 9

Thin 𝑇 -Module, I

Monday, February 8, 1993

Let Γ = (𝑋,𝐸) be any graph.

𝑀 : Bose-Mesner algebra over 𝐾/ℂ generated by the adjacency matrix 𝐴.

𝑀 = Span(𝐸0,… ,𝐸𝑅).
𝑀 acts on the standard module 𝑉 = ℂ|𝑋|.

Fix 𝑥 ∈ 𝑋, let 𝐷 ≡ 𝐷(𝑥) be the 𝑥-diameter, and 𝑘 = 𝑘(𝑥) be the valency of 𝑥.
Definition 9.1. Pick 𝑥 ∈ 𝑋 and write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥) and 𝑇 ≡ 𝑇(𝑥).

Let 𝑊 be an irreducible thin 𝑇 -module with endpoint 𝑟, diameter 𝑑.
Let 𝑎𝑖 = 𝑎𝑖(𝑊) ∈ ℂ satisfying

𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖|𝐸∗
𝑟+𝑖𝑊

= 𝑎𝑖1|𝐸∗
𝑟+𝑖

(0 ≤ 𝑖 ≤ 𝑑).

Let 𝑥𝑖 = 𝑥𝑖(𝑊) ∈ ℂ satisfying

𝐸∗
𝑟+𝑖−1𝐴𝐸∗

𝑟+𝑖𝐴𝐸∗
𝑟+𝑖−1|𝐸∗

𝑟+𝑖−1𝑊
= 𝑥𝑖1|𝐸∗

𝑟+𝑖−1
(0 ≤ 𝑖 ≤ 𝑑).

Lemma 9.1. With above notation, the following hold.

(𝑖) 𝑎𝑖 ∈ ℝ (0 ≤ 𝑖 ≤ 𝑑).
(𝑖𝑖) 𝑥𝑖 ∈ ℝ>0 (0 ≤ 𝑖 ≤ 𝑑).
(𝑖𝑖𝑖) Pick 0 ≠ 𝑤0 ∈ 𝐸∗

𝑟𝑊 . Set 𝑤𝑖 = 𝐸∗
𝑟+𝑖𝐴𝑖𝑤0 for all 𝑖. Then

(𝑖𝑖𝑖𝑎) 𝑤0, 𝑤1,… ,𝑤𝑑 is a basis for 𝑊 , 𝑤−1 = 𝑤𝑑+1 = 0.
(𝑖𝑖𝑖𝑏) 𝐴𝑤𝑖 = 𝑤𝑖+1 + 𝑎𝑖𝑤𝑖 + 𝑥𝑖𝑤𝑖−1 (0 ≤ 𝑖 ≤ 𝑑).
(𝑖𝑣) Define 𝑝0, 𝑝1,… , 𝑝𝑑+1 ∈ ℝ[𝜆] by

65
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𝑝0 = 1, 𝜆𝑝𝑖 = 𝑝𝑖+1 + 𝑎𝑖𝑝𝑖 + 𝑥𝑖𝑝𝑖−1 (0 ≤ 𝑖 ≤ 𝑑), 𝑝−1 = 0.

(𝑖𝑣𝑎) 𝑝𝑖(𝐴)𝑤0 = 𝑤𝑖, (0 ≤ 𝑖 ≤ 𝑑 + 1).
(𝑖𝑣𝑏) 𝑝𝑑+1 is the minimal polynomial of 𝐴|𝑊 .

Proof. (𝑖) 𝑎𝑖 is an eigenvalue of a real symmetric matrix 𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖.

(𝑖𝑖) 𝑥𝑖 is an eigenvalue of a real symmetrix matrix 𝐵⊤𝐵, where

𝐵 = 𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖−1.

Hence, 𝑥𝑖 ∈ ℝ.
Since 𝐵⊤𝐵 is positive semidefinite,

𝑥𝑖 ≥ 0.

Pf. If 𝐵⊤𝐵𝑣 = 𝜎𝑣 for some 𝜎 ∈ ℝ, 𝑣 ∈ ℝ𝑚 � {0}, then

0 ≤ ‖𝐵𝑣‖2 = 𝑣⊤𝐵⊤𝐵𝑣 = 𝜎𝑣⊤𝑣 = 𝜎‖𝑣‖2, ‖𝑣‖2 > 0.

Hence, 𝜎 ≥ 0.
Moreover, 𝑥𝑖 ≠ 0 by Lemma 4.1 (𝑖𝑣).
(𝑖𝑖𝑖𝑎) Observe

𝑤𝑖 = 𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖−1𝑤𝑖−1 (1 ≤ 𝑖 ≤ 𝑑).
So 𝑤𝑖 ≠ 0 (0 ≤ 𝑖 ≤ 𝑑) by Lemma 4.1 (𝑖𝑣).
Hence,

𝑊 = Span(𝑤0,… ,𝑤𝑑)
by Lemma 4.1. (𝑖𝑖𝑖).
(𝑖𝑖𝑖𝑏) We have that

𝐴𝑤𝑖 = 𝐸∗
𝑟+𝑖+1𝐴𝑤𝑖 +𝐸∗

𝑟+𝑖𝐴𝑤𝑖 +𝐸∗
𝑟+𝑖−1𝐴𝑤𝑖 (9.1)

= 𝑤𝑖+1 +𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖𝑤𝑖 +𝐸∗
𝑟+𝑖−1𝐴𝐸∗

𝑟+𝑖𝐴𝐸∗
𝑟+𝑖−1𝑤𝑖−1 (9.2)

= 𝑤𝑖+1 + 𝑎𝑖𝑤𝑖 + 𝑥𝑖𝑤𝑖−1. (9.3)

(𝑖𝑣𝑎) Clear for 𝑖 = 0. Assume it is valid for 0,… , 𝑖.

𝑝𝑖+1(𝐴)𝑤0 = (𝐴 − 𝑎𝑖𝐼)𝑤𝑖 − 𝑥𝑖𝑤𝑖−1 = 𝑤𝑖+1.

(𝑖𝑣𝑏) By definition,
𝑝𝑑+1(𝐴)𝑤0 = 0.

Moreover, 𝑝𝑑+1(𝐴)𝑊 = 0 because of the following.
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For every 𝑤 ∈ 𝑊 , write

𝑤 =
𝑑

∑
𝑖=0

𝛼𝑖𝑤𝑖 (9.4)

=
𝑑

∑
𝑖=0

𝛼𝑖𝑝𝑖(𝐴)𝑤0 for some 𝛼𝑖 ∈ ℂ (9.5)

= 𝑝(𝐴)𝑤0 for some 𝑝 ∈ ℂ[𝜆]. (9.6)

Hence,

𝑝𝑑+1(𝐴)𝑤 = 𝑝𝑑+1(𝐴)𝑝(𝐴)𝑤0 (9.7)
= 𝑝(𝐴)𝑝𝑑+1(𝐴)𝑤0 (9.8)
= 0. (9.9)

Note that 𝑝𝑑+1 is the minimal polynomial.

Pf. Suppose 𝑞(𝐴)𝑊 = 0 for some 0 ≠ 𝑞 ∈ ℂ[𝜆] with deg 𝑞 < deg 𝑝𝑑+1 = 𝑑 + 1.
Then,

𝑞 =
𝑑

∑
𝑖=0

𝛽𝑖𝑝𝑖 for some 𝛽𝑖 ∈ ℂ.

We have,

0 = 𝑞(𝐴)𝑤0 =
𝑑

∑
𝑖=0

𝛽𝑖𝑤𝑖.

Hence 𝛽0 = ⋯ = 𝛽𝑑 = 0 by (𝑖𝑖𝑖𝑎). Thus 𝑞 = 0, and a contradiction.

Corollary 9.1. Let Γ, 𝑊 , 𝑟, 𝑑 be as above. Then

(𝑖) 𝑊 is dual thin, that is,

dim𝐸𝑖𝑊 ≤ 1 (1 ≤ 𝑖 ≤ 𝑑).

(𝑖𝑖) 𝑑 = |{𝑖 ∣ 𝐸𝑖𝑊 ≠ 0}| − 1.

Proof. (𝑖) Set as in Lemma 9.1,

𝑤𝑖 = 𝑝𝑖(𝐴)𝑤0 ∈ 𝐸∗
𝑟+𝑖𝑊.

Then 𝑤0, 𝑤1,… ,𝑤𝑑 is a basis for 𝑊 . We have

𝑊 = 𝑀𝑤0.

So,
𝐸𝑖𝑊 = 𝐸𝑖𝑀𝑤0 = Span(𝐸𝑖𝑤0).
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Thus,

dim𝐸𝑖𝑊 = {1 if 𝐸𝑖𝑤0 ≠ 0,
0 if 𝐸𝑖𝑤0 = 0.

In particular,
dim𝐸∗

𝑖𝑊 ≤ 1.

(𝑖𝑖) Immediate as
dim𝑊 = 𝑑 + 1.

This proves the lemma.

Lemma 9.2. Given an irreducible 𝑇 (𝑥)-module 𝑊 with endpoint 𝑟 = 𝑟(𝑊),
diameter 𝑑 = 𝑑(𝑊). Write

𝑥𝑖 = 𝑥𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑), 𝑤𝑖 = 𝑝𝑖(𝐴)𝑤0 ∈ 𝐸∗
𝑟+𝑖𝑊 (0 ≤ 𝑖 ≤ 𝑑), 0 ≠ 𝑤0 ∈ 𝐸∗

𝑟𝑊.

Then,
‖𝑤𝑖‖2
‖𝑤0‖2

= 𝑥1𝑥2 ⋯𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑑).

Proof. It suffices to show that

‖𝑤𝑖‖2 = 𝑥𝑖‖𝑤𝑖−1‖2 (1 ≤ 𝑖 ≤ 𝑑).

Recall by Lemma 9.1 (𝑖𝑖𝑖𝑏) that

𝐴𝑤𝑗 = 𝑤𝑗+1 + 𝑎𝑗𝑤𝑗 + 𝑥𝑗𝑤𝑗−1 (0 ≤ 𝑗 ≤ 𝑑), 𝑤−1 = 𝑤𝑑+1 = 0.

Now observe,

⟨𝑤𝑖−1, 𝐴𝑤𝑖⟩ = ⟨𝑤𝑖−1, 𝑤𝑖+1 + 𝑎𝑖𝑤𝑖 + 𝑥𝑖𝑤𝑖−1⟩ (9.10)
= 𝑥𝑖‖𝑤𝑖−1‖2 (9.11)
= 𝑥𝑖‖𝑤𝑖−1‖2. (9.12)

by Lemma 9.1 (𝑖𝑖). Also,

⟨𝑤𝑖−1, 𝐴𝑤𝑖⟩ = ⟨𝐴𝑤𝑖−1, 𝑤𝑖⟩ (since ̄𝐴⊤ = 𝐴) (9.13)
= ⟨𝑤𝑖 + 𝑎𝑖−1𝑤𝑖−1 + 𝑥𝑖−1𝑤𝑖−2, 𝑤𝑖⟩ (9.14)
= ‖𝑤𝑖‖2. (9.15)

This proves the lemma.

Definition 9.2. Let 𝑊 be an irreducible thin 𝑇 (𝑥) module with endpoint 𝑟,
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥).

The measure 𝑚 = 𝑚𝑊 is the function

𝑚 ∶ ℝ → ℝ
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such that

𝑚(𝜃) =
⎧{
⎨{⎩

‖𝐸𝑖𝑤‖2
‖𝑤‖2 where 0 ≠ 𝑤 ∈ 𝐸∗

𝑟𝑊
if 𝜃 = 𝜃𝑖 is an eigenvalue for Γ,

0 if 𝜃 is not an eigenvalue for Γ.
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Chapter 10

Thin 𝑇 -Module, II

Wednesday, February 10, 1993

Let Γ = (𝑋,𝐸) be any graph.

Fix a vertex 𝑥 ∈ 𝑋. Let 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥), the subconstituent algebra
over ℂ, and 𝑉 = ℂ|𝑋| the standard module.

Lemma 10.1. With above notation, let 𝑊 denote a thin irreducible 𝑇 (𝑥)-module
with endpoint 𝑟 and diameter 𝑑. Let

𝑎𝑖 = 𝑎𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑) (10.1)
𝑥𝑖 = 𝑥𝑖(𝑊) (1 ≤ 𝑖 ≤ 𝑑) (10.2)
𝑝𝑖 = 𝑝𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑 + 1) (10.3)

be from Lemma 9.1, and measure 𝑚 = 𝑚𝑊 . Then,

(𝑖) 𝑝0,… , 𝑝𝑑+1 are orthogonal with respect to 𝑚, i.e.,

∑
𝜃∈ℝ

𝑝𝑖(𝜃)𝑝𝑗(𝜃)𝑚(𝜃) = 𝛿𝑖𝑗𝑥1𝑥2 ⋯𝑥𝑖 (0 ≤ 𝑖, 𝑗 ≤ 𝑑 + 1) with 𝑥𝑑+1 = 0.

(𝑖𝑎) ∑
𝜃∈ℝ

𝑝𝑖(𝜃)2𝑚(𝜃) = 𝑥1 ⋯𝑥𝑖 (0 ≤ 𝑖 ≤ 𝑑).

(𝑖𝑖𝑎) ∑
𝜃∈ℝ

𝑚(𝜃) = 1.

(𝑖𝑖𝑖𝑎) ∑
𝜃∈ℝ

𝑝𝑖(𝜃)2𝜃𝑚(𝜃) = 𝑥1 ⋯𝑥𝑖𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑑).

Proof. Pick 0 ≠ 𝑤0 ∈ 𝐸∗
𝑟𝑊 . Set

𝑤𝑖 = 𝑝𝑖(𝐴)𝑤0 ∈ 𝐸∗
𝑟+𝑖𝑊.
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Since 𝐸∗
𝑖𝑊 and 𝐸∗

𝑗𝑊 are orthogonal if 𝑖 ≠ 𝑗,

𝛿𝑖𝑗‖𝑤𝑖‖2 = ⟨𝑤𝑖, 𝑤𝑗⟩ (10.4)
= ⟨𝑝𝑖(𝐴)𝑤0, 𝑝𝑗(𝐴)𝑤0⟩ (10.5)

= ⟨𝑝𝑖(𝐴)(
𝑅
∑
ℓ=0

𝐸ℓ)𝑤0, 𝑝𝑗(𝐴)(
𝑅
∑
ℓ=0

𝐸ℓ)𝑤0⟩ (10.6)

= ⟨
𝑅
∑
ℓ=0

𝑝𝑖(𝜃ℓ)𝐸ℓ𝑤0,
𝑅
∑
ℓ=0

𝑝𝑗(𝜃ℓ)𝐸ℓ𝑤0⟩ (as 𝐴𝐸𝑗 = 𝜃𝑗𝐸𝑗)

(10.7)

=
𝑅
∑
ℓ=0

𝑝𝑖(𝜃ℓ)𝑝𝑗(𝜃ℓ)‖𝐸ℓ𝑤0‖2 (10.8)

(as 𝑝𝑗 ∈ ℝ[𝜆], 𝜃ℓ ∈ ℝ, 𝑚(𝜃𝑖)‖𝑤0‖2 = ‖𝐸𝑖𝑤0‖2) (10.9)
= ∑

𝜃∈ℝ
𝑝𝑖(𝜃)𝑝𝑗(𝜃)𝑚(𝜃)‖𝑤0‖2. (10.10)

Now we are done by Lemma 9.2 as

‖𝑤𝑖‖2 = ‖𝑤0‖2𝑥1𝑥2 …𝑥𝑖.

For (𝑖𝑎), set 𝑖 = 𝑗, and for (𝑖𝑏), set 𝑖 = 𝑗 = 0.
(𝑖𝑖) We have

⟨𝑤𝑖, 𝐴𝑤𝑖⟩ = ⟨𝑤𝑖, 𝑤𝑖+1 + 𝑎𝑖𝑤𝑖 + 𝑥𝑖𝑤𝑖−1⟩ (10.11)
= 𝑎𝑖‖𝑤𝑖‖2 (10.12)
= 𝑎𝑖𝑥1 ⋯𝑥𝑖‖𝑤0‖2, (10.13)

as 𝑎𝑖 ∈ ℝ by Lemma 9.1.

Also,

⟨𝑤𝑖, 𝐴𝑤𝑖⟩ = ⟨𝑝𝑖(𝐴)𝑤0, 𝐴𝑝𝑖(𝐴)𝑤0⟩ (10.14)

= ⟨𝑝𝑖(𝐴)(
𝑅
∑
ℓ=0

𝐸ℓ)𝑤0, 𝐴𝑝𝑖(𝐴)(
𝑅
∑
ℓ=0

𝐸ℓ)𝑤0⟩ ( as in (𝑖))

(10.15)

=
𝐷
∑
ℓ=0

𝑝𝑖(𝜃ℓ)2𝜃ℓ‖𝐸ℓ𝑤0‖2 (10.16)

= ∑
𝜃∈ℝ

𝑝𝑖(𝜃)2𝜃𝑚(𝜃)‖𝑤0‖2. (10.17)

Thus, we have (𝑖𝑖).
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Lemma 10.2. With above notation, let 𝑊 be a thin irreducible 𝑇 (𝑥)-module
with measure 𝑚. Then 𝑚 determines diameter 𝑑(𝑊),

𝑎𝑖 = 𝑎𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑) (10.18)
𝑥𝑖 = 𝑥𝑖(𝑊) (1 ≤ 𝑖 ≤ 𝑑) (10.19)
𝑝𝑖 = 𝑝𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑 + 1). (10.20)

Proof. Note that 𝑑 + 1 is the number of 𝜃 ∈ ℝ such that 𝑚(𝜃) ≠ 0. Hence 𝑚
determines 𝑑.
Apply (𝑖𝑎), (𝑖𝑖) of Lemma 10.1.

∑
𝜃∈ℝ

𝑚(𝜃) = 1 𝑝0 = 1. (10.21)

∑
𝜃∈ℝ

𝜃𝑚(𝜃) = 𝑎0 𝑝1 = 𝜆 − 𝑎0 (10.22)

∑
𝜃∈ℝ

𝑝1(𝜃)2𝑚(𝜃) = 𝑥1 (10.23)

∑
𝜃∈ℝ

𝑝1(𝜃)2𝜃𝑚(𝜃) = 𝑥1𝑎 → 𝑎1 (10.24)

𝑝2 = (𝜆 − 𝑎1)𝑝1 − 𝑥1𝑝0 (10.25)
∑
𝜃∈ℝ

𝑝2(𝜃)2𝑚(𝜃) = 𝑥1𝑥2 → 𝑥2 (10.26)

∑
𝜃∈ℝ

𝑝2(𝜃)2𝜃𝑚(𝜃) = 𝑥1𝑥2𝑎2 → 𝑎2 (10.27)

𝑝3 = (𝜆 − 𝑎2)𝑝2 − 𝑥2𝑝1 (10.28)
⋮ (10.29)

∑
𝜃∈ℝ

𝑝𝑑(𝜃)2𝑚(𝜃) = 𝑥1𝑥2 ⋯𝑥𝑑 → 𝑥𝑑 (10.30)

∑
𝜃∈ℝ

𝑝𝑑(𝜃)2𝜃𝑚(𝜃) = 𝑥1𝑥2 ⋯𝑥𝑑𝑎𝑑 → 𝑎𝑑 (10.31)

𝑝𝑑+1 = (𝜆 − 𝑎𝑑)𝑝𝑑 − 𝑥𝑑𝑝𝑑−1. (10.32)
(10.33)

This proves the assertions.

Corollary 10.1. With above notation, let 𝑊 , 𝑊 ′ denote thin irreducible 𝑇 (𝑥)-
modules. The following are equivalent.

(𝑖) 𝑊 , 𝑊 ′ are isomorphic as 𝑇 -modules.

(𝑖𝑖) 𝑟(𝑊) = 𝑟(𝑊 ′) and 𝑚𝑊 = 𝑚𝑊 ′ .

(𝑖𝑖𝑖) 𝑟(𝑊) = 𝑟(𝑊 ′), 𝑑(𝑊) = 𝑑(𝑊 ′), 𝑎𝑖(𝑊) = 𝑎𝑖(𝑊 ′) and 𝑥𝑖(𝑊) = 𝑥𝑖(𝑊 ′)
(0 ≤ 𝑖 ≤ 𝑑).
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Proof. (𝑖) ⇒ (𝑖𝑖𝑖) Write 𝑟 ≡ 𝑟(𝑊), 𝑟′ ≡ 𝑟(𝑊 ′), 𝑑 ≡ 𝑑(𝑊), 𝑑′ ≡ 𝑑(𝑊 ′),
𝑎𝑖 ≡ 𝑎𝑖(𝑊), 𝑎′𝑖 ≡ 𝑎𝑖(𝑊 ′), 𝑥𝑖 ≡ 𝑥𝑖(𝑊) and 𝑥′

𝑖 ≡ 𝑥𝑖(𝑊 ′).
Let 𝜎 ∶ 𝑊 → 𝑊 ′ denote an isomorphism of 𝑇 -modules. (See Definition 5.1.)

For every 𝑖,
𝜎𝐸∗

𝑖𝑊 = 𝐸∗
𝑖𝜎𝑊 = 𝐸∗

𝑖𝑊 ′.
So, 𝑟 = 𝑟′ and 𝑑 = 𝑑′.

To show 𝑎𝑖 = 𝑎′𝑖, pick 𝑤 ∈ 𝐸∗
𝑟+𝑖𝑊 � {0}. Then,

𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖𝜎(𝑊) = 𝜎(𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖𝑤) = 𝜎(𝑎𝑖𝑤) = 𝑎𝑖𝜎(𝑤),

and 𝜎𝑤 ≠ 0. So,

𝑎𝑖 = eigenvalue of 𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖 on 𝐸∗
𝑟+𝑖𝑊 (10.34)

= 𝑎′𝑖. (10.35)

It is similar to show 𝑥 = 𝑥′.

HS MEMO

Pick 𝑤 ∈ 𝐸∗
𝑟+𝑖−1𝑊 � {0}, then

𝐸∗
𝑟+𝑖−1𝐴𝐸∗

𝑟+𝑖𝐴𝐸∗
𝑟+𝑖−1𝜎(𝑊) = 𝜎(𝐸∗

𝑟+𝑖−1𝐴𝐸∗
𝑟+𝑖𝐴𝐸∗

𝑟+𝑖−1𝑤) = 𝑥𝑖𝜎(𝑤).

Hence, 𝑥𝑖 is the eigenvalue of 𝐸∗
𝑟+𝑖−1𝐴𝐸∗

𝑟+𝑖𝐴𝐸∗
𝑟+𝑖−1 on 𝐸∗

𝑟+𝑖−1𝑊 = 𝑥′
𝑖.

(𝑖𝑖𝑖) ⇒ (𝑖)
Pick 0 ≠ 𝑤0 ∈ 𝐸∗

𝑟𝑊 , 0 ≠ 𝑤′
0 ∈ 𝐸∗

𝑟𝑊 ′. Let 𝑝𝑖 be in Lemma 9.1, and set

𝑤𝑖 = 𝑝𝑖(𝐴)𝑤0 ∈ 𝐸∗
𝑟+𝑖𝑊 (0 ≤ 𝑖 ≤ 𝑑), (10.36)

𝑤′
𝑖 = 𝑝′𝑖(𝐴)𝑤′

0 ∈ 𝐸∗
𝑟+𝑖𝑊 (0 ≤ 𝑖 ≤ 𝑑). (10.37)

Define a linear transformation,

𝜎 ∶ 𝑊 → 𝑊 ′ (𝑤𝑖 ↦ 𝑤′
𝑖).

Since {𝑤𝑖} and {𝑤′
𝑖} are bases with 𝑑 = 𝑑′, 𝜎 is an isomorphism of vector spaces.

We need to show
𝑎𝜎 = 𝜎𝑎 (for all 𝑎 ∈ 𝑇 ).

Take 𝑎 = 𝐸∗
𝑗 for some 𝑗 (0 ≤ 𝑗 ≤ 𝑑(𝑥)). Then for all 𝑖, we have

𝐸∗
𝑗𝜎𝑤𝑖 = 𝐸∗

𝑗𝑤′
𝑖 = 𝛿𝑖𝑗𝑤′

𝑖,

𝜎𝐸∗
𝑗𝑤𝑖 = 𝛿𝑖𝑗𝜎(𝑤𝑖) = 𝛿𝑖𝑗𝑤′

𝑖.
𝐸∗

𝑗𝜎𝑤𝑖 = 𝜎𝐸∗
𝑗𝑤𝑖?
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Take an adjacency matrix 𝐴 of 𝑎. Then,

𝐴𝜎𝑤𝑖 = 𝐴𝑤′
𝑖 = 𝑤′

𝑖+1 + 𝑎′𝑖𝑤′
𝑖 + 𝑥′

𝑖𝑤′
𝑖−1 = 𝜎(𝑤𝑖+1 + 𝑎𝑖𝑤𝑖 + 𝑥𝑖𝑤𝑖−1) = 𝜎𝐴𝑤𝑖.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) Lemma 10.2.

(𝑖𝑖𝑖) ⇒ (𝑖𝑖) Given 𝑑, 𝑎𝑖, 𝑥𝑖, we can compute the polynomial sequence

𝑝0, 𝑝1,… , 𝑝𝑑+1

for 𝑊 .

Show 𝑝0, 𝑝1,… , 𝑝𝑑+1 determines 𝑚 = 𝑚𝑊 . Set

Δ = {𝜃 ∈ ℝ ∣ 𝑝𝑑+1(𝜃) = 0}.

Observe: |Δ| = 𝑑 + 1. See ‘An Introcuction to Interlacing’.

𝑚(𝜃) = 0 if 𝜃 ∉ Δ (𝜃 ∈ ℝ). So it suffices to find 𝑚(𝜃), 𝜃 ∈ Δ.

By Lemma 10.1 (𝑖),
⎧{{
⎨{{⎩

∑𝜃∈Δ 𝑚(𝜃)𝑝0(𝜃) = 1,
∑𝜃∈Δ 𝑚(𝜃)𝑝1(𝜃) = 0,

⋮
∑𝜃∈Δ 𝑚(𝜃)𝑝𝑑(𝜃) = 0.

𝑑 + 1 linear equation with 𝑑 + 1 unknowns 𝑚(𝜃) (𝜃 ∈ Δ).

But the coefficient matrix is essentially Vander Monde (since deg 𝑝𝑖 = 𝑖). Hence
the system is nonsingular and there are unique values for 𝑚(𝜃) (𝜃 ∈ Δ).

HS MEMO

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜃 − 𝑎0 −1 ⋯ 0 0
−𝑥1 𝜃 − 𝑎1 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋯ 𝜃 − 𝑎𝑑−1 −1
0 0 ⋯ −𝑥𝑑 𝜃 − 𝑎𝑑

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑝0(𝜃)
⋮
⋮
⋮

𝑝𝑑(𝜃)

⎞⎟⎟⎟⎟⎟⎟
⎠

= 0,

where 𝜃 is an eigenvalue of a diagonalizable matrix

𝐿 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎0 1 ⋯ 0 0
𝑥1 𝑎1 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋯ 𝑎𝑑−1 1
0 0 ⋯ 𝑥𝑑 𝜃𝑎𝑑

⎞⎟⎟⎟⎟⎟⎟
⎠

with multiplicity dim(Ker(𝜃𝐼 − 𝐿) = 1).
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Chapter 11

Examples of 𝑇 -Module

Friday, February 12, 1993

Let Γ = (𝑋,𝐸) be a connected graph.

Let 𝜃0 be the maximal eigenvalue of Γ, and 𝛿 its corresponding eigenvector.

𝛿 = ∑
𝑦∈𝑋

𝛿𝑦 ̂𝑦.

Without loss of generality, we may assume that 𝛿𝑦 ∈ ℝ∗ for all 𝑦 ∈ 𝑋.

Lemma 11.1. Fix a vertex 𝑥 ∈ 𝑋. Write 𝑇 ≡ 𝑇(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥).
(𝑖) 𝑇 𝛿 = 𝑇 ̂𝑥 is an irreducible 𝑇 -module.

(𝑖𝑖) Given any irreducible 𝑇 -module 𝑊 , the following are equivalent:
(𝑖𝑖𝑎) 𝑊 = 𝑇𝛿.
(𝑖𝑖𝑏) The diameter 𝑑(𝑊) = 𝑑(𝑥).
(𝑖𝑖𝑐) The endpoint 𝑟(𝑊) = 0.

Proof. (𝑖) Observe: there exists an irreducible 𝑇 -module 𝑊 that contains 𝛿.
Let 𝑉 = ∑𝑖 𝑊𝑖 be a direct sum decomposition of the standard module. Then

Span(𝛿) = 𝐸0𝑉 = ∑
𝑖

𝐸0𝑊𝑖.

So, 𝐸0𝑊𝑖 ≠ 0 for some 𝑖. Then,

𝛿 ∈ 𝐸0𝑊𝑖 ⊆ 𝑊𝑖.

Observe: 𝑇𝛿 is an irreducible 𝑇 -module.

Since 𝛿 ∈ 𝑊 , where 𝑊 is a 𝑇 -module. As 𝑇𝛿 ⊆ 𝑊 and 𝑊 is irreducible,
𝑇𝛿 = 𝑊 .
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Observe: 𝑇𝛿 = 𝑇 ̂𝑥.
Since ̂𝑥 = 𝛿−1

𝑥 𝐸∗
0𝛿 ∈ 𝑇𝛿, 𝑇 ̂𝑥 ⊆ 𝑇𝛿. Since 𝑇𝛿 is irreducible, 𝑇 ̂𝑥 = 𝑇𝛿.

(𝑖𝑖) (𝑎) → (𝑏):

𝐸∗
𝑖 𝛿 = ∑

𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖
𝛿𝑦 ̂𝑦 ≠ 0, (0 ≤ 𝑖 ≤ 𝑑(𝑥)),

because 𝛿𝑦 > 0 for every 𝑦 ∈ 𝑋.

Hence,
𝐸∗

𝑖𝑇𝛿 ≠ 0, (0 ≤ 𝑖 ≤ 𝑑(𝑥)).
Thus, 𝑑(𝑥) = 𝑑(𝑊).
(𝑏) → (𝑐): Immediate.

(𝑐) → (𝑎): Since 𝑟(𝑊) = 0, 𝐸∗
0𝑊 ≠ 0. Hence, ̂𝑥 ∈ 𝑊 and 𝑇 ̂𝑥 ⊆ 𝑊 .

By the irreduciblity, we have 𝑇 ̂𝑥 = 𝑊 .

Lemma 11.2. Assume Γ is bipartite (𝑋 = 𝑋+ ∪ 𝑋−) (𝑋+ and 𝑋− are
nonempty). Then the following are equivalent.

(𝑖) There exist 𝛼+ and 𝛼− ∈ ℝ such that

𝛿𝑥 = {𝛼+ if 𝑥 ∈ 𝑋+

𝛼− if 𝑥 ∈ 𝑋−.

(𝑖𝑖) There exist 𝑘+ and 𝑘− ∈ ℤ>0 such that

𝑘(𝑥) = {𝑘+ if 𝑥 ∈ 𝑋+

𝑘− if 𝑥 ∈ 𝑋−.

In this xase, 𝑘+𝑘− = 𝜃20, and Γ is called bi-regular.

Proof. (𝑖) → (𝑖𝑖)

X+ X−

x
k(x)

y
k(y)
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𝐴𝛿 = 𝐴(𝛼+ ∑
𝑥∈𝑋+

̂𝑥 + 𝛼− ∑
𝑦∈𝑋−

̂𝑦) (11.1)

= 𝛼+ ∑
𝑦∈𝑋−

𝑘(𝑦) ̂𝑦 + 𝛼− ∑
𝑥∈𝑋+

𝑘(𝑥) ̂𝑥 (11.2)

= 𝜃0𝛿. (11.3)

So,
𝑘(𝑥)𝛼− = 𝜃0𝛼+, 𝑘(𝑦)𝛼+ = 𝜃0𝛼−.

As 𝛼+ ≠ 0 and 𝛼− ≠ 0,
𝑘+ ∶= 𝑘(𝑥) is independent of the choice of 𝑥 ∈ 𝑋+, and (11.4)
𝑘− ∶= 𝑘(𝑦) is independent of the choice of 𝑦 ∈ 𝑋−. (11.5)

Moreover, 𝑘+𝑘− = 𝜃20.
(𝑖𝑖) → (𝑖) Set

𝛿′ = ∑
𝑦∈𝑋

𝛼𝑦 ̂𝑦 where 𝛼 = {1/
√
𝑘− if 𝑦 ∈ 𝑋+

1/
√
𝑘+ if 𝑦 ∈ 𝑋−.

Then one checks

𝐴𝛿′ = 𝐴( 1√
𝑘− ∑

𝑦∈𝑋+
̂𝑦 + 1√

𝑘+ ∑
𝑦∈𝑋−

̂𝑦) (11.6)

= 𝑘−
√
𝑘− ∑

𝑦∈𝑋−
̂𝑦 + 𝑘+

√
𝑘+ ∑

𝑦∈𝑋+
̂𝑦 (11.7)

=
√
𝑘+𝑘−𝛿′ (11.8)

Since 𝛿′ > 0, 𝛿′ ∈ Span(𝛿), and 𝜃0 =
√
𝑘+𝑘−.

Definition 11.1. For any graph Γ = (𝑋,𝐸), fix a vertex 𝑥 ∈ 𝑋. Set 𝑑 = 𝑑(𝑥).
Γ is distance-regular with respect to 𝑥, if for all 𝑖 : (0 ≤ 𝑖 ≤ 𝑑), and all 𝑦 ∈ 𝑋
such that 𝜕(𝑥, 𝑦) = 𝑖:

𝑐𝑖(𝑥) ∶= |{𝑧 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑧) = 𝑖 − 1, 𝜕(𝑦, 𝑧) = 1}|, (11.9)
𝑎𝑖(𝑥) ∶= |{𝑧 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑧) = 𝑖, 𝜕(𝑦, 𝑧) = 1}|, (11.10)
𝑏𝑖(𝑥) ∶= |{𝑧 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑧) = 𝑖 + 1, 𝜕(𝑦, 𝑧) = 1}| (11.11)

depends only on 𝑖, 𝑥, and not on 𝑦.
(In this case, 𝑐0(𝑥) = 𝑎0(𝑥) = 𝑏𝑑(𝑥) = 0, 𝑐1(𝑥) = 1, 𝑏0(𝑥) = 𝑘(𝑥) is the valency
of 𝑥.)
We call 𝑐𝑖(𝑥), 𝑎𝑖(𝑥) and 𝑏𝑖(𝑥) the intersection numbers with respect to 𝑥.
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Example 11.1.

x

𝑐0 = 1, 𝑐1 = 1, 𝑐2 = 1, (11.12)
𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, (11.13)
𝑏0 = 2, 𝑏1 = 1, 𝑏2 = 0. (11.14)



Chapter 12

Distance-Regular

Monday, February 15, 1993

Lemma 12.1. For any connected graph Γ = (𝑋,𝐸), the following are equiva-
lent.

(𝑖) The trivial 𝑇 (𝑥)-module is thin for all 𝑥 ∈ 𝑋.

(𝑖𝑖)
⎧{
⎨{⎩

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦 |0 ≤ 𝑖 ≤ 𝑑(𝑥)
⎫}
⎬}⎭

is a basis for the trivial 𝑇 (𝑥)-module for

every 𝑥 ∈ 𝑋.

(𝑖𝑖𝑖) Γ is distance-regular with respect to 𝑥 for all 𝑥 ∈ 𝑋.

Note. Let Γ = (𝑋,𝐸) be a graph, with 𝑋 = {𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3}, 𝐸 =
{𝑥𝑦1, 𝑥𝑦2, 𝑥𝑦3, 𝑦1𝑧1, 𝑦1𝑧2, 𝑦2𝑧3, 𝑦3𝑧3}.

x

y3

y1

y2 z2

z1

z3

Then (𝑖), (𝑖𝑖) are not equivalent for a single vertex 𝑥.

𝐸∗
0𝑇 ̂𝑥 = ⟨ ̂𝑥⟩, (12.1)

𝐸∗
1𝑇 ̂𝑥 = ⟨ ̂𝑦1 + ̂𝑦2 + ̂𝑦3⟩, (12.2)

𝐸∗
2𝑇 ̂𝑥 = ⟨ ̂𝑧1 + ̂𝑧2 + 2 ̂𝑧3⟩. (12.3)

81
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Proof of Lemma 12.1. (𝑖) → (𝑖𝑖) Let 𝛿 = ∑𝑦∈𝑋 𝛿𝑦 ̂𝑦 be an eigenvector for the
maximal eigenvalue 𝜃0. Then,

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

̂𝑦 = 𝐴 ̂𝑥 ∈ 𝑇 (𝑥) ̂𝑥 = 𝑇 (𝑥)𝛿 ∋ 𝐸∗
1𝛿 (12.4)

= ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

𝛿𝑦 ̂𝑦 (12.5)

If the trivial 𝑇 (𝑥)-module is thin,

𝛿𝑦 = 𝛿𝑧 for 𝑦, 𝑧 ∈ 𝑋, 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 1.

Hence, 𝛿𝑦 = 𝛿𝑧 if 𝑦 and 𝑧 in 𝑋 are connected by a path of even length.

So, Γ is regular or bipartite biregular by Lemma 11.2.

In particular, 𝛿𝑦 = 𝛿𝑧 if 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧), as there is a path of length 2 ⋅ 𝜕(𝑥, 𝑦);

𝑦 ∼ ⋯ ∼ 𝑥 ∼ ⋯ ∼ 𝑧.

Hence,

𝐸∗
𝑖 𝛿 ∈ Span⎛⎜

⎝
∑

𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖
̂𝑦⎞⎟
⎠

.

Since 𝐸∗
0𝛿, 𝐸∗

1𝛿,… ,𝐸∗
𝑑𝛿 form a basis for 𝑇 (𝑥)𝛿, we have (𝑖𝑖).

(𝑖𝑖) → (𝑖𝑖𝑖) Fix 𝑥 ∈ 𝑋, and let 𝑇 ≡ 𝑇(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), and 𝑑 ≡ 𝑑(𝑥).

𝐴 ∑
𝑦∈𝑋,𝜕(𝑥.𝑦)=𝑖

̂𝑦 = ∑
𝑧∈𝑋

|{𝑦 ∈ 𝑋 ∣ 𝜕(𝑦, 𝑧) = 1, 𝜕(𝑥, 𝑦) = 𝑖}| ̂𝑧 (12.6)

= ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖−1

𝑏𝑖−1(𝑥, 𝑧) ̂𝑧 (12.7)

+ ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖

𝑎𝑖(𝑥, 𝑧) ̂𝑧 (12.8)

+ ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖+1

𝑐𝑖+1(𝑥, 𝑧) ̂𝑧 (12.9)

∈ Span
⎧{
⎨{⎩

∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑗

̂𝑧 ∣ 𝑗 = 0, 1,… , 𝑑
⎫}
⎬}⎭

. (12.10)

Hence, 𝑏𝑖−1(𝑥, 𝑧), 𝑎𝑖(𝑥, 𝑧) and 𝑐𝑖+1(𝑥, 𝑧) depend only on 𝑖 and 𝑥, and not on 𝑧.
Therefore, Γ is distance-regular with respect to 𝑥.
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(𝑖𝑖𝑖) → (𝑖) Fix 𝑥 ∈ 𝑋, and let 𝑇 ≡ 𝑇(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), and 𝑑 ≡ 𝑑(𝑥). By
defintion of distance-regularity, for every 𝑖 (0 ≤ 𝑖 ≤ 𝑑),

𝐴⎛⎜
⎝

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦⎞⎟
⎠

= 𝑏𝑖−1(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖−1

̂𝑦 (12.11)

+ 𝑎𝑖(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦 (12.12)

+ 𝑐𝑖+1(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖+1

̂𝑦. (12.13)

Hence,

𝑊 = Span
⎧{
⎨{⎩

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦 ∣ 0 ≤ 𝑖 ≤ 𝑑
⎫}
⎬}⎭

is 𝐴-invariant and so 𝑇 -invariant. Since ̂𝑥 ∈ 𝑊 , 𝑇 ̂𝑥 = 𝑊 is the trivial module
and 𝑇 ̂𝑥 is thin.

Next, we show more is true if (𝑖) − (𝑖𝑖𝑖) hold in Lemma 12.1.

In fact, 𝑑(𝑥), 𝑎𝑖(𝑥), 𝑐𝑖(𝑥), and 𝑏𝑖(𝑥) are

{independent of 𝑋 if Γ is regular; or
constant over 𝑋+ and 𝑋− if Γ is biregular.

Let Γ = (𝑋,𝐸) be any (connected) graph. Pick vertices 𝑥, 𝑦 ∈ 𝑋.

Let 𝑊 be a thin, irreducible 𝑇 (𝑥)-module, and measure 𝑚 ∶ ℝ → ℝ determined
by 𝑊 .

Let 𝑊 ′ be a thin, irreducible 𝑇 (𝑦)-module, and measure 𝑚 ∶ ℝ → ℝ determined
by 𝑊 ′.

Recall 𝑊 , 𝑊 ′ are orthogonal if

⟨𝑤,𝑤′⟩ = 0 for all 𝑤 ∈ 𝑊,𝑤′ ∈ 𝑊 ′.

We shall show if 𝑊 and 𝑊 ′ are not orthogonal, then 𝑚 and 𝑚′ are related:

𝑚 ⋅ poly1 = 𝑚′ ⋅ poly2
for some polynomials with

deg poly1 + deg poly2 ≤ 2 ⋅ 𝜕(𝑥, 𝑦).

Notation. 𝑉 : standard module of Γ.
𝐻: any subspace of 𝑉 .
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𝑉 = 𝐻 +𝐻⊥ orthogonal direct sum,
and for 𝑣 = 𝑣1 + 𝑣2 proj𝐻 ∶ 𝑉 → 𝐻 (𝑣 ↦ 𝑣1): linear transformation.

Observe: For every 𝑣 ∈ 𝑉 ,

𝑣 − proj𝐻𝑣 ∈ 𝐻⊥.

So,
⟨𝑣 − proj𝐻𝑣, ℎ⟩ = 0 for all ℎ ∈ 𝐻 or,

⟨𝑣, ℎ⟩ = ⟨proj𝐻𝑣, ℎ⟩ for all 𝑣 ∈ 𝑉 , and for all ℎ ∈ 𝐻.

Theorem 12.1. Let Γ = (𝑋,𝐸) be any graph. Pick vertices 𝑥, 𝑦 ∈ 𝑋 and set
Δ = 𝜕(𝑥, 𝑦). Assume

𝑊 : thin irreducible 𝑇 (𝑥)-module with endpoint 𝑟, diameter 𝑑, and measure 𝑚.

𝑊 ′: thin irreducible 𝑇 (𝑦)-module with endpoint 𝑟′, diameter 𝑑′, and measure
𝑚′.

𝑊 and 𝑊 ′ are not orghotonal.

Now pick
0 ≠ 𝑤 ∈ 𝐸∗

𝑟(𝑥)𝑊, 0 ≠ 𝑤 ∈ 𝐸∗
𝑟′(𝑥)𝑊 ′.

Then,

(𝑖) proj𝑊 ′𝑤 = 𝑝(𝐴) ‖𝑤‖
‖𝑤′‖𝑤

′

for some 0 ≠ 𝑝 ∈ ℂ[𝜆] with deg 𝑝 ≤ Δ− 𝑟′ + 𝑟, 𝑑′,

proj𝑊𝑤′ = 𝑝′(𝐴)‖𝑤
′‖

‖𝑤‖ 𝑤

for some 0 ≠ 𝑝′ ∈ ℂ[𝜆] with deg 𝑝 ≤ Δ− 𝑟 + 𝑟′, 𝑑.

(𝑖𝑖) For all eigenvalues 𝜃𝑖 of Γ,

⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩
‖𝑤‖‖𝑤′‖ = 𝑚(𝜃𝑖)𝑝′(𝜃𝑖) = 𝑚′(𝜃𝑖)𝑝(𝜃𝑖).

(𝑖𝑖𝑖) For all eigenvalues 𝜃𝑖 of Γ,

𝑝(𝜃𝑖)𝑝′(𝜃𝑖)
is a real number in interval [0, 1].
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Proof. (𝑖) Since 𝑊 , 𝑊 ′ are not orthogonal, there exist

𝑣 ∈ 𝑊, 𝑣′ ∈ 𝑊 ′ sich that ⟨𝑣, 𝑣′⟩ ≠ 0.

Then there exists 𝑎 ∈ 𝑀 such that

𝑣′ = 𝑎𝑤′.

(This is because 𝑤′
𝑖 = 𝑝′𝑖(𝐴)𝑤′

0 and hence for every 𝑣′ ∈ 𝑊 ′, there is a polynomial
𝑞 ∈ ℂ[𝜆], 𝑞(𝐴)𝑤′

0 = 𝑣.)
We have

0 ≠ ⟨𝑣′, 𝑣⟩ = ⟨𝑎𝑤′, 𝑣⟩ = ⟨𝑤′, 𝑎∗𝑣⟩
and 𝑎∗𝑣 ∈ 𝑊 .

Hence, proj𝑊𝑤′ ≠ 0.
Let 𝑝0,… , 𝑝𝑑 ∈ ℂ[𝜆] be from Lemma 9.1.

Then, 𝑤𝑖 = 𝑝𝑖(𝐴)𝑤 is a basis for 𝐸∗
𝑟+𝑖(𝑥)𝑊 (0 ≤ 𝑖 ≤ 𝑑).

Hence,
proj𝑊𝑤′ = 𝛼0𝑤0 +⋯+ 𝛼𝑑𝑤𝑑 for some 𝛼𝑗 ∈ ℂ.

Set

𝑝′ ∶= ‖𝑤‖
‖𝑤′‖

𝑑
∑
𝑖=0

𝛼𝑖𝑝𝑖.

Then 0 ≠ 𝑝′ ∈ ℂ[𝜆] and deg 𝑝′ ≤ 𝑑.
Claim: 𝛼𝑖 = 0 (Δ − 𝑟 + 𝑟′ < 𝑖 ≤ 𝑑).
In particular, deg 𝑝′ ≤ Δ− 𝑟 + 𝑟′.
Pf. Observe:

𝑤′ ∈ 𝐸∗
𝑟′(𝑦)𝑉 , 𝑤 ∈ 𝐸∗

𝑟(𝑥)𝑉 ,
for 𝜕(𝑥, 𝑦) = Δ.

𝐸∗
𝑟′(𝑦)𝑉 ∩ 𝐸∗

𝑟+𝑖(𝑥)𝑉 = 0
by triangle inequality.

(Δ = 𝜕(𝑥, 𝑦) < 𝑟 + 𝑖 − 𝑟′ or Δ+ 𝑟′ < 𝑟 + 𝑖 by our choice of 𝑖.)

x z

y

r+i

r'∆
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Hence,
𝐸∗

𝑟′(𝑦)𝑉 ⊥𝐸∗
𝑟+𝑖(𝑥)𝑉 ,

or

0 = ⟨𝑤′, 𝑤𝑖⟩ (12.14)
= ⟨proj𝑊𝑤′, 𝑤𝑖⟩ (12.15)

=
𝑑

∑
𝑗=0

𝛼𝑗⟨𝑤𝑗, 𝑤𝑖⟩ (12.16)

= 𝛼𝑖‖𝑤𝑖‖2. (12.17)

Hence, 𝛼𝑖 = 0. Thus,

proj𝑊𝑤′ =
Δ+𝑟′−𝑟
∑
𝑖=0

𝛼𝑖𝑤𝑖 (12.18)

=
Δ+𝑟′−𝑟
∑
𝑖=0

𝛼𝑖𝑝𝑖(𝐴)𝑤0 (12.19)

= 𝑝′(𝐴)‖𝑤
′‖

‖𝑤‖ 𝑤. (12.20)

(𝑖𝑖) We have

⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩
‖𝑤‖‖𝑤′‖ = ⟨𝐸𝑖𝑤,𝑤′⟩

‖𝑤‖‖𝑤′‖ (12.21)

= ⟨𝐸𝑖𝑤, proj𝑊𝑤′⟩
‖𝑤‖‖𝑤′‖ as proj𝑊𝑤′ = 𝑝′(𝐴) ‖𝑤‖

‖𝑤′‖𝑤 (12.22)

= ⟨𝐸𝑖𝑤, 𝑝′(𝐴)𝑤⟩
‖𝑤‖2 (12.23)

= ⟨𝐸𝑖𝑤,𝐸𝑖𝑝′(𝐴)𝑤⟩
‖𝑤‖2 (12.24)

= 𝑝′(𝜃𝑖)
‖𝐸𝑖𝑊‖2
‖𝑤‖2 (12.25)

= 𝑝′(𝜃𝑖)𝑚(𝜃𝑖). (12.26)

Moreover, as 𝑚(𝜃𝑖), 𝑚′(𝜃𝑖) ∈ ℝ,

⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩
‖𝑤‖‖𝑤′‖ = ⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩

‖𝑤′‖‖𝑤‖ = 𝑝(𝜃𝑖)𝑚′(𝜃𝑖) = 𝑝(𝜃𝑖)𝑚′(𝜃𝑖).

(𝑖𝑖𝑖) Sicne,
|⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩‖2

‖𝑤‖2‖𝑤′‖2 = 𝑝(𝜃𝑖)𝑝′(𝜃𝑖)𝑚(𝜃𝑖)𝑚′(𝜃𝑖),
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𝑝(𝜃𝑖)𝑝′(𝜃𝑖) =
|⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩‖2

𝑚(𝜃𝑖)𝑚′(𝜃𝑖)‖𝑤‖2‖𝑤′‖2 ∈ ℝ (12.27)

= |⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩‖2
‖𝐸𝑖𝑤‖2
‖𝑤‖2

‖𝐸𝑖𝑤′‖2
‖𝑤′‖2 ‖𝑤‖2‖𝑤′‖2

. (12.28)

By Cauchy-Schwartz inequality,

(|⟨𝑎, 𝑏⟩| ≤ ‖𝑎‖‖𝑏‖, )

|⟨𝐸𝑖𝑤,𝐸𝑖𝑤′⟩‖2
‖𝐸𝑖𝑤‖2‖𝐸𝑖𝑤′‖2 ≤ 1.

Hence, we have the assertion.
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Chapter 13

Modules of a DRG

Wednesday, February 17, 1993

Lemma 13.1. Let Γ = (𝑋,𝐸) be any graph. Pick an edge 𝑥𝑦 ∈ 𝐸.

Assume the trivial 𝑇 (𝑥)-module 𝑇 (𝑥)𝛿 is thin with measure 𝑚𝑥,

and the trivial 𝑇 (𝑦)-module 𝑇 (𝑦)𝛿 is thin with measure 𝑚𝑦.

Then,

(𝑖𝑎) 𝑚𝑥(𝜃)
𝑘𝑥

= 𝑚𝑦(𝜃)
𝑘𝑦

for all 𝜃 ∈ ℝ ∖ {𝟘}.

(𝑖𝑏) 𝑚𝑥(0) − 1
𝑘𝑥

= 𝑚𝑦(0) − 1
𝑘𝑦

for all 𝜃 ∈ ℝ ∖ {𝟘}.

(𝛿 = ∑
𝑦∈𝑋

𝛿𝑦 ̂𝑦 eigenvector corresponding to the maximal eigenvalue)

Proof. Apply Theorem 12.1,

𝑊 = 𝑇(𝑥)𝛿 𝑟 = 0, 𝑑 = 𝑑(𝑥) (13.1)
𝑊 ′ = 𝑇(𝑦)𝛿 𝑟′ = 0, 𝑑′ = 𝑑(𝑦). (13.2)

Take 𝑤 = ̂𝑥, 𝑤′ = ̂𝑦.
Claim. proj𝑇(𝑦)𝛿 ̂𝑥 = 𝑘−1

𝑦 𝐴 ̂𝑦.
Pf. Since

̂𝑦 ∈ 𝑇 (𝑦)𝛿, 𝐴 ̂𝑦 ∈ 𝑇 (𝑦)𝛿.
Show

( ̂𝑥 − 𝑘𝑦−1𝐴 ̂𝑦)⊥(𝑇 (𝑦)𝛿).
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Recall
𝐴 ̂𝑦 = ∑

𝑧∈𝑋,𝑦𝑧∈𝐸
̂𝑧.

̂𝑥 − 𝑘𝑦−1𝐴𝑦 ∈ 𝐸∗
1(𝑦)𝑉 .

So,
̂𝑥 − 1

𝑘𝑦
𝐴 ̂𝑦 ⊥ 𝐸∗

𝑗 (𝑦)𝑇 (𝑦)𝛿 if 𝑗 ≠ 1 (0 ≤ 𝑗 ≤ 𝑘(𝑦)).

And we have,

⟨ ̂𝑥 − 1
𝑘𝑦

𝐴 ̂𝑦, 𝐴 ̂𝑦⟩ = ⟨ ̂𝑥, ∑
𝑧∈𝑋,𝑦𝑧∈𝐸

̂𝑧⟩ − 1
𝑘𝑦

∥ ∑
𝑧∈𝑋,𝑦𝑧∈𝐸

̂𝑧∥
2

(13.3)

= 1 − 1 (13.4)
= 0 (13.5)

This proves Claim.

Similarly,
proj𝑇(𝑥)𝛿 ̂𝑦 = 𝑘𝑥−1𝐴 ̂𝑥.

Hence, the polynomials 𝑝, 𝑝′ ∈ ℂ[𝜆] from Theorem 12.1 equal

𝜆
𝑘𝑦

and 𝜆
𝑘𝑥

respectively.

By Theorem 12.1,

𝑚𝑥(𝜃)𝜃
𝑘𝑥

= 𝑚𝑥(𝜃)𝑝′(𝜃) = 𝑚𝑦(𝜃)𝑝(𝜃) =
𝑚𝑦(𝜃)𝜃

𝑘𝑦
.

If 𝜃 ≠ 0, we have (𝑖𝑎).
Also,

1 −𝑚𝑥(0)
𝑘𝑥

= ⎛⎜
⎝

∑
𝜃∈ℝ�{0}

𝑚𝑥(0)⎞⎟
⎠

1
𝑘𝑥

by (𝑖𝑎) (13.6)

= ⎛⎜
⎝

∑
𝜃∈ℝ�{0}

𝑚𝑦(0)⎞⎟
⎠

1
𝑘𝑦

(13.7)

= 1 −𝑚𝑦(0)
𝑘𝑦

(13.8)

Hence, we have (𝑖𝑏).



91

Theorem 13.1. Suppose any graph Γ = (𝑋,𝐸) is distance-regular with respect
to every vertex 𝑥 ∈ 𝑋. (So Γ is regular or biregular by Lemma 12.1.)

Then,

Case Γ is regular: the diameter 𝑑(𝑥) and the intersection numbers 𝑎𝑖(𝑥), 𝑏𝑖(𝑥),
𝑐𝑖(𝑥) (0 ≤ 𝑖 ≤ 𝑑(𝑥)) are independent of 𝑥 ∈ 𝑋.

(And Γ is called distance-regular.)

Case Γ is biregular: (𝑋 = 𝑋+ ∪𝑋−)
𝑑(𝑥) and 𝑎𝑖(𝑥), 𝑏𝑖(𝑥), 𝑐𝑖(𝑥) (0 ≤ 𝑖 ≤ 𝑑(𝑥)) are constant over 𝑋+ and 𝑋−. (And
Γ is called distance-biregular.)

Proof. We apply Lemma 13.1.

Case Γ: regular.
Then 𝑚𝑥 = 𝑚𝑦 for all 𝑥𝑦 ∈ 𝐸. Hence, the measure of the trivial 𝑇 (𝑥)-module
is independent of 𝑥 ∈ 𝑋.

Case Γ is biregular.

Then 𝑚𝑥 = 𝑚𝑥′ for all 𝑥, 𝑥′ ∈ 𝑋 with 𝜕(𝑥, 𝑥′) = 2.
Hence, the measure of the trivial 𝑇 (𝑥)-module is constant over 𝑥 ∈ 𝑋+, 𝑋−.

Fix 𝑥 ∈ 𝑋. Write 𝑇 ≡ 𝑇(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑊 = 𝑇𝛿 with measure 𝑚, diameter
𝑑 = 𝑑(𝑥).
We know by Corollary 10.1 that 𝑚 determines

𝑑, 𝑎𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑), 𝑥𝑖(𝑊) (1 ≤ 𝑖 ≤ 𝑑)

(as 𝑑 = 𝐷(𝑥) = 𝑑(𝑊) by Lemma 11.1.)

We shall show that 𝑚 determines

𝑎𝑖(𝑥), 𝑐𝑖(𝑥), 𝑏𝑖(𝑥) (0 ≤ 𝑖 ≤ 𝑑).

Observe:

𝑎𝑖(𝑊) = 𝑎𝑖(𝑥) (0 ≤ 𝑖 ≤ 𝑑) (13.9)
𝑥𝑖(𝑊) = 𝑏𝑖−1(𝑥)𝑐𝑖(𝑥) (1 ≤ 𝑖 ≤ 𝑑) (13.10)

HS MEMO

𝑎𝑖 = 𝑎𝑖(𝑊) is an eigenvalue of

𝐸∗
𝑖𝐴𝐸∗

𝑖 on 𝐸∗
𝑖𝑊 = ⟨ ∑

𝑦∈Γ𝑖(𝑥)
̂𝑦⟩.

(See Lemma 12.1.)
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𝑥𝑖 = 𝑥𝑖(𝑊) is an eigenvalue of

𝐸∗
𝑖−1𝐴𝐸∗

𝑖𝐴𝐸∗
𝑖−1 on 𝐸∗

𝑖−1𝑊,

and

𝐴 ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)

̂𝑦 = 𝑏𝑖−1(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖−1

̂𝑦 (13.11)

+ 𝑎𝑖(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦 (13.12)

+ 𝑐𝑖+1(𝑥) ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖+1

̂𝑦 (13.13)

So 𝑥𝑖 = 𝑏𝑖−1(𝑥)𝑐𝑖(𝑥).
Set 𝑘+ = 𝑘𝑥. Define

𝑘− = 𝜃02
𝑘+ ,

where 𝜃0 is the maximal eigenvalue. (See Lemma 11.1.)

(So, 𝑘+ = 𝑘− is the valency, if Γ is regular.)

For every 𝑖 (0 ≤ 𝑖 ≤ 𝑑) and for every 𝑧 ∈ 𝑋 with 𝜕(𝑥, 𝑧) = 𝑖,

𝑘𝑧 = 𝑐𝑖(𝑥) + 𝑎𝑖(𝑥) + 𝑏𝑖(𝑥) (13.14)

= {𝑘+ if 𝑖 is even,
𝑘− if 𝑖 is odd. (13.15)

Now 𝑚 determines
𝑐0(𝑥) = 𝑎0(𝑥) = 0, 𝑐1(𝑥) = 1,
𝑏0(𝑥) = 𝑏0(𝑥)𝑐1(𝑥) = 𝑥1(𝑊).

𝑘+ = 𝑏0(𝑥) (13.16)
𝑘− = 𝜃02/𝑘+ (13.17)

𝑐𝑖(𝑥) = 𝑥𝑖(𝑊)/𝑏𝑖−1(𝑥) (1 ≤ 𝑖 ≤ 𝑑) (13.18)

𝑏𝑖(𝑥) = {𝑘+ − 𝑎𝑖(𝑥) − 𝑐𝑖(𝑥) 𝑖; even,
𝑘− − 𝑎𝑖(𝑥) − 𝑐𝑖(𝑥) 𝑖: odd. (13.19)

This proves the assertions.

Proposition 13.1. Under the assumption of Theorem 13.1, the following hold.

Case Γ: regular.

(𝑖) dim𝐸𝑖𝑉 = |𝑋|𝑚(𝜃𝑖).
(𝑖𝑖) Γ has exactly 𝑑 + 1 distinct eigenvalues
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(𝑑 = diamΓ = 𝑑(𝑥), for all 𝑥 ∈ 𝑋).

Case Γ: biregular.

(𝑖) dim𝐸𝑖𝑉 = |𝑋+|𝑚+(𝜃𝑖) + |𝑋−|𝑚−(𝜃𝑖).
(𝑖𝑖) Γ has exactly 𝑑+ + 1 distinct eigenvalues (𝑑+ ≥ 𝑑−).
(𝑖𝑖𝑖) If 𝑑+ is odd, the Γ is regular.
(𝑖𝑣) 𝑑+ = 𝑑−, or 𝑑+ = 𝑑− + 1 is even.
(𝑣) 𝑎𝑖(𝑥) = 0 for all 𝑖 and for all 𝑥.

Proof. (𝑖) Suppose Γ is regular.

Let 𝑚𝑥 be the measure of the trivial 𝑇 (𝑥)-module,

𝑚𝑥(𝜃𝑖) = ‖𝐸𝑖 ̂𝑥‖2, as ‖ ̂𝑥‖ = 1.
Now,

|𝑋|𝑚𝑥(𝜃𝑖) = ∑
𝑥∈𝑋

𝑚𝑥(𝜃𝑖) (13.20)

= ∑
𝑥∈𝑋

‖𝐸𝑖 ̂𝑥‖2 (13.21)

= ∑
𝑦,𝑧∈𝑋

|(𝐸𝑖)𝑦𝑧|2 (13.22)

= trace𝐸𝑖𝐸𝑖
⊤. (13.23)

Since 𝐴 is real symmetric and

𝐸𝑖𝐸𝑖
⊤ = 𝐸2

𝑖 = 𝐸𝑖

with 𝐸𝑖 symmetric

𝐸𝑖 ∼ (𝐼 𝑂
𝑂 𝑂) .

trace𝐸𝑖 = rank𝐸𝑖 = dim𝐸𝑖𝑉 .
Thus, we have the assertion in this case.

Suppose Γ is biregular.

Then, same except,

∑
𝑥∈𝑋

𝑚𝑥(𝜃𝑖) = |𝑋+|𝑚+(𝜃𝑖) + |𝑋−|𝑚−(𝜃𝑖).

(𝑖𝑖) Γ: regular. Immediately, if 𝜃 is an eigenvalue of Γ, then 𝑚(𝜃) ≠ 0.
Γ: biregular. For each 𝜃 = 𝜃𝑖 ∈ ℝ � {0},

𝑚−(𝜃) ≠ 0 ⇔ 𝑚+(𝜃) ≠ 0 (13.24)
⇔ 𝜃 is an eigenvalue of Γ (13.25)

(𝑚+(𝜃)
𝑘+ = 𝑚−(𝜃)

𝑘− ) (13.26)
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(𝑖𝑣) and (𝑣) are clear.

HS MEMO

(𝑖𝑖𝑖) If 𝑑+ is odd, 𝑑+ = 𝑑− and Γ has even number of eigenvalues, i.e., 0 is not
an eigenvalue. So 𝐴 is nonsingular, and Γ is regular.



Chapter 14

Parameters of Thin
Modules, I

Friday, February 19, 1993

Summary.

Definition 14.1. Assume Γ = (𝑋,𝐸) is distance-regular with respect to every
vertex 𝑥 ∈ 𝑋.

Notation: Let 𝑥 ∈ 𝑋. The data of the trivial 𝑇 (𝑥)-module.

Case DR Case DBR

valency𝑘𝑥 𝑘 {𝑘+ if 𝑥 ∈ 𝑋+

𝑘− if 𝑥 ∈ 𝑋−

𝑥-diameter 𝐷𝑥 𝐷 {𝐷+ if 𝑥 ∈ 𝑋+

𝐷− if 𝑥 ∈ 𝑋−

measure 𝑚𝑥 𝑚 {𝑚+ if 𝑥 ∈ 𝑋+

𝑚− if 𝑥 ∈ 𝑋−

int. number 𝑐𝑖(𝑥) 𝑐𝑖 {𝑐+𝑖 if 𝑥 ∈ 𝑋+

𝑐−𝑖 if 𝑥 ∈ 𝑋−

int. number 𝑏𝑖(𝑥) 𝑏𝑖 {𝑏+𝑖 if 𝑥 ∈ 𝑋+

𝑏−𝑖 if 𝑥 ∈ 𝑋−

int. number 𝑎𝑖(𝑥) 𝑎𝑖 0

Call 𝑚, 𝑚±1 the measure of Γ.
Assume Γ = (𝑋,𝐸) is distance-regular.
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To what extent do 𝑎𝑖’s, 𝑏𝑖’s and 𝑐𝑖’s determine the structure of irreducible 𝑇 (𝑥)-
modules? In general, the following hold.

Lemma 14.1. Assume Γ = (𝑋,𝐸) is distance-regular. Pick 𝑥 ∈ 𝑋. Let 𝑊 be
a thin irreducible 𝑇 (𝑥)-module with endpoint 𝑟, diameter 𝑑 and measure 𝑚𝑊 .

(𝑖) There is a unique polynomial 𝑓𝑊 ∈ ℂ[𝜆] with the following properties.

(𝑖𝑎) deg 𝑓𝑊 ≤ 𝐷 (diameter of Γ).

(𝑖𝑏) 𝑚𝑊 (𝜃) = 𝑚(𝜃)𝑓𝑊 (𝜃) for every 𝜃 ∈ ℝ, where 𝑚 is the measure of Γ.

Moreover, 𝑓𝑊 ∈ ℝ[𝜆], and

(𝑖𝑖) deg 𝑓𝑊 ≤ 2𝑟.
(𝑖𝑖𝑖) For all eigenvalues 𝜃𝑖 of Γ, 𝜆 − 𝜃𝑖 is a factor of 𝑓𝑊 whenever, 𝐸𝑖𝑊 = 0.

In particular, 2𝑟 − 𝐷 + 𝑑 ≥ 0.

Proof. Let 𝜃0,… , 𝜃𝐷 denote distinct eigenvalues of Γ. Then 𝑚(𝜃𝑖) ≠ 0 (0 ≤ 𝑖 ≤
𝐷) by Proposition 13.1.

There exists a unique 𝑓𝑊 ∈ ℂ[𝜆] with deg 𝑓𝑊 ≤ 𝐷 such that

𝑓𝑊 (𝜃𝑖) =
𝑚𝑊 (𝜃𝑖)
𝑚(𝜃𝑖)

(0 ≤ 𝑖 ≤ 𝐷)

by polynomial interpolation.

𝑓𝑊 ∈ ℝ[𝜆] since

𝜃0,… , 𝜃𝐷 ∈ ℝ and 𝑓𝑊 (𝜃0),… , 𝑓𝑊 (𝜃𝐷) ∈ ℝ.

(𝑖𝑖) Without loss of generality, we may assume 𝑟 < 𝐷/2, else trivial.

Pick 0 ≠ 𝑤 ∈ 𝐸∗
𝑟(𝑥)𝑊 .

𝑤 = ∑
𝑦∈𝑊,𝜕(𝑥,𝑦)=𝑟

𝛼𝑦 ̂𝑦 for some 𝛼𝑦 ∈ ℂ.

Pick 𝑦 ∈ 𝑋 such that 𝛼𝑦 ≠ 0.

Set 𝑊 ′ be the trivial 𝑇 (𝑦)-module. (⟨𝑤, ̂𝑦⟩ ≠ 0, as 𝑊⊥̸𝑊 ′.)

𝑟′ = 0, 𝑚′ = 𝑚, Δ = 𝑟.

Apply Theorem 12.1, we have

deg 𝑝 ≤ Δ− 𝑟′ + 𝑟 = 2𝑟, 𝑝 ≠ 0 (14.1)
deg 𝑝′ ≤ Δ− 𝑟 + 𝑟′ = 0, 𝑝′ ≠ 0. (14.2)

𝑚𝑊 (𝜃)𝑝′(𝜃) = 𝑚(𝜃)𝑝(𝜃) ( for all 𝜃 ∈ ℝ).
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So,
deg 𝑝/ ̄𝑝′ ≤ 2𝑟,

and 𝑝/ ̄𝑝′ satisfies the conditions of 𝑓𝑊 .

( 𝑝(𝜃)
̄𝑝′(𝜃) = 𝑚𝑊 (𝜃)

𝑚(𝜃) )

(𝑖𝑖𝑖)
𝐸𝑖𝑊 = 0 ⇒ 𝑚𝑊 (𝜃𝑖) = 0 ⇒ 𝑓𝑊 (𝜃𝑖) = 0.

that is, 𝐸𝑖𝑊 = 0. Hence 𝜃𝑖 is a root of 𝑓𝑊 (𝜆) = 0. So,

2𝑟 ≥ deg 𝑓𝑊 ≥ |{𝜃𝑖 ∣ 𝐸𝑖𝑊 = 0}| = 𝐷 − 𝑑.

Hence,
2𝑟 − 𝐷 + 𝑑 ≥ 0.

This proves the assertions.

Lemma 14.2. Let Γ = (𝑋,𝐸) be any distance-regular graph with valency 𝑘,
diameter 𝐷 (𝐷 ≥ 2), measure 𝑚, and eigenvalues

𝑘 = 𝜃0 > 𝜃1 > ⋯ > 𝜃𝐷.

Pick 𝑥 ∈ 𝑋. Let 𝑊 be a thin irreducible 𝑇 (𝑥)-module with endpoint 𝑟 = 1,
diameter 𝑑 and measure 𝑚𝑊 = 𝑚𝑓𝑊 . Then one fo the following cases (𝑖)−(𝑖𝑣)
occurs.

Case 𝑑 𝑓𝑊 (𝜆) 𝑎0(𝑊)
(𝑖) 𝐷 − 2 (𝜆−𝑘)(𝜆−𝜃1)

𝑘(𝜃1+1) − 𝑏1
𝜃1+1 − 1

(𝑖𝑖) 𝐷 − 2 (𝜆−𝑘)(𝜆−𝜃𝐷)
𝑘(𝜃𝐷+1) − 𝑏1

𝜃𝐷+1 − 1
(𝑖𝑖𝑖) 𝐷 − 1 𝑘−𝜆

𝑘 −1
(𝑖𝑣) 𝐷 − 1 (𝜆−𝑘)(𝜆−𝛽)

𝑘(𝛽+1) − 𝑏1
𝛽+1 − 1

for some 𝛽 ∈ ℝ with 𝛽 ∈ (−∞, 𝜃𝐷) ∪ (𝜃1,∞). Moreover, the isomorphism class
of 𝑊 is determined by 𝑎0(𝑊).
Note. By (𝑖𝑖𝑖), the possible “shapes” of a thin irreducible 𝑇 (𝑥)-modules are:

𝑟 = 0 𝑑 = 𝐷, (14.3)
𝑟 = 1 𝑑 = 𝐷− 1, (14.4)
𝑟 = 1 𝑑 = 𝐷− 2. (14.5)
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Chapter 15

Parameters of Thin
Modules, II

Monday, February 22, 1993

Proof of Lemma 14.2 Continued.

We have deg 𝑓𝑊 ≤ 2 by Lemma 14.1 (𝑖𝑖).
Also by Lemma 11.1, 𝐸0𝑊 = 0.
(As otherwise ⟨𝛿⟩ = 𝐸0𝑉 ⊆ 𝑊 and 𝑟(𝑊) = 0.)
Hence, 𝜆 − 𝜃0 = 𝜆 − 𝑘 is a factor of 𝑓𝑊 by Lemma 14.1 (𝑖𝑖𝑖).
Let 𝑝0, 𝑝1,… , 𝑝𝐷 denote the polynomials for the trivial 𝑇 (𝑥)-module from
Lemma 9.1.

Recall,

∑
𝜃∈ℝ

𝑚(𝜃)𝑝𝑖(𝜃)𝑝𝑗(𝜃) = 𝛿𝑖𝑗𝑥1𝑥2 ⋯𝑥𝑖 (0 ≤ 𝑖, 𝑗 ≤ 𝐷) (15.1)

= 𝛿𝑖𝑗𝑏0𝑏1 ⋯𝑏𝑖−1𝑐1𝑐2 ⋯𝑐𝑖. (15.2)

Note that 𝑥𝑖 = 𝑏𝑖−1𝑐𝑖 is in the proof of Theorem 13.1.

By construction,

𝑝0(𝜆) = 1, (15.3)
𝑝1(𝜆) = 𝜆, (15.4)
𝑝2(𝜆) = 𝜆2 − 𝑎1𝜆 − 𝑘. (15.5)

Apparently,
𝑓𝑊 = 𝜎0𝑝0 + 𝜎1𝑝1 + 𝜎2𝑝2

99



100 CHAPTER 15. PARAMETERS OF THIN MODULES, II

for some 𝜎0, 𝜎1, 𝜎2 ∈ ℂ.
Claim:

𝜎0 = 1, (15.6)

𝜎1 = 𝑎0(𝑊)
𝑘 , (15.7)

𝜎2 = −1 + 𝑎0(𝑊)
𝑘𝑏1

. (15.8)

Pf of Claim.

1 = ∑
𝜃∈ℝ

𝑚𝑊 (𝜃) (15.9)

= ∑
𝜃∈ℝ

𝑚(𝜃)𝑓𝑊 (𝜃) (15.10)

=
2

∑
𝑗=0

𝜎𝑗 (∑
𝜃∈ℝ

𝑚(𝜃)𝑝𝑗(𝜃)) (15.11)

= 𝜎0. (15.12)

We applied Lemma 10.1 (𝑖𝑏), Lemma 14.1 (𝑖𝑏), and Lemma 10.1 (𝑖) in this order.

Next by Lemma 10.1 (𝑖𝑖), and 𝑝1(𝜃) = 𝜃,
𝑎0(𝑊) = ∑

𝜃∈ℝ
𝑚𝑊 (𝜃)𝜃 (15.13)

= ∑
𝜃∈ℝ

𝑚(𝜃)𝑓𝑊 (𝜃)𝜃 (15.14)

=
2

∑
𝑗=0

𝜎𝑗 ∑
𝜃∈ℝ

𝑚(𝜃)𝑝𝑗(𝜃)𝑝1(𝜃) (15.15)

= 𝜎1𝑥1(𝑇 𝛿) (15.16)
= 𝜎1𝑏0𝑐1 (15.17)
= 𝜎1𝑘. (15.18)

So far,
𝑓𝑊 (𝜆) = 1 + 𝑎0(𝑊)

𝑘 𝜆 + 𝜎2(𝜆2 − 𝑎1𝜆 − 𝑘).
But,

0 = 𝑓𝑊 (𝑘) (15.19)
= 1 + 𝑎0(𝑊) + 𝜎2𝑘(𝑘 − 𝑎1 − 1) (15.20)
= 1 + 𝑎0(𝑊) + 𝜎2𝑘𝑏1. (15.21)

Thus,
𝜎2 = −1 + 𝑎0(𝑊)

𝑘𝑏1
.



101

This proves Claim.

Case: 𝑎0(𝑊) = −1.
Here, 𝜎2 = 0 and

𝑓𝑊 (𝜆) = 1 + 𝑎0(𝑊)𝜆
𝑘 = 1 − 𝜆

𝑘 .

Also,
𝑑 + 1 = |{𝜃 ∣ 𝜃 is an eigenvalue of Γ, 𝑓𝑊 (𝜃) ≠ 0}| = 𝐷.

Case: 𝑎0(𝑊) ≠ −1.
Here, 𝜎2 ≠ 0, and deg 𝑓𝑊 = 2. So,

𝑓𝑊 (𝜆) = (𝜆 − 𝑘)(𝜆 − 𝛽)𝛼

for some 𝛼, 𝛽 ∈ ℂ, 𝛼 ≠ 0.
Comparing the coefficients in

(𝜆 − 𝑘)(𝜆 − 𝛽)𝛼 = 1 + 𝑎0(𝑊)
𝑘 𝜆 − 𝑎0(𝑊) + 1

𝑘𝑏1
(𝜆2 − 𝑎1𝜆 − 𝑘),

we find

𝛼 = −𝑎0(𝑊) + 1
𝑘𝑏1

, (15.22)

−(𝑘 + 𝛽)𝛼 = 𝑎0(𝑊)
𝑘 + 𝑎0(𝑊) + 1

𝑘𝑏1
𝑎1, (15.23)

𝑘𝛽𝛼 = 1 + 𝑎0(𝑊) + 1
𝑏1

. (15.24)

Hence,
−𝛽(𝑎0(𝑊) + 1) = 𝑏1 + (𝑎0(𝑊) + 1).

Thus, we have
(1 + 𝑎0(𝑊))(1 + 𝛽) = −𝑏1. (15.25)

In particular, 𝛽 ≠ −1, and

𝛼 = −1 + 𝑎0(𝑊)
𝑘𝑏1

= 1
𝑘(𝛽 + 1) .

Also, by Definition 9.2,

0 ≤ 𝑚𝑊 (𝜃) (15.26)
= 𝑚(𝜃)𝑓𝑊 (𝜃) (for all 𝜃 ∈ ℝ). (15.27)

But if 𝜃 is an eigenvalue of Γ,
0 < 𝑚(𝜃).
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So,

0 ≤ 𝑓𝑊 (𝜃) (15.28)

= (𝜃 − 𝑘)(𝜃 − 𝛽)
𝑘(𝛽 + 1) . (15.29)

Either
𝛽 + 1 > 0 → 𝜃 − 𝛽 ≤ 0 or 𝛽 ≥ 𝜃1,

or
𝛽 + 1 < 0 → 𝜃 − 𝛽 ≥ 0 or 𝛽 ≤ 𝜃𝐷.

If 𝛽 = 𝜃1,

𝑎0(𝑊) = − 𝑏1
𝛽 + 1 − 1 = − 𝑏1

𝜃1 + 1 − 1 (15.30)

𝑓𝑊 (𝜆) = (𝜆 − 𝑘)(𝜆 − 𝜃1)
𝑘(𝜃1 + 1) , (15.31)

and we have (𝑖).
If 𝛽 = 𝜃𝐷,

𝑎0(𝑊) = − 𝑏1
𝜃𝐷 + 1 − 1 (15.32)

𝑓𝑊 (𝜆) = (𝜆 − 𝑘)(𝜆 − 𝜃𝐷)
𝑘(𝜃𝐷 + 1) , (15.33)

and we have (𝑖𝑖).
If 𝛽 ∉ {𝜃1, 𝜃𝐷},

𝛽 ∈ (−∞, 𝜃𝐷) ∪ (𝜃1,∞),
we have (𝑖𝑣).
Note using (15.25), we have (𝑖𝑣).

Note. Using (15.25),

𝑎0(𝑊) → 𝛽 → 𝑓𝑊 → 𝑚𝑊 → isomorphism class of 𝑊.

Note on Lemma 14.2. In fact, 𝜃1 > −1, 𝜃𝐷 < −1 if 𝐷 ≥ 2.
Definition 15.1. The complete graph 𝐾𝑛 has 𝑛 vertices and diameter 𝐷 = 1,
i.e., 𝑥𝑦 ∈ 𝐸 for all vertices 𝑥, 𝑡.
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𝐾𝑛 is distance-regular with valency 𝑘 = 𝑛−1 and 𝑎1 = 𝑛−2, 𝐷 = 1. Moreover,
it has two distince eigenvalues 𝜃0, 𝜃1.
Recall, 𝜃0,… , 𝜃𝐷 are roots of 𝑝𝐷+1, i.e., 𝐷 + 1 st polynomial for the trivial
module.

𝑝0 = 1, (15.34)
𝑝1 = 𝜆, (15.35)
𝑝2 = 𝜆2 − 𝑎1𝜆 − 𝑘 (15.36)

= 𝜆2 − (𝑛 − 2)𝜆 − (𝑛 − 1) (15.37)
= (𝜆 − (𝑛 − 1))(𝜆 + 1). (15.38)

The roots are 𝜃0 = 𝑛 − 1 = 𝑘 and 𝜃1 = −1.
Lemma 15.1. Let Γ = (𝑋,𝐸) be distance-regular of diameter 𝐷 ≥ 1 with
distinct eigenvalues

𝑘 = 𝜃0 > 𝜃1 > ⋯ > 𝜃𝐷.

(𝑖) 𝜃𝐷 ≤ −1 with equality if and only if 𝐷 = 1.

(𝑖𝑖) 𝜃1 ≥ −1 with equality if and only if 𝐷 = 1.

Proof. (𝑖) Suppose 𝜃𝐷 ≥ −1.
Then 𝐼 + 𝐴 is positive semi-definite.

By Lemma 2.1, there exists vectors {𝑣𝑥 ∣ 𝑥 ∈ 𝑋} in a Euclidean space such that

⟨𝑣𝑥, 𝑣𝑦⟩ = (𝐼 + 𝐴)𝑥𝑦 (15.39)

= {1 if 𝑥 = 𝑦 or 𝑥𝑦 ∈ 𝐸,
0 othewise. (15.40)

For every 𝑥𝑦 ∈ 𝐸,
⟨𝑣𝑥, 𝑣𝑦⟩ = ‖𝑣𝑥‖‖𝑣𝑦‖ = 1.

Hence, 𝑣𝑥 = 𝑣𝑦, and 𝑣𝑥 is independent of 𝑥 ∈ 𝑋.

Thus ⟨𝑣𝑥, 𝑣𝑦⟩ = 1 for all 𝑥, 𝑦 ∈ 𝑋.

We have 𝐼 + 𝐴 = 𝐽 , (all 1’s matrix), and 𝐷 = 1.
(𝑖𝑖) Let 𝑚 be the trivial measure. Then,

1 = ∑
𝜃∈ℝ

𝑚(𝜃) +∑
𝜃∈ℝ

𝑚(𝜃)𝜃 (15.41)

= ∑
𝜃∈ℝ

𝑚(𝜃)(𝜃 + 1) (15.42)

= 𝑚(𝑘)(𝑘 + 1) +∑
𝜃≠𝑘

𝑚(𝜃)(𝜃 + 1) (15.43)

≤ (𝑘 + 1)|𝑋|−1. (15.44)
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Note that 𝑚(𝑘) = |𝑋|−1 dim𝐸0𝑉 = |𝑋|−1.

So 𝑘+1 ≥ |𝑋| or 𝑘 = |𝑋|−1. Thus, 𝑥𝑦 ∈ 𝐸 for every 𝑥, 𝑦 ∈ 𝑋, and 𝐷 = 1.

Note. Lemma 15.1 does not require distance-regular assumption.



Chapter 16

Thin Modoles of a DRG

Wednesday, February 24, 1993

Let Γ = (𝑋,𝐸) denote any graph of diameter 𝐷.

Definition 16.1. For all integers 𝑖, the 𝑖-th incidence matrix 𝐴𝑖 ∈ Mat𝑋(ℂ)
satisfies

(𝐴𝑖)𝑥𝑦 = {1 if 𝜕(𝑥, 𝑦) = 𝑖,
0 if 𝜕(𝑥, 𝑦) ≠ 𝑖, (𝑥, 𝑦 ∈ 𝑋).

Observe,

𝐴0 = 𝐼 (identity) (16.1)
𝐴1 = 𝐴 (adjacency matrix) (16.2)

𝐴0 +𝐴1 +⋯+𝐴𝐷 = 𝐽 (all 1’s matrix). (16.3)

In general, 𝐴𝑖 may not belong to Bose-Mesner algebra.

Lemma 16.1. Assume Γ = (𝑋,𝐸) is distance-regular with diameter 𝐷 ≥ 1 and
intersection numbers 𝑐𝑖, 𝑎𝑖, 𝑏𝑖.
(𝑖)

𝐴𝐴𝑖 = 𝑐𝑖+1𝐴𝑖+1 + 𝑎𝑖𝐴𝑖 + 𝑏𝑖−1𝐴𝑖−1, (0 ≤ 𝑖 ≤ 𝐷, 𝐴−1 = 𝐴𝐷+1 = 𝑂).

(𝑖𝑖) 𝐴𝑖 =
𝑝𝑖(𝐴)

𝑐1𝑐2 ⋯𝑐𝑖
, (0 ≤ 𝑖 ≤ 𝐷), where 𝑝0, 𝑝1,… , 𝑝𝐷 are polynomials for the

trivial module from Lemma 9.1.

(𝑖𝑖𝑖) 𝐴0, 𝐴1,… ,𝐴𝐷 form a bais for Bose-Mesner algebra 𝑀 .

(𝑖𝑣) For all distances ℎ, 𝑖, 𝑗 (0 ≤, 𝑖, 𝑗, ℎ ≤ 𝐷), and for all vertices 𝑥, 𝑦 ∈ 𝑋 with
𝜕(𝑥, 𝑦) = ℎ, the constant

105
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𝑝ℎ𝑖,𝑗 = |{𝑧 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑧) = 𝑖, 𝜕(𝑦, 𝑧) = 𝑗}|
depends only on ℎ, 𝑖, 𝑗 and not on 𝑥, 𝑦.

(𝑣) 𝐸0 = 1
|𝑋|𝐽.

Proof.

(𝑖) Pick 𝑥 ∈ 𝑋. Apply each side to ̂𝑥, we want to show that

𝐴𝐴𝑖 ̂𝑥 = 𝑐𝑖+1𝐴𝑖+1 ̂𝑥 + 𝑎𝑖𝐴𝑖 ̂𝑥 + 𝑏𝑖−1𝐴𝑖−1 ̂𝑥.

LHS = 𝐴⎛⎜
⎝

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=𝑖

̂𝑦⎞⎟
⎠

(16.4)

= 𝑐𝑖+1 ⎛⎜
⎝

∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖+1

̂𝑧⎞⎟
⎠

+ 𝑎𝑖 ⎛⎜
⎝

∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖

̂𝑧⎞⎟
⎠

+ 𝑏𝑖−1 ⎛⎜
⎝

∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖−1

̂𝑧⎞⎟
⎠

(16.5)
= RHS. (16.6)

(𝑖𝑖) Recall (Lemma 9.1)

𝐴𝑝𝑖(𝐴) = 𝑝𝑖+1(𝐴) + 𝑎𝑖𝑝𝑖(𝐴) + 𝑏𝑖−1𝑐𝑖𝑝𝑖−1(𝐴) (0 ≤ 𝑖 ≤ 𝐷).
Dividing by 𝑐1𝑐2 ⋯𝑐𝑖, we have

𝐴 𝑝𝑖(𝐴)
𝑐1𝑐2 ⋯𝑐𝑖

= 𝑐𝑖+1
𝑝𝑖+1(𝐴)

𝑐1𝑐2 ⋯𝑐𝑖+1
+ 𝑎𝑖

𝑝𝑖(𝐴)
𝑐1𝑐2 ⋯𝑐𝑖

+ 𝑏𝑖−1
𝑝𝑖−1(𝐴)
𝑐1𝑐2 ⋯𝑐𝑖

.

So, 𝐴𝑖, 𝑝𝑖(𝐴)/(𝑐1𝑐2 ⋯𝑐𝑖) satisfy the same recurrence.

Also boundary condition,
𝐴0 = 𝑝0(𝐴) = 𝐼.

Hence,
𝐴𝑖 =

𝑝𝑖(𝐴)
𝑐1𝑐2 ⋯𝑐𝑖

(0 ≤ 𝑖 ≤ 𝐷).

(𝑖𝑖𝑖) Since 𝐸0, 𝐸1,… ,𝐸𝐷 form a basis for 𝑀 , dim𝑀 = 𝐷+ 1.
Observe 𝐴0, 𝐴1,… ,𝐴𝐷 ∈ 𝑀 by (𝑖𝑖), 𝐴0, 𝐴1,… ,𝐴𝐷 are linearly independent,
since 𝑝0, 𝑝1,… , 𝑝𝐷 are linearly independent.

Thus, 𝐴0, 𝐴1,… ,𝐴𝐷 form a basis for 𝑀 .

(𝑖𝑣) 𝐴0, 𝐴1,… ,𝐴𝐷 form a basis for an algebra 𝑀 ,
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𝐴𝑖𝐴𝑗 =
𝐷
∑
ℓ=0

𝑝ℓ𝑖𝑗𝐴ℓ for some 𝑝ℓ𝑖𝑗 ∈ ℂ. (16.7)

Fix ℎ (0 ≤ ℎ ≤ 𝐷). Pick 𝑥, 𝑦 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = ℎ.
Compute 𝑥, 𝑦 entry in (16.7),

(𝐴𝑖𝐴𝑗)𝑥𝑦 = ∑
𝑧∈𝑋

(𝐴𝑖)𝑥𝑧(𝐴𝑗)𝑧𝑦 (16.8)

= ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖,𝜕(𝑦,𝑧)=𝑗

1 ⋅ 1 (16.9)

= |{𝑧 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑧) = 𝑖, 𝜕(𝑦, 𝑧) = 𝑗}|. (16.10)

On the other hand,

(
𝐷
∑
ℓ=0

𝑝ℓ𝑖𝑗𝐴ℓ)
𝑥𝑦

= 𝑝ℎ𝑖𝑗(𝐴ℎ)𝑥𝑦 = 𝑝ℎ𝑖𝑗.

(𝑣) 1
|𝑋|𝐽 is the orthogonal projection onto Span(𝛿) = 𝐸0𝑉 . Hence,

1
|𝑋| = 𝐸0.

This proves the assertions.

Theorem 16.1. Let Γ = (𝑋,𝐸) be distance-regular with diameter 𝐷 ≥ 2 and
intersection numbers 𝑐𝑖, 𝑎𝑖, 𝑏𝑖. Pick a vertex 𝑥 ∈ 𝑋. Let 𝑊 be a thin irreducible
𝑇 (𝑥)-module with endpoint 𝑟 = 1 and diameter 𝑑 (𝑑 = 𝐷 − 2 or 𝐷 − 1). Set
𝛾0 = 𝑎0(𝑊) + 1.

(𝑖) The scalars

𝛾𝑖 ∶=
𝑐2𝑐3 ⋯𝑐𝑖+1𝑏2𝑏3 ⋯𝑏𝑖+1𝛾0
𝑥1(𝑊)𝑥2(𝑊)⋯𝑥𝑖(𝑊) (0 ≤ 𝑖 ≤ 𝑑) (16.11)

𝑎𝑖(𝑊), 𝑥𝑖(𝑊) are algebraic integers in ℚ[𝛾0]. In particular, if 𝛾0 ∈ ℚ, then 𝛾𝑖,
𝑎𝑖(𝑊) and 𝑥𝑖(𝑊) are integers for all 𝑖.
(𝑖𝑖) The numbers, 𝛾𝑖, 𝑎𝑖(𝑊), 𝑥𝑖(𝑊) can all be determined from 𝛾0 and the in-
tersection numbers of Γ in order

𝑥1(𝑊), 𝛾1, 𝑎1(𝑊), 𝑥2(𝑊), 𝛾2, 𝑎2(𝑊),…
using (𝑖),

𝑥𝑖(𝑊) = 𝑐𝑖𝑏𝑖 + 𝛾𝑖−1(𝑎𝑖 + 𝑐𝑖 − 𝑐𝑖+1 − 𝑎𝑖−1(𝑊)) (1 ≤ 𝑖 ≤ 𝐷− 1), (16.12)
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and
𝑎𝑖(𝑊) = 𝛾𝑖 − 𝛾𝑖−1 + 𝑎𝑖 + 𝑐𝑖 − 𝑐𝑖+1 (1 ≤ 𝑖 ≤ 𝐷). (16.13)

Note.

𝑝𝑖 = 𝑝𝑊1 + 𝛾𝑖−1𝑝𝑊𝑖−1 − 𝑐𝑖(𝑝𝑊𝑖−1 + 𝛾𝑖−2𝑝𝑊𝑖−2), (𝛾−1 = −𝛾−2 = 0, 0 ≤ 𝑖 ≤ 𝑑 + 1).

Proof. Set
̃𝐴𝑖 = 𝐴0 +𝐴1 +⋯+𝐴𝑖 (0 ≤ 𝑖 ≤ 𝐷).

Claim 1. 𝐴 ̃𝐴𝑖 = 𝑐𝑖+1 ̃𝐴𝑖+1 + (𝑎𝑖 − 𝑐𝑖+1 + 𝑐𝑖) ̃𝐴𝑖 + 𝑏𝑖 ̃𝐴𝑖−1 (0 ≤ 𝑖 ≤ 𝐷 − 1).
Proof of Claim 1.

LHS =
𝑖

∑
𝑗=0

𝐴𝐴𝑗 (16.14)

=
𝑖

∑
𝑗=0

(𝑐𝑗+1𝐴𝑗+1 + 𝑎𝑗𝐴𝑗 + 𝑏𝑗−1𝐴𝑗−1) (16.15)

=
𝑖−1
∑
𝑗=0

𝐴𝑗(𝑐𝑗 + 𝑎𝑗 + 𝑏𝑗) + 𝐴𝑖(𝑐𝑖 + 𝑎𝑖) + 𝐴𝑖+1𝑐𝑖+1 (16.16)

= 𝑘(𝐴0 +⋯+𝐴𝑖−1) + (𝑎𝑖 + 𝑐𝑖)𝐴𝑖 + 𝑐𝑖+1𝐴𝑖+1. (16.17)

RHS = 𝑐𝑖+1(𝐴0 +𝐴1 +⋯+𝐴𝑖−1 +𝐴𝑖 +𝐴𝑖+1) (16.18)
+ (𝑎𝑖 − 𝑐𝑖+1 + 𝑐𝑖)(𝐴0 +𝐴1 +⋯+𝐴𝑖−1 +𝐴𝑖) (16.19)
+ 𝑏𝑖(𝐴0 +𝐴1 +⋯+𝐴𝑖−1) (16.20)

= 𝑘(𝐴0 +⋯+𝐴𝑖−1) + 𝐴𝑖(𝑎𝑖 + 𝑐𝑖) + 𝐴𝑖+1𝑐𝑖+1. (16.21)

This proves Claim 1.

Now pick 0 ≠ 𝑤 ∈ 𝐸∗
1(𝑥)𝑊 and let

𝑤 = ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=1

𝛼𝑧 ̂𝑧.

Pick 𝑦, where 𝛼𝑦 ≠ 0.
For all 𝑖 (0 ≤ 𝑖 ≤ 𝐷), define

𝐵𝑖 = ̃𝐴𝑖( ̂𝑥 − ̂𝑦) (16.22)
= ∑

𝑧∈𝑋,𝜕(𝑥,𝑧)≤𝑖
̂𝑧 − ∑

𝑧∈𝑋,𝜕(𝑦,𝑧)≤𝑖
̂𝑧 (16.23)

= ∑
𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖,𝜕(𝑦,𝑧)=𝑖+1

̂𝑧 − ∑
𝑧∈𝑋,𝜕(𝑦,𝑧)=𝑖+1,𝜕(𝑦,𝑧)=𝑖

̂𝑧. (16.24)
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Note that 𝐵𝐷 = 𝑂, 𝐵0 = ̂𝑥 − ̂𝑦, and
⟨𝐵0, 𝑤0⟩ = −𝛼𝑦 ≠ 0.

From Claim 1,
𝐴𝐵𝑖 = 𝑐𝑖+1𝐵𝑖+1 + (𝑎𝑖 − 𝑐𝑖+1 + 𝑐𝑖)𝐵𝑖 + 𝑏𝑖𝐵𝑖−1 (0 ≤ 𝑖 ≤ 𝐷), 𝐵−1 = 𝑂.

Let 𝑝𝑊0 ,… , 𝑝𝑊𝑑 denote polynomials for 𝑊 from Lemma 9.1. So,
𝑤𝑖 = 𝑝𝑊𝑖 (𝐴)𝑤 ∈ 𝐸∗

1+𝑖(𝑥)𝑊, (0 ≤ 𝑖 ≤ 𝑑).

Claim 2. ⟨𝑤𝑖, 𝐵𝑗⟩ = 0 if 𝑗 ∉ {𝑖, 𝑖 + 1}, (0 ≤ 𝑖 ≤ 𝑑, 0 ≤ 𝑗 ≤ 𝐷).
Proof of Claim 2.

𝑤𝑖 ∈ 𝐸∗
1+𝑖(𝑥)𝑊, 𝐵𝑗 ∈ 𝐸∗

𝑗 (𝑥)𝑊 + 𝐸∗
𝑗+1(𝑥)𝑊.

B0 B1 B2 BD−1

w0 w1 wD−2

Vertical lines indicate possible non-orthogonality.

Compute
⟨𝐴𝑤𝑖, 𝐵𝑗⟩ = ⟨𝑤𝑖, 𝐴𝐵𝑗⟩, (0 ≤ 𝑖 ≤ 𝐷, 0 ≤ 𝑗 ≤ 𝐷− 1). (16.25)

LHS = ⟨𝑤𝑖+1, 𝐵𝑗⟩ + 𝑎𝑖(𝑊)⟨𝑤𝑖, 𝐵𝑗⟩ + 𝑥𝑖(𝑊)⟨𝑤𝑖−1, 𝐵𝑗⟩ (16.26)
RHD = 𝑏𝑗⟨𝑤𝑖, 𝐵𝑗−1⟩ + (𝑎𝑗 − 𝑐𝑗+1 + 𝑐𝑗)⟨𝑤𝑖, 𝐵𝑗⟩ + 𝑐𝑗+1⟨𝑤𝑖, 𝐵𝑗+1⟩. (16.27)

Evaluate for 𝑖 = 𝑗 − 2, 𝑗 − 1, 𝑗, 𝑗 + 1.
Set 𝑖 = 𝑗 − 2.

Bj−1 Bj

wj−2 wj−1
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Then (16.25) becomes

⟨𝑤𝑗−1, 𝐵𝑗⟩ = 𝑏𝑗⟨𝑤𝑗−2, 𝐵𝑗−1⟩ (2 ≤ 𝑗 ≤ 𝐷− 1).

By induction,

⟨𝑤𝑗−1, 𝐵𝑗⟩ = 𝑏2𝑏3 ⋯𝑏𝑗⟨𝑤0, 𝐵1⟩ (1 ≤ 𝑗 ≤ 𝐷− 1).

Define
𝛾0 = ⟨𝑤0, 𝐵1⟩

⟨𝑤0, 𝐵0⟩
.

(We will show 𝛾0 = 1 + 𝑎0(𝑊).)
Then,

⟨𝑤𝑗−1, 𝐵𝑗⟩ = 𝑏2𝑏3 ⋯𝑏𝑗𝛾0⟨𝑤0, 𝐵0⟩. (16.28)

Set 𝑖 = 𝑗 + 1. Then (16.25) becomes

𝑥𝑗+1(𝑊)⟨𝑤𝑗, 𝐵𝑗⟩ = 𝑐𝑗+1⟨𝑤0, 𝐵𝑗+1⟩ (0 ≤ 𝑗 ≤ 𝑑).

Hence,

⟨𝑤𝑗, 𝐵𝑗⟩ =
𝑥1(𝑊)⋯𝑤𝑗(𝑊)

𝑐1𝑐2 ⋯𝑐𝑗
⟨𝑤0, 𝐵0⟩ (0 ≤ 𝑗 ≤ 𝑑). (16.29)

Set 𝑖 = 𝑗 − 1. Then (16.25) becomes

⟨𝑤𝑗, 𝐵𝑗⟩ + 𝑎𝑗−1(𝑊)⟨𝑤𝑗−1, 𝐵𝑗⟩ = (𝑎𝑗 − 𝑐𝑗+1 + 𝑐𝑗)⟨𝑤𝑗−1, 𝐵𝑗⟩ + 𝑏𝑗⟨𝑤𝑗−1, 𝐵𝑗−1⟩.

Evaluate this using (16.28) and (16.29). (⟨𝑤0, 𝐵0⟩ ≠ 0). Then we have

𝑤1(𝑊)⋯𝑥𝑗(𝑊)
𝑐1 ⋯𝑐𝑗

+ (𝑎𝑗−1(𝑊) − 𝑎𝑗 + 𝑐𝑗+1 − 𝑐𝑗)𝑏2 ⋯𝑏𝑗𝛾0 = 𝑏𝑗
𝑥1(𝑊)⋯𝑥𝑗−1(𝑊)

𝑐1 ⋯𝑐𝑗−1
,

(𝛾𝑖 ∶=
𝑐2𝑐3 ⋯𝑐𝑖+1𝑏2𝑏3 ⋯𝑏𝑖+1𝛾0
𝑥1(𝑊)𝑥2(𝑊)⋯𝑥𝑖(𝑊) ) .

𝑥𝑗(𝑊)
𝑐𝑗

= 𝑏𝑗 +
𝑐1𝑐3 ⋯𝑐𝑗−1𝑏2𝑏3 ⋯𝑏𝑗𝛾0

𝑥1(𝑊)𝑥2(𝑊)⋯𝑥𝑗−1(𝑊)(𝑎𝑗 + 𝑐𝑗 − 𝑐𝑗+1 − 𝑎𝑗−1).

So,
𝑥𝑗(𝑊) = 𝑐𝑗𝑏𝑗 + 𝛾𝑗−1(𝑎𝑗 + 𝑐𝑗 − 𝑐𝑗+1 − 𝑎𝑗−1(𝑊)).

This proves (16.12).

Set 𝑖 = 𝑗. Then (16.25) becomes

𝑎𝑗(𝑊)⟨𝑤𝑗, 𝐵𝑗⟩ + 𝑥𝑗(𝑊)⟨𝑤𝑗−1, 𝐵𝑗⟩ = (𝑎𝑗 − 𝑐𝑗+1 + 𝑐𝑗)⟨𝑤𝑗, 𝐵𝑗⟩ + 𝑐𝑗+1⟨𝑤𝑗, 𝐵𝑗+1⟩.

(𝑎𝑗(𝑊)− (𝑎𝑗 −𝑐𝑗+1 +𝑐𝑗))
𝑥1(𝑊)⋯𝑥𝑗(𝑊)

𝑐1 ⋯𝑐𝑗
𝑥𝑗(𝑊)𝑏2 ⋯𝑏𝑗𝛾0 −𝑐𝑗+1𝑏2 ⋯𝑏𝑗+1𝛾0 = 0.
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Thus,

𝑎𝑗(𝑊) − (𝑎𝑗 − 𝑐𝑗+1 + 𝑐𝑗) +
𝑐1 ⋯𝑐𝑗𝑏2 ⋯𝑏𝑗𝛾0

𝑥1(𝑊)⋯𝑥𝑗−1(𝑊) − 𝑐1 ⋯𝑐𝑗𝑐𝑗+1𝑏2 ⋯𝑏𝑗+1𝛾0
𝑥1(𝑊)⋯𝑥𝑗(𝑊) = 0,

or
𝑎𝑗(𝑊) = 𝑎𝑗 + 𝑐𝑗 − 𝑐𝑗+1 − 𝛾𝑗−1 + 𝛾𝑗.

This proves (16.13).

Also by setting 𝑖 = 𝑗 = 0, we have

𝑎0(𝑊)⟨𝑤0, 𝐵0⟩ = (𝑎0 − 𝑐1 + 𝑐0)⟨𝑤0, 𝐵0⟩ + 𝑐1⟨𝑤0, 𝐵1⟩ (16.30)
= −⟨𝑤0, 𝐵0⟩ + 𝛾0⟨𝑤0, 𝐵0⟩. (16.31)

Hence,
𝛾0 = 1 + 𝑎0(𝑊).

Both 𝑎𝑖(𝑊) and 𝑥𝑖(𝑊) are algebraic integers, since they are eigenvalues of
matrices with integer entries, namely,

𝐸∗
𝑖+1(𝑥)𝐴𝐸∗

𝑖+1(𝑥) and 𝐸∗
𝑖 (𝑥)𝐴𝐸∗

𝑖+1(𝑥)𝐴𝐸∗
𝑖 (𝑥).

Also 𝛾0 = 1+𝑎0(𝑊) is an algebraic integer, and 𝛾𝑖−𝛾𝑖−1 is an algebraic integer
by (16.12).

Hence, 𝛾𝑖 is an algebraic integer by induction.

This completes the proof of Theorem 16.1.

Example 16.1 (D=2).

𝐷 = 2 ⇔ strongly regular.
Free parameters are 𝑘, 𝑎1, 𝑐2. Let 𝑊 be an irreducible module of endpoint 1.
The matrix representation of 𝐴|𝑊 is

(𝑎0(𝑊) 𝑥1(𝑊)
1 𝑎1(𝑊)) .

𝑎0(𝑊): free.
𝑥1(𝑊) = 𝑐1𝑏1 + (𝑎0(𝑊) + 1)(𝑎1 + 𝑐1 − 𝑐2 − 𝑎0(𝑊)) (16.32)

= 𝑘 − 𝑎1 − 1 + 𝑎1𝑎0(𝑊) + 𝑎0(𝑊) − 𝑐2𝑎0(𝑊) − 𝑎0(𝑊)2 (16.33)
+ 𝑎1 + 𝑎 − 𝑐2 − 𝑎0(𝑊) (16.34)

= 𝑎1𝑎0(𝑊) − 𝑐2𝑎0(𝑊) + 𝑘 − 𝑐2 − 𝑎0(𝑊)2, (16.35)
𝛾1 = 0, (16.36)

𝑎1(𝑊) = −(𝑎0(𝑊) + 1) + 𝑎1 + 𝑐1 − 𝑐2 (16.37)
= −𝑎0(𝑊) + 𝑎1 − 𝑐2. (16.38)

Then the matrix has eigenvalues 𝜃, 𝜃1. There is one feasible condition: 𝑎0(𝑊)
is an algebraic integer.
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Example 16.2 (D=3). Free parameters 𝑐2, 𝑐3, 𝑘, 𝑎1, 𝑎2. The matrix represen-
tation becomes

𝐴|𝑊 = ⎛⎜
⎝

𝑎0(𝑊) 𝑥1(𝑊) 0
1 𝑎1(𝑊) 𝑥2(𝑊)
0 1 𝑎2(𝑊)

⎞⎟
⎠

.

Here, 𝑎0(𝑊) is free (= 𝛾 − 1)

𝑥1(𝑊) = 𝑘 − 1 − 𝑎1 + 𝛾0(𝑎1 + 1 − 𝑐2 − 𝑎0(𝑊)) (16.39)
= 𝛾0(𝑎1 − 𝑐2 − 𝑎0(𝑊)) + 𝑘 − 𝑎1 + 𝑎0(𝑊). (16.40)

Set
𝛾1(𝑊) = 𝑐2𝑏2𝛾0

𝑥1(𝑊).

𝑎1(𝑊) = 𝛾1 − 𝛾0 + 𝑎1 + 1 − 𝑐2 (16.41)
𝑥2(𝑊) = 𝛾1(𝑎2 − 𝑐3 − 𝑎1(𝑊)) + 𝑐2(𝛾0 + 𝑏1 − 𝑎2 + 𝑎1(𝑊)) (16.42)
𝑎2(𝑊) = −𝛾1 + 𝑎2 + 𝑐2 − 𝑐2. (16.43)

The matrix has eigenvalues, 𝜃, 𝜃2, 𝜃3.
There are two feasibility conditions; 𝛾0, 𝛾1 are algebraic integers.

For arbitrary 𝐷, there are 𝐷− 1 feasibility conditions; 𝛾0, 𝛾1,… , 𝛾𝐷−1 are alge-
braic integers.

Lemma 16.2. With the notation of Theorem 16.1, suppose

𝑓𝑊 = 𝑘 − 𝜆
𝑘 (so, 𝑎0(𝑊) = −1).

Then,

𝑎𝑖(𝑊) = 𝑎𝑖 + 𝑐𝑖 − 𝑐𝑖+1 (0 ≤ 𝑖 ≤ 𝐷 − 1) (16.44)
𝑥𝑖(𝑊) = 𝑏𝑖𝑐𝑖 (1 ≤ 𝑖 ≤ 𝐷 − 1) (16.45)
𝛾𝑖(𝑊) = 0 (0 ≤ 𝑖 ≤ 𝐷 − 1). (16.46)

Proof. Since 𝛾0 = 𝑎0(𝑊) + 1, 𝛾𝑖 = 0.



Chapter 17

Association Schemes

Monday, March 1, 1993

Review

Let Γ = (𝑋,𝐸) be a distance-regular graph of diameter 𝐷 ≥ 2. Pick a vertex
𝑥 ∈ 𝑋.

Let 𝑊 be a thin irreducible 𝑇 (𝑥)-module with endpoint 𝑟 = 1, diameter 𝑑 =
𝐷− 1 or 𝐷− 2, and 𝑟0 = 𝑎0(𝑊) + 1.
Show

𝛾𝑖 =
𝑐2𝑐2 ⋯𝑐𝑖+1𝑏2𝑏3 ⋯𝑏𝑖+1𝛾0

𝑥1(𝑊)⋯𝑥𝑖(𝑊) ,

𝑎𝑖(𝑊) and 𝑥𝑖(𝑊) are all algebraic integers in ℚ[𝛾0], where

𝑥𝑖(𝑊) = 𝑐𝑖𝑏𝑖 + 𝛾𝑖−1(𝑎𝑖 + 𝑐𝑖 − 𝑐𝑖+1 − 𝑎𝑖−1(𝑊)) (1 ≤ 𝑖 ≤ 𝑑) (17.1)
𝑎𝑖(𝑊) = 𝛾𝑖 − 𝛾𝑖−1 + 𝑎𝑖 + 𝑐𝑖 − 𝑐𝑖+1 (1 ≤ 𝑖 ≤ 𝑑) (17.2)

Certainly, 𝑥𝑖(𝑊), 𝛾𝑖, and 𝑎𝑖(𝑊) are in ℚ[𝛾0] by the above lines and so on.

𝛾0 → 𝑎0(𝑊) → 𝑥1(𝑊) → 𝛾1 → 𝑎1(𝑊) → 𝑥1(𝑊) → ⋯ .

Recall some 𝐵 ∈ Mat𝑛(ℂ) is integral whenever

𝐵 ∈ Mat𝑛(ℤ).

In this case, the characteristic polynomial

det(𝜆𝐼 − 𝐵) = 𝜆𝑛 + 𝛼𝑛−1𝜆𝑛−1 +⋯+ 𝛼0, for some 𝛼0,… , 𝛼𝑛−1 ∈ ℤ.

Hence, eigenvalues of 𝐵 are algebraic integers. But 𝑎𝑖(𝑊) is an eigenvalue of
an integral matrices,

𝐵 = 𝐸∗
𝑖+1(𝑥)𝐴𝐸∗

𝑖+1(𝑥).
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Hence, 𝑎𝑖(𝑊) is an algebraic integer.

Also, 𝑥𝑖(𝑊) is an eigenvalue of an integral matrix

𝐵 = 𝐸∗
𝑖 (𝑥)𝐴𝐸∗

𝑖+1(𝑥)𝐴𝐸∗
𝑖 (𝑥).

So 𝑥𝑖(𝑊) is an algebraic integer.

𝛾𝑖 − 𝛾𝑖−1 = 𝑎𝑖(𝑊) − 𝑎𝑖 − 𝑐𝑖 + 𝑐𝑖+1

is an algebraic integer.

Since 𝛾0 = 𝑎0(𝑊) + 1 is an algebraic integer, we find 𝛾𝑖 is an algebraic integer
for all 𝑖.
Definition 17.1. A (commutative) association scheme is a configuration 𝑌 =
(𝑋, {𝑅𝑖}0≤𝑖≤𝐷), where 𝑋 is a finite nonempty set (of vertices), 𝑅0, 𝑅1,… ,𝑅𝐷
are nonempty subsets of 𝑋 ×𝑋 such that

(𝑖) 𝑅0 = {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑋},
(𝑖𝑖) 𝑅0 ∪ ⋯ ∪ 𝑅𝐷 = 𝑋 ×𝑋 (disjoint union),
(𝑖𝑖𝑖) for every 𝑖, 𝑅⊤

𝑖 = {(𝑦, 𝑥) ∣ 𝑥𝑦 ∈ 𝑅} = 𝑅𝑖′ for some 𝑖′ ∈ {0, 1,… ,𝐷},
(𝑖𝑣) for every ℎ, 𝑖, 𝑗 (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷), and every 𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅ℎ,

𝑝ℎ𝑖𝑗 = |{𝑧 ∈ 𝑋 ∣ (𝑥, 𝑧) ∈ 𝑅𝑖, (𝑧, 𝑦) ∈ 𝑅𝑗}|
depends only on ℎ, 𝑖, 𝑗 and not on 𝑥, 𝑦; and
(𝑣) 𝑝ℎ𝑖𝑗 = 𝑝ℎ𝑗𝑖 for all ℎ, 𝑖, 𝑗.
If 𝑖′ = 𝑖 for all 𝑖, we say 𝑌 is symmetric. We call 𝐷 the class of scheme and 𝑅𝑖,
the 𝑖th relation of 𝑌 . We say vertices 𝑥, 𝑦 ∈ 𝑋 are 𝑖-related, or ‘at distance 𝑖’,
whenever (𝑥, 𝑦) ∈ 𝑅𝑖.

We always assume that a ‘scheme’ is a commutative association scheme.

Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be an association scheme.

Definition 17.2. The 𝑖-the association matrix 𝐴𝑖 ∈ 𝕄𝕒𝕥𝑋(ℂ)

(𝐴𝑖)𝑥𝑦 = {1 if (𝑥, 𝑦) ∈ 𝑅𝑖
0 if (𝑥, 𝑦) ∉ 𝑅𝑖,

(𝑥, 𝑦 ∈ 𝑋, 0 ≤ 𝑖 ≤ 𝐷) (17.3)

Then,

(𝑖′) 𝐴0 = 𝐼 .
(𝑖𝑖′) 𝐴0 +𝐴1 +⋯+𝐴𝐷 = 𝐽 (= all 1’s matrix).

(𝑖𝑖𝑖′) 𝐴⊤
𝑖 = 𝐴𝑖′ (0 ≤ 𝑖 ≤ 𝐷).
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(𝑖𝑣′) 𝐴𝑖𝐴𝑗 =
𝐷
∑
ℎ=0

𝑝ℎ𝑖𝑗𝐴ℎ (0 ≤ 𝑖, 𝑗 ≤ 𝐷).

(𝑣′) 𝐴𝑖𝐴𝑗 = 𝐴𝑗𝐴𝑖.

𝑀 ∶= Spanℂ(𝐴0,… ,𝐴𝐷) (Bose-Mesner algebra of 𝑌 ) is a commutative
ℂ-algebra of dimension 𝐷+ 1.
Observe:

𝑌 is symmetric ↔ 𝐴⊤
𝑖 = 𝐴𝑖 for all 𝑖 ↔ 𝑀 is symmetric.

Example 17.1. Let Γ = (𝑋,𝐸) be distance-regular of diameter 𝐷. Set

𝑅𝑖 = {(𝑥, 𝑦) ∣ 𝜕(𝑥, 𝑦) = 𝑖} (0 ≤ 𝑖 ≤ 𝐷). (17.4)

Then,
𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷)

is a symmetric scheme.

𝑖-th association matrix = 𝑖-th distance matrix for all 𝑖.

Example 17.2. Suppose a group 𝐺 acts transitively on a seet 𝑋. Assume 𝐺
is generously transitive, i.e.,

for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑔 ∈ 𝐺 such that 𝑔𝑥 = 𝑦, 𝑔𝑦 = 𝑥.

Then 𝐺 acts on 𝑋 ×𝑋 by rule;

𝑔(𝑥, 𝑦) = (𝑔𝑥, 𝑔𝑦), for all 𝑔 ∈ 𝐺, and for all 𝑥, 𝑦 ∈ 𝑋.

Let 𝑅0,… ,𝑅𝐷 denote orbits of 𝐺 on 𝑋 ×𝑋.

Observe that 𝑅⊤
𝑖 = 𝑅𝑖 for all 𝑖 by generously transitivity, and

𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷)

is a symmetric scheme.

Exercise 17.1. In Example Example 17.2, Bose-Mesner algebra

𝑀 = {𝐵 ∈ Mat𝑋(ℂ) ∣ 𝐵𝑔 = 𝑔𝐵, for all 𝑔 ∈ 𝐺} (17.5)
= the commuting algebra of 𝐺 on 𝑋. (17.6)

Here, we view each 𝑔 ∈ 𝐺 as a permutation matrix in Mat𝑋(ℂ) satisfying

𝑔 ̂𝑥 = 𝑔𝑥 for all 𝑥 ∈ 𝐺.
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Example 17.3. Let 𝐺 be any finite group. 𝐺 acts on 𝑋 = 𝐺 by conjugation.

𝐺×𝑋 → 𝑋, (𝑔, 𝑥) ↦ 𝑔𝑥𝑔−1.

Let 𝐶0, 𝐶1,… ,𝐶𝐷 denote orbits (i.e., conjugacy classes), and let 𝐶0 = {1𝐺}.
Claim that 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) is a commutative scheme (not symmetric in
general).

(𝑖) 𝑅0 = {𝑥𝑥 ∣ 𝑥 ∈ 𝑋} as 𝐶0 = {1𝐺}.
(𝑖𝑖) 𝑅0,… ,𝑅𝐷 is a partition of 𝑋 ×𝑋 since 𝐶0,… ,𝐶𝐷 is a partition of 𝑋 = 𝐺.

(𝑖𝑖𝑖) 𝑅⊤
𝑖 = 𝑅𝑖′ , where 𝐶𝑖′ = {𝑔−1 ∣ 𝑔 ∈ 𝐶𝑖}.

(𝑖𝑣) Set 𝐻 = 𝐺⊕𝐺, the direct sum. Then 𝐻 acts on 𝑋 = 𝐺:

for all ℎ = (𝑔, 𝑔𝑧), for all 𝑥 ∈ 𝑋, ℎ(𝑥) = 𝑔𝑥(𝑔𝑥)−1 = 𝑔𝑥𝑧−1𝑔−1.
𝑅𝑖 = {(𝑥, 𝑦) ∣ 𝑥−1𝑦 ∈ 𝐶𝑖}, ℎ𝑖 ∈ 𝐶𝑖, 𝑥−1𝑦 = 𝑔ℎ𝑖𝑔−1.

(𝑥, 𝑦) = (𝑥, 𝑥𝑔ℎ𝑖𝑔−1) (17.7)
= (𝑥𝑔𝑔−1, 𝑥𝑔ℎ𝑖𝑔−1) (17.8)
= (𝑥𝑔, 𝑔)(1, ℎ𝑖). (17.9)

So, 𝑅0,… ,𝑅𝐷 are the orbits of 𝐻 on 𝑋 ×𝑋.

(𝑣) 𝑝ℎ𝑖𝑗 = 𝑝ℎ𝑗𝑖?
Fix 𝑖, 𝑗, ℎ and 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅ℎ. Set

𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑥, 𝑧) ∈ 𝑅𝑖, (𝑧, 𝑦) ∈ 𝑅𝑗} (17.10)
𝑇 = {𝑧 ∈ 𝑋 ∣ (𝑥, 𝑧) ∈ 𝑅𝑗, (𝑧, 𝑦) ∈ 𝑅𝑖}. (17.11)

Show |𝑆| = |𝑇 |.
For all 𝑧 ∈ 𝑆, set ̂𝑧 = 𝑥𝑧−1𝑦.

Observe, ̂𝑧 ∈ 𝑇 .

𝑥−1𝑧 ∈ 𝐶𝑖 𝑥−1 ̂𝑧 = 𝑥−1𝑥𝑧−1𝑦 ∈ 𝐶𝑗 (17.12)
𝑧−1𝑦 ∈ 𝐶𝑗 ̂𝑧−1𝑦 = 𝑦−1𝑧𝑥−1𝑥−1𝑦 = 𝑦−1𝑥(𝑥−1𝑧)𝑥−1𝑦 ∈ 𝐶𝑖. (17.13)

Observe
𝑆 → 𝑇 (𝑧 ↦ 𝑧−1) is one-to-one and onto.



Chapter 18

Polynomial Schemes

Wednesday, March 3, 1993

Lemma 18.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) denote the symmetric scheme with
associated matrices 𝐴0, 𝐴1,… ,𝐴𝐷. Then the following are equivalent.

(𝑖) The graph Γ = (𝑋,𝑅1) is distance-regular, and 𝑅0,… ,𝑅𝐷 are labelled so
that

𝑅𝑖 = {𝑥𝑦 ∣ 𝜕(𝑥, 𝑦) = 𝑖}.

(𝑖𝑖) There exists 𝑓𝑖 ∈ ℂ[𝜆], deg 𝑓𝑖 = 𝑖 such that 𝑓𝑖(𝐴1) = 𝐴𝑖 for all 𝑖 with
0 ≤ 𝑖 ≤ 𝐷.

(𝑖𝑖𝑖) The parameter 𝑝ℎ𝑖𝑗

{= 0 if one of ℎ, 𝑖, 𝑗 is larger than the sum of the other two,
≠ 0 if one of ℎ, 𝑖, 𝑗 is equal to the sum of the other two.

Proof.

(𝑖) ⇒ (𝑖𝑖): Lemma 16.1.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖): Define

𝑘𝑖 ≡ 𝑝0𝑖𝑖 = |{𝑧 ∣ 𝑧 ∈ 𝑋, 𝜕(𝑥, 𝑧) = 𝑖, ((𝑥, 𝑧) ∈ 𝑅𝑖)}|
for any 𝑥 ∈ 𝑋. Then 𝑘𝑖 ≠ 0 (0 ≤ 𝑖 ≤ 𝐷), 𝑘0 = 1.
(By symmetricity, (𝑥, 𝑦) ∈ 𝑅𝑖 if and only if (𝑦, 𝑥) ∈ 𝑅𝑖.)
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Claim.
𝑘ℎ𝑝ℎ𝑖𝑗 = 𝑘𝑖𝑝𝑖ℎ𝑗 = 𝑘𝑗𝑝𝑗𝑖ℎ (18.1)

= |𝑋|−1|{𝑥𝑦𝑧 ∈ 𝑋3 ∣ 𝜕(𝑥, 𝑦) = ℎ, 𝜕(𝑥, 𝑧) = 𝑖, 𝜕(𝑦, 𝑧) = 𝑗}|. (18.2)
Pf. The number of 𝑥𝑦𝑧 ∈ 𝑋3, 𝜕(𝑥, 𝑦) = ℎ, 𝜕(𝑥, 𝑧) = 𝑖, 𝜕(𝑦, 𝑧) = 𝑗 is equal to

|𝑋|𝑘ℎ𝑝ℎ𝑖𝑗 = |𝑋|𝑘𝑖𝑝𝑖ℎ𝑗 = 𝑘𝑗𝑝𝑗𝑖ℎ.

In particular,
𝑝ℎ𝑖𝑗 = 0 ↔ 𝑝𝑖ℎ𝑗 = 0 ↔ 𝑝𝑗𝑖ℎ = 0.

Hence, it suffices to show

{𝑝ℎ𝑖𝑗 = 0 if ℎ > 𝑖 + 𝑗
𝑝ℎ𝑖𝑗 ≠ 0 if ℎ = 𝑖 + 𝑗.

Fix 𝑖, 𝑗. Without loss of generality, we may assume that 𝑖 + 𝑗 ≤ 𝐷 as trivial
otherwise.

𝑓𝑖(𝐴)𝑓𝑗(𝐴) = 𝐴𝑖𝐴𝑗 =
𝐷
∑
ℓ=0

𝑝ℓ𝑖𝑗𝐴ℓ =
𝐷
∑
ℓ=0

𝑝ℓ𝑖𝑗𝑓ℓ(𝐴).

𝑖 + 𝑗 = degLHS (18.3)
= degRHS (18.4)
= max{ℓ ∣ 𝑝ℓ𝑖𝑗 ≠ 0}. (18.5)

(𝑖𝑖𝑖) ⇒ (𝑖)
Let 𝐴 = 𝐴1, and consider a graph Γ with adjacency matrix 𝐴.

𝐴𝐴𝑗 = ∑
ℎ

𝑝ℎ1𝑗𝐴ℎ (18.6)

= 𝑝𝑗+1
1𝑗 𝐴𝑗+1 + 𝑝𝑗1𝑗𝐴𝑗 + 𝑝𝑗−1

1𝑗 𝐴𝑗−1. (18.7)

Then, 𝑝𝑗+1
1𝑗 ≠ 0 ≠ 𝑝𝑗−1

1𝑗 .

Fix a vertex 𝑥 ∈ 𝑋, and set 𝑅𝑖(𝑥) = {𝑦 ∣ (𝑥, 𝑦) ∈ 𝑅𝑖}.
Then each 𝑦 ∈ 𝑅𝑖(𝑥) is adjacent in Γ to exactly

𝑝𝑖1,𝑖+1 ≠ 0 vertices in 𝑅𝑖+1(𝑥), (18.8)
𝑝𝑖1𝑖 vertices in 𝑅𝑖(𝑥), (18.9)

𝑝𝑖1,𝑖−1 ≠ 0 vertices in 𝑅𝑖−1(𝑥). (18.10)
Hence, by induction,

𝑅𝑖(𝑥) = {𝑦 ∣ 𝜕(𝑥, 𝑦) = 𝑖 in Γ} (0 ≤ 𝑖 ≤ 𝐷), (18.11)
and Γ is distance regular.



Chapter 19

Commutative Association
Schemes

Friday, March 5, 1993

Lemma 19.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme with Bose-
Mesner algebra 𝑀 .

Then there exists a basis 𝐸0, 𝐸1,… ,𝐸𝐷 for 𝑀 such that

(𝑖) 𝐸0 = |𝑋|−1𝐽 .

(𝑖𝑖) 𝐸𝑖𝐸𝑗 = 𝐸𝑗𝐸𝑖 = 𝛿𝑖𝑗𝐸𝑖 (0 ≤ 𝑖, 𝑗 ≤ 𝐷).
(𝑖𝑖𝑖) 𝐸0 +𝐸1 +⋯+𝐸𝐷 = 𝐼.

(𝑖𝑣) 𝐸⊤
𝑖 = 𝐸𝑖 = 𝐸 ̂𝑖 for some ̂𝑖 ∈ {0, 1,… ,𝐷}.

Proof. 𝑀 acts on Hermitean space 𝑉 = ℂ𝑛 (𝑛 = |𝑋|).
If 𝑊 is an 𝑀 -module, so is 𝑊⊥.

Each irreducible 𝑀 -module is 1 dimensional by commutativity of 𝑀 . So 𝑉 is
orthognal direct sum of 1-dimensional 𝑀 -modules.

Let 𝑣1,… , 𝑣𝑛 be an orthonormal basis for 𝑉 consisiting of eigenvectors for all
𝑚 ∈ 𝑀 .

Set 𝑃 ∈ Mat𝑋(ℂ) so that the 𝑖-th column of 𝑃 is equal to 𝑣𝑖. So,

̄𝑃⊤𝑃 = 𝐼 = 𝑃 ̄𝑃⊤ = ̄𝑃𝑃⊤,

and 𝑃 is unitary.
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Also, for all 𝑚 ∈ 𝑀 ,

𝑃−1𝑚𝑃 = diagonal (19.1)
= diag(𝜃1(𝑚),… , 𝜃𝑛(𝑚)). (19.2)

for some functions
𝜃𝑖 ∶ 𝑀 ⟶ ℂ.

Observe: each 𝜃 = 𝜃𝑖 is a character of 𝑀 , i.e.,

𝜃 ∶ 𝑀 ⟶ ℂ

is a ℂ-algebra homomorphism.

Observe: the 𝜃1,… , 𝜃𝑛 are not all distinct.

Let 𝜎0,… , 𝜎𝑟 denote distinct elements of

𝜃1,… , 𝜃𝑛.

Say 𝜎𝑖 appears 𝑚𝑖 times. Without loss of generality, we may assume that

𝑃−1𝑚𝑃 =
⎛⎜⎜⎜⎜
⎝

𝜎0(𝑚)𝐼𝑚0
𝑂 𝑂 𝑂

𝑂 𝜎1(𝑚)𝐼𝑚1
𝑂 𝑂

𝑂 𝑂 ⋱ 𝑂
𝑂 𝑂 𝑂 𝜎𝑟(𝑚)𝐼𝑚𝑟

⎞⎟⎟⎟⎟
⎠

.

Set

𝐸𝑖 = 𝑃 ⎛⎜
⎝

𝑂 𝑂 𝑂
𝑂 𝐼𝑚𝑖

𝑂
𝑂 𝑂 𝑂

⎞⎟
⎠

𝑃−1,

where 𝐼𝑚𝑖
is in the 𝑖-th block.

Then,
𝐸𝑖𝐸𝑗 = 𝛿𝑖𝑗𝐸𝑖 (0 ≤ 𝑖, 𝑗 ≤ 𝑟),

𝐸0 +𝐸1 +⋯+𝐸𝑟 = 𝐼.
Hence for all 𝑚 ∈ 𝑀 ,

𝑚 =
𝑟

∑
𝑖=0

𝜎𝑖(𝑚)𝐸𝑖 ∈ Span(𝐸0,… ,𝐸𝑟).

So,
𝑀 ⊆ Span(𝐸0,… ,𝐸𝑟).

Since 𝐸0,… ,𝐸𝑟 are linearly independent, 𝑟 ≥ 𝐷.

Show 𝐸𝑖 ∈ 𝑀 .

Claim 1. For all distinct 𝑖, 𝑗 (0 ≤ 𝑖, 𝑗 ≤ 𝐷), there exists 𝑚 ∈ 𝑀 such that
𝜎𝑖(𝑚) ≠ 0, 𝜎𝑗(𝑚) = 0.



121

Pf of Claim 1. 𝜎𝑖 ≠ 𝜎𝑗 implies that there exists 𝑚′ ∈ 𝑀 such that 𝜎𝑖(𝑚′) ≠
𝜎𝑗(𝑚′).
Set 𝑚 = 𝑚′ − 𝜎𝑗(𝑚′)𝐼 . Then,

𝜎𝑗(𝑚) = 𝜎𝑗(𝑚′) − 𝜎𝑗(𝑚′) = 0, (19.3)
𝜎𝑖(𝑚) = 𝜎𝑖(𝑚′) − 𝜎𝑗(𝑚′) ≠ 0. (19.4)

Claim 2. 𝐸𝑖 ∈ 𝑀 (0 ≤ 𝑖 ≤ 𝐷).
Pf of Claim 2. Fix a vertex 𝑥 ∈ 𝑋. For all 𝑗 ≠ 𝑖, there exists 𝑚𝑗 ∈ 𝑀 such that

𝜎𝑖(𝑚𝑗) ≠ 0, 𝜎𝑗(𝑚𝑗) = 0, 𝑖 ≠ 𝑗.

Observe

𝑠 = 𝜎𝑖 (∏
ℓ≠𝑖

𝑚ℓ) ≠ 0.

Set

𝑚∗ = (∏
ℓ≠𝑖

𝑚ℓ)𝑠−1.

Observe

𝜎𝑖(𝑚∗) = 1, 𝜎𝑗(𝑚∗) = 0, for all 𝑗 ≠ 𝑖 (0 ≤ 𝑗 ≤ 𝐷).

So

𝑃−1𝑚∗𝑃 = ⎛⎜
⎝

𝑂 𝑂 𝑂
𝑂 𝐼𝑚𝑖

𝑂
𝑂 𝑂 𝑂

⎞⎟
⎠

.

We have
𝐸𝑖 = 𝑚∗ ∈ 𝑀.

Now 𝑟 = 𝐷, 𝑀 = Span(𝐸0,… ,𝐸𝐷) and 𝐸0,… ,𝐸𝐷 is a basis for 𝑀 .

Observe

𝑃−1𝐸𝑖𝑃 = ⎛⎜
⎝

𝑂 𝑂 𝑂
𝑂 𝐼𝑚𝑖

𝑂
𝑂 𝑂 𝑂

⎞⎟
⎠

implies

𝑃−1𝐸𝑖
⊤𝑃 = ̄𝑃⊤𝐸𝑖

⊤𝑃−1⊤ = ⎛⎜
⎝

𝑂 𝑂 𝑂
𝑂 𝐼𝑚𝑖

𝑂
𝑂 𝑂 𝑂

⎞⎟
⎠

⊤

= 𝑃−1𝐸𝑖𝑃 .

Hence,
𝐸𝑖

⊤ = 𝐸𝑖.
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𝐸⊤
0 ,… ,𝐸⊤

𝐷 are nonzero matrices satisfying

𝐸⊤
𝑖 𝐸⊤

𝑗 = 𝛿𝑖𝑗𝐸⊤
𝑖 ,

𝐸⊤
0 +𝐸⊤

1 +⋯+𝐸⊤
𝐷 = 𝐼.

Each 𝐸⊤
𝑖 is a linear combination of 𝐸0,… ,𝐸𝐷 with coefficientss that are 0 or 1,

and for no two 𝐸𝑖’s are coefficients of any 𝐸𝑗 both 1’s.

So, 𝐸⊤
0 ,… ,𝐸⊤

𝐷 is a permutation of 𝐸0,… ,𝐸𝐷.

Observe 𝐽 = 𝐴0 +⋯+𝐴𝐷 ∈ 𝑀 .

The matrix |𝑋|−1𝐽 is an idempotent of rank 1.
So, without loss of generality we may assume that

𝐸0 = 1
|𝑋|𝐽.

We have the assertions.

Define entry-wise product ∘ on Mat𝑋(ℂ).

𝐴𝑖 ∘ 𝐴𝑗 = 𝛿𝑖𝑗𝐴𝑖.

So, 𝑀 is closed under ∘.

𝐸𝑖 ∘ 𝐸𝑗 =
1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ.

The numbers 𝑞ℎ𝑖𝑗 is called Krein parameters of 𝑌 .

Claim. 𝑞ℎ𝑖𝑗 ∈ ℝ.
Pf.

1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ = 1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ
⊤ (19.5)

= (𝐸𝑖 ∘ 𝐸𝑗)⊤ (19.6)
= 𝐸𝑖 ∘ 𝐸𝑗 (19.7)

= 1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ. (19.8)

Hence, 𝑞ℎ𝑖𝑗 = 𝑞ℎ𝑖𝑗.



123

Observe 𝐴0,… ,𝐴𝐷, 𝐸0,… ,𝐸𝐷 are bases for 𝑀 . Hence, there exist 𝑝𝑖(𝑗), 𝑞𝑖(𝑗) ∈
ℂ such that

𝐴𝑖 =
𝐷
∑
𝑗=0

𝑝𝑖(𝑗)𝐸𝑗 (19.9)

𝐸𝑖 =
1
|𝑋|

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐴𝑗. (19.10)

Taking transpose and conjugate we find,

𝑝𝑖(𝑗) = 𝑝𝑖(𝑗) = 𝑝𝑖′( ̂𝑗) (0 ≤ 𝑖, 𝑗 ≤ 𝐷) (19.11)
𝑞𝑖(𝑗) = 𝑞𝑖(𝑗) = 𝑞 ̂𝑖(𝑗′) (0 ≤ 𝑖, 𝑗 ≤ 𝐷). (19.12)

Fix a vertex 𝑥 ∈ 𝑋. Define

𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥) ∈ Mat𝑋(ℂ)

to be a diagonal matrix such that

(𝐸∗
𝑖 )𝑥𝑦 = {1 if (𝑥, 𝑦) ∈ 𝑅𝑖

0 if (𝑥, 𝑦) ∉ 𝑅𝑖
(0 ≤ 𝑖 ≤ 𝐷, 𝑦 ∈ 𝑋.)

Then,
𝐸∗

𝑖𝐸∗
𝑗 = 𝛿𝑖𝑗𝐸∗

𝑖 ,
𝐸∗

0 +⋯+𝐸∗
𝐷 = 𝐼,

(𝐸∗
𝑖 )⊤ = 𝐸∗

𝑖 = 𝐸∗
𝑖 .

Definition 19.1. Dual Bose-Mesner algebra : 𝑀∗ ≡ 𝑀∗(𝑥) with respect to 𝑥
is

Span(𝐸∗
0,… ,𝐸∗

𝐷).

Define dual associate matrices 𝐴∗
0,… ,𝐴∗

𝐷. Indeed 𝐴∗
𝑖 ≡ 𝐴∗

𝑖 (𝑥) ∈ Mat𝑋(ℂ) is a
diagonal matrix with

(𝐴∗
𝑖 )𝑦𝑦 = |𝑋|(𝐸𝑖)𝑥𝑦 (𝑦 ∈ 𝑋).

𝐴∗
𝑖 is a diagonal matrix having the row 𝑥 of 𝐸∗

𝑖 on the diagonal.

Observe

𝐴∗
𝑖 =

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐸∗
𝑗 (𝐸𝑖 =

1
|𝑋|

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐴𝑗) (19.13)

𝐸∗
𝑖 = 1

|𝑋|
𝐷
∑
𝑗=0

𝑝𝑖(𝑗)𝐴∗
𝑗 (𝐴𝑖 =

𝐷
∑
𝑗=0

𝑝𝑖(𝑗)𝐸𝑗). (19.14)
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So, 𝐴∗
0,… ,𝐴∗

𝐷 form a basis for 𝑀∗.

Also,
𝐴∗

𝑖𝐸∗
𝑗 = 𝑞𝑖(𝑗)𝐸∗

𝑗 .

(𝐴∗
𝑖𝐸∗

𝑗 =
𝐷
∑
ℎ=0

𝑞𝑖(ℎ)𝐸∗
ℎ𝐸∗

𝑗 = 𝑞𝑖(𝑗)𝐸∗
𝑗 .)

So, 𝑞𝑖(𝑗) are dual eigenvalues of 𝐴∗
𝑖 .

Observe,
𝐴∗

0 = 𝐼, 𝐴∗
0 +⋯+𝐴∗

𝐷 = |𝑋|𝐸∗
0, 𝐴∗

𝑖 = 𝐴∗
̂𝑖 ,

𝐴∗
𝑖𝐴∗

𝑗 =
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐴∗
ℎ (0 ≤ 𝑖, 𝑗 ≤ 𝐷).

HS MEMO

Proof.
(𝐴∗

0)𝑦𝑦 = |𝑋|(𝐸0)𝑥𝑦 = (𝐽)𝑥𝑦 = 1.

𝐴∗
0 +⋯+𝐴∗

𝐷 =
𝐷
∑
𝑖=0

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐸∗
𝑗 = |𝑋|𝐸∗

0.

Note that

𝐼 = 𝐸0 +⋯+𝐸𝐷 = 1
|𝑋|

𝐷
∑
𝑖=0

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐴𝑗.

𝐷
∑
𝑖=0

𝑞𝑖(𝑗) = 𝛿𝑗0|𝑋|.

𝐴∗
𝑖 =

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐸∗
𝑗 =

𝐷
∑
𝑗=0

𝑞 ̂𝑖(𝑗)𝐸∗
𝑗 = 𝐴∗

̂𝑖 .

(𝐴∗
𝑖𝐴∗

𝑗)𝑦𝑦 = |𝑋|2(𝐸𝑖)𝑥𝑦(𝐸𝑗)𝑥𝑦 (19.15)
= |𝑋|2(𝐸𝑖 ∘ 𝐸𝑗)𝑥𝑦 (19.16)

= |𝑋|
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗(𝐸ℎ)𝑥𝑦 (19.17)

=
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗(𝐴∗
ℎ)𝑦𝑦. (19.18)

The following statements will be proved after a couple of lemmas in the next
lecture.

Lemma. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme. Fix a vertex
𝑥 ∈ 𝑋, and set 𝐸∗ ≡ 𝐸∗

𝑖 (𝑥) and 𝐴∗
𝑖 ≡ 𝐴∗(𝑥). Then the following hold.
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(𝑖) 𝐸∗
𝑖𝐴𝑗𝐸∗

𝑘 = 𝑂 if and only if 𝑝𝑘𝑖𝑗 = 0 for 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝐷.

(𝑖𝑖) 𝐸𝑖𝐴∗
𝑗𝐸𝑘 = 𝑂 if and only if 𝑞𝑘𝑖𝑗 = 0 for 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝐷.
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Chapter 20

Vanishing Conditions

Monday, March 15, 1993 (Monday after Spring break)

Lemma 20.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme.

(𝑖) 𝑝0(𝑖) = 1.

(𝑖𝑖) 𝑝𝑖(0) = 𝑘𝑖, where

𝑘𝑖 = 𝑝0𝑖𝑖′ = |{𝑦 ∈ 𝑋 ∣ (𝑥, 𝑦) ∈ 𝑅𝑖}| (𝑥 ∈ 𝑋).

(𝑖𝑖𝑖) 𝑞0(𝑖) = 1.

(𝑖𝑣) 𝑞𝑖(0) = 𝑚𝑖, where

𝑚𝑖 = rank𝐸𝑖.

Proof.

(𝑖) Since 𝐴0 = 𝐼 and

𝐴0 = 𝑝0(0)𝐸0 + 𝑝0(1)𝐸1 +⋯+ 𝑝0(𝐷)𝐸𝐷 (20.1)
𝐼 = 𝐸0 +𝐸1 +⋯+𝐸𝐷, (20.2)

𝑝0(𝑖) = 1 for all 𝑖.
(𝑖𝑖) Since

𝐴𝑖 = 𝑝𝑖(0)𝐸0 + 𝑝𝑖(1)𝐸1 +⋯+ 𝑝𝑖(𝐷)𝐸𝐷,

127
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𝐴𝑖𝐸0 = 𝑝𝑖(0)𝐸0, and
𝑘𝑖𝐽 = 𝐴𝑖𝐽 = 𝑝𝑖(0)𝐽

as there are 𝑘𝑖 1’s in each row of 𝐴𝑖, we have 𝑘𝑖 = 𝑝𝑖(0).
(𝑖𝑖𝑖) Since 𝐸0 = |𝑋|−1𝐽 and

𝐸0 = |𝑋|−1(𝑞0(0)𝐴0 + 𝑞0(1)𝐴1 +⋯+ 𝑞0(𝐷)𝐴𝐷) (20.3)
|𝑋|−1𝐽 = |𝑋|−1(𝐴0 +𝐴1 +⋯+𝐴𝐷), (20.4)

𝑞0(𝑖) = 1 for all 𝑖.
(𝑖𝑣) 𝐸𝑖 = |𝑋|−1(𝑞𝑖(0)𝐴0 + 𝑞𝑖(1)𝐴1 +⋯+ 𝑞𝑖(𝐷)𝐴𝐷), 𝐸2

𝑖 = 𝐸𝑖, and 𝐸𝑖 is similar
to a matrix

(𝐼𝑚𝑖
𝑂

𝑂 𝑂) .

So,
𝑚𝑖 = rank𝐸𝑖 = trace𝐸𝑖 = ∑

𝑥∈𝑋
(𝐸𝑖)𝑥𝑥 = |𝑋||𝑋|−1𝑞𝑖(0) = 𝑞𝑖(0).

Note that as

𝐸𝑖 =
1
|𝑋|

𝐷
∑
𝑗=0

𝑞𝑖(𝑗)𝐴𝑗 → (𝐸𝑖)𝑥𝑥 = 1
|𝑋|𝑞𝑖(0)(𝐴0)𝑥𝑥.

Hence, we have all formulas.

Lemma 20.2. With the above notation

(𝑖) 𝑝ℎ𝑖𝑗 = 𝑝ℎ′
𝑗′𝑖′ .

(𝑖𝑖) 𝑘ℎ𝑝ℎ𝑖𝑗 = 𝑘𝑗𝑝𝑗𝑖′ℎ = 𝑘𝑖𝑝𝑖ℎ𝑗′ .

(𝑖𝑖𝑖) 𝑞ℎ𝑖𝑗 = 𝑞ℎ̂̂𝑗 ̂𝑖.

(𝑖𝑣) 𝑚ℎ𝑞ℎ𝑖𝑗 = 𝑚𝑗𝑞𝑗̂𝑖ℎ = 𝑚𝑖𝑞𝑖ℎ ̂𝑗.

Proof.

(𝑖) We have
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𝐷
∑
ℎ=0

𝑝ℎ𝑖𝑗𝐴ℎ′ = (
𝐷
∑
ℎ=0

𝑝ℎ𝑖𝑗𝐴ℎ)
⊤

(20.5)

= (𝐴𝑖𝐴𝑗)⊤ (20.6)
= 𝐴⊤

𝑗 𝐴⊤
𝑖 (20.7)

= 𝐴𝑗′𝐴𝑖′ (20.8)

=
𝐷
∑
ℎ=0

𝑝ℎ′
𝑗′𝑖′𝐴′

ℎ. (20.9)

(𝑖𝑖) Count the following number,

|{𝑥𝑦𝑧 ∈ 𝑋3 ∣ (𝑥, 𝑦) ∈ 𝑅ℎ, (𝑥, 𝑧) ∈ 𝑅𝑖, (𝑧, 𝑦) ∈ 𝑅𝑗}| (20.10)
= |𝑋|𝑘ℎ𝑝ℎ𝑖𝑗 = |𝑋|𝑘𝑗𝑝𝑗𝑖′ℎ = |𝑋|𝑘𝑖

ℎ𝑗′ . (20.11)

(𝑖𝑖𝑖)

1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ̂ = ( 1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ)
⊤

(20.12)

= (𝐸𝑖 ∘ 𝐸𝑗)⊤ (20.13)
= 𝐸⊤

𝑗 ∘ 𝐸⊤
𝑖 (20.14)

= 𝐸 ̂𝑗𝐸 ̂𝑖 (20.15)

= 1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ̂̂𝑗 ̂𝑖𝐸ℎ̂. (20.16)

(𝑖𝑣) Let 𝜏(𝐵) denote the sum of the entries in the matrix 𝐵.

Observe: 𝜏(𝐵 ∘ 𝐶) = trace(𝐵𝐶⊤).

Observe

𝜏(𝐸𝑖 ∘ 𝐸𝑗 ∘ 𝐸𝑘̂) = 𝜏((𝐸𝑖 ∘ 𝐸𝑗 ∘ 𝐸𝑘̂)⊤) = 𝜏(𝐸 ̂𝑖 ∘ 𝐸𝑘 ∘ 𝐸 ̂𝑗) = 𝜏(𝐸𝑘 ∘ 𝐸 ̂𝑗 ∘ 𝐸 ̂𝑖).
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Compute each one.

𝜏(𝐸𝑖 ∘ 𝐸𝑗 ∘ 𝐸𝑘̂) = trace((𝐸𝑖 ∘ 𝐸𝑗)𝐸𝑘) = trace(( 1
|𝑋| ∑ℎ

𝑞ℎ𝑖𝑗𝐸ℎ)𝐸𝑘) (20.17)

= trace( 1
|𝑋|𝑞

𝑘
𝑖𝑗𝐸𝑘) = 1

|𝑋|𝑚𝑘𝑞𝑘𝑖𝑗, (20.18)

𝜏(𝐸 ̂𝑖 ∘ 𝐸𝑘 ∘ 𝐸 ̂𝑗) = trace((𝐸 ̂𝑖 ∘ 𝐸𝑘)𝐸 ̂𝑗) = trace(( 1
|𝑋| ∑ℎ

𝑞ℎ̂𝑖𝑘𝐸ℎ)𝐸 ̂𝑗) (20.19)

= trace( 1
|𝑋|𝑞

𝑗
̂𝑖𝑘𝐸𝑘) = 1

|𝑋|𝑚𝑗𝑞𝑗̂𝑖𝑘, (20.20)

𝜏(𝐸𝑘 ∘ 𝐸 ̂𝑗 ∘ 𝐸 ̂𝑖) = trace((𝐸𝑘 ∘ 𝐸 ̂𝑗)𝐸𝑖) = trace(( 1
|𝑋| ∑ℎ

𝑞ℎ𝑘 ̂𝑗𝐸ℎ)𝐸𝑖) (20.21)

= trace( 1
|𝑋|𝑞

𝑖
𝑘 ̂𝑗𝐸𝑖) = 1

|𝑋|𝑚𝑖𝑞𝑖𝑘 ̂𝑗. (20.22)

Hence, we have (𝑖𝑣).

Lemma 20.3. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme. Fix a vertex
𝑥 ∈ 𝑋, and set 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥) and 𝐴∗

𝑖 ≡ 𝐴∗(𝑥). Then the following hold.

(𝑖) 𝐸∗
𝑖𝐴𝑗𝐸∗

𝑘 = 𝑂 if and only if 𝑝𝑘𝑖𝑗 = 0 for 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝐷.

(𝑖𝑖) 𝐸𝑖𝐴∗
𝑗𝐸𝑘 = 𝑂 if and only if 𝑞𝑘𝑖𝑗 = 0 for 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝐷.

Proof.

(𝑖) Partition rows and columns by 𝑅0(𝑥),𝑅1(𝑥),… ,𝑅𝐷(𝑥). Then,

𝐸∗
𝑖 (𝑥)𝐴𝑗𝐸∗

ℎ(𝑥)

is the (𝑖, ℎ) block of 𝐴𝑗.

Hence this submatrix is zero if and only if there exists no 𝑦, 𝑧 ∈ 𝑋 such that
(𝑥, 𝑦) ∈ 𝑅𝑖, (𝑥, 𝑧) ∈ 𝑅ℎ and (𝑦, 𝑧) ∈ 𝑅𝑗. This is exactly when 𝑝ℎ𝑖𝑗 = 0.

(𝑖𝑖) The sum of the squares of norms of entries in 𝐸𝑖𝐴∗
𝑗𝐸𝑘
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= 𝜏((𝐸𝑖𝐴∗
𝑗𝐸𝑘) ∘ (𝐸𝑗𝐴∗

𝑗𝐸𝑘)) (20.23)
= trace(𝐸𝑖𝐴∗

𝑗𝐸𝑘(𝐸𝑗𝐴∗
𝑗𝐸𝑘)⊤) (20.24)

= trace(𝐸𝑖𝐴∗
𝑗𝐸𝑘𝐴∗

̂𝑗𝐸𝑖) (20.25)

= trace(𝐸𝑖𝐴∗
𝑗𝐸𝑘𝐴∗

̂𝑗) as trace(𝑋𝑌 ) = trace(𝑌 𝑋)
(20.26)

= ∑
𝑦∈𝑋

(𝐸𝑖𝐴∗
𝑗𝐸𝑘𝐴∗

̂𝑗)𝑦𝑦 (20.27)

= ∑
𝑦∈𝑋

(∑
𝑧∈𝑋

(𝐸𝑖)𝑦𝑧(𝐴∗
𝑗)𝑧𝑧(𝐸𝑘)𝑧𝑦(𝐴∗

̂𝑗)𝑦𝑦) (20.28)

= ∑
𝑦∈𝑋

(∑
𝑧∈𝑋

(𝐸 ̂𝑖)𝑧𝑦(|𝑋|(𝐸𝑗)𝑥𝑧)(𝐸𝑘)𝑧𝑦(|𝑋|(𝐸𝑗)𝑦𝑥)) (20.29)

= |𝑋|2(𝐸𝑗(𝐸 ̂𝑖 ∘ 𝐸𝑘))𝐸𝑗)𝑥𝑥 (20.30)
= |𝑋|𝑞𝑗̂𝑖𝑘(𝐸𝑗)𝑥𝑥 (20.31)

= 𝑞𝑗̂𝑖𝑘𝑚𝑗 (20.32)
= 𝑚𝑘𝑞𝑘𝑖𝑗. (20.33)

Note that since |𝑋|𝐸𝑗 = 𝑞𝑗(0)𝐴0 + 𝑞𝑗(1)𝐴1 +⋯𝑞𝑗(𝐷)𝐴𝐷,

(𝐸𝑗)𝑥𝑥 = 1
|𝑋|𝑞𝑗(0) =

𝑚𝑗
|𝑋| .

Thus, we have (𝑖𝑖).

Corollary 20.1 (Krein Condition). For any commutative scheme 𝑌 =
(𝑋, {𝑅𝑖}0≤𝑖≤𝐷), 𝑞ℎ𝑖𝑗 is a non-negative real number for 0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷.

Proof. Since 𝑞ℎ𝑖𝑗𝑚ℎ is a non-negative real by the proof of Lemma 20.3 (𝑖𝑖).
Note that 𝑚ℎ is a positive integer.

An interpretation of the Krein parameters.

Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme with standard module 𝑉 .

Pick a vector 𝑣 ∈ 𝑉 with
𝑣 = ∑

𝑥∈𝑋
𝛼𝑥 ̂𝑥.

View 𝑣 as a function
𝑣 ∶ 𝑋 ⟶ ℂ (𝑥 ↦ 𝛼𝑥).
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View 𝑉 as the set of all functions 𝑉 ⟶ ℂ. Then the vector space 𝑉 together
with product of functions is a ℂ-algebra.
For

𝑣 = ∑
𝑥∈𝑋

𝛼𝑥 ̂𝑥, 𝑤 = ∑
𝑥∈𝑋

𝛽𝑥 ̂𝑥 ∈ 𝑉 ,

write
𝑣 ∘ 𝑤 = ∑

𝑥∈𝑋
𝛼𝑥𝛽𝑥 ̂𝑥

to represent the product of 𝑣 and 𝑤 viewed as functions.

Lemma 20.4. With the above notation,

(𝑖) 𝐴∗
𝑗(𝑥)𝑣 = |𝑋|(𝐸 ̂𝑗 ̂𝑥 ∘ 𝑣) for all 𝑣 ∈ 𝑉 and for all 𝑥 ∈ 𝑋.

(𝑖𝑖) 𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ⊆ ∑ℎ∶𝑞ℎ𝑖𝑗≠0 𝐸ℎ𝑉 for all 0 ≤ 𝑖, 𝑗 ≤ 𝐷.

(𝑖𝑖𝑖) 𝐸ℎ(𝐸𝑖 ∘ 𝐸𝑗𝑉 ) = 𝐸ℎ𝑉 if 𝑞ℎ𝑖𝑗 ≠ 0 for all 0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷.
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Norton Algebras

Wednesday, March 17, 1993

Proof of Lemma 20.4.

(𝑖) Suppose

𝑣 = ∑
𝑥∈𝑋

𝛼𝑥 ̂𝑥.

Pick a vertex 𝑧 ∈ 𝑋 and compare 𝑧-coordinate of each side in (𝑖).
(𝐴∗

𝑗(𝑥)𝑣)𝑧 = (𝐴∗
𝑗(𝑥))𝑧𝑧𝑣𝑧 = |𝑋|(𝐸𝑗)𝑥𝑧𝛼𝑧. (21.1)

|𝑋|(𝐸 ̂𝑗 ̂𝑥 ∘ 𝑣)𝑧 = |𝑋|(𝐸 ̂𝑗 ̂𝑥)𝑧 ⋅ 𝛼𝑧 = |𝑋|(𝐸𝑗)𝑥𝑧𝛼𝑧. (21.2)

Note that 𝐸 ̂𝑗 ̂𝑥 is the column 𝑥 of 𝐸 ̂𝑗, which is the row 𝑥 of 𝐸𝑗.

(𝑖𝑖) Fix 𝑖, 𝑗, ℎ such that 𝑞ℎ𝑖𝑗 = 0.
Claim. 𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) = 0.

𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) = 𝐸ℎ(Span(𝑣 ∘ 𝑤 ∣ 𝑣 ∈ 𝐸𝑖𝑉 ,𝑤 ∈ 𝐸𝑗𝑉 )) (21.3)
= 𝐸ℎ(Span(𝐸𝑖 ̂𝑦 ∘ 𝐸𝑗 ̂𝑧 ∣ 𝑦, 𝑧 ∈ 𝑋)) (21.4)
= Span(𝐸ℎ(𝐸𝑗 ̂𝑧 ∘ 𝐸𝑖 ̂𝑦 ∣ 𝑦, 𝑧 ∈ 𝑋) (21.5)
= Span((𝐸ℎ𝐴∗

̂𝑗(𝑧)𝐸𝑖) ̂𝑦 ∣ 𝑦, 𝑧 ∈ 𝑋) by (𝑖). (21.6)

But 𝑞ℎ𝑖𝑗 = 0 implies 𝑞ℎ̂̂𝑗 ̂𝑖 = 0.

So, by Lemma 20.3 (𝑖𝑖),
0 = (𝐸 ̂𝑖𝐴∗

̂𝑗𝐸ℎ̂)⊤ = 𝐸ℎ𝐴∗
̂𝑗𝐸𝑖.

133
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Hence, 𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) = 0.

(𝑖𝑖𝑖) Fix 𝑖, 𝑗, ℎ such that 𝑞ℎ𝑖𝑗 ≠ 0. Then,

𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) ⊆ 𝐸ℎ𝑉
is clear. We show the other inclusion. Since

𝐸𝑖 ̂𝑦 ∘ 𝐸𝑗 ̂𝑦 = (column 𝑦 of 𝐸𝑖 ∘ column 𝑦 of 𝐸𝑗) (21.7)
= column 𝑦 of 𝐸𝑖 ∘ 𝐸𝑗 (21.8)
= (𝐸𝑖 ∘ 𝐸𝑗) ̂𝑦 (21.9)

= ( 1
|𝑋|

𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ) ̂𝑦, (21.10)

we have,

𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) = 𝐸ℎSpan(𝐸𝑖 ̂𝑦 ∘ 𝐸𝑗 ̂𝑧 ∣ 𝑦, 𝑧 ∈ 𝑋) (21.11)
⊇ 𝐸ℎSpan(𝐸𝑖 ̂𝑦 ∘ 𝐸𝑗 ̂𝑦 ∣ 𝑦 ∈ 𝑋) (21.12)
= Span(𝑞ℎ𝑖𝑗𝐸ℎ ̂𝑦 ∣ 𝑦 ∈ 𝑋) (21.13)
= Span(𝐸ℎ ̂𝑦 ∣ 𝑦 ∈ 𝑋) since 𝑞ℎ𝑖𝑗 ≠ 0 (21.14)
= 𝐸ℎ𝑉 . (21.15)

This proves the assertion.

Lemma 21.1. Given a commutative scheme 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷), fix 𝑗 (0 ≤
𝑗 ≤ 𝐷). Define a binary multiplication:

𝐸𝑗𝑉 × 𝐸𝑗𝑉 ⟶ 𝐸𝑗𝑉 ((𝑣, 𝑤) ↦ 𝑣 ∗ 𝑤 = 𝐸𝑗(𝑣 ∘ 𝑤)).

Then,

(𝑖) 𝑣 ∗ 𝑤 = 𝑤 ∗ 𝑣, for all 𝑣, 𝑤 ∈ 𝐸𝑗𝑉 ,

(𝑖𝑖) 𝑣 ∗ (𝑤 + 𝑤′) = 𝑣 ∗ 𝑤 + 𝑣 ∗ 𝑤′ for all 𝑣, 𝑤,𝑤′ ∈ 𝐸𝑗𝑉 , and

(𝑖𝑖𝑖) (𝛼𝑣) ∗ 𝑤 = 𝛼(𝑣 ∗ 𝑤) for all 𝛼 ∈ ℂ.

In particular, the vector space 𝐸𝑗𝑉 together with ∗ is a commutative ℂ-algebra,
(not associative in general).

(𝑁𝑗 ∶ (𝐸𝑗𝑉 , ∗) is called the Norton algebra on 𝐸𝑗𝑉 .)

(𝑖𝑣) 𝑣 ∗ 𝑤 = 0 for all 𝑣, 𝑤 ∈ 𝐸𝑗𝑉 if and only if 𝑞𝑗𝑗𝑗 = 0.
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Proof.

(𝑖) − (𝑖𝑖𝑖) Immediate.

(𝑖𝑣) Immediate from Lemma 20.4 (𝑖𝑖), (𝑖𝑖𝑖).

Let 𝑌 , 𝑗, 𝑁𝑗 be as in Lemma 21.1, and 𝑀 Bose-Mesner algebra of 𝑌 . Let

Aut𝑌 = {𝜎 ∈ Mat𝑋(ℂ) ∣ 𝜎 ∶ permutation matrix , 𝜎 ⋅ 𝑚 = 𝑚 ⋅ 𝜎 for all 𝑚 ∈ 𝑀}
(21.16)

= {𝜎 ∈ Mat𝑋(ℂ) ∣ 𝜎 ∶ permutation matrix , (21.17)
(𝑥, 𝑦) ∈ 𝑅𝑖 → (𝜎𝑥, 𝜎𝑦) ∈ 𝑅𝑖, for all 𝑖, and for all 𝑥, 𝑦 ∈ 𝑋}

(21.18)
Aut(𝑁𝑗) = {𝜎 ∶ 𝐸𝑗𝑉 → 𝐸𝑗𝑉 ∣ 𝜎 is a ℂ-algebra isomorphim, 𝑖.𝑒., (21.19)

𝜎(𝑣 ∗ 𝑤) = 𝜎(𝑣) ∗ 𝜎(𝑤) for all 𝑣, 𝑤 ∈ 𝐸𝑗𝑉 }. (21.20)

Lemma 21.2. Let 𝑌 , 𝑗, ∗ be as in Lemma 21.1.

(𝑖) 𝐸𝑗𝑉 is a module for Aut(𝑌 ).
(𝑖𝑖) 𝜎|𝐸𝑗𝑉 ∈ Aut(𝑁𝑗) for all 𝜎 ∈ Aut(𝑌 ).
(𝑖𝑖𝑖) Aut𝑌 ⟶ Aut(𝑁𝑗), (𝜎 ↦ 𝜎|𝐸𝑗

) is a homomorphism of groups,

(i.e., a representation of Aut(𝑌 )).
(𝑖𝑣) Suppose 𝑅0,… ,𝑅𝐷 are orbits of Aut(𝑌 ) acting on 𝑋 × 𝑋, (so, we are in
Example 17.2) then above representation is irreducible.

Proof.

(𝑖) Pick 𝜎 ∈ Aut𝑌 and 𝑣 ∈ 𝑉 . Then,

𝜎𝐸𝑗𝑣 = 𝐸𝑗𝜎𝑣,
since 𝜎 commutes with each element of 𝑀 .

(𝑖𝑖) 𝜎|𝐸𝑗𝑉 ∶ 𝐸𝑗𝑉 → 𝐸𝑗𝑉 is an isomorphism of a vector space. Since 𝜎 is
invertible,for all 𝑣, 𝑤 ∈ 𝐸𝑗𝑉 ,

𝜎(𝑣∗𝑤) = 𝜎(𝐸𝑗(𝐸𝑗𝑣∘𝐸𝑗𝑤)) = 𝐸𝑗𝜎(𝐸𝑗𝑣∘𝐸𝑗𝑤) = 𝐸𝑗(𝐸𝑗𝜎𝑣∘𝐸𝑗𝜎𝑤) = 𝜎(𝑣)∗𝜎(𝑤).

(𝑖𝑖𝑖) Immediate from (𝑖) and (𝑖𝑖).
(𝑖𝑣) Here, Bose-Mesner algebra 𝑀 is the full commuting algebra, i.e.,
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𝑀 = {𝑚 ∈ Mat𝑋(ℂ) ∣ 𝜎 ⋅ 𝑚 = 𝑚 ⋅ 𝜎, for all 𝜎 ∈ Aut(𝑌 )}.
Suppose there sia a nonzero proper subspace 0 ≠ 𝑊 ⊊ 𝐸𝑗𝑉 that is Aut(𝑌 )-
invariant.

Set
𝑊⊥ = {𝑣 ∈ 𝐸𝑗𝑉 ∣ ⟨𝑤, 𝑣⟩ = 0, for all 𝑤 ∈ 𝑊}.

Then, 𝑊⊥ is a module for Aut(𝑌 ), since Aut(𝑌 ) is closed under transpose
conjugate.

Let 𝑒 ∶ 𝑉 → 𝑊 and 𝑓 ∶ 𝑉 → 𝑊⊥ be the orthogonal projection such that
𝑒 + 𝑓 = 𝐸𝑗,

𝑒2 = 𝑒, 𝑓2 = 𝑓, 𝑒𝑓 = 𝑓𝑒 = 0, 𝑒𝐸ℎ = 0, if ℎ ≠ 𝑗.

Since 𝑒 commutes with all 𝜎 ∈ Aut(𝑌 ), 𝑒 ∈ 𝑀 and

𝑒 =
𝐷
∑
𝑖=0

𝛼𝑖𝐸𝑖.

If ℎ ≠ 𝑗, then 0 = 𝑒𝐸ℎ and 𝛼ℎ = 0. Thus, 𝑒 = 𝛼𝑗𝐸𝑗, i.e., 𝑒 = 0 or 𝑓 = 0.
A contradiction.

Norton algebras were used in original construction of Monster, a finite simple
group 𝐺.

Compute character table of 𝐺,

→ 𝑝ℎ𝑖𝑗, 𝑞ℎ𝑖𝑗 of group scheme on 𝐺,

→ find 𝑗 where 𝑚𝑗 = dim𝐸𝑗𝑉 is small and 𝑞𝑗𝑗𝑗 ≠ 0,
→ guess abstract structure of 𝑁𝑗 using the knowlege of 𝑝ℎ𝑖𝑗’s and 𝑞ℎ𝑖𝑗’s,
→ compute Aut(𝑁𝑗),
→ 𝐺.



Chapter 22

𝑄-Polynomial Schemes

Friday, March 19, 1993

Lemma 22.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme.

(𝑖) 𝑝ℎ0𝑗 = 𝑝ℎ𝑗0 = 𝛿𝑗ℎ..

(𝑖𝑖) 𝑝0𝑖𝑗 = 𝛿𝑖𝑗′𝑘𝑖.

(𝑖𝑖𝑖) 𝑞ℎ0𝑗 = 𝑞ℎ𝑗0 = 𝛿𝑗ℎ.

(𝑖𝑣) 𝑞0𝑖𝑗 = 𝛿𝑖 ̂𝑗𝑚𝑖.

(𝑣)
𝐷
∑
𝑗=0

𝑝ℎ𝑖𝑗 = 𝑘𝑖.

(𝑣𝑖)
𝐷
∑
𝑗=0

𝑞ℎ𝑖𝑗 = 𝑚𝑖.

Proof.

(𝑖), (𝑖𝑖) These are trivial.

(𝑖𝑖𝑖) We have

|𝑋|−1
𝐷
∑
ℓ=0

𝑞ℓ0𝑗𝐸ℓ = 𝐸0 ∘ 𝐸𝑗 = |𝑋|−1𝐽 ∘ 𝐸𝑗 = |𝑋|−1𝐸𝑗.

(𝑖𝑣) Recall from Lemma 20.2

|𝑋|−1𝑚ℎ𝑞ℎ𝑖𝑗 = 𝜏(𝐸𝑖 ∘ 𝐸𝑗 ∘ 𝐸ℎ̂),
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(where 𝜏(𝐵) is the sum of entries in matrix 𝐵.)

|𝑋|−1𝑚0𝑞0𝑖𝑗 = 𝜏(𝐸𝑖 ∘ 𝐸𝑗 ∘ 𝐸0) (22.1)
= |𝑋|−1𝜏(𝐸𝑖 ∘ 𝐸𝑗) (𝐸0 = |𝑋|−1𝐽) (22.2)
= |𝑋|−1trace(𝐸𝑖𝐸 ̂𝑗) (22.3)
= |𝑋|−1𝛿𝑖 ̂𝑗trace𝐸𝑖 (22.4)
= |𝑋|−1𝛿𝑖 ̂𝑗𝑚𝑖. (22.5)

(𝑣) Pick 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅ℎ. Then,

𝐷
∑
𝑗=0

𝑝ℎ𝑖𝑗 = |{𝑧 ∈ 𝑋 ∣ (𝑥, 𝑧) ∈ 𝑅𝑖, (𝑧, 𝑦) ∈ 𝑅𝑗 for some 𝑗}| (22.6)

= |{𝑧 ∈ 𝑋 ∣ (𝑥, 𝑧) ∈ 𝑅𝑖}| (22.7)
= 𝑘𝑖. (22.8)

(𝑣𝑖)

𝐸𝑖 ∘ 𝐸𝑗 = |𝑋|−1
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐸ℎ.

So,

𝐷
∑
𝑗=0

𝐸𝑖 ∘ 𝐸𝑗 = |𝑋|−1
𝐷
∑
ℎ=0

(
𝐷
∑
𝑗=0

𝑞ℎ𝑖𝑗)𝐸ℎ (22.9)

= 𝐸𝑖 ∘
𝐷
∑
𝑗=0

𝐸𝑗 (22.10)

= 𝐸𝑖 ∘ 𝐼 (22.11)
= |𝑋|−1(𝑞𝑖(0)𝐴0 + 𝑞𝑖(1)𝐴1 +⋯+ 𝑞𝑖(0)𝐴𝐷) ∘ 𝐼 (22.12)
= |𝑋|−1𝑞𝑖(0)𝐼 (22.13)
= |𝑋|−1𝑚𝑖(𝐸0 +𝐸1 +⋯+𝐸𝐷). (22.14)

This proves the assertions.

Definition 22.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme.
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𝑌 is 𝑄-polynomial with respect to ordering 𝐸0, 𝐸1,… ,𝐸𝐷 of primitive idempo-
tents, if

𝑞ℎ𝑖𝑗 {
= 0 if one of ℎ, 𝑖, 𝑗 is greater than the sum of the other two,
≠ 0 if one of ℎ, 𝑖, 𝑗 is equal to the sum of the other two.

In this case, set

𝑐∗𝑖 = 𝑞𝑖1,𝑖−1, 𝑎∗𝑖 = 𝑞𝑖1,𝑖, 𝑏∗𝑖 = 𝑞𝑖1,𝑖+1 (0 ≤ 𝑖 ≤ 𝐷), (𝑐∗0 = 𝑏∗𝐷 = 0).

Observe: 𝑄-polynomial → 𝑌 is symmetric.

Suppose 𝑖 ≠ ̂𝑖 for some 𝑖. Then, by the condition in Definition 22.1,

0 = 𝑞0𝑖 ̂𝑖 = 𝑚𝑖 (≠ 0)
by Lemma 22.1 (𝑖𝑣). This is a contradiction.

Hence, 𝐸𝑖
⊤ = 𝐸 ̂𝑖 = 𝐸𝑖 for all 𝑖.

Therefore, 𝑀 is symmetric and 𝑌 is symmetric.

Observe: If 𝑌 is 𝑄-polynomial,

𝑐∗𝑖 + 𝑎∗𝑖 + 𝑏∗𝑖 = 𝑚1 (0 ≤ 𝑖 ≤ 𝐷)
(just as 𝑐𝑖 + 𝑎𝑖 + 𝑏𝑖 = 𝑘 for 𝑃 -polynomial.)

By Lemma 22.1 (𝑖𝑣),
𝑚1 = 𝑞𝑖10 + 𝑞𝑖11 +⋯+ 𝑞𝑖1,𝑖−1 + 𝑞𝑖1𝑖 + 𝑞𝑖1,𝑖+1 +⋯

and 𝑞𝑖10 = 𝑞𝑖11 = 0, 𝑞𝑖1,𝑖−1 = 𝑐∗𝑖 , 𝑞𝑖1𝑖 = 𝑎∗𝑖 , and 𝑞𝑖1,𝑖+1 = 𝑏∗𝑖 .
Lemma 22.2. Assume 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) is a symmetric scheme. Pick
𝑥 ∈ 𝑋, and set 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝐴∗ ≡ 𝐴∗(𝑥). Then the following are equivalent.

(𝑖) Γ is 𝑄-polynomial with respect to 𝐸0,… ,𝐸𝐷.

(𝑖𝑖) The condition

𝑞ℎ1𝑗 {
= 0 if |ℎ − 𝑗| > 0
≠ 0 if |ℎ − 𝑗| = 1. (0 ≤ ℎ, 𝑗 ≤ 𝐷).

(𝑖𝑖𝑖) There exists 𝑓∗
𝑖 ∈ ℂ[𝜆], deg 𝑓∗

𝑖 = 𝑖, and

𝐴∗
𝑖 = 𝑓∗

𝑖 (𝐴∗
1) (0 ≤ 𝑖 ≤ 𝐷).

(𝑖𝑣) 𝐸∗
0𝑉 ,… ,𝐸∗

𝐷𝑉 are maximal eigenspaces of 𝐴∗
1, and

𝐸𝑖𝐴∗
1𝐸𝑗 = 𝑂 if |𝑖 − 𝑗| > 0, (0 ≤ 𝑖, 𝑗 ≤ 𝐷).

(Compare (𝑖𝑣) with the definition of 𝑄-polynomial in Definition 6.2.)
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Proof.

(𝑖) → (𝑖𝑖) Clear.
(𝑖𝑖) → (𝑖𝑖𝑖) 𝐴∗

0 = 𝐼 ,

𝐴∗
𝑖𝐴∗

𝑗 =
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐴∗
ℎ, (22.15)

𝐴∗
1𝐴∗

𝑗 = 𝑞𝑗−1
1𝑗 𝐴∗

𝑗−1 + 𝑞𝑗1𝑗𝐴∗
𝑗 + 𝑞𝑗+1

1𝑗 𝐴∗
𝑗+1 (𝑞𝑗+1

1𝑗 ≠ 0, 1 ≤ 𝑗 ≤ 𝐷− 1). (22.16)

Hence 𝐴∗
𝑗 is a polynomial of degree exactly 𝑗 in 𝐴∗

1 by induction on 𝑗.

𝜆𝑓∗
𝑗 (𝜆) = 𝑏∗𝑗−1𝑓∗

𝑗−1(𝜆) + 𝑎∗𝑗𝑓∗
𝑗 (𝜆) + 𝑐∗𝑗+1𝑓∗

𝑗+1(𝜆) with 𝑐∗𝑗+1 ≠ 0,

and 𝑓∗
−1 = 0, 𝑓∗

0(𝜆) = 1.
(𝑖𝑖𝑖) → (𝑖) Pick 𝑖, 𝑗, ℎ with 0 ≤ 𝑖, 𝑗, ℎ ≤ 𝐷 and ℎ ≥ 𝑖 + 𝑗. Since

𝑚ℎ𝑞ℎ𝑖𝑗 = 𝑚𝑗𝑞𝑗𝑖ℎ = 𝑚𝑖𝑞𝑖ℎ𝑗
by Lemma 20.2, it suffices to show that

𝑞ℎ𝑖𝑗 {= 0 if ℎ > 𝑖 + 𝑗
≠ 0 if ℎ = 𝑖 + 𝑗.

𝐴∗
𝑖𝐴∗

𝑗 =
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝐴∗
ℎ (22.17)

𝑓∗
𝑖 (𝐴1)𝑓∗

𝑗 (𝐴1) =
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝑓∗
ℎ(𝐴∗

1). (22.18)

Hence,

𝑓∗
𝑖 (𝜆)𝑓∗

𝑗 (𝜆) =
𝐷
∑
ℎ=0

𝑞ℎ𝑖𝑗𝑓∗
ℎ(𝜆).

Note that since 𝐴∗
0, 𝐴∗

1,… ,𝐴∗
𝐷 are linearly independent, 𝑓(𝐴∗

1) = 0 implies
deg 𝑓 > 𝐷.

deg LHS = 𝑖 + 𝑗 → 𝑞𝑖+𝑗
𝑖𝑗 ≠ 0, 𝑞ℎ𝑖𝑗 = 0, if ℎ > 𝑖 + 𝑗.

(𝑖𝑖𝑖) → (𝑖𝑣) Recall

𝐴∗
1 = 𝑞1(0)𝐸∗

0 + 𝑞1(1)𝐸∗
1 +⋯ .

Each 𝐴∗
𝑖 is a polynomial in 𝐴∗

1. Then 𝐴∗
1 generates the dual Bose-Mesner algebra.

So, 𝑞1(0), 𝑞1(1),… , 𝑞1(𝐷) are distinct.
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So, 𝐸∗
0𝑉 ,… ,𝐸∗

𝐷𝑉 are maximal eigenspaces.

Also, |𝑖 − 𝑗| > 1 implies 𝑞𝑗11 = 0.
Thus, 𝐸𝑖𝐴∗

1𝐸𝑗 = 0 by Lemma 20.3 (𝑖𝑖).
(𝑖𝑣) → (𝑖𝑖) 𝑞𝑖1𝑗 = 0 if |𝑖 − 𝑗| > 1, since in this case,

𝐸𝑖𝐴∗
1𝐸𝑗 = 𝑂 implies 𝑞𝑖1𝑗 = 0 by Lemma 20.3 (𝑖𝑖).

Suppose 𝑞𝑗+1
1𝑗 = 0 for some 𝑗 (0 ≤ 𝑗 ≤ 𝐷− 1).

Without loss of generalith, choose 𝑗 minimum. Then 𝐴∗
ℎ is a polynomial of

degree ℎ in 𝐴∗
1 (0 ≤ ℎ ≤ 𝑗), and

𝐴∗
1𝐴∗

𝑗 − 𝑞𝑗−1
1𝑗 𝐴∗

𝑗−1 − 𝑞𝑗1𝑗𝐴∗
𝑗 = 𝑂.

the left hand side is a polynomial in 𝐴∗
1 of degree 𝑗 + 1.

Hence, the minimal polynomial of 𝐴∗
1 has degree less than or equal to 𝑗+1 ≤ 𝐷.

But 𝐴∗
1 has 𝐷+ 1 distince eigenvalues.

This is a contradiction.
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Chapter 23

Representation of a Scheme

Monday, March 22, 1993

Theorem 23.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a symmetric scheme. (View the
standard module 𝑉 as an algebra of functions from 𝑋 to ℂ.) Then the following
are equivalent.

(𝑖) 𝑌 is 𝑄-polynomial with respect to ordering 𝐸0, 𝐸1,… ,𝐸𝐷 of primitive idem-
potents.

(𝑖𝑖) For all 𝑖 (0 ≤ 𝑖 ≤ 𝐷),

𝐸0𝑉 + 𝐸1𝑉 + (𝐸1𝑉 )2 +⋯+ (𝐸1𝑉 )𝑖 = 𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖𝑉 .

Proof.

By Lemma 20.4 (𝑖𝑖), (𝑖𝑖𝑖).

𝐸ℎ(𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 ) = 0 if and only if 𝑞ℎ𝑖𝑗 = 0 (0 ≤ 𝑖, 𝑗, ℎ ≤ 𝐷).

(𝑖) → (𝑖𝑖) By our assumption,

𝑞ℎ1𝑗 = 0 if |ℎ − 𝑗| > 1, and 𝑞𝑗+1
1𝑗 ≠ 0.

So,
𝐸1𝑉 ∘ 𝐸𝑗𝑉 ⊆ 𝐸𝑗−1𝑉 + 𝐸𝑗𝑉 + 𝐸𝑗+1𝑉 (0 ≤ 𝑗 ≤ 𝐷), (23.1)

𝐸𝑗+1(𝐸1𝑉 ∘ 𝐸𝑗𝑉 ) = 𝐸𝑗+1𝑉 (0 ≤ 𝑗 ≤ 𝐷− 1), (23.2)
by Lemma 20.4.

Also 𝐸0𝑉 ⊆ Span(𝛿), where 𝛿 is all 1’s vector, i.e., 1 as a function 𝑋 → ℂ. So,
𝐸0𝑉 ∘ 𝐸𝑗𝑉 = 𝐸𝑗𝑉 (0 ≤ 𝑗 ≤ 𝐷). (23.3)

143
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Show (𝑖𝑖) by induction on 𝑖.
The cases 𝑖 = 0, 1 are trivial.

𝑖 > 1: ⊆.

𝐸0𝑉 + 𝐸1𝑉 + (𝐸1𝑉 )2 +⋯+ (𝐸1𝑉 )𝑖 (23.4)
= 𝐸0𝑉 + 𝐸1𝑉 ∘ (𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖−1) (23.5)
= 𝐸0𝑉 + 𝐸1𝑉 ∘ (𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖−1𝑉 ) (23.6)
⊆ 𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖𝑉 (23.7)

by (23.1).

⊇.

Claim. 𝐸𝑖𝑉 ⊆ 𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 + 𝐸𝑖−1𝑉 + 𝐸𝑖−2𝑉 (2 ≤ 𝑖 ≤ 𝐷).
Proof of Claim. By (23.2),

𝐸𝑖(𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 ) = 𝐸𝑖𝑉 .

For all 𝑣 ∈ 𝐸𝑖𝑉 , there exists 𝑢 ∈ 𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 such that 𝐸𝑖𝑢 = 𝑣.
On the other hand, by (23.1),

𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 ⊆ 𝐸𝑖−2𝑉 + 𝐸𝑖−1𝑉 + 𝐸𝑖−2𝑉 .

So, 𝑢 = 𝑤 + 𝑣, where 𝑤 ∈ 𝐸𝑖−2𝑉 + 𝐸𝑖−1𝑉 . We have,

𝑤 = 𝑢 − 𝑣 ∈ 𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 + 𝐸𝑖−1𝑉 + 𝐸𝑖−2𝑉

as desired.

HS MEMO

𝐸𝑖𝑉 ∘ 𝐸𝑗𝑉 = Span(𝑢 ∘ 𝑣 ∣ 𝑢 ∈ 𝐸𝑖𝑉 , 𝑣 ∈ 𝐸𝑗𝑉 ).

By claim,

𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖𝑉 (23.8)
⊆ 𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖−1𝑉 + 𝐸1𝑉 ∘ 𝐸𝑖−1𝑉 (23.9)
⊆ 𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖−1 +𝐸1𝑉 (𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖−1)

(23.10)
⊆ 𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖−1 + (𝐸1𝑉 )𝑖. (23.11)

(𝑖𝑖) → (𝑖)
Claim 1. Pick 𝑖, 𝑗 (0 ≤ 𝑖, 𝑗 ≤ 𝐷) with 𝑗 > 𝑖 + 1. Then 𝑞𝑗1𝑖 = 0.
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Proof of Claim 1.

𝐸𝑗(𝐸1 ∘ 𝐸𝑗𝑉 ) ⊆ 𝐸𝑗(𝐸1𝑉 ∘ (𝐸0𝑉 + 𝐸1𝑉 + (𝐸1𝑉 )2 +⋯+ (𝐸1𝑉 )𝑖)) (23.12)
⊆ 𝐸𝑗(𝐸0𝑉 + 𝐸1𝑉 + (𝐸1𝑉 )2 +⋯+ (𝐸1𝑉 )𝑖+1) (23.13)
= 𝐸𝑗(𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖+1𝑉 ) (23.14)
= 0. (23.15)

So 𝑞𝑗1𝑖 = 0 by Lemma 20.4.

Claim 2. 𝑞𝑖+1
1𝑖 ≠ 0 (0 ≤ 𝑖 < 𝐷).

Proof of Claim 2.

𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖+1𝑉 (23.16)
= 𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖+1 (23.17)
= 𝐸0𝑉 + 𝐸1𝑉 ∘ (𝐸0𝑉 + 𝐸1𝑉 + ⋯+ (𝐸1𝑉 )𝑖) (23.18)
= 𝐸0𝑉 + 𝐸1𝑉 ∘ (𝐸0𝑉 + 𝐸1𝑉 + ⋯+𝐸𝑖𝑉 ) (23.19)
= 𝐸0𝑉 + 𝐸1𝑉 ∘ (𝐸0𝑉 + ⋯+𝐸𝑖𝑉 ). (23.20)

So,

𝐸𝑖+1𝑉 = 𝐸𝑖+1(𝐸1𝑉 ∘ (𝐸0𝑉 + ⋯+𝐸𝑖𝑉 )) (23.21)
= 𝐸𝑖+1(𝐸1𝑉 ∘ 𝐸𝑖𝑉 ) (23.22)

by Claim 1 and Lemma 20.4.

Hence, 𝑞𝑖+1
1𝑖 ≠ 0 by Lemma 20.4.

Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme with standard module 𝑉 .

Definition 23.1. A representation of 𝑌 is a pair (𝜌,𝐻), where 𝐻 is a non-zero
Hermitean space (with inner product ⟨ , ⟩) and 𝜌 ∶ 𝑋 → 𝐻 is a map satisfying
the following.

R1. 𝐻 = Span(𝜌(𝑥) ∣ 𝑥 ∈ 𝑋).
R2. ⟨𝜌(𝑥), 𝜌(𝑦)⟩ depends only on 𝑖 for which (𝑥, 𝑦) ∈ 𝑅𝑖 (𝑥, 𝑦 ∈ 𝑋).
R3. For every 𝑥 ∈ 𝑋 and for all 𝑖 (0 ≤ 𝑖 ≤ 𝐷),

∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦) ∈ Span(𝜌(𝑥)).

Above representation is nondegenerate if {𝜌(𝑥) ∣ 𝑥 ∈ 𝑋} are distinct.
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Example 23.1. 𝑌 = 𝐻(𝐷, 2), 𝑋 = {𝑎1 ⋯𝑎𝐷 ∣ 𝑎𝑖 ∈ {1,−1}, 1 ≤ 𝑖 ≤ 𝐷}. Let
𝐻 = ℂ𝐷 and ⟨ , ⟩ usual Hermitean dot product.

For a vertex 𝑥 = 𝑎1 ⋯𝑎𝐷 ∈ 𝑋, define

𝜌(𝑥) = 𝑎1 ⋯𝑎𝐷 ∈ 𝐻.

Then, R1− R3 hold.

HS MEMO

R1,R2 are obvious. For R3, we may assume that 𝑥 = 1⋯1. Restrict

∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦)

on the first coordinate. Then,

−1 appears (𝐷− 1
𝑖 − 1 ) times (23.23)

1 appears (𝐷− 1
𝑖 ) times. (23.24)

Hence,
∑

𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦) = ((𝐷− 1
𝑖 ) − (𝐷− 1

𝑖 − 1 ))𝜌(𝑥).

Let (𝜌,𝐻) be a representation of arbitrary commutative scheme 𝑌 . Set

𝐸 = (⟨𝜌(𝑥), 𝜌(𝑦)⟩)𝑥,𝑦∈𝑋
Gram matrix of the representation.

Definition 23.2. Representations (𝜌,𝐻), (𝜌′,𝐻′) of 𝑌 are equivalent, when-
ever, Gram matrices are related by

𝐸′ ∈ Span𝐸.

We do not distinguish between equivalent representations.

Note. Suppose (𝜌,𝐻) is a representation of a symmetric scheme 𝑌 . Pick
𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅𝑗.

Then (𝑦, 𝑥) ∈ 𝑅𝑗. So, by R2,

⟨𝜌(𝑥), 𝜌(𝑦)⟩ = ⟨𝜌(𝑦), 𝜌(𝑥)⟩ = ⟨𝜌(𝑥), 𝜌(𝑦)⟩,

since ⟨ , ⟩ is Hermitean.

Hence, the Gram matrix 𝐸 of 𝜌 is real symmetirc. Without loss of generality,
we can view 𝐻 as a real Euclidean space in this case.
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Lemma 23.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme and 𝑉 a
standard module.

Let 𝐸𝑗 be any primitive idempotent of 𝑌 .

(𝑖) (𝜌,𝐻) is a representation of 𝑌 , where 𝐻 = 𝐸𝑗𝑉 (with inner product inherited
from 𝑌 ).

𝜌 ∶ 𝑋 → 𝐻 (𝑥 ↦ 𝐸𝑗 ̂𝑥)
(i.e., 𝜌(𝑥) is the 𝑥-th column of 𝐸𝑗.)

(𝑖𝑖) ⟨𝜌(𝑥), 𝜌(𝑦)⟩ = |𝑋|−1𝑞𝑗(𝑖), if (𝑥, 𝑦) ∈ 𝑅𝑖, (𝑥, 𝑦 ∈ 𝑋).
(𝑖𝑖𝑖) For 0 ≤ 𝑖 ≤ 𝐷 and 𝑥, 𝑦 ∈ 𝑋,

∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦) = 𝑝𝑖(𝑗)𝜌(𝑥).

(𝑖𝑣) (𝜌,𝐻) is nondegenerate if and only if 𝑞𝑗(𝑖) ≠ 𝑞𝑗(0) for all 𝑖, (0 ≤ 𝑖 ≤ 𝐷).
(𝑣) Every representation of 𝑌 is equivalent to a representation of the above type
for some 𝑗 (0 ≤ 𝑗 ≤ 𝐷), and 𝑗 is unique.

Proof.

(𝑖) − (𝑖𝑖𝑖).
R1: Span(𝜌𝑋) is the column space of 𝐸𝑗 which is equal to 𝐻.

R2:

⟨𝜌(𝑥), 𝜌(𝑦)⟩ = ⟨𝐸𝑗 ̂𝑥, 𝐸𝑗 ̂𝑦⟩ (23.25)
= (𝐸𝑗 ̂𝑥)⊤𝐸𝑗 ̂𝑦 (23.26)

= ̂𝑥⊤𝐸𝑗
⊤𝐸𝑗 ̂𝑦 (23.27)

= ̂𝑥⊤𝐸𝑗 ̂𝑦 (23.28)
= (𝐸𝑗)𝑥𝑦. (23.29)

Note that 𝐸𝑗
⊤ = 𝐸𝑗 by Lemma 19.1.

Recall
𝐸𝑗 = |𝑋|−1(𝑞𝑗(0)𝐴0 +⋯+ 𝑞𝑗(𝐷)𝐴𝐷).

So,
(𝐸𝑗)𝑥𝑦 = |𝑋|−1𝑞𝑗(𝑖), where (𝑥, 𝑦) ∈ 𝑅𝑖.

R3: Recall
𝐴𝑖 = 𝑝𝑖(0)𝐸0 +⋯+ 𝑝𝑖(𝐷)𝐸𝐷.
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So, 𝐸𝑗𝐴𝑖 = 𝑝𝑖(𝑗)𝐸𝑗, and

𝑝𝑖(𝑗)𝜌(𝑥) = 𝑝𝑖(𝑗)𝐸𝑗 ̂𝑥 = 𝐸𝑗𝐴𝑖 ̂𝑥 = 𝐸𝑗 ∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

̂𝑦 = ∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦).

Note.
𝐴𝑖 ̂𝑥 = ∑

𝑦∈𝑋,(𝑥,𝑦)∈𝑅𝑖′

̂𝑦.

Pf.

𝑧 entry of LHS = (𝐴𝑖 ̂𝑥)𝑧 (23.30)
= ∑

𝑤∈𝑋
(𝐴𝑖)𝑧𝑤 ̂𝑥𝑤 (23.31)

= (𝐴𝑖)𝑧𝑥 (23.32)

= {1 if (𝑥, 𝑧) ∈ 𝑅𝑖′
0 else. (23.33)

𝑧 entry of RHS = ∑
𝑦∈𝑋,(𝑥,𝑦)∈𝑅𝑖′ ,𝑧=𝑦

1 (23.34)

= {1 if (𝑥, 𝑧) ∈ 𝑅𝑖′
0 else. (23.35)

(𝑖𝑣) By (𝑖𝑖),

‖𝜌(𝑥)‖2 = ⟨𝜌(𝑥), 𝜌(𝑦)⟩ (23.36)
= |𝑋|−1𝑞𝑗(0) (23.37)
= |𝑋|−1𝑚𝑗, (23.38)

as 𝑚𝑗 = dim𝐸𝑗𝑉 , and is independent of 𝑥 ∈ 𝑋.

Pick distinct 𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅𝑖 with 𝑖 ≠ 0.
Then,

𝜌(𝑥) = 𝜌(𝑦) ⇔ ⟨𝜌(𝑥), 𝜌(𝑦)⟩ = ‖𝜌(𝑥)‖2 = |𝑋|−1𝑞𝑗(0) (23.39)
⇔ |𝑋|−1𝑞𝑗(𝑖) = |𝑋|−1𝑞𝑗(0) (23.40)
⇔ 𝑞𝑗(𝑖) = 𝑞𝑗(0). (23.41)

Hence, we have (𝑖𝑣). To be continued.
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Balanced Conditions, I

Wednesday, March 23, 1993

No Class on Friday (another conference).

Proof of Lemma 23.1 continued. Let 𝐸𝑗 be a primitive idempotent, 𝐻 = 𝐸𝑗𝑉
and

𝜌 ∶ 𝑋 → 𝐻 (𝑥 ↦ 𝐸𝑗 ̂𝑥).

(𝑣) Every representation (𝜌,𝐻) of 𝑌 is equivalent to a representation of above
type, for some 𝑗 (0 ≤ 𝑗 ≤ 𝐷) and 𝑗 is unique.

Let 𝐸 ∶= (⟨𝜌(𝑥), 𝜌(𝑦))𝑥,𝑦∈𝑋.

By R2,

𝐸 =
𝐷
∑
𝑖=0

𝜎𝑖𝐴𝑖, some 𝜎0, 𝜎1,… , 𝜎𝐷 ∈ ℂ.

Hence, 𝐸 belongs to the Bose-Mesner algebra 𝑀 of 𝑌 .

We want to show that 𝐸 is a scalar multiple of a primitive idempotent.

Fix 𝑥 ∈ 𝑋 and fix 𝑖 (0 ≤ 𝑖 ≤ 𝐷).
By R3,

∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦) = 𝛼𝜌(𝑥), some 𝛼 ∈ ℂ. (24.1)

So,

𝑘𝑖𝜎𝑖 = ⟨ ∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦), 𝜌(𝑥)⟩ = ̄𝛼⟨𝜌(𝑥), 𝜌(𝑥)⟩ = ̄𝛼𝜎0.

Hence, 𝛼 is independent of 𝑥. In maatrix form (24.1) becomes

𝐸𝐴𝑖 ̂𝑥 = 𝛼𝐸 ̂𝑥.

149
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HS MEMO

𝐸𝑢 = 𝐸𝑣 ⇔ ⟨𝑧,𝐸𝑢⟩ = ⟨𝑧,𝐸𝑣⟩ for all 𝑧 ∈ 𝑋 ⇔ (𝐸𝑢)𝑧 = (𝐸𝑣)𝑧 for all 𝑧 ∈ 𝑋.

(𝐸𝐴𝑖 ̂𝑥)𝑧 = ⟨𝜌(𝑧), ∑
𝑦∈𝑋,(𝑦,𝑥)∈𝑅𝑖

𝜌(𝑦)⟩ (24.2)

= 𝛼⟨𝜌(𝑧), 𝜌(𝑥)⟩ (24.3)
= (𝛼𝐸 ̂𝑥)𝑧. (24.4)

Hence,
𝐸𝐴𝑖 ̂𝑥 = 𝛼𝐸 ̂𝑥.

Since 𝑥 is arbitrary,
𝐸𝐴𝑖 = 𝛼𝐸.

So,
𝐸𝐴𝑖 ∈ Span𝐸 and 𝐸𝑀 = Span𝐸.

We have 𝐸 ∈ Ej for unique 𝑗 (0 ≤ 𝑗 ≤ 𝐷).

HS MEMO

𝐸 = 𝜏0𝐸0 +⋯+ 𝜏𝐷𝐸𝐷, 𝜏𝑗 ∈ ℂ (0 ≤ 𝑗 ≤ 𝐷).
And, at least one of 𝜏𝑗 is nonzero, and

𝜏𝑗𝐸𝑗 = 𝐸𝐸𝑗 ∈ Span𝐸.

So,
𝜏𝑗𝐸𝑗 = 𝐸

as 𝐸0,… ,𝐸𝐷 are linearly independent.

Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a symmetric scheme, and let 𝐸 be a primitive
idempotent.

Definition 24.1. 𝑌 is 𝑄-polynomial with respect to 𝐸, if and only if 𝑌 is
𝑄-polynomial with respect to some ordering 𝐸0, 𝐸1,… ,𝐸𝐷 of primitive idempo-
tents, where 𝐸0 = |𝑋|−1𝐽 , and 𝐸1 = 𝐸.

Theorem 24.1. Assume 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) is 𝑃 -polynomial (i.e., (𝑋,𝑅1) is
distance-regular). Let 𝐸 be any primitive idempotent of 𝑌 . Let (𝜌,𝐻) be the
corresponding representation.

(𝑖) The following are equivalent.

(𝑖𝑎) 𝑌 is 𝑄-polyonimial with respect to 𝐸.
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(𝑖𝑏) (𝜌,𝐻) is nondegenerate and for all 𝑥, 𝑦 ∈ 𝑋, and for all 𝑖, 𝑗 (0 ≤ 𝑖, 𝑗 ≤ 𝐷),

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅𝑖,(𝑦,𝑧)∈𝑅𝑗

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅𝑗,(𝑦,𝑧′)∈𝑅𝑖

𝜌(𝑧′) ∈ Span(𝜌(𝑥) − 𝜌(𝑦)).

(𝑖𝑐) (𝜌,𝐻) is nondegenerate and for all 𝑥, 𝑦 ∈ 𝑋,

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) ∈ Span(𝜌(𝑥) − 𝜌(𝑦)).

(𝑖𝑖) Write

𝐸 = |𝑋|−1
𝐷
∑
𝑗=0

𝜃∗𝑗𝐴𝑗,

and suppose (𝑖𝑎) − (𝑖𝑐) hold. Then the coefficient in (𝑖𝑏) is

𝑝ℎ𝑖𝑗
𝜃∗𝑖 − 𝜃∗𝑗
𝜃∗0 − 𝜃∗ℎ

(1 ≤ ℎ ≤ 𝐷, 0 ≤ 𝑖, 𝑗 ≤ 𝐷).

Proof.

(𝑖𝑎) → (𝑖𝑏) Without loss of generality, assume 𝐸 ≡ 𝐸1, and 𝑌 is 𝑄-polynomial
with respect to 𝐸.

Then by Lemma 22.2, 𝜃∗0,… , 𝜃∗𝐷 are distinct. So 𝜃∗ℎ ≠ 𝜃∗0 for all ℎ ∈ {1, 2… ,𝐷},
and (𝜌,𝐻) is nondegenerate.
Fix 𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝐴∗

𝑖 ≡ 𝐴∗
𝑖 (𝑥), 𝐴∗ ≡ 𝐴∗

1.

Let 𝑀 be the Bose-Mesner algebra. Set

𝐿 = {𝑚𝐴∗𝑛 − 𝑛𝐴∗𝑚 ∣ 𝑚, 𝑛 ∈ 𝑀}.

Claim 1. dim𝐿 ≤ 𝐷.

Proof of Claim 1.

𝐿 = Span(𝐸𝑖𝐴∗𝐸𝑗 −𝐸𝑗𝐴∗𝐸𝑖 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝐷) (24.5)
= Span(𝐸𝑖𝐴∗𝐸𝑖+1 −𝐸𝑖+1𝐴∗𝐸𝑖 ∣ 0 ≤ 𝑖 ≤ 𝐷 − 1). (24.6)

Since 𝐸𝑖𝐴∗𝐸𝑗 = 0 if 𝑞1𝑖𝑗 = 0 by Lemma 20.2 and Lemma 20.3, and this occurs if
|𝑖 − 𝑗| > 1 by 𝑄-polynomial property.

Hence, dim𝐿 ≤ 𝐷.
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Claim 2. (𝑖) {𝐴∗𝐴ℎ −𝐴ℎ𝐴∗ ∣ 1 ≤ ℎ ≤ 𝐷} is a basis for 𝐿. In particular,

(𝑖𝑖) there exist 𝑟ℎ𝑖𝑗 ∈ ℂ (1 ≤ ℎ ≤ 𝐷, 0 ≤ 𝑖, 𝑗 ≤ 𝐷) such that

𝐴𝑖𝐴∗𝐴𝑗 −𝐴𝑗𝐴∗𝐴𝑖 =
𝐷
∑
ℎ=1

𝑟ℎ𝑖𝑗(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗).

Proof of Claim 2.

(𝑖) The column 𝑥 of 𝐴∗𝐴ℎ −𝐴ℎ𝐴∗ is a nonzero scalar 𝜃∗ℎ −𝜃∗0 times the column
𝑥 of 𝐴ℎ.

HS MEMO

((𝐴∗𝐴ℎ −𝐴ℎ𝐴∗) ̂𝑥)𝑦 = 𝐸𝑥𝑦(𝐴ℎ)𝑦𝑥 − (𝐴ℎ)𝑦𝑥𝐸𝑥𝑥 = (𝜃∗ℎ − 𝜃∗0)(𝐴ℎ)𝑦𝑧.

Also the column 𝑥 of 𝐴0, 𝐴1,… ,𝐴𝐷 are linearly independent.

Hence, the matrices given are linearly independent.

They are in 𝐿 by construction, so they form a basis for 𝐿 by Claim 1.

(𝑖𝑖) This is immediate since

𝐴𝑖𝐴∗𝐴𝑗 −𝐴𝑗𝐴∗𝐴𝑖 ∈ 𝐿, for all 𝑖, 𝑗.

Claim 3.
𝑟ℓ𝑖𝑗 = 𝑝ℓ𝑖𝑗 (

𝜃∗𝑖 − 𝜃∗𝑗
𝜃∗0 − 𝜃∗ℓ

) (1 ≤ ℓ ≤ 𝐷, 0 ≤ 𝑖, 𝑗 ≤ 𝐷).

Proof of Claim 3. Fix 𝑖, 𝑗,

𝐴𝑖𝐴∗𝐴𝑗 −𝐴𝑗𝐴∗𝐴𝑖 −
𝐷
∑
ℎ=1

𝑟ℎ𝑖𝑗(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗) = 0.

Pick ℓ (1 ≤ ℓ ≤ 𝐷). Pick 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅ℓ.

(𝐴𝑖𝐴∗𝐴𝑗)𝑥𝑦 = ∑
𝑧∈𝑋

(𝐴𝑖)𝑥𝑧(𝐴∗)𝑧𝑧(𝐴𝑗)𝑧𝑦 (24.7)

= ∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅𝑖,(𝑦,𝑧)∈𝑅𝑗

(𝐴∗)𝑧𝑧 (24.8)

= |𝑋|−1𝑝ℓ𝑖𝑗𝜃∗𝑖 . (24.9)

Similarly,
(𝐴𝑗𝐴∗𝐴𝑖)𝑥𝑦 = |𝑋|−1𝑝ℓ𝑖𝑗𝜃∗𝑗.
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(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗)𝑥𝑦 = (𝐴0𝐴∗𝐴ℎ −𝐴ℎ𝐴∗𝐴0)𝑥𝑦 (24.10)
= |𝑋|−1𝑝ℓ0ℎ(𝜃∗0 − 𝜃∗ℎ) (24.11)

= {0 if ℓ ≠ ℎ
|𝑋|−1(𝜃∗0 − 𝜃∗ℎ) if ℓ = ℎ. (24.12)

Hence,
𝐷
∑
ℎ=1

𝑟ℎ𝑖𝑗(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗)𝑥𝑦 = |𝑋|−1𝑟ℓ𝑖𝑗(𝜃∗0 − 𝜃∗ℓ).

Comparing terms, we have

𝑝ℓ𝑖𝑗(𝜃∗𝑖 − 𝜃∗𝑗) − 𝑟ℓ𝑖𝑗(𝜃∗0 − 𝜃∗ℓ) = 0.

Claim 4. For all ℎ (1 ≤ ℎ ≤ 𝐷), for all 𝑖, 𝑗 (0 ≤ 𝑖, 𝑗 ≤ 𝐷), for all 𝑤, 𝑦 ∈ 𝑋,
(𝑤, 𝑦) ∈ 𝑅ℎ,

∑
𝑧∈𝑋,(𝑤,𝑧)∈𝑅𝑖,(𝑦,𝑧)∈𝑅𝑗

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑤,𝑧′)∈𝑅𝑗,(𝑦,𝑧)∈𝑅𝑖

𝜌(𝑧′) − 𝑟ℎ𝑖𝑗(𝜌(𝑤) − 𝜌(𝑦)) = 0.

(24.13)

Proof of Claim 4. Set 𝐿 = ⟨LHS of (24.13), 𝜌(𝑥)⟩ It suffices to show that 𝐿 = 0.
Note that since 𝑥 is arbitrary, if LHS of (24.13) is zero.

𝐿 = ∑
𝑧∈𝑋,(𝑤,𝑧)∈𝑅𝑖,(𝑦,𝑧)∈𝑅𝑗

⟨𝜌(𝑧), 𝜌(𝑥)⟩ − ∑
𝑧′∈𝑋,(𝑤,𝑧′)∈𝑅𝑗,(𝑦,𝑧)∈𝑅𝑖

⟨𝜌(𝑧′), 𝜌(𝑥)⟩ (24.14)

− 𝑟ℎ𝑖𝑗⟨𝜌(𝑤) − 𝜌(𝑦), 𝜌(𝑥)⟩ (24.15)

= |𝑋|−1(𝐴𝑖𝐴∗𝐴𝑗)𝑤𝑦 − |𝑋|−1(𝐴𝑗𝐴∗𝐴𝑖)𝑤𝑦 − |𝑋|−1
𝐷
∑
ℓ=1

𝑟ℓ𝑖𝑗(𝐴∗𝐴ℓ −𝐴ℓ𝐴∗)𝑤𝑦

(24.16)
= |𝑋|−1times 𝑤𝑦 entry of a matrix known to be zero by Claim 2 (24.17)
= 0. (24.18)

Thus we have the claim.

HS MEMO

|𝑋|−1
𝐷
∑
ℓ=1

𝑟ℓ𝑖𝑗(𝐴∗𝐴ℓ −𝐴ℓ𝐴∗)𝑤𝑦 = |𝑋|−1𝑟ℎ𝑖𝑗(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗)𝑤𝑦 (24.19)

= 𝑟ℎ𝑖𝑗(⟨𝜌(𝑥), 𝜌(𝑤)⟩ − ⟨𝜌(𝑥), 𝜌(𝑦)⟩) (24.20)
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Chapter 25

Balanced Conditions, II

Monday, March 29, 1993

Proof of Theorem 24.1 continued.

(𝑖𝑏) → (𝑖𝑐) Obvious.

(𝑖𝑐) → (𝑖𝑎) Without loss of generality, we may assume 𝐷 ≥ 3, else trivial.

HS MEMO

The case 𝐷 = 2 should be treated somewhere, but the assumption 𝐷 ≥ 3 is not
used.

Fix 𝑤 ∈ 𝑋, and write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑤), 𝐴∗
𝑖 ≡ 𝐴∗

𝑖 (𝑤), 𝐴∗ ≡ 𝐴∗
1, and 𝐴𝑖, 𝑖-th distance

matrix. Set

𝐸 ≡ 𝐸1 = |𝑋|−1
𝐷
∑
𝑖=0

𝜃∗𝑖𝐴𝑖.

Since (𝜌,𝐻) is nondegenerate,

𝜃∗0 ≠ 𝜃∗ℎ for all ℎ ∈ {1, 2,… ,𝐷}

See Lemma 23.1 (𝑖𝑣).
Claim 1. Pick ℎ (1 ≤ ℎ ≤ 𝐷), and 𝑥, 𝑦 with (𝑥, 𝑦) ∈ 𝑅ℎ. Then

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) = 𝑟ℎ12(𝜌(𝑥) − 𝜌(𝑦)),

where
𝑟ℎ12 = 𝑝ℎ12

𝜃∗1 − 𝜃∗2
𝜃∗0 − 𝜃∗ℎ

.
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Proof of Claim 1. By our assumption,

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) = 𝛼(𝜌(𝑥) − 𝜌(𝑦)).

Hence,

|𝑋|−1𝑝ℎ12(𝜃∗1 − 𝜃∗2) = ⟨ ∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′), 𝜌(𝑥)⟩

(25.1)
= 𝛼⟨𝜌(𝑥) − 𝜌(𝑦), 𝜌(𝑥)⟩ (25.2)
= 𝛼|𝑋|−1(𝜃∗0 − 𝜃∗ℎ). (25.3)

We have
𝛼 = 𝑝ℎ12

𝜃∗1 − 𝜃∗2
𝜃∗0 − 𝜃∗ℎ

.

Claim 2. 𝐴1𝐴∗𝐴2 −𝐴2𝐴∗𝐴1 =
𝐷
∑
ℎ=1

𝑟ℎ12(𝐴∗𝐴ℎ −𝐴ℎ𝐴∗).

Proof of Claim 2. The 𝑥𝑦 entry of the LHS− RHS is

|𝑋|⟨ ∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) − 𝑟ℎ12(𝜌(𝑥) − 𝜌(𝑦)), 𝜌(𝑤)⟩ ,

where (𝑥, 𝑦) ∈ 𝑅ℎ, ℎ = 1, 2,… ,𝐷, and the 𝑥𝑦 entry of the LHS − RHS is 0 if
𝑥 = 𝑦.
But the vector on the left in the above inner product is 0 by Claim 1, so the
inner product is 0.
Thus, the 𝑥𝑦 entry of the LHS− RHS is always 0, and we have Claim 2.

Claim 3. 𝐴∗𝐴3 −𝐴3𝐴∗ ∈ Span(𝐴𝐴∗𝐴2 −𝐴2𝐴∗𝐴,𝐴∗𝐴2 −𝐴2𝐴∗, 𝐴∗𝐴−𝐴𝐴∗).
Proof of Claim 3. Since 𝑝ℎ12 = 0, if ℎ > 3, and 𝑝ℎ12 ≠ 0, if ℎ = 3, we have 𝑟ℎ12 = 0
if ℎ > 0, and 𝑟ℎ12 ≠ 0, if ℎ = 3. Note that 𝜃∗1 ≠ 𝜃∗2.
Now we are done by Claim 2.

Claim 4. There exist 𝛽, 𝛾, 𝛿 ∈ ℝ such that

0 = [𝐴,𝐴2𝐴∗ − 𝛽𝐴𝐴∗𝐴+𝐴∗𝐴2 − 𝛾(𝐴𝐴∗ +𝐴∗𝐴) − 𝛿𝐴∗] (25.4)
= 𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) − 𝛾(𝐴2𝐴∗ −𝐴∗𝐴2) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴).

(25.5)

Proof of Claim 4. There exists 𝑓𝑖 ∈ ℝ[𝜆], deg 𝑓𝑖 = 𝑖 such that 𝐴𝑖 = 𝑓𝑖(𝐴1).
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Writing 𝐴2, 𝐴3 as polynomials in 𝐴 in Claim 3 and simplifying, we find

𝐴3𝐴∗ −𝐴∗𝐴3 ∈ Span(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2, 𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴∗𝐴).

HS MEMO

Let 𝐴3 = 𝛽3𝐴3 + 𝛽2𝐴2 + 𝛽1𝐴 + 𝛽0𝐼 with 𝛽3 ≠ 0, and 𝐴2 = 𝛾2𝐴2 + 𝛾1𝐴 + 𝛾0𝐼 ,
with 𝛾2 ≠ 0. Then

𝐴∗𝐴3 −𝐴3𝐴∗ = 𝐴∗(𝛽3𝐴3 + 𝛽2𝐴2 + 𝛽1𝐴+ 𝛽0𝐼) − (𝛽3𝐴3 + 𝛽2𝐴2 + 𝛽1𝐴+ 𝛽0𝐼)𝐴∗.
(25.6)

𝐴3𝐴∗ −𝐴∗𝐴3 ∈ Span(𝐴∗𝐴3 −𝐴3𝐴∗, 𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴∗𝐴) (25.7)
⊆ Span(𝐴𝐴∗𝐴2 −𝐴2𝐴∗𝐴,𝐴∗𝐴2 −𝐴2𝐴∗, 𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴∗𝐴)

(25.8)
𝐴∗𝐴2 −𝐴2𝐴∗ = 𝐴∗(𝛾2𝐴2 + 𝛾1𝐴+ 𝛾0𝐼) − (𝛾2𝐴2 + 𝛾1𝐴+ 𝛾0𝐼)𝐴∗ (25.9)

𝐴𝐴∗𝐴2 −𝐴2𝐴∗𝐴 = 𝐴𝐴∗(𝛾2𝐴2 + 𝛾1𝐴+ 𝛾0𝐼) − (𝛾2𝐴2 + 𝛾1𝐴+ 𝛾0𝐼)𝐴∗𝐴
(25.10)

𝐴∗𝐴2 −𝐴2𝐴∗ ∈ Span(𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴𝐴∗) (25.11)
𝐴𝐴∗𝐴2 −𝐴2𝐴∗𝐴 ∈ Span(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2, 𝐴𝐴∗ −𝐴𝐴∗) (25.12)

𝐴3𝐴∗ −𝐴∗𝐴3 ∈ Span(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2, 𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴∗𝐴).
(25.13)

Hence, we can find 𝛿, 𝛾, 𝛿 satisfying

0 = 𝐴3𝐴∗−𝐴∗𝐴3−(𝛽+1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2)−𝛾(𝐴2𝐴∗−𝐴∗𝐴2)−𝛿(𝐴𝐴∗−𝐴∗𝐴).

On the other hand,

[𝐴,𝐴2𝐴∗ − 𝛽𝐴𝐴∗𝐴+𝐴∗𝐴2 − 𝛾(𝐴𝐴∗ +𝐴∗𝐴) − 𝛿𝐴∗] (25.14)
= 𝐴3𝐴∗ −𝐴2𝐴∗𝐴− 𝛽𝐴2𝐴∗𝐴+ 𝛽𝐴𝐴∗𝐴2 +𝐴𝐴∗𝐴2 −𝐴∗𝐴3 (25.15)

− 𝛾𝐴2𝐴∗ − 𝛾𝐴𝐴∗𝐴+ 𝛾𝐴𝐴∗𝐴+ 𝛾𝐴∗𝐴2 − 𝛿𝐴𝐴∗ + 𝛿𝐴∗𝐴 (25.16)
= 𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) − 𝛾(𝐴2𝐴∗ −𝐴∗𝐴2) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴).

(25.17)

Thus we have (𝑖) and (𝑖𝑖).
Define a diagram 𝐷𝐸 on nodes 0, 1,… ,𝐷.

Connect distinct nodes , by undirected arc if 𝑞1𝑖𝑗 ≠ 0. (Note 𝑞1𝑖𝑗 = 𝑞1𝑗𝑖).
Since 𝑞10𝑗 = 𝛿1𝑗, the 0-node is adjacent to the 1-node and no other node.

𝑌 is 𝑄-polynomial with respect to 𝐸 if and only if 𝐷𝐸 is a path.

Claim 5. 𝐷𝐸 is connected.

Proof of Claim 5. Suppose there exists Δ ⊆ {0, 1,… ,𝐷} such that 𝑖, 𝑗 not
connected for every 𝑖 ∈ Δ and 𝑗 ∈ {0, 1,… ,𝐷} � Δ.
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Set
𝑓 = ∑

𝑖∈Δ
𝐸𝑖.

Observe

𝑓𝐴∗ = ∑
𝑖∈Δ

𝐸𝑖𝐴∗ (
𝐷
∑
𝑗=0

𝐸𝑗) (25.18)

= ∑
𝑖∈Δ,𝑗∈Δ

𝐸𝑖𝐴∗𝐸𝑗 (since 𝐸𝑖𝐴∗𝐸𝑗 = 𝑂 if 𝑞1𝑖𝑗 = 0) (25.19)

= 𝑓𝐴∗𝑓. (25.20)

Also, 𝐴∗𝑓 = 𝑓𝐴∗𝑓 .
Hence, 𝑓 commutes with 𝐴∗.

But 𝑓 is an element of the Bose-Mesner algebra

𝑓 =
𝐷
∑
𝑖=0

𝛼𝑖𝐴𝑖 for some 𝛼0,… , 𝛼𝐷 ∈ ℂ.

We have

0 = 𝑓𝐴∗ −𝐴∗𝑓 =
𝐷
∑
𝑖=1

𝛼𝑖(𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖).

But {𝐴ℎ𝐴∗ − 𝐴∗𝐴ℎ ∣ 1 ≤ ℎ ≤ 𝐷} are linearly independent. (The column 𝑤 of
𝐴ℎ𝐴∗ −𝐴∗𝐴ℎ is 𝜃∗ℎ − 𝜃∗0 times the column 𝑤 of 𝐴ℎ.)

Hence, 𝛼1 = ⋯ = 𝛼𝐷 = 0, and 𝑓 = 𝛼0𝐼 . Since 𝑓2 = 𝑓 , 𝛼0 or 1.
If 𝛼0 = 0, 𝑓 = 𝑂 and Δ = ∅.
If 𝛼0 = 1, 𝑓 = 𝐼 and Δ = {0, 1,… ,𝐷}.
This proves Claim 5.

HS MEMO

Claim 5 proves the following in general.

Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a symmetric association scheme. Fix a vertex 𝑥 ∈ 𝑋,
and let

𝐸 = 1
|𝑋|

𝐷
∑
𝑗=0

𝜃∗𝑗𝐴𝑗 (𝜃∗𝑗 = 𝑞1(𝑗) if 𝐸 = 𝐸1)

be a primitive idempotent and 𝐸∗
𝑗 ≡ 𝐸∗

𝑗 (𝑥).

𝐴∗ =
𝐷
∑
𝑗=0

𝜃∗𝑗𝐸∗
𝑗 .
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If 𝜃0 = 𝜃∗ℎ, ℎ = 1,… ,𝐷, then the following hold.

(𝑖) {𝐴ℎ𝐴∗ −𝐴∗𝐴ℎ ∣ 1 ≤ ℎ ≤ 𝐷} are linearly independent.

(𝑖𝑖) The diagram 𝐷𝐸 on nodes 0, 1,… ,𝐷 defined by

𝑖 ∼ 𝑗 ⇔ 𝐸(𝐸𝑖 ∘ 𝐸𝑗) ≠ 𝑂
is connected.

(𝑖𝑖𝑖) 𝐶𝑀(𝐴∗) = {𝐿 ∈ 𝑀 ∣ 𝐿𝐴∗ = 𝐴∗𝐿} = Span(𝐼).
Proof.

(𝑖) The column 𝑥 of 𝐴ℎ𝐴∗ −𝐴∗(𝐴ℎ) is 𝜃∗0 − 𝜃∗ℎ times the column 𝑥 of 𝐴ℎ.

(𝑖𝑖𝑖) 0 = [
𝐷
∑
ℎ=0

𝛼ℎ𝐴ℎ, 𝐴∗] =
𝐷
∑
ℎ=1

𝛼ℎ(𝐴ℎ𝐴∗ −𝐴∗𝐴ℎ). Hence, 𝛼0 = ⋯ = 𝛼𝐷 = 0.

(𝑖𝑖) Δ is a connected component. Let 𝑓 = ∑𝑖∈Δ 𝐸𝑖, then 𝑓 ∈ 𝐶𝑀(𝐴∗).
Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤2) be a symmetric association scheme with 𝐷 = 2. Let

𝐸 = 1
|𝑋|

2
∑
𝑗=0

𝜃∗𝑗𝐴𝑗

be a primitive idempotent.

Suppose 𝜃∗0 ≠ 𝜃∗1, 𝜃∗2. Then 𝑌 is 𝑄-polynomial with respect to 𝐸.

Proof. By the previous lemma, 𝐷𝐸 is connected.

Note. It seems 𝜃∗1 ≠ 𝜃∗2 is necessary. Clarify the condition 𝜃∗1 = 𝜃∗2.
Terwilliger claims that 𝜃∗1 = 𝜃∗2 does not occur under the assumption (𝑖𝑐).
(March 7, 1995)
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Chapter 26

Representation Diagrams

Wednesday, March 31, 1993

Proof of Theorem 24.1 continued. Assume 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) is 𝑃 -
polynomial. Let 𝐸 be a primitive idempotent of 𝑌 such that the corresponding
representation (𝜌,𝐻) is nondegenerate.
Show for all 𝑥, 𝑦 ∈ 𝑋,

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) ∈ Span(𝜌(𝑥) − 𝜌(𝑦))

implies that 𝑌 is 𝑄-polynomial with respect to 𝐸.

Define a diagram 𝐷𝐸 on nodes 0, 1,… ,𝐷, for 𝑖 ≠ 𝑗,
𝑖 ⌢ 𝑗 ↔ 𝑞1𝑖𝑗 ≠ 0

by setting 𝐸 = 𝐸1.

We showed that 0 ⌢ 𝑗 ↔ 𝑗 = 1 (1 ≤ 𝑗 ≤ 𝐷) and 𝐷𝐸 is connected.

Now it is sufficient to show the following.

Claim 6. Let 𝑖 be a node in 𝐷𝐸. Then 𝑖 is adjacent to at most 2 arcs.

Proof of Claim 6. Suppose the node 𝑗 is adjacent to 𝑖 in 𝐷𝐸. By Claim 4,

0 = 𝐸𝑖(𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) − 𝛾(𝐴2𝐴∗ −𝐴∗𝐴) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴))𝐸𝑗
(26.1)

= 𝐸𝑖𝐴∗𝐸𝑗(𝜃3𝑖 − 𝜃3𝑗 − (𝛽 + 1)(𝜃2𝜃𝑗 − 𝜃𝑖𝜃2𝑗 ) − 𝛾(𝜃2𝑖 − 𝜃2𝑗 ) − 𝛿(𝜃𝑖 − 𝜃𝑗)) (26.2)
= 𝐸𝑖𝐴∗𝐴𝑗(𝜃𝑖 − 𝜃𝑗)𝑝(𝜃𝑖, 𝜃𝑗), (26.3)

where
𝑝(𝑠, 𝑡) = 𝑠2 − 𝛽𝑠𝑡 + 𝑡2 − 𝛾(𝑠 + 𝑡) − 𝛿.

161
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HS MEMO

(𝜃𝑖 − 𝜃𝑗)(𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑗 + 𝜃2𝑗 − 𝛾(𝜃𝑖 + 𝜃𝑗) − 𝛿) (26.4)
= 𝜃3𝑖 − 𝜃3𝑗 − (𝛽 + 1)(𝜃2𝜃𝑗 − 𝜃𝑖𝜃2𝑗 ) − 𝛾(𝜃2𝑖 − 𝜃2𝑗 ) − 𝛿(𝜃𝑖 − 𝜃𝑗) (26.5)

Since 𝑖 is adjacent to 𝑗, 𝑞1𝑖𝑗 ≠ 0 and

𝐸𝑖𝐴∗𝐸𝑗 ≠ 𝑂
by Lemma 20.3 (𝑖𝑖). Since 𝑌 is 𝑃 -polynomial,

𝜃𝑖 ≠ 𝜃𝑗 if 𝑖 ≠ 𝑗.
Hence 𝑝(𝜃𝑖, 𝜃𝑗) = 0. But 𝑝 is quadratic in 𝑡. So 𝑝(𝜃𝑖, 𝑡) = 0 has at most two
solutions for 𝜃𝑗.
Now 𝐷𝐸 is a pth, and Γ is 𝑄-polynomial with respect to 𝐸.

This proves Theorem 24.1.

Corollary 26.1. Assume 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) is 𝑃 -polynomial, and 𝑄-
polynomial with respect to a primitive idempotent

𝐸 = 1
|𝑋|

𝐷
∑
𝑖=0

𝜃∗𝑖𝐴𝑖.

Then,
𝛽 = 𝜃∗𝑖 − 𝜃∗𝑖+1 + 𝜃∗𝑖+2 − 𝜃∗𝑖+3

𝜃∗𝑖+1 − 𝜃∗𝑖+2
is independent of 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 3).

Proof. Fix 𝑖. Without loss of generality, 𝐷 ≥ 3, else vacuous.

Pick 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅3.

Let (𝜌,𝐻) be the representation for 𝐸.

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧)− ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′) = 𝑝312(𝜃∗1 − 𝜃∗2)
𝜃∗0 − 𝜃∗3

(𝜌(𝑥)−𝜌(𝑦)),

(26.6)
and 𝑝312 = 𝑐3.
Since 𝑝3𝑖,𝑖+3 ≠ 0, there exists 𝑤 ∈ 𝑋 such that (𝑥, 𝑤) ∈ 𝑅𝑖+3, (𝑦, 𝑤) ∈ 𝑅𝑖.

Take inner product of (26.6) with 𝜌(𝑤). We have

𝑃 3
12(𝑥, 𝑦) ⊆ 𝑃 𝑖+3

1,𝑖+2(𝑥, 𝑤) ∩ 𝑃 𝑖
2,𝑖+2(𝑦, 𝑤) (26.7)

𝑃 3
21(𝑥, 𝑦) ⊆ 𝑃 𝑖+3

2,𝑖+1(𝑥, 𝑤) ∩ 𝑃 𝑖
2,𝑖+1(𝑦, 𝑤). (26.8)
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Hence,

⟨ ∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝜌(𝑧) − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝜌(𝑧′), 𝜌(𝑤)⟩ = |𝑋|−1𝑐3(𝜃∗𝑖+2−𝜃∗𝑖+1),

⟨𝑐3(𝜃∗1 − 𝜃∗2)
𝜃∗0 − 𝜃∗3

(𝜌(𝑥) − 𝜌(𝑦)), 𝜌(𝑤)⟩ = 𝑐3(𝜃∗1 − 𝜃∗2)
𝜃∗0 − 𝜃∗3

|𝑋|−1(𝜃∗𝑖+3 − 𝜃∗𝑖+1).

We have,
𝜎 = 𝜃∗𝑖+1 − 𝜃∗𝑖+2

𝜃∗𝑖 − 𝜃∗𝑖+3
= 𝜃∗1 − 𝜃∗2

𝜃∗0 − 𝜃∗3
.

HS MEMO

Note that since 𝑌 is 𝑃 and 𝑄 with respect to 𝐴1 and 𝐸1, 𝜃∗0, 𝜃∗1,… , 𝜃∗𝐷,
𝜃0, 𝜃1,… , 𝜃𝐷 are all distinct.

So
𝛽 = 1

𝜎 − 1 = 𝜃∗𝑖 − 𝜃∗𝑖+1 + 𝜃∗𝑖+2 − 𝜃∗𝑖+3
𝜃∗𝑖+1 − 𝜃∗𝑖+2

= 𝜃∗0 − 𝜃∗1 + 𝜃∗2 − 𝜃∗3
𝜃∗1 − 𝜃∗2

.

We have the assertion.

Given the intersection number of a distance-regular graph Γ. The following two
lemmas give an efficient method to determine if Γ is 𝑄-polynomial with respect
to some primitive idempotent.

Lemma 26.1. Let Γ be a distance-regular graph of diameter 𝐷 ≥ 1. Pick
𝜃, 𝜃∗0, 𝜃∗1,… , 𝜃∗𝐷 ∈ ℝ such that 𝜃∗0 ≠ 0, and set

𝐸 = 1
|𝑋|

𝐷
∑
𝑖=0

𝜃∗𝑖𝐴𝑖.

(𝑖) The following are equivalent.

(𝑖𝑎) 𝜃 is an eigenvalue of Γ, and 𝐸 is a corresponding primitive idempotent.

(𝑖𝑏)

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎0 𝑏0 0 ⋯ ⋯ 0
𝑐1 𝑎1 𝑏1 0 ⋯ 0
0 𝑐2 𝑎2 𝑏2 ⋱ ⋮
⋯ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ 0 𝑐𝐷−1 𝑎𝐷−1 𝑏𝐷−1
0 ⋯ ⋯ 0 𝑐𝐷 𝑎𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜃∗0
𝜃∗1
⋮
⋮
⋮

𝜃∗𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝜃 ⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜃∗0
𝜃∗1
⋮
⋮
⋮

𝜃∗𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and 𝜃∗0 = rank𝐸.

(𝑖𝑖) Suppose (𝑖𝑎), (𝑖𝑏) hold. Then,
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𝜃∗1
𝜃∗0

,… , 𝜃
∗
𝐷
𝜃∗0

can be computed from 𝜃 using

𝜃∗𝑖
𝜃∗0

= 𝑝𝑖(𝜃)
𝑘𝑏1 ⋯𝑏𝑖−1

(1 ≤ 𝑖 ≤ 𝐷),

where 𝑝0 = 1, 𝑝1(𝜆) = 𝜆, and

𝜆𝑝𝑖(𝜆) = 𝑝𝑖+1(𝜆) + 𝑎𝑖𝑝𝑖(𝜆) + 𝑏𝑖−1𝑐𝑖𝑝𝑖−1(𝜆) (0 ≤ 𝑖 ≤ 𝐷).

Proof.

(𝑖) We have

(𝑖𝑎) ↔ (𝐴 − 𝜃𝐼)𝐸 = 0 and 𝐸2 = 𝐸 (26.9)

↔ 0 =
𝐷
∑
𝑖=0

(𝐴 − 𝜃𝐼)𝜃∗𝑖𝐴𝑖 and rank𝐸 = trace𝐸 = 𝜃∗0 (26.10)

=
𝐷
∑
𝑖=0

𝜃∗𝑖 (𝑐𝑖+1𝐴𝑖+1 + 𝑎𝑖𝐴𝑖 + 𝑏𝑖−1𝐴𝑖−1 − 𝜃𝐴𝑖) (26.11)

=
𝐷
∑
𝑗=0

𝐴𝑗(𝑐𝑗𝜃∗𝑗−1 + 𝑎𝑗𝜃∗𝑗 + 𝑏𝑗𝜃∗𝑗+1 − 𝜃𝜃∗𝑗) (26.12)

↔ 𝑐𝑗𝜃∗𝑗−1 + 𝑎𝑗𝜃∗𝑗 + 𝑏𝑗𝜃∗𝑗+1 = 𝜃𝜃∗𝑗 (0 ≤ 𝑗 ≤ 𝐷) and rank𝐸 = 𝜃∗0 (26.13)
↔ (𝑖𝑏). (26.14)

HS MEMO

The first ↔. → is clear.

←: By the first condition, 𝐴𝐸 = 𝜃𝐸. So 𝐸 is a scalar multiple of the primi-
tive idempotent corresponding to 𝜃. Hence, rank𝐸 = trace𝐸 implies 𝐸 is the
primitive idempotent.

(𝑖𝑖) We prove by induction on 𝑖.
𝑖 = 0 is trivial.

𝑖 = 1: Set 𝑗 = 0 above 𝑐0 = 0, 𝑎0 = 0, 𝑏0 = 𝑘. We have

𝑘𝜃∗1 = 𝜃𝜃∗0.

So
𝜃∗1
𝜃∗0

= 𝜃
𝑘 = 𝑝1(𝜃)

𝑘 .
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𝑖 ≥ 2: Set 𝑗 = 𝑖 − 1 above. We have

𝑐𝑖−2𝜃∗𝑖−2 + 𝑎𝑖−1𝜃∗𝑖−1 + 𝑏𝑖−1𝜃∗𝑖 = 𝜃𝜃∗𝑖−1.

So,

𝜃∗𝑖
𝜃∗0

= 𝜃𝜃∗𝑖−1 − 𝑎𝑖−1𝜃∗𝑖−1 − 𝑐𝑖−1𝜃∗𝑖−2
𝑏𝑖−1𝜃∗0

(26.15)

= ((𝜃 − 𝑎𝑖−1)
𝜃∗𝑖−1
𝜃∗0

− 𝑐𝑖−1
𝜃∗𝑖−2
𝜃∗0

) 1
𝑏𝑖−1

(26.16)

= ((𝜃 − 𝑎𝑖−1)
𝑝𝑖−1(𝜃)

𝑘𝑏1 ⋯𝑏𝑖−2
− 𝑐𝑖−1

𝑝𝑖−2(𝜃)
𝑘𝑏1 ⋯𝑏𝑖−3

) 1
𝑏𝑖−1

(26.17)

= 𝑝𝑖(𝜃)
𝑘𝑏1 ⋯𝑏𝑖−2𝑏𝑖−1

, (26.18)

as desired.
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Chapter 27

𝑃 -and 𝑄-Polynomial
Schemes

Friday, April 2, 1993

Theorem 27.1. Let Γ = (𝑋,𝐸) be a distance-regular graph of diameter 𝐷 ≥ 3.

Let 𝜃 denote an eigenvalue of Γ with associated primitive idempotent

𝐸 = 1
|𝑋|

𝐷
∑
𝑖=0

𝜃∗𝑖𝐴𝑖.

Then the following are equivalent.

(𝑖) Γ is 𝑄-polynomial with respect to 𝐸.

(𝑖𝑖) 𝜃∗0 ≠ 𝜃∗ℎ for all ℎ ∈ {1, 2,… ,𝐷} and for 𝑖 ∈ {3,… ,𝐷},

𝑐𝑖 (𝜃∗2 − 𝜃∗𝑖 −
(𝜃∗1 − 𝜃∗𝑖−1)2

𝜃∗0 − 𝜃∗𝑖
)+ 𝑏𝑖−1 (𝜃∗2 − 𝜃∗𝑖−1 −

(𝜃∗1 − 𝜃∗𝑖 )2
𝜃∗0 − 𝜃∗𝑖−1

) (27.1)

= (𝑘 − 𝜃)(𝜃∗1 + 𝜃∗2 − 𝜃∗𝑖−1 − 𝜃∗𝑖 ) − (𝜃 + 1)(𝜃∗0 − 𝜃∗2) (27.2)

(𝑖𝑖𝑖) 𝜃∗0 ≠ 𝜃∗ℎ for all ℎ ∈ {1, 2,… ,𝐷} and (27.2) holds for 𝑖 = 3.

HS MEMO

Note (27.2) is trivial for 𝑖 = 1, 2.
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𝑖 = 1:

LHS = (𝜃∗2 − 𝜃∗1 −
(𝜃∗1 − 𝜃∗0)2
𝜃∗0 − 𝜃∗1

)+ 𝑘(𝜃∗2 − 𝜃∗0) (27.3)

= 𝜃∗2 − 𝜃∗1 − 𝜃∗0 + 𝜃∗1 + 𝑘(𝜃∗2 − 𝜃∗0) (27.4)
= (𝑘 + 1)(𝜃∗2 − 𝜃∗0) (27.5)

RHS = (𝑘 − 𝜃)(𝜃∗1 + 𝜃∗2 − 𝜃∗0 − 𝜃∗1) − (𝜃 + 1)(𝜃∗0 − 𝜃∗2) (27.6)
= (𝑘 + 1)(𝜃∗2 − 𝜃∗0). (27.7)

𝑖 = 2:

LHS = 𝑏1 (𝜃∗2 − 𝜃∗1 −
(𝜃∗1 − 𝜃∗0)2
𝜃∗0 − 𝜃∗1

) (27.8)

= 𝑏1
(𝜃∗2 − 𝜃∗1)(𝜃∗0 − 𝜃∗1 − 𝜃∗2 + 𝜃∗1)

𝜃∗0 − 𝜃∗1
(27.9)

= 𝑏1
(𝜃∗2 − 𝜃∗1)(𝜃∗0 − 𝜃∗2)

𝜃∗0 − 𝜃∗1
(27.10)

RHS = −(𝜃 + 1)(𝜃∗0 − 𝜃∗2). (27.11)

Hence,

LHS = RHS ↔ 𝑏1
𝜃∗2 − 𝜃∗1
𝜃∗0 − 𝜃∗1

+ (𝜃 + 1) = 0 (27.12)

↔ 𝑏1(𝜃∗2 − 𝜃∗1) + (𝜃 + 1)(𝜃∗0 − 𝜃∗1) = 0. (27.13)

On the other hand,

𝑏1𝜃∗2 + 𝑎1𝜃∗1 + 𝑐1𝜃∗0 = 𝜃𝜃∗1 (27.14)
𝑏1𝜃∗1 + 𝑎1𝜃∗1 + 𝑐1𝜃∗1 = 𝑘𝜃∗1, (27.15)

as 𝜃𝜃∗0 = 𝑘𝜃∗1. We have

𝑏1(𝜃∗2 − 𝜃∗1) + (𝜃∗0 − 𝜃∗1) = 𝜃(𝜃∗1 − 𝜃∗0).

Proof. Immediate from the proof of Theorem 2.1 in ‘A new inequality for
distance-regular graphs’ (Terwilliger, 1995) and Theorem 24.1.

Note. Suppose (𝑖) − (𝑖𝑖𝑖) hold. In particular, 𝜃∗0, 𝜃∗1,… , 𝜃∗𝐷 are distinct. Then,

𝑐𝑖 + 𝑎𝑖 + 𝑏𝑖 = 𝑘 (0 ≤ 𝑖 ≤ 𝐷).

𝑐𝑖𝜃∗𝑖−1 + 𝑎𝑖𝜃∗𝑖 + 𝑏𝑖𝜃∗𝑖+1 = 𝜃𝜃∗𝑗 (0 ≤ 𝑖 ≤ 𝐷).
𝜃∗𝑖 − 𝜃∗𝑖+1 + 𝜃∗𝑖+2 − 𝜃∗𝑖−3

𝜃∗𝑖+1 − 𝜃∗𝑖+2
is independent of 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 3).
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𝑐𝑖 (𝜃∗2 − 𝜃∗𝑖 −
(𝜃∗1 − 𝜃∗𝑖−1)2

𝜃∗0 − 𝜃∗𝑖
)+ 𝑏𝑖−1 (𝜃∗2 − 𝜃∗𝑖−1 −

(𝜃∗1 − 𝜃∗𝑖 )2
𝜃∗0 − 𝜃∗𝑖−1

) (27.16)

= (𝑘 − 𝜃)(𝜃∗1 + 𝜃∗2 − 𝜃∗𝑖−1 − 𝜃∗𝑖 ) − (𝜃 + 1)(𝜃∗0 − 𝜃∗2). (27.17)

Furthermore, we can solve for 𝑐1,… , 𝑐𝐷, 𝑎1,… , 𝑎𝐷, 𝑏0, 𝑏1,… , 𝑏𝐷−1 in terms of
five free parameters.

In general, we can take the five parameters to be

𝐷, 𝑞, 𝑠∗, 𝑟1, 𝑟2
and get

𝑏𝑖 =
ℎ(1 − 𝑞𝑖−𝐷)(1 − 𝑠∗𝑞𝑖+1)(1 − 𝑟1𝑞𝑖+1)(1 − 𝑟2𝑞𝑖+1)

(1 − 𝑠∗𝑞2𝑖+1)(1 − 𝑠∗𝑞2𝑖+2) (0 ≤ 𝑖 ≤ 𝐷), (27.18)

𝑐𝑖 =
ℎ(1 − 𝑞𝑖)(1 − 𝑠∗𝑞𝐷+𝑖+1)(𝑟1 − 𝑠∗𝑞𝑖)(𝑟2 − 𝑠∗𝑞𝑖)

𝑠∗𝑞𝐷(1 − 𝑠∗𝑞2𝑖)(1 − 𝑠∗𝑞2𝑖+1) (0 ≤ 𝑖 ≤ 𝐷), (27.19)

𝑎𝑖 = 𝑏0 − 𝑐𝑖 − 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝐷), (27.20)

where ℎ variable is chosen so that 𝑐1 = 1.
(We must also consider limiting cases ℎ → 0, 𝑠∗ → 0, 𝑞∗ → ±1.)
See Theorem 2.1 in “The subconstituent algebra of an association scheme, I, II,
III, (Terwilliger, 1992), (Terwilliger, 1993a), (Terwilliger, 1993b).

Definition 27.1. Let Γ = (𝑋,𝐸) be a distance-regular graph of diameter𝐷 ≥ 3.
Choose 𝑞 ∈ ℝ � {0,−1}, set

[𝑖1] = 1 + 𝑞 + ⋯+ 𝑞𝑖−1 = {
𝑞𝑖−1
𝑞−1 𝑞 ≠ 1
𝑖 𝑞 = 1.

Definition 27.2. Γ has classical parameters if

𝑐𝑖 = [𝑖1](1 + 𝛼[𝑖 − 1
1 ]) (27.21)

𝑏𝑖 = ([𝐷1] − [𝑖1])(𝜎 − 𝛼[𝑖1]) (27.22)

for some 𝜎, 𝛼 ∈ ℝ.
(This happens for essentially all known families of distance-regular graphs with
unbounded diameter, and is essentially equivalent to 𝑠∗ = 0.)
Lemma 27.1. With above notation, suppose (27.21), (27.22) hold. Then,

(𝑖) 𝜃 = 𝑏1
𝑞 − 1 is an eigenvalue of Γ with 𝜃 ≠ 𝑘.

(𝑖𝑖) Let 𝐸 = |𝑋|−1 ∑𝐷
𝑖=0 𝜃∗𝑖𝐴𝑖 be associated primitive idempotent. Then
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𝜃∗𝑖
𝜃∗0

= 1 + (𝜃
𝑘 − 1)[𝑖1] 𝑞

1−𝑖 (0 ≤ 𝑖 ≤ 𝐷).

In particular, 𝜃∗𝑖 ≠ 𝜃∗0 for all 𝑖 ∈ {1, 2… ,𝐷}.

(𝑖𝑖𝑖) Γ is 𝑄-polynomial with respect to 𝐸.

Proof.

(𝑖), (𝑖𝑖). Need to check

𝑐𝑖𝜃∗𝑖−1 + 𝑎𝑖𝜃∗𝑖 + 𝑏𝑖𝜃∗𝑖+1 = 𝜃𝜃∗𝑖 (0 ≤ 𝑖 ≤ 𝐷),

where 𝑎𝑖 = 𝑘 − 𝑐𝑖 − 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝐷).

(equivalently: check

𝑐𝑖(𝜃∗𝑖−1 − 𝜃∗𝑖 ) + 𝑏𝑖(𝜃∗𝑖 − 𝜃∗𝑖+1) = (𝜃 − 𝑘)𝜃∗𝑖 (0 ≤ 𝑖 ≤ 𝐷), (27.23)

where 𝑐𝑖, 𝑏𝑖, 𝜃∗𝑖 , 𝜃 are as given.)

HS MEMO

𝜃 = 𝑏1
𝑞 − 1, 𝜃∗𝑖

𝜃∗0
= 1 + (𝜃

𝑘 − 1)[𝑖1] 𝑞
1−𝑖, 𝑏0 = [𝐷1]𝜎.

𝑖 = 0.
𝜃∗𝑖
𝜃∗0

= 𝜃
𝑘 , −𝑘(1 − 𝜃∗1

𝜃∗0
) = −𝑘(1 − 𝜃

𝑘) = 𝜃 − 𝑘.

𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗0

= (𝜃
𝑘 − 1)([𝑖 − 1

1 ] 𝑞2−𝑖 − [𝑖1] 𝑞
1−𝑖) = −(𝜃

𝑘 − 1) 𝑞1−𝑖.

𝜃 − 𝑘 = ([𝐷1] − 1) (𝜎 − 𝛼)/𝑞 − 1 − [𝐷1]𝜎 = [𝐷 − 1
1 ] (𝜎 − 𝛼) − 1 − [𝐷1]𝜎.
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(𝑐𝑖(𝜃∗𝑖−1 − 𝜃∗𝑖 ) + 𝑏𝑖(𝜃∗𝑖 − 𝜃∗𝑖+1) − (𝜃 − 𝑘)𝜃∗𝑖 )/𝜃∗0 (27.24)

= −[𝑖1](1 + 𝛼[𝑖 − 1
1 ])(𝜃

𝑘 − 1) 𝑞1−𝑖 +([𝐷1] − [𝑖1])(𝜎 − 𝛼[𝑖1])(𝜃
𝑘 − 1) 𝑞−𝑖

(27.25)

− (𝜃 − 𝑘)(1 + (𝜃
𝑘 − 1)[𝑖1] 𝑞

1−𝑖) (27.26)

= (𝜃
𝑘 − 1)(−[𝑖1](1 + 𝛼[𝑖 − 1

1 ]) 𝑞1−𝑖 + [𝐷− 𝑖
1 ](𝜎 − 𝛼[𝑖1]) (27.27)

−([𝐷1]𝜎 + ([𝐷 − 1
1 ] (𝜎 − 𝛼) − 1 − [𝐷1]𝜎)[𝑖1] 𝑞

1−𝑖)) (27.28)

= (𝜃
𝑘 − 1)(−[𝑖1] 𝑞

1−𝑖 − 𝛼([𝑖1] [
𝑖 − 1
1 ] 𝑞1−𝑖 + [𝐷− 𝑖

1 ] [𝑖1] − [𝐷 − 1
1 ] [𝑖1] 𝑞

1−𝑖)
(27.29)

+𝜎([𝐷 − 𝑖
1 ] − [𝐷1] − [𝐷 − 1

1 ] [𝑖1] 𝑞
1−𝑖 + [𝐷1] [

𝑖
1] 𝑞

1−𝑖)+ [𝑖1] 𝑞
1−𝑖)

(27.30)

Check 𝜃 ≠ 𝑘. Suppose 𝜃 = 𝑘. Then

𝑏1
𝑞 − 1 = 𝑘, and 𝑞 > 0.

By (27.21), (27.22),

𝑞𝑐𝑖 − 𝑏𝑖 − 𝑞(𝑞𝑐𝑖−1 − 𝑏𝑖−1) = (𝑘 − 𝜃)𝑞 (1 ≤ 𝑖 ≤ 𝐷) (27.31)
= 0. (27.32)

HS MEMO
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With the notation of Lemma 27.1, we have the above equality in general.

𝑞𝑐𝑖 − 𝑏𝑖 − 𝑞(𝑞𝑐𝑖−1 − 𝑏𝑖−1) (27.33)

= 𝑞 [𝑖1](1 + 𝛼[𝑖 − 1
1 ]) − ([𝐷1] − [𝑖1])(𝜎 − 𝛼[𝑖1]) (27.34)

− 𝑞(𝑞 [𝑖 − 1
1 ](1 + 𝛼[𝑖 − 2

1 ]) − ([𝐷1] − [𝑖 − 1
1 ])(𝜎 − 𝛼[𝑖 − 1

1 ]))
(27.35)

= (𝑞 [𝑖1] − 𝑞2 [𝑖 − 1
1 ]) (27.36)

+ 𝛼(𝑞 [𝑖1] [
𝑖 − 1
1 ] + [𝐷1] [

𝑖
1] − [𝑖1] [

𝑖
1] (27.37)

−𝑞2 [𝑖 − 1
1 ] [𝑖 − 2

1 ] − 𝑞 [𝐷1] [
𝑖 − 1
1 ] + 𝑞 [𝑖 − 1

1 ] [𝑖 − 1
1 ]) (27.38)

+ 𝜎(−[𝐷1] + [𝑖1] + 𝑞 [𝑖 − 1
1 ]) (27.39)

= 𝑞 + 𝛼(−[𝑖1] + [𝐷1] + 𝑞 [𝑖 − 1
1 ]) + 𝜎(𝑞𝐷 − 1 + 1) (27.40)

= 𝑞(1 + [𝐷 − 1
1 ]𝛼 + 𝑞𝐷−1𝜎) (27.41)

= 𝑞([𝐷1]𝜎 − [𝐷 − 1
1 ]𝜎 + [𝐷 − 1

1 ]𝛼 + 1) (27.42)

= 𝑞
⎛⎜⎜⎜⎜
⎝

𝑘 −
[𝐷1] − 1

𝑞 (𝜎 − 𝛼) + 1
⎞⎟⎟⎟⎟
⎠

(27.43)

= 𝑞(𝑘 − 𝜃). (27.44)

Hence,

𝑞𝑐𝑖 − 𝑏𝑖 = 𝑞(𝑞𝑐𝑖−1 − 𝑏𝑖−1) (1 ≤ 𝑖 ≤ 𝐷) (27.45)
= 𝑞𝑖(𝑞𝑐0 − 𝑏0) (27.46)
= −𝑞𝑖𝑘. (27.47)

If 𝑖 = 𝐷, 𝑞𝑐𝐷 = −𝑞𝐷𝑘, 𝑐𝐷 = −𝑞𝐷−1𝑘 < 0, a contradiction.

(𝑖𝑖𝑖) Check the equation (𝑖𝑖) of Theorem 27.1 holds for 𝑖 = 3.

HS MEMO
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𝜃∗0 ≠ 𝜃∗ℎ for all ℎ ∈ {1, 2,… ,𝐷} and

𝑐3 (𝜃∗2 − 𝜃∗3 −
(𝜃∗1 − 𝜃∗2)2
𝜃∗0 − 𝜃∗3

)− 𝑏2
(𝜃∗1 − 𝜃∗3)2
𝜃∗0 − 𝜃∗2

= (𝑘 − 𝜃)(𝜃∗1 − 𝜃∗3) − (𝜃 + 1)(𝜃∗0 − 𝜃∗2).

Pf.

LHS
𝜃∗0

= [31](1 + 𝛼[21])(1 − 𝜃
𝑘)

⎛⎜⎜⎜⎜
⎝

𝑞−2 − 𝑞−2

[31] 𝑞
−2

⎞⎟⎟⎟⎟
⎠

(27.48)

−([𝐷1] − [21])(𝜎 − 𝛼[21])(1 − 𝜃
𝑘)

([31] 𝑞
1−3 − 1)

2

[21] 𝑞
−1

(27.49)

= (1 − 𝜃
𝑘)((1 + 𝛼[21]) 𝑞−2 [21] − ([𝐷1] − [21])(𝜎 − 𝛼[21])[21] 𝑞

−3)
(27.50)

= (1 − 𝜃
𝑘)(𝑞−2 [21] + 𝛼(𝑞−2 [21] [

2
1] + 𝑞−1 [21] [

2
1] [

𝐷 − 2
1 ]) (27.51)

−𝑞−1 [21] [
𝐷 − 2

1 ]𝜎) (27.52)

RHS
𝜃∗0

= ([𝐷1]𝜎 − [𝐷 − 1
1 ] (𝜎 − 𝛼) + 1)(1 − 𝜃

𝑘)([31] 𝑞
−2 − 1) (27.53)

− [𝐷− 1
1 ] (𝜎 − 𝛼)(1 − 𝜃

𝑘)[21] 𝑞
−1 (27.54)

= (1 − 𝜃
𝑘)(𝑞−2 [21] + [21] 𝑞

−1𝜎(𝑞𝐷−2 − [𝐷− 1
1 ]) (27.55)

+[21] 𝑞
−2𝛼([𝐷 − 1

1 ] + 𝑞 [𝐷 − 1
1 ])) (27.56)

= (1 − 𝜃
𝑘)(𝑞−2 [21] − 𝜎𝑞−1 [21] [

𝐷 − 2
1 ] + 𝛼𝑞−2 [21] [

2
1] [

𝐷 − 1
1 ])

(27.57)

Example 27.1. 𝑄-polynomial distance-regular graphs with classical parame-
ters.

𝐷-cube: 𝑐𝑖 = 𝑖, 𝑏𝑖 = 𝐷− 𝑖
has classical parameters: (𝑞, 𝛼, 𝜎) = (1, 0, 1).
Johnson graph 𝐽(𝐷,𝑁) (𝑁 ≥ 2𝐷):
𝑐𝑖 = 𝑖2, 𝑏𝑖 = (𝐷−𝑖)(𝑁 −𝐷−𝑖) has classical parameters (𝑞, 𝛼, 𝜎) = (1, 1,𝑁 −𝐷).
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𝑞-analogue of Johnson graph 𝐽𝑞(𝐷,𝑁) (𝐷 ≥ 2𝐷):

𝑐𝑖 = (𝑞𝑖 − 1
𝑞 − 1 )

2
= [𝑖1]

2
, 𝑏𝑖 =

𝑞(𝑞𝐷 − 𝑞𝑖)(𝑞𝑁−𝐷 − 𝑞𝑖)
(𝑞 − 1)2

has classical parameters

(𝑞, 𝛼, 𝜎) = (𝑞, 𝑞, (𝑞𝑁−𝐷+1 − 1
𝑞 − 1 ) − 1) = (𝑞, 𝑞, [𝑁 −𝐷+ 1

1 ] − 1) .

HS MEMO

𝑏𝑖 = ([𝐷1] − [𝑖1])([𝑁 −𝐷+ 1
1 ] − 1 − 𝑞 [𝑖1]) (27.58)

= ([𝐷1] − [𝑖1])([𝑁 −𝐷+ 1
1 ] − [𝑖 + 1

1 ]) (27.59)

= 𝑞(𝑞𝐷 − 𝑞𝑖)(𝑞𝑁−𝐷 − 𝑞𝑖)
(𝑞 − 1)2 . (27.60)



Chapter 28

The First Eigenspace of a
𝑄-DRG

Monday, April 5, 1993

Lemma 28.1. Let Γ = (𝑋,𝐸) be distance-regular of diameter 𝐷 ≥ 3 with
standard module 𝑉 . Suppose Γ is 𝑄-polynomial with respect to a primitive
idempotent 𝐸1. Pick a vertex 𝑥 ∈ 𝑋. Then

𝐸1𝑉 = Span{𝐸1 ̂𝑦 ∣ 𝜕(𝑥, 𝑦) ≤ 2}.

In particular,
dim𝐸1𝑉 ≤ 1 + 𝑘1 + 𝑘2.

Proof. Let Δ = {𝐸1 ̂𝑦 ∣ 𝜕(𝑥, 𝑦) ≤ 2}.
𝐸1𝑉 ⊇ SpanΔ: clear.

𝐸1𝑉 ⊆ SpanΔ: Pick a vertex 𝑦 ∈ 𝑋. Show that 𝐸1 ̂𝑦 ∈ SpanΔ.

Induction on ℎ = 𝜕(𝑥, 𝑦).
Case ℎ ≤ 2.
𝐸1 ̂𝑦 ∈ SpanΔ follows from construction.

Case ℎ ≥ 3.
Pick a vertex 𝑥′ ∈ 𝑋 such that

𝜕(𝑥, 𝑥′) = ℎ − 3, 𝜕(𝑥′, 𝑦) = 3.

By Theorem 24.1.

∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝐸1 ̂𝑧 − ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝐸1 ̂𝑧′ = 𝑟312(𝐸1 ̂𝑥′ −𝐸1 ̂𝑦),
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𝑟312 = 𝑐3(𝜃∗1 − 𝜃∗2)
𝜃∗0 − 𝜃∗3

≠ 0.

So, 𝐸1 ̂𝑦 ∈ Span{𝑓, 𝑔, 𝐸1 ̂𝑥′}, where

𝑓 = ∑
𝑧∈𝑋,(𝑥,𝑧)∈𝑅1,(𝑦,𝑧)∈𝑅2

𝐸1 ̂𝑧, 𝑔 = ∑
𝑧′∈𝑋,(𝑥,𝑧′)∈𝑅2,(𝑦,𝑧′)∈𝑅1

𝐸1 ̂𝑧′.

Observe that each 𝑧 in the 𝑓-sum satisfies 𝜕(𝑥, 𝑧) = ℎ − 2.
So, by induction hypothesis

𝐸1 ̂𝑧 ∈ SpanΔ, or 𝑓 ∈ SpanΔ.

Observe that each 𝑧′ in the 𝑔-sum satisfies 𝜕(𝑥, 𝑧′) = ℎ − 1.
So by induction hypothesis

𝐸1 ̂𝑧′ ∈ SpanΔ, or 𝑔 ∈ SpanΔ.

Also 𝜕(𝑥, 𝑥′) = ℎ − 3 implies 𝐸1 ̂𝑥′ ∈ SpanΔ.

Therefore 𝐸1 ̂𝑦 ∈ SpanΔ.

Note. Let Γ, 𝐸1, 𝑥 be as in Lemma 28.1.

Assume 𝐷 ≥ 4.
Observe that there are many linear dependences among

{𝐸 ̂𝑦 ∣ 𝑦 ∈ Δ},

where Δ = {𝑦 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑦) ≤ 2}.
Take any 𝑦 ∈ 𝑋 such that 𝜕(𝑥, 𝑦) ≥ 4.
More than one choice for 𝑥′ in the proof of Lemma 28.1 implies

“more than one way to put 𝐸1 ̂𝑦 ∈ Span𝐸1Δ.”

Open Problem:

(𝑖) Give a precise description of the linear dependences among

{𝐸1 ̂𝑦 ∣ 𝑦 ∈ Δ}.

(𝑖𝑖) Find a subset Δ′ ⊆ Δ such that

{𝐸1 ̂𝑦 ∣ 𝑦 ∈ Δ′}
is a basis for 𝐸1𝑉 , (or find some other ‘nice’ basis for 𝐸1𝑉 ).
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Conjecture 28.1. Let Γ, 𝐸1, 𝑥 be as in Lemma 28.1. Set

𝑋 = {𝑦 ∈ 𝑋 ∣ 𝜕(𝑥, 𝑦) ≤ 2}, (28.1)
̃𝜕 = the restriction of the distance function 𝜕 to 𝑋. (28.2)

Then Γ is determined by 𝑋 and ̃𝜕.

(There should be some canonical way to reconstruct Γ from 𝑋 and ̃𝜕.)
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Chapter 29

Tridiagonal Pair 𝐴,𝐴∗

Wednesday, April 7, 1993

Introduction to Theorem 29.1

Let Γ = (𝑋,𝐸) be distance-regular with diameter 𝐷 ≥ 3.
Assume Γ is 𝑄-polynomial with respect to 𝐸1.

Fix a vertex 𝑥 ∈ 𝑋. Write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝐴∗
𝑖 ≡ 𝐴∗

𝑖 (𝑥), 𝐴∗ = 𝐴∗
1.

We know for ℎ, 𝑖, 𝑗 (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷),
𝐸∗

𝑖𝐴ℎ𝐸∗
𝑗 = 𝑂 ↔ 𝑝ℎ𝑖𝑗 = 0 (29.1)

𝐸𝑖𝐴∗
ℎ𝐸𝑗 = 𝑂 ↔ 𝑞ℎ𝑖𝑗 = 0. (29.2)

Also, for ℎ, 𝑖, 𝑗 (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷),
ℎ < |𝑖 − 𝑗| → 𝑝ℎ𝑖𝑗 = 0, 𝑞ℎ𝑖𝑗 = 0 (29.3)
ℎ = |𝑖 − 𝑗| → 𝑝ℎ𝑖𝑗 ≠ 0, 𝑞ℎ𝑖𝑗 ≠ 0. (29.4)

Some 𝐴ℎ (resp. 𝐴∗
ℎ) is a polynomial of degree exactly ℎ in 𝐴 (resp. 𝐴∗), it

follows, for ℎ, 𝑖, 𝑗 (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷),

𝐸∗
𝑖𝐴ℎ𝐸∗

𝑗 , 𝐸𝑖𝐴∗ℎ𝐸𝑗 {= 0 if ℎ < |𝑖 − 𝑗|,
≠ 0 if ℎ = |𝑖 − 𝑗|.

We saw that there exist 𝛽, 𝛾, 𝛿 ∈ ℝ such that

0 = [𝐴,𝐴2𝐴∗ − 𝛽𝐴𝐴∗𝐴+𝐴∗𝐴2 − 𝛾(𝐴𝐴∗ +𝐴∗𝐴) − 𝛿𝐴∗].
In fact, there exist 𝛽, 𝛾∗, 𝛿∗ ∈ ℝ such that

0 = [𝐴∗, 𝐴∗2𝐴− 𝛽𝐴∗𝐴𝐴∗ +𝐴𝐴∗2 − 𝛾∗(𝐴∗𝐴+𝐴𝐴∗) − 𝛿∗𝐴]
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as well as we will now show.

Let 𝐾 denote any field. Let 𝑉 denote any vector space over 𝐾 of finite positive
dimension. Let End𝐾(𝑉 ) denote the 𝐾-algebra of all 𝐾-linear transformations
𝑉 → 𝑉 .

Theorem 29.1. Given semi-simple elements 𝐴,𝐴∗ ∈ End𝐾(𝑉 ), suppose

𝐸𝑖(𝐴∗)ℎ𝐸𝑗 {
= 0 if ℎ < |𝑖 − 𝑗|,
≠ 0 if ℎ = |𝑖 − 𝑗|. (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝐷) (29.5)

𝐸∗
𝑖𝐴ℎ𝐸∗

𝑗 {
= 0 if ℎ < |𝑖 − 𝑗|,
≠ 0 if ℎ = |𝑖 − 𝑗|. (0 ≤ ℎ, 𝑖, 𝑗 ≤ 𝑅) (29.6)

for some ordering 𝐸0, 𝐸1,… ,𝐸𝐷 of the primitive idempotents for 𝐴, and some
ordering 𝐸∗

0, 𝐸∗
1,… ,𝐸∗

𝑅 of primitive idempotents for 𝐴∗. Then

(𝑖) 𝑅 = 𝐷.

(𝑖𝑖) There exist 𝛽, 𝛾, 𝛾∗, 𝛿, 𝛿∗ ∈ 𝕂 such that

0 = [𝐴,𝐴2𝐴∗ − 𝛽𝐴𝐴∗𝐴+𝐴∗𝐴2 − 𝛾(𝐴𝐴∗ +𝐴∗𝐴) − 𝛿𝐴∗] (29.7)
= 𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) (29.8)

− 𝛾(𝐴2𝐴∗ −𝐴∗𝐴2) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴) (29.9)
0 = [𝐴∗, 𝐴∗2𝐴− 𝛽𝐴∗𝐴𝐴∗ +𝐴𝐴∗2 − 𝛾∗(𝐴∗𝐴+𝐴𝐴∗) − 𝛿∗𝐴] (29.10)
= 𝐴∗3𝐴−𝐴𝐴∗3 − (𝛽 + 1)(𝐴∗2𝐴𝐴∗ −𝐴∗𝐴𝐴∗2) (29.11)

− 𝛾∗(𝐴∗2𝐴−𝐴𝐴∗2) − 𝛿∗(𝐴∗𝐴−𝐴𝐴∗). (29.12)

(𝑖𝑖𝑖) Let 𝜃𝑖 (resp. 𝜃∗𝑖 ) denote the eigenvalue of 𝐴 (resp. 𝐴∗) associated with 𝐸𝑖
(resp. 𝐸∗

𝑖 ). Then,

𝛽 = 𝜃𝑖 − 𝜃𝑖+1 + 𝜃𝑖+2 − 𝜃𝑖+3
𝜃𝑖+1 − 𝜃𝑖+2

(0 ≤ 𝑖 ≤ 𝐷 − 3) (29.13)

= 𝜃∗𝑖 − 𝜃∗𝑖+1 + 𝜃∗𝑖+2 − 𝜃∗𝑖+3
𝜃∗𝑖+1 − 𝜃∗𝑖+2

(0 ≤ 𝑖 ≤ 𝐷 − 3) (29.14)

𝛾 = 𝜃𝑖 − 𝛽𝜃𝑖+1 + 𝜃𝑖+2 (0 ≤ 𝑖 ≤ 𝐷 − 2) (29.15)
𝛾∗ = 𝜃∗𝑖 − 𝛽𝜃∗𝑖+1 + 𝜃∗𝑖+2 (0 ≤ 𝑖 ≤ 𝐷 − 2) (29.16)
𝛿 = 𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑖+1 + 𝜃2𝑖+1 − 𝛾(𝜃𝑖 + 𝜃𝑖+1) (0 ≤ 𝑖 ≤ 𝐷 − 1) (29.17)
𝛿∗ = 𝜃∗2𝑖 − 𝛽𝜃∗𝑖𝜃∗𝑖+1 + 𝜃∗2𝑖+1 − 𝛾∗(𝜃∗𝑖 + 𝜃∗𝑖+1) (0 ≤ 𝑖 ≤ 𝐷 − 1) (29.18)

In particular, 𝛽, 𝛾, 𝛾∗, 𝛿, 𝛿∗ are uniquely determined by 𝐴, 𝐴∗ and the above
ordering of their primitive idempotents, whenever 𝐷 ≥ 3.
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Proof.

(𝑖) By symmetry, it suffices to show 𝐷 ≥ 𝑅. Suppose 𝑅 > 𝐷.

Since 𝐴 is semisimple with exactly 𝐷 + 1 distinct eigenvalues, the minimal
polynomial of 𝐴 has degree 𝐷+ 1.
Since 𝑅 ≥ 𝐷+ 1,

𝐴𝑅 ∈ Span{𝐴𝑗 ∣ 0 ≤ 𝑗 ≤ 𝐷}.
Multiplying each term on the left by 𝐸∗

𝑅 and on the right by 𝐸∗
0, we find

𝐸∗
𝑅𝐴𝑅𝐸∗

0 ∈ Span{𝐸∗
𝑅𝐴𝑗𝐸∗

0 ∣ 0 ≤ 𝑗 ≤ 𝐷}. (29.19)

But by (29.6), the left side of (29.19) is nonzero and the right side of (29.19) is
0, a contradiction.

Hence 𝐷 ≥ 𝑅.

(𝑖𝑖), (𝑖𝑖𝑖)
Recalling the definitions, we have

𝐴 =
𝐷
∑
𝑖=0

𝜃𝑖𝐸𝑖, (29.20)

𝐴∗ =
𝐷
∑
𝑖=0

𝜃∗𝑖𝐸∗
𝑖 , (29.21)

𝐴𝐸𝑖 = 𝐸𝑖𝐴 = 𝜃𝑖𝐸𝑖 (0 ≤ 𝑖 ≤ 𝐷), (29.22)
𝐴∗𝐸∗

𝑖 = 𝐸∗
𝑖𝐴∗ = 𝜃∗𝑖𝐸∗

𝑖 (0 ≤ 𝑖 ≤ 𝐷). (29.23)

Claim 1. For all integers 𝑖, 𝑗, 𝑘, ℓ (0 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ 𝐷) such that 𝑗 + 𝑘 ≤ 𝑖 − ℓ,

𝐸∗
𝑖𝐴𝑗𝐴∗𝐴𝑘𝐸∗

ℓ = {𝜃∗ℓ+𝑘𝐸∗
𝑖𝐴𝑗+𝑘𝐸∗

ℓ if 𝑗 + 𝑘 = 𝑖 − 𝑙,
𝑂 if 𝑗 + 𝑘 < 𝑖 − ℓ. (29.24)

Proof of Claim 1. The product (29.24) eqia;s

𝐸∗
𝑖𝐴𝑗 (

𝐷
∑
ℎ=0

𝜃∗ℎ𝐸∗
ℎ)𝐴𝑘𝐸∗

ℓ =
𝐷
∑
ℎ=0

𝜃∗ℎ𝐸∗
𝑖𝐴𝑗𝐸∗

ℎ𝐴𝑘𝐸∗
ℓ .

Now pick any ℎ (0 ≤ ℎ ≤ 𝐷), where

𝐸∗
𝑖𝐴𝑗𝐸∗

ℎ𝐴𝑘𝐸∗
ℓ ≠ 𝑂.

Then by (29.6), 𝑗 ≥ |𝑖 − ℎ|, otherwise

𝐸∗
𝑖𝐴𝑗𝐸∗

ℎ = 𝑂
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and by (29.5), 𝑘 ≥ |ℎ − ℓ| otherwise

𝐸∗
ℎ𝐴𝑘𝐸∗

ℓ = 𝑂.

Hence,
𝑗 + 𝑘 ≥ |𝑖 − ℎ| + |ℎ − ℓ| ≥ |𝑖 − ℓ| ≥ 𝑖 − ℓ.

Now if 𝑗 + 𝑘 < 𝑖 − ℓ, we see there is no such ℎ, so (29.24) holds.

(Pf. Suppose 𝑖 = 𝑗 + 𝑘 + ℓ with 0 ≤ 𝑖, 𝑗, 𝑘, ℓ, ℎ ≤ 𝐷.

Then 𝑖 ≥ 𝑗, 𝑘, ℓ. Since 𝑘 = |ℎ − ℓ|, if ℎ ≠ ℓ + 𝑘, ℎ = ℓ − 𝑘 and 𝑗 − 𝑖 − ℎ,
ℓ − ℎ + 𝑖 − ℎ = 𝑖 − ℓ implies ℎ = ℓ, 𝑘 = 0 and ℎ = ℓ + 𝑘.)
This proves Claim 1.

Let 𝑀 denote the subalgebra of End𝐾(𝑉 ) generated by 𝐴. Observe that 𝑀 has
a basis 𝐸0,… ,𝐸𝐷 as a vector space over 𝐾. Set

𝐿 ∶= Span{𝑚𝐴∗𝑚− 𝑛𝐴∗𝑚 ∣ 𝑚, 𝑛 ∈ 𝑀}.

Claim 2. dim𝐿 ≤ 𝐷.

Proof of Claim 2. Since 𝐸0,… ,𝐸𝐷 span 𝑀 ,

𝐿 = Span{𝐸𝑖𝐴∗𝐸𝑗 −𝐸𝑗𝐴∗𝐸𝑖 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝐷} (29.25)
= Span{𝐸𝑗−1𝐴∗𝐸𝑗 −𝐸𝑗𝐴∗𝐸𝑗−1 ∣ 1 ≤ 𝑗 ≤ 𝐷} (29.26)

by (29.5).

In particular, 𝐿 has a spanning set of order 𝐷.

So, Claim 2 holds.

Claim 3. {𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖 ∣ 1 ≤ 𝑖 ≤ 𝐷} is a basis for 𝐿.
Proof of Claim 3. Since

𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖 = 𝐴𝑖𝐴∗𝐼 − 𝐼𝐴∗𝐴𝑖

is contained in 𝐿 (1 ≤ 𝑖 ≤ 𝐷), and since dim𝐿 ≤ 𝐷, it suffices to show the
given elements are linearly independent.

Suppose they are dependent. Then there exists an integer 𝑖 (1 ≤ 𝑖 ≤ 𝐷) such
that

𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖 ∈ Span(𝐴𝑗𝐴∗ −𝐴∗𝐴𝑗 ∣ 1 ≤ 𝑗 < 𝑖). (29.27)
Multiplying each term in (29.27) on the left by 𝐸∗

𝑖 , and on the left by 𝐸∗
0, and

simplifying using

𝐸∗
𝑖 (𝐴ℓ𝐴∗ −𝐴∗𝐴ℓ)𝐸∗

0 = (𝜃∗0 − 𝜃∗𝑖 )𝐸∗
𝑖𝐴ℓ𝐸∗

0,

we find
𝐸∗

𝑖𝐴ℓ𝐸∗
0 ∈ Span(𝐸∗

𝑖𝐴𝑗𝐸∗
0 ∣ 1 ≤ 𝑗 < 𝑖). (29.28)
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But the left side of (29.28) is nonzero.

A contradiction.

Since 𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2 is contained in 𝐿, we find by Claim 2,

𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2 =
𝐷
∑
𝑖=1

𝛼𝑖(𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖) (29.29)

for some 𝛼0,… , 𝛼𝐷 ∈ 𝐾.

Claim 4. 𝛼𝑖 = 0 (3 < 𝑖 ≤ 𝐷).
Proof of Claim 4. Suppose not, and set

𝑡 = max{𝑖 ∣ 3 < 𝑖 ≤ 𝐷, 𝛼𝑖 ≠ 0}.

Then by (29.29), and Claim 1,

0 = 𝐸∗
𝑡 (𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2 −

𝐷
∑
𝑖=1

𝛼𝑖(𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖))𝐸∗
0 (29.30)

= 𝛼𝑡(𝜃∗𝑡 − 𝜃∗0)𝐸∗
𝑡𝐴𝑡𝐸∗

0 (29.31)
≠ 𝑂. (29.32)

(Since 𝛼𝑖 = 0 if 𝑖 > 𝑡,

𝐸∗
𝑡𝐴2𝐴∗𝐴𝐸∗

0 = 𝐸∗
𝑡𝐴𝐴∗𝐴2𝐸∗

0 = 𝑂 (as 2 + 1 < 𝑡 − 0) (29.33)
𝐸∗

𝑡𝐴𝑖𝐴∗𝐸∗
0 = 𝐸∗

𝑡𝐴∗𝐴𝑖𝐸∗
0 = 𝑂 (29.34)

𝐸∗
𝑡𝐴𝑡𝐴∗𝐸∗

0 = 𝜃∗0𝐸∗
𝑡𝐴𝑡𝐸∗

0, (29.35)
𝐸∗

𝑡𝐴∗𝐴𝑡𝐸∗
0 = 𝜃∗𝑡𝐸∗

𝑡𝐴∗𝐴𝑡𝐸∗
0.) (29.36)

(29.37)

A contradiction. This proves Claim 4.

Claim 5. Suppose 𝐷 ≥ 3. Then

𝛼3 = 𝜃∗𝑖+1 − 𝜃∗𝑖+2
𝜃∗𝑖 − 𝜃∗𝑖+3

for all 𝑖, (0 ≤ 𝑖 ≤ 𝐷 − 3). (29.38)

In particular, 𝛼 ≠ 0.
Proof of Claim 5. Fix and integer 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 3). Then by (29.24) and
(29.29),

𝑂 = 𝐸∗
𝑖+3 (𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2 −

3
∑
𝑗=1

𝛼𝑗(𝐴𝑖𝐴∗ −𝐴∗𝐴𝑖))𝐸∗
𝑖 (29.39)

= (𝜃∗𝑖+1 − 𝜃∗𝑖+2 − 𝛼3(𝜃∗𝑖 − 𝜃∗𝑖+3))𝐸∗
𝑖+3𝐴3𝐸∗

𝑖 . (29.40)
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But 𝐸∗
𝑖+3𝐴3𝐸∗

𝑖 ≠ 𝑂 by (29.6), so (29.38) holds.

This proves Claim 5.

Claim 6. Lines (29.7), (29.9), (29.14) hold.

Proof of Claim 6. First suppose 𝐷 ≥ 3. Then by (29.29), Claims 4, and 5,

𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2 = 𝛼3(𝐴3𝐴∗ −𝐴∗𝐴3) + 𝛼2(𝐴2𝐴∗ −𝐴∗𝐴2) + 𝛼1(𝐴𝐴∗ −𝐴∗𝐴),
(29.41)

where 𝛼3 ≠ 0. Hence

𝐴3𝐴∗−𝐴∗𝐴3− 1
𝛼3

(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2)+ 𝛼2
𝛼3

(𝐴2𝐴∗−𝐴∗𝐴2)+ 𝛼1
𝛼3

(𝐴𝐴∗−𝐴∗𝐴) = 𝑂.

Now (29.9) is immediate, where

𝛽 = 1
𝛼3

− 1, (29.42)

𝛾 = −𝛼2
𝛼3

, (29.43)

𝛿 = −𝛼1
𝛼3

. (29.44)

The line (29.7) follows from the definition of [ , ].
The line (29.14) is immediate from (29.38) and (29.42).

Now suppose 𝐷 < 3. Then the line (29.14) is vacuously true, so consider (29.9).

Let 𝛼3 denote any nonzoro element of 𝐾.

Then 𝐴2𝐴∗ −𝐴∗𝐴2, 𝐴𝐴∗ −𝐴∗𝐴 certainly span 𝐿 by Claim 3.

So, (29.41) holds for appropriate 𝛼1 and 𝛼2 ∈ 𝐾.

Now, (29.9) holds, where 𝛽, 𝛾, 𝛿 are given by (29.42), (29.43), (29.44).

Claim 7. Lines (29.13), (29.15), (29.17) hold.

Proof of Claim 7. Pick an integer 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 1).
By (29.9), we have

𝑂 = 𝐸𝑖(𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) − 𝛾(𝐴2𝐴∗ −𝐴∗𝐴2) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴))𝐸𝑖+1
(29.45)

= 𝐸𝑖𝐴∗𝐸𝑖+1(𝜃3𝑖 − 𝜃3𝑖+1 − (𝛽 + 1)(𝜃∗𝑖𝜃𝑖+1 − 𝜃𝑖𝜃2𝑖+1) − 𝛾(𝜃2𝑖 − 𝜃2𝑖+1) − 𝛿(𝜃𝑖 − 𝜃𝑖+1))
(29.46)

= 𝐸𝑖𝐴∗𝐸𝑖+1(𝜃𝑖 − 𝜃𝑖+1)(𝜃2𝑖 + 𝜃𝑖𝜃𝑖+1 + 𝜃2𝑖+1 − (𝛽 + 1)𝜃𝑖𝜃𝑖+1 − 𝛾(𝜃𝑖 + 𝜃𝑖+1) − 𝛿)
(29.47)

= 𝐸𝑖𝐴∗𝐸𝑖+1(𝜃𝑖 − 𝜃𝑖+1)(𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑖+1 + 𝜃2𝑖+1 − 𝛾(𝜃𝑖 + 𝜃𝑖+1) − 𝛿). (29.48)
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But 𝐸𝑖𝐴∗𝐸𝑖+1 ≠ 𝑂 by (29.5), and of course, 𝜃𝑖 ≠ 𝜃𝑖+1, so

0 = 𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑖+1 + 𝜃2𝑖+1 − 𝛾(𝜃𝑖 + 𝜃𝑖+1) − 𝛿.

This proves (29.17).

To obtain (29.15), pick any integer 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 2). Then by (29.17),

0 = 𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑖+1 + 𝜃2𝑖+1 − 𝛾(𝜃𝑖 + 𝜃𝑖+1) − 𝛿 (29.49)
− (𝜃2𝑖+1 − 𝛽𝜃𝑖+1𝜃𝑖+2 + 𝜃2𝑖+2 − 𝛾(𝜃𝑖+1 + 𝜃𝑖+2) − 𝛿) (29.50)

= 𝜃2𝑖 − 𝛽𝜃𝑖𝜃𝑖+1 − 𝛾𝜃𝑖 + 𝛽𝜃𝑖+1𝜃𝑖+2 − 𝜃𝑖+2
2 + 𝛾𝜃𝑖+2 (29.51)

= (𝜃𝑖 − 𝜃𝑖+2)(𝜃𝑖 − 𝛽𝜃𝑖+1 + 𝜃𝑖+2 − 𝛾). (29.52)

So 0 = 𝜃𝑖 − 𝛽𝜃𝑖+1 + 𝜃𝑖+2 − 𝛾.
This gives (29.15).

To see (29.13), pick an integer 𝑖 (0 ≤ 𝑖 ≤ 𝐷 − 3).
Then by (29.15),

0 = (𝜃𝑖 − 𝛽𝜃𝑖+1 + 𝜃𝑖+2 − 𝛾) − (𝜃𝑖+1 − 𝛽𝜃𝑖+2 + 𝜃𝑖+3 − 𝛾) (29.53)
= 𝜃𝑖 − (𝛽 + 1)𝜃𝑖+1 + (𝛽 + 1)𝜃𝑖+2 − 𝜃𝑖+3. (29.54)

We have
𝛽 = 𝜃𝑖 − 𝜃𝑖+3

𝜃𝑖+1 − 𝜃𝑖+2
− 1 = 𝜃𝑖 − 𝜃𝑖+1 + 𝜃𝑖+2 − 𝜃𝑖+3

𝜃𝑖+1 − 𝜃𝑖+2
,

as desired.

This proves Claim 7.

We have now proved (29.7), (29.9), (29.13), (29.14), (29.15), (29.17).

Interchanging the roles of 𝐴 and 𝐴∗, we obtain (29.10), (29.12), (29.16), (29.18).
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Chapter 30

𝑅,𝐹 , 𝐿 Matrices

Monday, April 12, 1993

Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3 with standard module 𝑉 .

Assume Γ is 𝑄-polynomial with respect to the ordering

𝐸0, 𝐸1,… ,𝐸𝐷

of primitive idempotents. Let 𝐴𝑖 be an 𝑖-th adjacency matrix, and 𝐴 = 𝐴1.

𝐴 =
𝐷
∑
𝑖=0

𝜃𝑖𝐴𝑖, 𝐸𝑖 = |𝑋|−1
𝐷
∑
𝑖=0

𝜃∗𝑖𝐴𝑖.

Fix a vertex 𝑥 ∈ 𝑋, write

𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝐴∗
𝑖 ≡ 𝐴∗

𝑖 (𝑥), 𝐴∗ ≡ 𝐴∗
1, 𝑇 ≡ 𝑇 (𝑥).

Then

𝐴∗ =
𝐷
∑
𝑖=0

𝜃∗𝑖𝐸∗
𝑖 .

By Theorem 29.1, there exist 𝛽, 𝛾, 𝛾∗, 𝛿, 𝛿∗ ∈ ℝ such that

0 = [𝐴,𝐴2𝐴∗ − 𝛽𝐴𝐴∗𝐴+𝐴∗𝐴2 − 𝛾(𝐴𝐴∗ +𝐴∗𝐴) − 𝛿𝐴∗] (30.1)
0 = [𝐴∗, 𝐴∗2𝐴− 𝛽∗𝐴∗𝐴𝐴∗ +𝐴𝐴∗2 − 𝛾∗(𝐴∗𝐴+𝐴𝐴∗) − 𝛿∗𝐴] (30.2)

Recall raising matrix

𝑅 =
𝐷
∑
𝑖=0

𝐸∗
𝑖+1𝐴𝐸∗

𝑖

187
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satisfies
𝑅(𝐸∗

𝑖𝑉 ) ⊆ 𝐸∗
𝑖+1𝑉 (0 ≤ 𝑖 ≤ 𝐷), 𝐸∗

𝐷+1𝑉 = 0,
lowering matrix

𝐿 =
𝐷
∑
𝑖=0

𝐸∗
𝑖−1𝐴𝐸∗

𝑖

satisfies
𝐿(𝐸∗

𝑖𝑉 ) ⊆ 𝐸∗
𝑖−1𝑉 (0 ≤ 𝑖 ≤ 𝐷), 𝐸∗

−1𝑉 = 0,
and flat matrix

𝐹 =
𝐷
∑
𝑖=0

𝐸∗
𝑖𝐴𝐸∗

𝑖

satisfies
𝐹(𝐸∗

𝑖𝑉 ) ⊆ 𝐸∗
𝑖𝑉 (0 ≤ 𝑖 ≤ 𝐷).

Also,
𝐴 = 𝑅 + 𝐹 + 𝐿.

Theorem 30.1. With the above notation and assumptions,

(𝑖) For all 𝑖 (2 ≤ 𝑖 ≤ 𝐷),

𝑔−𝑖 𝐹𝐿2 + 𝐿𝐹𝐿 + 𝑔+𝑖 𝐿2𝐹 − 𝛾𝐿2)𝐸∗
𝑖 = 𝑂,

where

𝑔+𝑖 = 𝜃∗𝑖−2 − (𝛽 + 1)𝜃∗𝑖−1 + 𝛽𝜃∗𝑖
𝜃∗𝑖−2 − 𝜃∗𝑖

(30.3)

𝑔−𝑖 = 𝜃∗𝑖−2 + (𝛽 + 1)𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗𝑖−2 − 𝜃∗𝑖

. (30.4)

(𝑖𝑖) For all 𝑖 (0 ≤ 𝑖 ≤ 𝐷),

[𝐹 , 𝐿𝑅 − ℎ𝑖𝑅𝐿]𝐸∗
𝑖 = 𝑂,

where

ℎ𝑖 =
𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗𝑖 − 𝜃∗𝑖+1

(1 ≤ 𝑖 ≤ 𝐷 − 1), (30.5)

and ℎ0, ℎ𝐷 are indeterminants.

(𝑖𝑖𝑖) For all 𝑖 (1 ≤ 𝑖 ≤ 𝐷),

(𝑒−𝑖 𝑅𝐿2+(𝛽+2)𝐿𝑅𝐿+𝑒+𝑖 𝐿2𝑅+𝐿𝐹 2−𝛽𝐹𝐿𝐹+𝐹 2𝐿−𝛾(𝐿𝐹+𝐹𝐿)−𝛿𝐿)𝐸∗
𝑖 = 𝑂,
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where

𝑒+𝑖 = 𝜃∗𝑖−1 − (𝛽 + 2)𝜃∗𝑖 + (𝛽 + 1)𝜃∗𝑖+1
𝜃∗𝑖−1 − 𝜃∗𝑖

(1 ≤ 𝑖 ≤ 𝐷) (30.6)

𝑒−𝑖 = −(𝛽 + 1)𝜃∗𝑖−2 + (𝛽 + 2)𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗𝑖−1 − 𝜃∗𝑖

(2 ≤ 𝑖 ≤ 𝐷), (30.7)

and 𝑒+0 , 𝑒−1 are indeterminants.

Proof. We have

𝑂 = 𝐴3𝐴∗−𝐴∗𝐴3−(𝛽+1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2)−𝛾(𝐴2𝐴∗−𝐴∗𝐴2)−𝛿(𝐴𝐴∗−𝐴∗𝐴).

(𝑖) Fix 𝑖 (2 ≤ 𝑖 ≤ 𝐷), and multply above on the left by 𝐸∗
𝑖−2, and on the right

by 𝐸∗
𝑖 . Now reduce.

For example,
𝐸∗

𝑖−2𝐴3𝐴∗𝐸∗
𝑖 = 𝜃∗𝑖𝐸∗

𝑖−2𝐴3𝐸∗
𝑖 ,

where

𝐸∗
𝑖−2𝐴3𝐸∗

𝑖 = 𝐸∗
𝑖−2𝐴(

𝐷
∑
𝑟=0

𝐸∗
𝑟)𝐴(

𝐷
∑
𝑠=0

𝐸∗
𝑠)𝐴𝐸∗

𝑖 (30.8)

= ∑
𝑟,𝑠

𝐸∗
𝑖−2𝐴𝐸∗

𝑟𝐴𝐸∗
𝑠𝐴𝐸∗

𝑖 (30.9)

= ∑
𝑟,𝑠,|𝑖−2−𝑟|≤1,|𝑟−𝑠|≤1,|𝑠−𝑖|≤1

𝐸∗
𝑖−2𝐴𝐸∗

𝑟𝐴𝐸∗
𝑠𝐴𝐸∗

𝑖 (30.10)

= 𝐸∗
𝑖−2𝐴𝐸∗

𝑖−2𝐴𝐸∗
𝑖−1𝐴𝐸∗

𝑖 +𝐸∗
𝑖−2𝐴𝐸∗

𝑖−1𝐴𝐸∗
𝑖−1𝐴𝐸∗

𝑖 +𝐸∗
𝑖−2𝐴𝐸∗

𝑖−1𝐴𝐸∗
𝑖𝐴𝐸∗

𝑖
(30.11)

= (𝐹𝐿2 + 𝐿𝐹𝐿 + 𝐿2𝐹)𝐸∗
𝑖 . (30.12)

Reducing the other terms in a similar manner, and simplifying, we obtain (𝑖).
HS MEMO

𝐸∗
𝑖−2𝐴∗𝐴3𝐸∗

𝑖 = 𝜃∗𝑖−2𝐸∗
𝑖−2𝐴3𝐸∗

𝑖 (30.13)
= 𝜃∗𝑖−2(𝐹𝐿2 + 𝐿𝐹𝐿 + 𝐿2𝐹)𝐸∗

𝑖 , (30.14)
𝐸∗

𝑖−2𝐴2𝐴∗𝐴𝐸∗
𝑖 = (𝜃∗𝑖−1(𝐹𝐿2 + 𝐿𝐹𝐿) + 𝜃∗𝑖𝐿2𝐹)𝐸∗

𝑖 (30.15)
𝐸∗

𝑖−2𝐴𝐴∗𝐴2𝐸∗
𝑖 = (𝜃∗𝑖−2𝐹𝐿2 + 𝜃∗𝑖−1(𝐿𝐹𝐿 + 𝐿2𝐹))𝐸∗

𝑖 , (30.16)
𝐸∗

𝑖−2(𝐴2𝐴∗ −𝐴∗𝐴2)𝐸∗
𝑖 = (𝜃∗𝑖 − 𝜃∗𝑖−2)𝐿2𝐸∗

𝑖 , (30.17)
𝐸∗

𝑖−2(𝐴𝐴∗ −𝐴∗𝐴)𝐸∗
𝑖 = 𝑂. (30.18)
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Then we have

𝑂 = ((𝜃∗𝑖 − 𝜃∗𝑖−2)(𝐹𝐿2 + 𝐿𝐹𝐿 + 𝐿2𝐹) (30.19)
− (𝛽 + 1)(𝜃∗𝑖−1(𝐹𝐿2 + 𝐿𝐹𝐿) + 𝜃∗𝑖𝐿2𝐹 − 𝜃∗𝑖−2𝐹𝐿2 − 𝜃∗𝑖−1(𝐿𝐹𝐿 + 𝐿2𝐹))

(30.20)
− 𝛾(𝜃∗𝑖 − 𝜃∗𝑖−2)𝐿2)𝐸∗

𝑖 (30.21)
= ((𝜃∗𝑖 − 𝜃∗𝑖−2 − (𝛽 + 1)(𝜃∗𝑖−1 − 𝜃∗𝑖−2))𝐹𝐿2 + (𝜃∗𝑖 − 𝜃∗𝑖−2)𝐿𝐹𝐿 (30.22)

+ (𝜃∗𝑖 − 𝜃∗𝑖−2 − (𝛽 + 1)(𝜃∗𝑖 − 𝜃∗𝑖−1))𝐿2𝐹 − 𝛾(𝜃∗𝑖 − 𝜃∗𝑖−2)𝐿2)𝐸∗
1 (30.23)

= −(𝜃∗𝑖−2 − 𝜃∗𝑖 )((−𝛽𝜃∗𝑖−2 + (𝛽 + 1)𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗𝑖−2 − 𝜃∗𝑖

)𝐹𝐿2 + 𝐿𝐹𝐿 (30.24)

+ (𝜃∗𝑖−2 − (𝛽 + 1)𝜃∗𝑖−1 + 𝛽𝜃∗𝑖
𝜃∗𝑖−2 − 𝜃∗𝑖

)𝐿2𝐹 − 𝛾𝐿2)𝐸∗
𝑖 (30.25)

= (𝜃∗𝑖 − 𝜃∗𝑖−2)(𝑔−𝑖 𝐹𝐿2 + 𝐿𝐹𝐿 + 𝑔+𝑖 𝐿2𝐹 − 𝛾𝐿2)𝐸∗
𝑖 . (30.26)

(𝑖𝑖), (𝑖𝑖𝑖) are obtained in a similar manner replacing 𝑖 − 2 by 𝑖 (resp. 𝑖 − 1).

HS MEMO

(𝑖𝑖) We have

𝑂 = 𝐸∗
𝑖 (𝐴3𝐴∗−𝐴∗𝐴3−(𝛽+1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2)−𝛾(𝐴2𝐴∗−𝐴∗𝐴2)−𝛿(𝐴𝐴∗−𝐴∗𝐸))𝐸∗

𝑖 .

Since 𝛽 + 1 ≠ 0, by (29.42) if 𝐷 ≥ 3,

𝑂 = 𝐸∗
𝑖 (𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2)𝐸∗

𝑖 (30.27)
= ((𝜃∗𝑖 − 𝜃∗𝑖−1)𝑅𝐿𝐹 + (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐿𝑅𝐹) + (𝜃∗𝑖−1 − 𝜃∗𝑖 )𝐹𝑅𝐿 + (𝜃∗𝑖+1 − 𝜃∗𝑖 )𝐹𝐿𝑅)𝐸∗

𝑖
(30.28)

= [𝐹 , (𝜃∗𝑖−1 − 𝜃∗𝑖 )𝑅𝐿 − (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐿𝑅]𝐸∗
𝑖 (30.29)

= (𝜃∗𝑖+1 − 𝜃∗𝑖 ) [𝐹 , 𝐿𝑅 − 𝜃∗𝑖−1 − 𝜃∗𝑖
𝜃∗𝑖 − 𝜃∗𝑖+1

𝑅𝐿]𝐸∗
𝑖 (30.30)

= (𝜃∗𝑖+1 − 𝜃∗𝑖 )[𝐹 , 𝐿𝑅 − ℎ𝑖𝑅𝐿]𝐸∗
𝑖 . (30.31)

(𝑖𝑖𝑖) We have
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𝑂 = 𝐸∗
𝑖−1(𝐴3𝐴∗ −𝐴∗𝐴3 − (𝛽 + 1)(𝐴2𝐴∗𝐴−𝐴𝐴∗𝐴2) − 𝛾(𝐴2𝐴∗ −𝐴∗𝐴2) − 𝛿(𝐴𝐴∗ −𝐴∗𝐴))𝐸∗

𝑖

(30.32)
= ((𝜃∗𝑖 − 𝜃∗𝑖−1)(𝑅𝐿2 + 𝐿𝑅𝐿+ 𝐿2𝑅 + 𝐿𝐹 2 + 𝐹𝐿𝐹 + 𝐹 2𝐿)) (30.33)

− (𝛽 + 1)((𝜃∗𝑖−1 − 𝜃∗𝑖−2)𝑅𝐿2 + (𝜃∗𝑖−1 − 𝜃∗𝑖 )𝐿𝑅𝐿 + (𝜃∗𝑖+1 − 𝜃∗𝑖 )𝐿2𝑅 (30.34)
+ (𝜃∗𝑖 − 𝜃∗𝑖−1)𝐹𝐿𝐹 (30.35)
− 𝛾(𝜃∗𝑖 − 𝜃∗𝑖−1)(𝐿𝐹 + 𝐹𝐿) (30.36)
− 𝛿(𝜃∗𝑖 − 𝜃∗𝑖−1)𝐿)𝐸∗

𝑖 (30.37)
= ((𝜃∗𝑖 − 𝜃∗𝑖−1) − (𝛽 + 1)(𝜃∗𝑖−1 − 𝜃∗𝑖−2))𝑅𝐿2 (30.38)

+ ((𝜃∗𝑖 − 𝜃∗𝑖−1) − (𝛽 + 1)(𝜃∗𝑖−1 − 𝜃∗𝑖 ))𝐿𝑅𝐿 (30.39)
+ ((𝜃∗𝑖 − 𝜃∗𝑖−1) − (𝛽 + 1)(𝜃∗𝑖+1 − 𝜃∗𝑖 ))𝐿2𝑅 (30.40)
+ (𝜃∗𝑖 − 𝜃∗𝑖−1)𝐿𝐹 2 + (𝜃∗𝑖 − 𝜃∗𝑖−1)𝐹 2𝐿 (30.41)
+ (𝜃∗𝑖 − 𝜃∗𝑖−1 − (𝛽 + 1)(𝜃∗𝑖 − 𝜃∗𝑖−1))𝐹𝐿𝐹 (30.42)
− 𝛾(𝜃∗𝑖 − 𝜃∗𝑖−1)(𝐿𝐹 + 𝐹𝐿) (30.43)
− 𝛿(𝜃∗𝑖 − 𝜃∗𝑖−1)𝐿)𝐸∗

𝑖 (30.44)

= (𝜃∗𝑖 − 𝜃∗𝑖−1)(
−(𝛽 + 1)𝜃∗𝑖−2 + (𝛽 + 2)𝜃∗𝑖−2 − 𝜃∗𝑖

𝜃∗𝑖−1 − 𝜃∗𝑖
𝑅𝐿2 + (𝛽 + 2)𝐿𝑅𝐿 (30.45)

+ 𝜃∗𝑖−1 − (𝛽 + 2)𝜃∗𝑖 + (𝛽 + 1)𝜃∗𝑖+1
𝜃∗𝑖−1 − 𝜃∗𝑖

𝐿2𝑅 + 𝐿𝐹 2 − 𝛽𝐹𝐿𝐹 + 𝐹 2𝐿 (30.46)

− 𝛾(𝐿𝐹 + 𝐹𝐿) − 𝛿𝐿)𝐸∗
𝑖 (30.47)

= (𝑒−𝑖 𝑅𝐿2 + (𝛽 + 2)𝐿𝑅𝐿 + 𝑒+𝑖 𝐿2𝑅 + 𝐿𝐹 2 − 𝛽𝐹𝐿𝐹 + 𝐹 2𝐿 − 𝛾(𝐿𝐹 + 𝐹𝐿) − 𝛿𝐿)𝐸∗
𝑖

(30.48)
= 𝑂. (30.49)

Lemma 30.1. With the notation of Theorem 30.1,

𝑒+𝑖 = 𝜃∗𝑖 − 𝜃∗𝑖+2
𝜃∗𝑖 − 𝜃∗𝑖−1

(1 ≤ 𝑖 ≤ 𝐷 − 2) (30.50)

𝑒−𝑖 = 𝜃∗𝑖−1 − 𝜃∗𝑖−3
𝜃∗𝑖−1 − 𝜃∗𝑖

(3 ≤ 𝑖 ≤ 𝐷) (30.51)

𝑔+𝑖 = 𝜃∗𝑖 − 𝜃∗𝑖+1
𝜃∗𝑖 − 𝜃∗𝑖−2

(2 ≤ 𝑖 ≤ 𝐷 − 1) (30.52)

𝑔−𝑖 = 𝜃∗𝑖−2 − 𝜃∗𝑖−3
𝜃∗𝑖−2 − 𝜃∗𝑖

(3 ≤ 𝑖 ≤ 𝐷). (30.53)

In particular, 𝑒±𝑖 , 𝑔±𝑖 are non-zero for the range of 𝑖 given above.

Proof. In each case, equate the above expression with the corresponding expres-
sion in Theorem 30.1. The resulting equation is equal to (29.13).
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By Corollary 26.1 and Therem 29.1,

𝑒+𝑖 = 𝜃∗𝑖−1 − (𝛽 + 2)𝜃∗𝑖 + (𝛽 + 1)𝜃∗𝑖+1
𝛽∗
𝑖−1 − 𝜃∗𝑖

,

and
𝛽 + 1 = 𝜃∗𝑗−1 − 𝜃∗𝑗 + 𝜃∗𝑗+1 − 𝜃∗𝑗+2

𝜃∗𝑗 − 𝜃∗𝑗+1
+ 1 = 𝜃∗𝑗−1 − 𝜃∗𝑗+2

𝜃∗𝑗 − 𝜃∗𝑗+1
.

Hence,

𝑒+𝑖 = 1
𝜃∗𝑖−1 − 𝜃∗𝑖

(𝜃∗𝑖−1 − 𝜃∗𝑖 − (𝛽 + 1)(𝜃∗𝑖 − 𝜃∗𝑖+1)) (30.54)

= 1
𝜃∗𝑖−1 − 𝜃∗𝑖

(𝜃∗𝑖−1 − 𝜃∗𝑖 − (𝜃∗𝑖−1 − 𝜃∗𝑖+2)) (30.55)

= 𝜃∗𝑖 − 𝜃∗𝑖+2
𝜃∗𝑖 − 𝜃∗𝑖−1

, (30.56)

𝑒−𝑖 = 1
𝜃∗𝑖−1 − 𝜃∗𝑖

(−(𝛽 + 1)𝜃∗𝑖−2 + (𝛽 + 2)𝜃∗𝑖−1 − 𝜃∗𝑖 ) (30.57)

= 1
𝜃∗𝑖−1 − 𝜃∗𝑖

(𝜃∗𝑖−1 − 𝜃∗𝑖 − 𝜃∗𝑖−3 + 𝜃∗𝑖 ) (30.58)

= 𝜃∗𝑖−1 − 𝜃∗𝑖−3
𝜃∗𝑖−1 − 𝜃∗𝑖

, (30.59)

𝑔+𝑖 = 1
𝜃∗𝑖−2 − 𝜃∗𝑖

(𝜃∗𝑖−2 − (𝛽 + 1)𝜃∗𝑖−1 + 𝛽𝜃∗𝑖 ) (30.60)

= 1
𝜃∗𝑖 − 𝜃∗𝑖−2

(𝜃∗𝑖 − 𝜃∗𝑖−2 + 𝜃∗𝑖−2 − 𝜃∗𝑖+1) (30.61)

= 𝜃∗𝑖 − 𝜃∗𝑖+1
𝜃∗𝑖 − 𝜃∗𝑖−2

, (30.62)

𝑔−𝑖 = 1
𝜃∗𝑖−2 − 𝜃∗𝑖

(−𝛽𝜃∗𝑖−2 + (𝛽 + 1)𝜃∗𝑖−1 − 𝜃∗𝑖 ) (30.63)

= 1
𝜃∗𝑖−2 − 𝜃∗𝑖

(𝜃∗𝑖−2 − 𝜃∗𝑖 + 𝜃∗𝑖 − 𝜃∗𝑖−3) (30.64)

= 𝜃∗𝑖−2 − 𝜃∗𝑖−3
𝜃∗𝑖−2 − 𝜃∗𝑖

. (30.65)

Corollary 30.1. Let Γ = (𝑋,𝐸) be dostance-regular of diameter 𝐷 ≥ 3, 𝑄-
polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡
𝐸∗

𝑖 (𝑥),𝑅 ≡ 𝑅(𝑥), 𝐿 ≡ 𝐿(𝑥), 𝐹 ≡ 𝐹(𝑥). Then the following hold.

(𝑖) 𝐹𝑅2𝐸∗
𝑗 ∈ Span(𝑅𝐹𝑅𝐸∗

𝑗 , 𝑅2𝐹𝐸∗
𝑗 , 𝑅2𝐸∗

𝑗 ), (0 ≤ 𝑗 ≤ 𝐷− 3).
(𝑖𝑖) 𝑅2𝐹𝐸∗

𝑗 ∈ Span(𝑅𝐹𝑅𝐸∗
𝑗 , 𝐹𝑅2𝐸∗

𝑗 , 𝑅2𝐸∗
𝑗 ), (1 ≤ 𝑗 ≤ 𝐷− 2).
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(𝑖𝑖𝑖) 𝐿𝑅2𝐸∗
𝑗 ∈ Span(𝑅𝐿𝑅𝐸∗

𝑗 , 𝑅2𝐿𝐸∗
𝑗 , 𝐹 2𝑅𝐸∗

𝑗 , 𝐹𝑅𝐹𝐸∗
𝑗 , 𝑅𝐹 2𝐸∗

𝑗 , 𝑅𝐹𝐸∗
𝑗 , 𝐹𝑅𝐸∗

𝑗 , 𝑅𝐸∗
𝑗 ),

(0 ≤ 𝑗 ≤ 𝐷− 3).
(𝑖𝑣) 𝑅2𝐿𝐸∗

𝑗 ∈ Span(𝑅𝐿𝑅𝐸∗
𝑗 , 𝐿𝑅2𝐸∗

𝑗 , 𝐹 2𝑅𝐸∗
𝑗 , 𝐹𝑅𝐹𝐸∗

𝑗 , 𝑅𝐹 2𝐸∗
𝑗 , 𝑅𝐹𝐸∗

𝑗 , 𝐹𝑅𝐸∗
𝑗 , 𝑅𝐸∗

𝑗 ),
(1 ≤ 𝑗 ≤ 𝐷).

Proof. Immediate from Theorem 30.1, and Lemma 30.1.

HS MEMO

By Theorem 30.1, and Lemma 30.1, we have the following, but similarly we can
obtain above.

(𝑖) 𝐹𝐿2𝐸∗
𝑗 ∈ Span(𝐿𝐹𝐿𝐸∗

𝑗 , 𝐿2𝐹𝐸∗
𝑗 , 𝐿2𝐸∗

𝑗 ), (3 ≤ 𝑗 ≤ 𝐷).
(𝑖𝑖) 𝐿2𝐹𝐸∗

𝑗 ∈ Span(𝐿𝐹𝐿𝐸∗
𝑗 , 𝐹𝐿2𝐸∗

𝑗 , 𝐿2𝐸∗
𝑗 ), (2 ≤ 𝑗 ≤ 𝐷− 1).

(𝑖𝑖𝑖) 𝑅𝐿2𝐸∗
𝑗 ∈ Span(𝐿𝑅𝐿𝐸∗

𝑗 , 𝐿2𝑅𝐸∗
𝑗 , 𝐹 2𝐿𝐸∗

𝑗 , 𝐹𝐿𝐹𝐸∗
𝑗 , 𝐿𝐹 2𝐸∗

𝑗 , 𝐿𝐹𝐸∗
𝑗 , 𝐹𝐿𝐸∗

𝑗 , 𝐿𝐸∗
𝑗 ),

(3 ≤ 𝑗 ≤ 𝐷).
(𝑖𝑣) 𝐿2𝑅𝐸∗

𝑗 ∈ Span(𝐿𝑅𝐿𝐸∗
𝑗 , 𝑅𝐿2𝐸∗

𝑗 , 𝐹 2𝐿𝐸∗
𝑗 , 𝐹𝐿𝐹𝐸∗

𝑗 , 𝐿𝐹 2𝐸∗
𝑗 , 𝐿𝐹𝐸∗

𝑗 , 𝐹𝐿𝐸∗
𝑗 , 𝐿𝐸∗

𝑗 ),
(2 ≤ 𝑗 ≤ 𝐷).
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Chapter 31

The “Inverse” of 𝑅

Wednesday, April 14, 1993

Let Γ = (𝑋,𝐸) be any graph of diameter 𝐷 ≥ 2. Fix a vertex 𝑥 ∈ 𝑋. Let
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), and 𝑇 ≡ 𝑇(𝑥).

Recall adjacency matrix

𝐴 = 𝑅 + 𝐿+ 𝐹 (31.1)

𝑅 =
𝐷
∑
𝑖=0

𝐸∗
𝑖+1𝐴𝐸∗

𝑖 , (31.2)

𝐿 =
𝐷
∑
𝑖=0

𝐸∗
𝑖−1𝐴𝐸∗

𝑖 , (31.3)

𝐹 =
𝐷
∑
𝑖=0

𝐸∗
𝑖𝐴𝐸∗

𝑖 . (31.4)

Observe 𝑅 is not invertible (indeed 𝑅𝐸∗
𝐷 = 𝑂.) So, 𝑅−1 does not exist.

Below we find a matrix “𝑅−1”∈ 𝑇(𝑥) such that 𝑅−1𝑅𝑣 = 𝑣 for “almost all”
𝑣 ∈ 𝑉 .

Lemma 31.1. Let Γ = (𝑋,𝐸) denote any graph, and the standard module 𝑉
over ℂ.

Fix a vertex 𝑥 ∈ 𝑋, write

𝑅 ≡ 𝑅(𝑥), 𝐿 ≡ 𝐿(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥) for all 𝑖.

Then,

(𝑖) There exists unique “𝑅−1”∈ Mat𝑋(ℂ) such that;

195
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(𝑖𝑎) 𝑅−1𝑣 = 0 if 𝐿𝑣 = 0 for 𝑣 ∈ 𝑉 .

(𝑖𝑏) 𝑅−1𝑅𝐿𝑣 = 𝐿𝑣 for all 𝑣 ∈ 𝑉 .

(𝑖𝑖) 𝑅−1(𝐸∗
𝑖𝑉 ) ⊆ 𝐸∗

𝑖−1𝑉 (0 ≤ 𝑖 ≤ 𝐷), 𝐸∗
−1𝑉 = 0.

(𝑖𝑖𝑖) 𝑅−1 ∈ Mat𝑋(ℚ).
(𝑖𝑣) 𝑅−1 ∈ 𝑇(𝑥).

Proof.

(𝑖) Consider the orthogonal direct sum.

𝑉 = (Ker𝐿) + (Ker𝐿)⊥.

Claim 1. 𝑅𝐿(Ker𝐿)⊥ ⊆ (Ker𝐿)⊥.
Proof of Claim 1. Pick 𝑣 ∈ (Ker𝐿)⊥, and 𝑤 ∈ Ker𝐿. Show

⟨𝑅𝐿𝑣,𝑤⟩ = 0.

But

𝑅̄⊤ = 𝑅⊤ = (
𝐷
∑
𝑖=0

𝐸∗
𝑖+1𝐴𝐸∗

𝑖)
⊤

=
𝐷
∑
𝑖=0

𝐸∗
𝑖𝐴𝐸∗

𝑖+1 = 𝐿.

So,
⟨𝑅𝐿𝑣,𝑤⟩ = ⟨𝐿𝑣, 𝑅̄⊤𝑤⟩ = ⟨𝐿𝑣, 𝐿𝑤⟩ = 0.

Claim 2. 𝑅𝐿 ∶ (Ker𝐿)⊥ → (Ker𝐿)⊥ is an isomorphism of vector spaces.

Proof of Claim 2. It suffices to show above map is one-to-one.

Suppose there is a vector 𝑣 ∈ (Ker𝐿)⊥ such that 𝑅𝐿𝑣 = 0.
Then,

0 = ⟨𝑅𝐿𝑣, 𝑣⟩ = ⟨𝐿𝑣, 𝑅̄⊤𝑣⟩ = ‖𝐿𝑣‖2.
So 𝐿𝑣 = 0.
Hence 𝑣 ∈ Ker𝐿 ∩ (Ker𝐿)⊥ = 0.
This proves Claim 2.

Now “𝑅−1 denote the unique matrix in Mat(ℂ) such that

𝑅−1𝑣 = {0 if 𝑣 ∈ Ker𝐿
𝐿(𝑅𝐿)−1𝑣 if 𝑣 ∈ (Ker𝐿)⊥. (31.5)

Observe that (𝑅𝐿)−1 ∶ (Ker𝐿)⊥ → (Ker𝐿)⊥ exists by Claim 2.

Observe 𝑅−1 satisfies (𝑖𝑎) by (31.5).
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Claim 3. 𝑅−1 satisfies (𝑖𝑏).
Proof of Claim 3. It suffices to check

𝑅−1𝑅𝐿𝑣 = 𝐿𝑣

for 𝑣 ∈ Ker𝐿 and 𝑣 ∈ (Ker𝐿)⊥.
The case 𝑣 ∈ Ker𝐿 is clear. So assume 𝑣 ∈ (Ker𝐿)⊥ by Claim 1. So,

𝑅−1(𝑅𝐿𝑣) = 𝐿(𝑅𝐿)−1𝑅𝐿𝑣 = 𝐿𝑣

as desired.

Uniqueness: Suppose a matrix 𝑅̂−1 ∈ Mat𝑋(ℂ) satisfies (𝑖𝑎), (𝑖𝑏). Then, 𝑅̂−1

satisfies (31.5) above.

(Pf. The first part is clear. Let 𝑣 ∈ (Ker𝐿)⊥. By Claim 2, there exists 𝑤 ∈
(Ker𝐿)⊥ such that 𝑣 ∈ 𝑅𝐿𝑤. So 𝑅̂−1𝑣 = 𝑅̂−1𝑅𝐿𝑤 = 𝐿𝑤 = 𝐿(𝑅𝐿)−1𝑣.)
Therefore, 𝑅̂−1 agrees with 𝑅−1 on a basis for 𝑉 , and 𝑅̂−1 = 𝑅−1.

(𝑖𝑖) Pick 𝑣 ∈ 𝐸∗
𝑖𝑉 . Show 𝑅−1𝑣 ∈ 𝐸∗

𝑖−1𝑉 .

Without loss of generality we may assume that 𝑣 ∈ Ker𝐿 or 𝑣 ∈ (Ker𝐿)⊥.
If 𝑣 ∈ Ker𝐿, then 𝑅−1𝑣 = 0 ∈ 𝐸∗

𝑖−1𝑉 .

If 𝑣 ∈ (Ker𝐿)⊥, then

𝑅−1𝑣 = 𝐿(𝑅𝐿)−1𝑣 ∈ 𝐿𝐸∗
𝑖𝑉 ⊆ 𝐸∗

𝑖−1𝑉 .

(𝑖𝑖𝑖) Observe 𝑅,𝐿 ∈ Mat𝑋(ℚ).
So 𝑉 , Ker𝐿, each has basis consisting of vectors in ℚ|𝑋|.

Replacing the construction of 𝑅−1 with the base field replaced by ℚ, we find a
matrix 𝑅̃−1 ∈ Mat𝑋(ℚ) satisfying (𝑖𝑎), (𝑖𝑏).
Now 𝑅−1 and 𝑅̃−1 agree on a basis, and hence 𝑅−1 = 𝑅̃−1.

(𝑖𝑣) 𝑅𝐿 = 𝐿̄⊤𝐿 is a real symmetric matrix. So it is diagonalizable.

Let 𝜃 be any eigenvalue of 𝑅𝐿. Let 𝑉𝜃 denote the corresponding maximal
eigenspace in 𝑉 . Then

𝑉 = ∑
𝜃∶eigenvalue for 𝑅𝐿

𝑉𝜃 (orthogonal direct sum).

Let 𝐸𝜃 ∶ 𝑉 → 𝑉𝜃 denote the orthogonal projection. Then 𝐸𝜃 is a complex
polynomial in 𝑅𝐿.
Thus 𝐸𝜃 ∈ 𝑇(𝑥).
HS MEMO
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𝐸𝜃 is real. Since 𝑅𝐿 is an integral matrix, every eigenvalue of 𝑅𝐿 is an algebraic
integer.

Claim 4. We have
𝑅−1 = ∑

𝜃∶eigenvalue of 𝑅𝐿
𝜃−1𝐿𝐸𝜃. (31.6)

In particular, 𝑅−1 ∈ 𝑇(𝑥).
Proof of Claim 4. Show two sides of (31.6) agree, when applied to arbitrary
𝑣 ∈ 𝑉 .

Without loss of generality, we may assume that 𝑣 ∈ 𝑉𝜃 for some eigenvalue 𝜃 of
𝑅𝐿.
Let 𝜃′ denote any eigenvalue of 𝑅𝐿.

𝐸𝜃′𝑣 = {0 if 𝜃′ ≠ 𝜃,
𝑣 if 𝜃′ = 𝜃.

RHS of (31.6) applied to 𝑣 equals

{0 if 𝜃 = 0,
𝜃−1𝐿𝑣 if 𝜃 ≠ 0.

Show this equals 𝑅−1𝑣.
Case 𝜃 = 0: Since 𝑅𝐿𝑣 = 0,

0 = ⟨𝑣,𝑅𝐿𝑣⟩ = ‖𝐿𝑣‖2.

Hence 𝐿𝑣 = 0, or 𝑣 ∈ Ker𝐿. By (𝑖𝑎), 𝑅−1𝑣 = 0.
Case 𝜃 ≠ 0: Since 𝑅𝐿𝑣 = 𝜃𝑣, 𝑣 = 𝜃−1𝑅𝐿𝑣. Hence,

𝑅−1𝑣 = 𝜃−1𝑅−1𝑅𝐿𝑣 = 𝜃−1𝐿𝑣

by (𝑖𝑏).



Chapter 32

Irreducible Modules of
Endpoint 𝑖

Monday, April 19, 1993

Lemma 32.1. Let Γ = (𝑋,𝐸) be any graph. With the notation of Lemma 31.1,
the following hold.

(𝑖) Let 𝑊 denote a thin irreducible 𝑇 -module with endpoint 𝑟, diameter 𝑑. Pick
𝑖 (0 ≤ 𝑖 ≤ 𝑑), and pick 𝑣 ∈ 𝐸∗

𝑟+𝑖𝑊 . Then,

𝑅−1𝑅𝑣 = {𝑣 if 𝑖 < 𝑑,
0 if 𝑖 = 𝑑.

(𝑖𝑖) Assume Γ is distance regular and thin with respect to 𝑥. Pick 𝑡 (0 ≤ 𝑖 < 𝐷/2),
and pick 𝑣 ∈ 𝐸∗

𝑡𝑉 . Then

𝑅−1𝑅𝑖𝑣 = 𝑅𝑖−1𝑣 (1 ≤ 𝑖 ≤ 𝐷− 2𝑡).
In particular, 𝑅−1𝑅𝑣 = 𝑣.

(𝑖𝑖𝑖) Assume Γ is distance regular and thin with respect to 𝑥. Then

𝑅 ∶ 𝐸∗
𝑖𝑉 → 𝐸∗

𝑖+1𝑉 (0 ≤ 𝑖 < 𝐷/2)
is one-to-one.

Proof.

(𝑖) Let 𝑤0, 𝑤1,… ,𝑤𝑑 be a basis for 𝑊 and 𝑤𝑖 ∈ 𝐸∗
𝑟+𝑖𝑊 ,

199
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𝑅𝑤𝑖 = 𝑤𝑖+1 (0 ≤ 𝑖 < 𝑑), 𝐿𝑤𝑖 = 𝑥𝑖(𝑊)𝑤𝑖−1 (1 ≤ 𝑖 ≤ 𝑑).
So,

𝑅𝐿𝑤𝑖 = 𝑥𝑖(𝑊)𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑑).
(See Lemma 9.1.)

We want to find 𝑅−1𝑅𝑤𝑖.

If 𝑖 = 𝑑, 𝑅−1𝑅𝑤𝑑 = 0.
If 0 ≤ 𝑖 < 𝑑,

𝑅−1𝑅𝑤𝑖 = 𝑅−1𝑤𝑖+1 (32.1)
= 𝑥𝑖+1(𝑊)−1𝑅−1𝑅𝐿𝑤𝑖+1 (32.2)
= 𝑥𝑖+1(𝑊)−1𝐿𝑤𝑖+1 (32.3)
= 𝑥𝑖+1(𝑊)−1𝑥𝑖+1(𝑊)𝑤𝑖 (32.4)
= 𝑤𝑖. (32.5)

Thus, we have (𝑖).
HS MEMO

𝑅𝐿𝑤𝑖 = 𝑅𝑥𝑖(𝑊)𝑤𝑖−1 = 𝑥𝑖(𝑊)𝑤𝑖, (32.6)
𝐿𝑅𝑤𝑖 = 𝐿𝑤𝑖+1 = 𝑥𝑖+1(𝑊)𝑤𝑖, (32.7)

[𝐿,𝑅]𝑤𝑖 = (𝑥𝑖+1(𝑊) − 𝑥𝑖(𝑊))𝑤𝑖, (0 ≤ 𝑖 ≤ 𝑑), (32.8)
𝑥0(𝑊) = 0, 𝑥𝑑+1(𝑊) = 0, (32.9)

[𝐿,𝑅]|𝑊 =
𝑑

∑
𝑖=0

(𝑥𝑖+1 − 𝑥𝑖(𝑊))𝐸∗
𝑟+𝑖|𝑊 . (32.10)

(𝑖𝑖) Let

𝑉 = ∑𝑊 orthogonal direct sum of thin irreducible 𝑇 -modules.

Then,
𝐸∗

𝑡𝑉 = ∑
𝑟(𝑊)≤𝑡

𝐸∗
𝑡𝑊 (orthognal direct sum).

Without loss of generality, we may assume

𝑣 ∈ 𝐸∗
𝑡𝑊

for some thin irreducible 𝑇 -module with endpoint at most 𝑡.
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Now if 𝑖 ≤ 𝐷 − 2𝑡, then

𝑡 + 𝑖 ≤ 𝐷 − 𝑡 (32.11)
≤ 𝐷− 𝑟(𝑊) (32.12)
≤ 𝑟(𝑊) + 𝑑(𝑊) (𝐷 ≤ 2𝑟 + 𝑑), (32.13)

by Lemma 14.1 (𝑖𝑖𝑖).
So

𝑡 + 𝑖 − 1 ≤ 𝑟(𝑊) + 𝑑(𝑊) − 1.
Hence,

𝑅−1𝑅𝑖𝑣 = 𝑅−1𝑅(𝑅𝑖−1𝑣) (𝑅𝑖−1𝑣 ∈ 𝐸∗
𝑡+𝑖−1𝑊) (32.14)

= 𝑅𝑖−1𝑣 by (𝑖). (32.15)

(𝑖𝑖𝑖) Suppose 𝑅𝑣 = 0 for some 𝑣 ∈ 𝐸∗
𝑖𝑉 (0 ≤ 𝑖 < 𝐷/2). Then

0 = 𝑅−1𝑅𝑣 = 𝑣,
by (𝑖𝑖) with 𝑡 = 𝑖 and 𝑖 = 1.

Definition 32.1. Let Γ = (𝑋,𝐸) denote any graph with the standard module
𝑉 . Fix a vertex 𝑥 ∈ 𝑋. Write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥), 𝐿 ≡ 𝐿(𝑥).

1. For every 𝑖 (0 ≤ 𝑖 ≤ 𝐷), define subspace 𝑉𝑖 ∶= 𝑉𝑖(𝑥) ⊆ 𝑉 by

𝑉𝑖 = ∑𝑊,

where the sum begin over irreducible 𝑇 -modules 𝑊 with endpoint 𝑖.
Observe:

𝑉 = 𝑉0 + 𝑉1 +⋯+ 𝑉𝐷 (orthogonal direct sum.)
𝑉0 is the trivial 𝑇 -module.

2. (𝐸∗
𝑖𝑉 )𝑛𝑒𝑤 ≡ 𝐸∗

𝑖𝑉𝑖 (0 ≤ 𝑖 ≤ 𝐷).
In general,

(𝐸∗
𝑖𝑉 )𝑛𝑒𝑤 ⊆ Ker𝐿 ∩ 𝐸∗

𝑖𝑉 ⊆ Ker𝐿 ∩ 𝐸∗
𝑖𝑉 ⊆ Ker(𝐿𝐸∗

𝑖 ).

If each irreducible 𝑇 -module with endpoint strictly less than 𝑖 is thin,

(𝐸∗
𝑖𝑉 )𝑛𝑒𝑤 = Ker𝐿 ∩ 𝐸∗

𝑖𝑉 ⊆ Ker(𝐿 ⋅ 𝐸∗
𝑖 ).

We have the assertion.
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HS MEMO

𝐸∗
𝑖𝑉 = ∑

𝑗<𝑖
𝑉𝑗 + 𝑉𝑖.

For 𝑉𝑗 part, take 𝑤𝑖−𝑗 ∈ 𝑊 irreducible with endpoint 𝑗 < 𝑖. Then,

𝐿𝑤𝑖−𝑗 = 𝑥𝑖−𝑗(𝑊)𝑤𝑖−𝑗−1 ≠ 0,

and
𝐿|∑𝑗<𝑖 𝐸∗

𝑖𝑉𝑗
∶ ∑

𝑗<𝑖
𝐸∗

𝑖𝑉𝑗 → 𝑉

is one to one.

Lemma 32.2. Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3. Fix a
vertex 𝑥 ∈ 𝑋, 𝑅 ≡ 𝑅(𝑥). 𝐿 ≡ 𝐿(𝑥), 𝐹 ≡ 𝐹(𝑥). Pick 𝑣 ∈ (𝐸∗

1𝑉 )𝑛𝑒𝑤. Then,

(𝑖) 𝑅𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝑐𝑖𝐸∗

𝑖+1𝐴𝑖𝑣 (1 ≤ 𝑖 ≤ 𝐷).
(𝑖𝑖) 𝐹𝐸∗

𝑖𝐴𝑖−1𝑣 = 𝑅𝐸∗
𝑖−1𝐴𝑖𝑉 +(𝑎𝑖−1−𝑐𝑖+𝑐𝑖−1)𝐸∗

𝑖𝐴𝑖−1𝑣+𝑐𝑖𝐸∗
𝑖𝐴𝑖+1𝑣 (1 ≤ 𝑖 ≤ 𝐷).

(𝑖𝑖𝑖) 𝐿𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝐹𝐸∗

𝑖−1𝐴𝑖𝑉 + (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1)𝐸∗
𝑖−1𝐴𝑖𝑣 + 𝑏𝑖−1𝐸∗

𝑖−1𝐴𝑖−2𝑣 (2 ≤
𝑖 ≤ 𝐷).
(𝑖𝑣) 𝐿𝐸∗

𝑖𝐴𝑖+1𝑣 = 𝑏𝑖𝐸∗
𝑖−1𝐴𝑖𝑣 (1 ≤ 𝑖 ≤ 𝐷− 1).

Proof.

(𝑖) Let

𝑣 = ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

𝛼𝑦 ̂𝑦 for some {𝛼𝑔} ⊆ ℂ.

Then

𝐿𝑣 = ⎛⎜
⎝

∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

𝛼𝑦⎞⎟
⎠

̂𝑥 = 0.

So,
∑

𝑦∈𝑋,𝜕(𝑥,𝑦)=1
𝛼𝑦 = 0.

Thus,
𝑣 = ∑

𝑦∈𝑋,𝜕(𝑥,𝑦)=1
𝛼𝑦( ̂𝑦 − ̂𝑥).

Let
̃𝐴𝑖 = 𝐴0 +𝐴1 +⋯+𝐴𝑖 (0 ≤ 𝑖 ≤ 𝐷).
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Then

̃𝐴𝑖𝑣 = ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

𝛼𝑦 ̃𝐴𝑖( ̂𝑦 − ̂𝑥) (32.16)

= ∑
𝑦∈𝑋,𝜕(𝑥,𝑦)=1

𝛼𝑦 ⎛⎜
⎝

∑
𝑧∈𝑋,𝜕(𝑦,𝑧)=𝑖,𝜕(𝑥,𝑧)=𝑖+1

̂𝑧 − ∑
𝑧′∈𝑋,𝜕(𝑦,𝑧′)=𝑖+1,𝜕(𝑥,𝑧′)=𝑖

̂𝑧′⎞⎟
⎠

(32.17)
= ∑

𝑦∈𝑋,𝜕(𝑥,𝑦)=1
𝛼𝑦(𝐸∗

𝑖+1𝐴𝑖 ̂𝑦 − 𝐸∗
𝑖𝐴𝑖+1 ̂𝑦) (32.18)

= 𝐸∗
𝑖+1𝐴𝑖𝑣 − 𝐸∗

𝑖+1𝐴𝑖+1𝑣. (32.19)

Recall (Claim 1 in the proof of Theorem 16.1.)

𝐴 ̃𝐴𝑖 = 𝑐𝑖+1 ̃𝐴𝑖+1 + (𝑎𝑖 − 𝑐𝑖+1 + 𝑐𝑖) ̃𝐴𝑖 + 𝑏𝑖 ̃𝐴𝑖−1 (0 ≤ 𝑖 ≤ 𝐷 − 1).

(This is valid for 𝑖 = 0 as 𝐴 ̃𝐴0 = 𝐴𝐼 = 𝑐1 ̃𝐴 − ̃𝐴0 = 𝐴 by setting ̃𝐴𝑖−1 = 𝑂.)

Now (𝑖)− (𝑖𝑣) are obtained by applying this to 𝑣 on the right and multiplied by
𝐸∗

𝑗 (0 ≤ 𝑗 ≤ 𝐷) on the left.

HS MEMO

𝐴 ̃𝐴𝑖−1𝑣 = 𝐴𝐸∗
𝑖𝐴𝑖−1𝑣 − 𝐴𝐸∗

𝑖−1𝐴𝑖𝑣. For 1 ≤ 𝑖 ≤ 𝐷,

(𝑐𝑖 ̃𝐴𝑖 + (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1) ̃𝐴𝑖−1 + 𝑏𝑖−1 ̃𝐴𝑖−2)𝑣 (32.20)
= 𝑐𝑖𝐸∗

𝑖+1𝐴𝑖𝑣 − 𝑐𝑖𝐸∗
𝑖𝐴𝑖+1𝑣 (32.21)

+ (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1)𝐸∗
𝑖𝐴𝑖−1𝑣 − (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1)𝐸∗

𝑖−1𝐴𝑖𝑣 (32.22)
+ 𝑏𝑖−1𝐸∗

𝑖−1𝐴𝑖−2𝑣 − 𝑏𝑖−1𝐸∗
𝑖−2𝐴𝑖−1𝑣. (32.23)

(𝑖) 𝑅𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝐸∗

𝑖+1𝐴𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝑐𝑖𝐸∗

𝑖+1𝐴𝑖𝑣 (1 ≤ 𝑖 ≤ 𝐷).
(𝑖𝑖) For 1 ≤ 𝑖 ≤ 𝐷,

𝐹𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝐸∗

𝑖𝐴𝐸∗
𝑖𝐴𝑖−1𝑣 (32.24)

= 𝑅𝐸∗
𝑖−1𝐴𝑖𝑣 − 𝑐𝑖𝐸∗

𝑖𝐴𝑖+1𝑣 + (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1)𝐸∗
𝑖𝐴𝑖−1𝑣. (32.25)

(𝑖𝑖𝑖) For 2 ≤ 𝑖 ≤ 𝐷,

𝐿𝐸∗
𝑖𝐴𝑖−1𝑣 = 𝐸∗

𝑖−1𝐴𝐸∗
𝑖𝐴𝑖−1𝑣 (32.26)

= 𝐹𝐸∗
𝑖−1𝐴𝑖𝑣 − (𝑎𝑖−1 − 𝑐𝑖 + 𝑐𝑖−1)𝐸∗

𝑖−1𝐴𝑖𝑣 + 𝑏𝑖−1𝐸∗
𝑖−1𝐴𝑖−2𝑣. (32.27)
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(Even if 𝑖 = 1, this is valid by setting 𝐴𝑖−2 = 𝑂.)

(𝑖𝑣) For 1 ≤ 𝑖 ≤ 𝐷− 1, 𝐿𝐸∗
𝑖𝐴𝑖+1𝑣 = 𝐸∗

𝑖−1𝐴𝐸∗
𝑖𝐴𝑖+1 = 𝑏𝑖𝐸∗

𝑖−1𝐴𝑖𝑣.
Lemma 32.3. Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3. Fix a
vertex 𝑥 ∈ 𝑋, 𝑇 ≡ 𝑇(𝑥), 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑅 = 𝑅(𝑥), 𝐹 = 𝐹(𝑥), 𝐿 = 𝐿(𝑥).

For every 𝑣 ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤, the following are equivalent.

(𝑖) 𝐸∗
𝑖𝐴𝑖−1𝑣, 𝐸∗

𝑖𝐴𝑖+1𝑣 are linearly dependent for every 𝑖 (1 ≤ 𝑖 ≤ 𝐷 − 1).
(𝑖𝑖) There exists a thin irreducible 𝑇 -module 𝑊 with endpoint 1 that contains 𝑣.

If (𝑖), (𝑖𝑖) hold then

𝑊 = Span(𝐸∗
1𝐴0𝑣,𝐸∗

2𝐴1𝑣,… ,𝐸∗
𝐷𝐴𝑖−1𝑣).

Proof. (𝑖𝑖) → (𝑖). Clear as
𝐸∗

𝑖𝐴𝑖−1𝑣, 𝐸∗
𝑖𝐴𝑖+1𝑣 ∈ 𝐸∗

𝑖𝑊 = Span(𝑤𝑖−1).

(𝑖) → (𝑖𝑖) Consider the sequence

𝐸∗
1𝐴0𝑣,𝐸∗

2𝐴1𝑣,𝐸∗
3𝐴2𝑣,… ,𝐸∗

𝐷+1𝐴𝐷𝑣.
The first term is nonzero and the last term is 0. So there exists

𝑛 ∶= min{𝑖 ∣ 1 ≤ 𝑖 ≤ 𝐷, 𝐸∗
𝑖+1𝐴𝑖𝑣 = 0}.

Now
𝐸∗

𝑗+1𝐴𝑗𝑣 = 0 (𝑛 ≤ 𝑗 ≤ 𝐷). (32.28)

HS MEMO

Use induction and Lemma 32.2 (𝑖),
𝐸∗

𝑗+1𝐴𝑗𝑣 ∈ Span(𝑅𝐸∗
𝑗𝐴𝑗−1𝑣) (𝑗 ≥ 1).

By our assumption (𝑖), and the definition of 𝑛,
𝐸∗

𝑗𝐴𝑗+1𝑣 ∈ Span(𝐸∗
𝑗𝐴𝑗−1𝑣) ≠ 0 (1 ≤ 𝑗 ≤ 𝑛).

By Lemma 32.2 (𝑖),
𝑅𝐸∗

𝑗𝐴𝑗−1𝑣 ∈ Span(𝐸∗
𝑗+1𝐴𝑗𝑣) (1 ≤ 𝑗 ≤ 𝑛).

By Lemma 32.2 (𝑖𝑖),
𝐹𝐸∗

𝑗𝐴𝑗−1𝑣 ∈ Span(𝑅𝐸∗
𝑗−1𝐴𝑗𝑣,𝐸∗

𝑗𝐴𝑗−1𝑣,𝐸∗
𝑗𝐴𝑗+1𝑣) (32.29)

⊆ Span(𝑅𝐸∗
𝑗−1𝐴𝑗−2𝑣,𝐸∗

𝑗𝐴𝑗−1𝑣) (32.30)
Span(𝐸∗

𝑗−1𝐴𝑗−1𝑣) (1 ≤ 𝑗 ≤ 𝑛). (32.31)
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By Lemma 32.2 (𝑖𝑖𝑖),

𝐹𝐸∗
𝑗𝐴𝑗−1𝑣 ∈ Span(𝐹𝐸∗

𝑗−1𝐴𝑗𝑣,𝐸∗
𝑗−1𝐴𝑗𝑣,𝐸∗

𝑗−1𝐴𝑗−2𝑣) (32.32)
⊆ Span(𝐹𝐸∗

𝑗−1𝐴𝑗−2𝑣,𝐸∗
𝑗−1𝐴𝑗−2𝑣) (32.33)

⊆ Span(𝐸∗
𝑗−1𝐴𝑗−2𝑣) (2 ≤ 𝑗 ≤ 𝑛). (32.34)

Hence,
𝑊 = Span(𝐸∗

1𝐴0𝑣,𝐸∗
2𝐴1𝑣,… ,𝐸∗

𝑛𝐴𝑛−1𝑣).
is 𝑅, 𝐹 , 𝐿 invariant.

Therefore 𝑊 is a thin 𝑇 -module with endpoint 1 that contains 𝑣.
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Chapter 33

Algebra on First
Subconstitutent

Wednesday, April 21, 1993

Lemma 33.1. Let 𝑌 = (𝑋, {𝑅𝑖}0≤𝑖≤𝐷) be a commutative scheme. Fix a vertex
𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑀∗ ≡ 𝑀∗(𝑥), 𝑇 ≡ 𝑇(𝑥). Then the following hold.

(𝑖) 𝐸∗
0𝑀𝑀∗ = 𝐸∗

0𝑀
(𝑖𝑖) 𝐸∗

0𝑇 = 𝐸∗
0𝑀 .

(𝑖𝑖𝑖) 𝑇𝐸∗
0𝑇 = 𝑀𝐸∗

0𝑀 .

(𝑖𝑣) 𝐸∗
0𝐸0𝐸∗

0 = |𝑋|−1𝐸∗
0.

(𝑣) 𝐸∗
0𝐸0𝐸∗

0 = |𝑋|−1𝐸∗
0.

(𝑣𝑖) Lines (𝑖)-(𝑖𝑣) hold if we interchange (𝐸0, 𝐸∗
0), (𝑀,𝑀∗).

Moreover, 𝑀𝐸∗
0𝑀 = 𝑀∗𝐸0𝑀∗.

Proof.

(𝑖) ⊇: 1 ∈ 𝑀∗ implies 𝑀 ⊆ 𝑀𝑀∗.

⊆: Pick 𝛼 ∈ 𝐸∗
0𝑀𝑀∗. Show 𝛼 ∈ 𝐸∗

0𝑀 . Since 𝐴0, 𝐴1,… ,𝐴𝐷 span 𝑀 , and since
𝐸∗

0, 𝐸∗
1,… ,𝐸∗

𝐷 span 𝑀∗, without loss of generality we may assume that

𝛼 = 𝐸∗
0𝐴𝑖𝐸∗

𝑗

for some 𝑖, 𝑗 ∈ {0,… ,𝐷}.
Without loss of generality we may assume taht 𝑖 = 𝑗, else 𝛼 = 0 by Lemma
20.3.

207
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(𝐸∗
ℎ𝐴𝑖𝐸∗

𝑗 ≠ 𝑂 ⇔ 𝑝𝑗ℎ𝑖 ≠ 0.)

Now

𝛼 = 𝐸∗
0𝐴𝑖 (

𝐷
∑
ℎ=0

𝐸∗
ℎ) = 𝐸∗

0𝐴𝑖 ∈ 𝐸∗
0𝑀.

(𝑖𝑖) ⊇: This is clear.

⊆: 𝐸∗
0𝑇 is the minimal right ideal of 𝑇 containing 𝐸∗

0.

So, we just have to show that 𝐸∗
0𝑀 is a right ideal of 𝑇 containing 𝐸∗

0.

It clearly contains 𝐸∗
0 since 𝐼 ∈ 𝑀 , and is a right ideal of 𝑇 by (𝑖), and the fact

that 𝑇 is generated by 𝑀 abd 𝑀∗.

(𝑖𝑖𝑖) By the transpose of (𝑖𝑖),

𝑇𝐸∗
0 = 𝑀𝐸∗

0,
so,

𝑇𝐸∗
0𝑇 = (𝑇𝐸∗

0)(𝐸∗
0𝑇 ) = 𝑀𝐸∗

0𝐸∗
0𝑀 = 𝑀𝐸∗

0𝑀.

(𝑖𝑣) We have

𝐸∗
0𝐸0𝐸∗

0 = 1
|𝑋|𝐸

∗
0 (

𝐷
∑
ℎ=0

𝐴ℎ)𝐸∗
0 = 1

|𝑋|𝐸
∗
0𝐴0𝐸∗

0 = |𝑋|−1𝐸∗
0.

(𝑣) The first part is clear by using Lemma 20.3 (𝑖𝑖),

𝐸ℎ𝐴∗
𝑖𝐸𝑗 ≠ 𝑂 ⇔ 𝑞𝑗ℎ𝑖 ≠ 0,

and Lemma 22.1 (𝑖𝑖𝑖),
𝑞𝑗0𝑖 = 𝛿𝑖𝑗.

Also,
𝑀𝐸∗

0𝑀 = 𝑇𝐸∗
0𝑇 = 𝑇𝐸∗

0𝐸0𝐸∗
0𝑇 ⊆ 𝑇𝐸0𝑇 = 𝑀∗𝐸0𝑀∗,

and
𝑀∗𝐸0𝑀∗ ⊆ 𝑀𝐸∗

0𝑀
by dual argument. So,

𝑀∗𝐸0𝑀∗ = 𝑀𝐸∗
0𝑀.

This proves the lemma.
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Lemma 33.2. Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≤ 3, 𝑄-
polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Pick a vertex 𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡
𝐸∗

𝑖 (𝑥), 𝑀∗ ≡ 𝑀∗(𝑥), 𝑇 ≡ 𝑇(𝑥).
(𝑖) 𝐸∗

1𝑀𝑀∗ = 𝐸∗𝑀 +𝐸∗
1𝐸0𝑀∗ +𝐸∗

1𝐸1𝑀∗.

(𝑖𝑖) 𝐸1𝑀∗𝑀 = 𝐸1𝑀∗ +𝐸1𝐸∗
0𝑀 +𝐸1𝐸∗

1𝑀 .

Proof.

(𝑖) View 𝐸∗
−1, 𝐸∗

𝐷+1 as 𝑂.

View 𝜃∗−1, 𝜃∗𝐷+1 as indeterminates.

Let Δ denote RHS in (𝑖).
⊇: 𝐼 ∈ 𝑀∗ implies 𝑀 ⊆ 𝑀𝑀∗.

⊆: Suppose not. Then there exists

𝛼 ∈ 𝐸∗
1𝑀𝑀∗ � Δ. (33.1)

Since 𝐴0, 𝐴1,… ,𝐴𝐷 span 𝑀 , since 𝐸∗
0, 𝐸∗

1,… ,𝐸∗
𝐷 span 𝑀∗, without loss of

generality we may assume that

𝛼 = 𝐸∗
1𝐴𝑖𝐸∗

𝑗

for some 𝑖, 𝑗 ∈ {0,… ,𝐷}.
Observe |𝑖 − 𝑗| ≤ 1, else 𝛼 = 0 by Lemma 20.3.

Without loss of generality, assume 𝑖 + 𝑗 is minimal subject to the above con-
straints.

First assume
𝑗 = 𝑖 + 1. (33.2)

Observe

𝐸∗
1𝐴𝑖𝐸∗

𝑖+1 +𝐸∗
1𝐴𝑖𝐸∗

𝑖 +𝐸∗
1𝐴𝑖𝐸∗

𝑖−1 (33.3)

= 𝐸∗
1𝐴𝑖 (

𝐷
∑
ℎ=0

𝐸∗
ℎ) (33.4)

= 𝐸∗
1𝐴𝑖 (33.5)

∈ Δ. (33.6)

Also, observe
𝐸∗

1𝐴𝑖𝐸∗
𝑖 , 𝐸∗

1𝐴𝑖𝐸∗
𝑖−1 ∈ Δ

by the minimality of 𝑖 + 𝑗, so

𝛼 = 𝐸∗
1𝐴𝑖𝐸∗

𝑖+1 ∈ Δ
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by (33.6). Hence, (33.2) cannot occur.

Since |𝑖 − 𝑗| ≤ 1,
𝑖 ∈ {𝑗, 𝑗 + 1}. (33.7)

Observe

𝐸∗
1𝐴𝑗+1𝐸∗

𝑗 +𝐸∗
1𝐴𝑗𝐸∗

𝑗 +𝐸∗
1𝐴𝑗−1𝐸∗

𝑗 (33.8)

= 𝐸∗
1 (

𝐷
∑
ℎ=0

𝐴ℎ)𝐸∗
𝑗 (33.9)

= |𝑋|𝐸∗
1𝐸0𝐸∗

𝑗 (33.10)
∈ Δ, (33.11)

and

𝜃∗𝑗+1𝐸∗
1𝐴𝑗+1𝐸∗

𝑗 + 𝜃∗𝑗𝐸∗
1𝐴𝑗𝐸∗

𝑗 + 𝜃∗𝑗−1𝐸∗
1𝐴𝑗−1𝐸∗

𝑗 (33.12)

= 𝐸∗
1 (

𝐷
∑
ℎ=0

𝜃∗ℎ𝐴ℎ)𝐸∗
𝑗 (33.13)

= |𝑋|𝐸∗
1𝐸1𝐸∗

𝑗 (33.14)
∈ Δ. (33.15)

Since 𝐸∗
1𝐴𝑗−1𝐸∗

𝑗 ∈ Δ by the minimality of 𝑖 + 𝑗, so

𝐸1𝐴𝑗+1𝐸∗
𝑗 +𝐸∗

1𝐴𝑗𝐸∗
𝑗 ∈ Δ,

𝜃∗𝑗+1𝐸∗
1𝐴𝑗+1𝐸∗

𝑗+1 + 𝜃∗𝑗𝐸∗
1𝐴𝑗𝐸∗

𝑗 ∈ Δ.

But, 𝜃∗0, 𝜃∗1,… , 𝜃∗𝐷 are distinct by Lemma 22.2 (𝑖𝑣), so

𝐸∗
1𝐴𝑗+1𝐸∗

𝑗 , 𝐸∗
1𝐴𝑗𝐸∗

𝑗 ∈ Δ.

But 𝛼 is one of these two matrices, so

𝛼 ∈ Δ.

Hence, (33.7) cannot occur either, and we have a contradiction.

(𝑖𝑖) Dual argument.

Lemma 33.3. With the above notation, set

̃𝐽 ∶= 𝐸∗
1𝐽𝐸∗

1, ̃𝐴 ∶= 𝐸∗
1𝐴𝐸∗

1.

(𝑖) ̃𝐽2 = 𝑘 ̃𝐽 . (𝑘 = valency of Γ)
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(𝑖𝑖) ̃𝐽 ̃𝐴 = ̃𝐴 ̃𝐽 = 𝑎1 ̃𝐽 . (𝑎1 = 𝑝111 for Γ)
(𝑖𝑖𝑖) 𝐸∗

1𝐸0𝐸∗
1 = |𝑋|−1 ̃𝐽 .

(𝑖𝑣) 𝐸∗
1𝐸1𝐸∗

1 = |𝑋|−1(𝐸∗
1(𝜃∗0 − 𝜃∗2) + ̃𝐴(𝜃∗1 − 𝜃∗2) + ̃𝐽(𝜃∗2)).

Proof.

(𝑖) The first subconstituent has 𝑘 vertices.

(𝑖𝑖) The first subconstituent is regular of valency 𝑎1.
(𝑖𝑖𝑖) Since 𝐸0 = |𝑋|−1𝐽 ,

𝐸∗
1𝐸0𝐸∗

1 = |𝑋|−1 ̃𝐽 .

(𝑖𝑣) We have

𝐸∗
1𝐸1𝐸∗

1 = 𝐸∗
1 (|𝑋|−1

𝐷
∑
ℎ=0

𝜃∗ℎ𝐴ℎ)𝐸∗
1 (33.16)

= |𝑋|−1(𝜃∗0𝐸∗
1𝐴0𝐸∗

1 + 𝜃∗1𝐸∗
1𝐴1𝐸∗

1 + 𝜃∗2𝐸∗
1𝐴2𝐸∗

1) (33.17)

= |𝑋|−1(𝜃∗0𝐸∗
1 + 𝜃∗1 ̃𝐴 + 𝜃∗2𝐸∗

1𝐴2𝐸∗
1). (33.18)

Also,

̃𝐽 = 𝐸∗
1𝐽𝐸∗

1 (33.19)
= 𝐸∗

1𝐴0𝐸∗
1 +𝐸∗

1𝐴1𝐸∗
1 +𝐸∗

1𝐴2𝐸∗
1 (33.20)

= 𝐸∗
1 + ̃𝐴 + 𝐸∗

1𝐴2𝐸∗
1. (33.21)

Eliminating the 𝐸∗
1𝐴2𝐸∗

1 term in (33.18) using equation (33.21), we get (𝑖𝑣).

Lemma 33.4. With the above notation,

(𝑖) 𝐸∗
1𝑇 = 𝐸∗

1𝐸0𝑀∗ +𝐸∗
1𝑀 +𝐸∗

1𝐸1𝑀∗ +𝐸∗
1𝐸1𝐸∗

1𝑀 +⋯.

(𝑖𝑖) 𝐸∗
1𝑇𝐸∗

1 = Span(𝐸∗
1𝐸0𝐸∗

1, 𝐸∗
1, 𝐸∗

1𝐸1𝐸∗
1, (𝐸∗

1𝐸1𝐸∗
1)2,…).

(𝑖𝑖𝑖) 𝐸∗
1𝑇𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2,…).

(𝑖𝑣) 𝐸∗
1𝑇𝐸∗

1 is symmetric (in particular, commutative).

Proof.

(𝑖) ⊇: Clear.

⊆: 𝐸∗
1𝑇 is the minimal right ideal of Γ that contains 𝐸∗

1.
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RHS contains 𝐸∗
1, so show RHS is a right ideal of 𝑇 .

Show RHS is closed with respect to multiplication on right by 𝑀 , 𝑀∗.

We have
𝐸∗

1𝐸0𝑀∗(𝑀) = 𝐸∗
1𝐸0𝑀∗, 𝐸∗

1𝐸0𝑀∗(𝑀∗) = 𝐸∗
1𝐸0𝑀∗

by dual of Lemma 33.1 (𝑖).
By Lemma 33.2,

𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸∗
1𝑀(𝑀∗) (33.22)

= 𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸1(𝐸∗
1𝑀𝑀∗) (33.23)

= 𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸1(𝐸∗
1𝑀 +𝐸∗

1𝐸0𝑀∗ +𝐸∗
1𝐸1𝑀∗) (33.24)

∈ RHS, (33.25)

because

𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸1𝐸∗
1𝐸0𝑀∗ ⊆ 𝐸∗

1𝑇𝐸0𝑇 = 𝐸∗
1𝑀∗𝐸0𝑀∗ = 𝐸∗

1𝐸0𝑀∗.

By Lemma 33.2,

𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸1𝑀∗(𝑀) (33.26)
= 𝐸∗

1𝐸1𝐸∗
1 ⋯𝐸∗

1(1𝑀∗𝑀) (33.27)
= 𝐸∗

1𝐸1𝐸∗
1 ⋯𝐸∗

1(𝐸1𝑀∗ +𝐸1𝐸∗
0𝑀∗ +𝐸1𝐸∗

1𝑀) (33.28)
∈ RHS, (33.29)

because by the last part of Lemma 33.1,

𝐸∗
1𝐸1𝐸∗

1 ⋯𝐸∗
1𝐸1𝐸∗

0𝑀 ⊆ 𝐸∗
1𝑇𝐸∗

0𝑇 = 𝐸∗
1𝑀𝐸∗

0𝑀 = 𝐸∗
1𝐸0𝑀∗.

(𝑖𝑖) Multiply (𝑖) on the right by 𝐸∗
1, we have

𝐸∗
1𝑇𝐸∗

1 = 𝐸∗
1𝐸0𝑀∗𝐸∗

1 +𝐸∗
1𝑀𝐸∗

1 +𝐸∗
1𝐸1𝑀∗𝐸∗

1 (33.30)
+⋯+𝐸∗

1𝐸1 ⋯𝐸1𝑀∗𝐸∗
1 +𝐸∗

1𝐸1 ⋯𝐸∗
1𝑀𝐸∗

1 (33.31)
= Span(𝐸∗

1𝐸0𝐸∗
1, 𝐸∗

1, 𝐸∗
1𝐸1𝐸∗

1, (𝐸∗
1𝐸1𝐸∗

1)2,…). (33.32)

HS MEMO

Note that by Lemma 29.1,

𝐸∗
1𝑀𝐸∗

1 = Span(𝐸∗
1𝐴0𝐸∗

1, 𝐸∗
1𝐴1𝐸∗

1, 𝐸∗
1𝐴2𝐸∗

1) (33.33)
= Span(𝐸∗

1, 𝐸∗
1𝐸1𝐸∗

1, 𝐸∗
1𝐸0𝐸∗

1). (33.34)

Moreover,

𝐸∗
1 ⋯𝐸∗

1𝐸0𝐸∗
1 ⊆ 𝐸∗

1𝑇𝐸0𝑇𝐸∗
1 = 𝐸∗

1𝑀∗𝐸0𝑀∗𝐸∗
1 ∈ Span(𝐸∗

1𝐸0𝐸∗
1).
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(𝑖𝑖𝑖) By (𝑖𝑖), 𝐸∗
1𝑇𝐸∗

1 is generated by ̃𝐽 = |𝑋|𝐸∗
1𝐸0𝐸∗

1 and 𝐸∗
1𝐸1𝐸∗

1.

By Lemma 33.3 (𝑖𝑣), 𝐸∗
1𝑇𝐸∗

1 is generated by ̃𝐽 , ̃𝐴.

But, Span ̃𝐽 is a 2-sided ideal by Lemma 33.3 (𝑖), (𝑖𝑖).
Hence, we have (𝑖𝑖𝑖).
(𝑖𝑣) ̃𝐴, ̃𝐽 are symmetric commuting matrices, we have the claim.
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Chapter 34

Modules of Endpoint One

Friday, April 23, 1993

Let Γ = (𝑋,𝐸) be distance-regular of diameter 𝐷 ≥ 3.
Assume Γ is 𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Write

̃𝐴𝑖 = 𝐴0 +𝐴1 +⋯+𝐴𝑖 𝑖 ∈ {0, 1… ,𝐷}.

Fix a vertex 𝑥 ∈ 𝑋, write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑀∗ ≡ 𝑀∗(𝑥), 𝑇 ≡ 𝑇(𝑥).
Pick 0 ≠ 𝑣 ∈ (𝐸∗

1𝑉 )𝑛𝑒𝑤. Set 𝑣∗ = |𝑋|𝐸1𝑣. We will show that

𝑇𝑣 = 𝑀𝑣 +𝑀∗𝑣∗.

We need a preliminary lemma.

Lemma 34.1. With the atove notation, we have the following.

(𝑖) ̃𝐴ℎ𝑣 = 𝐸∗
ℎ+1𝐴ℎ𝑣 − 𝐸∗

ℎ𝐴ℎ+1𝑣, ℎ ∈ {0, 1,… ,𝐷}.

(𝐸∗
𝐷+1 = 𝐴𝐷+1 = 𝑂).

(𝑖𝑖) 𝐸∗
ℎ𝑣∗ = (𝜃∗ℎ−1−𝜃∗ℎ)𝐸∗

ℎ𝐴ℎ−1𝑣−(𝜃∗ℎ−𝜃∗ℎ+1)𝐸∗
ℎ𝐴ℎ+1𝑣, ℎ ∈ {0, 1,… ,𝐷}. (𝐴−1 =

𝐴𝐷+1 = 𝑂).

(𝑖𝑖𝑖) (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐸∗
𝑖+1𝐴𝑖𝑣 = (

𝑖
∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖+1)𝐴ℎ)𝑣 −(
𝑖

∑
ℎ=0

𝐸∗
ℎ)𝑣∗, 𝑖 ∈

{0, 1,… ,𝐷 − 1}.

(𝑖𝑣) (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐸∗
𝑖𝐴𝑖+1𝑣 = (

𝑖−1
∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖 )𝐴ℎ)𝑣 −(
𝑖

∑
ℎ=0

𝐸∗
ℎ)𝑣∗, 𝑖 ∈ {0, 1,… ,𝐷−

1}.

(𝑣) 𝑀𝑣 +𝑀∗𝑣∗ = Span{𝐸∗
𝑖𝐴𝑖−1𝑣,𝐸∗

𝑖−1𝐴𝑖𝑣 ∣ 1 ≤ 𝑖 ≤ 𝐷}.

215
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Proof.

(𝑖) It is already done in Lemma 32.2.

(𝑖𝑖)

𝐸∗
ℎ𝑣∗ = |𝑋|𝐸∗

ℎ𝐸1𝑣 (34.1)

= 𝐸∗
ℎ (

𝐷
∑
𝑖=0

𝜃∗𝐴𝑖)𝑣 (34.2)

= 𝐸∗
ℎ (

𝐷
∑
𝑖=0

𝜃∗𝑖 ( ̃𝐴𝑖 − ̃𝐴𝑖−1))𝑣 (34.3)

= 𝐸∗
ℎ (

𝐷−1
∑
𝑖=0

(𝜃∗𝑖 − 𝜃∗𝑖+1) ̃𝐴𝑖)𝑣 + 𝐸∗
ℎ𝜃∗𝐷 ̃𝐴𝐷𝑣 (34.4)

= 𝐸∗
ℎ (

𝐷−1
∑
𝑖=0

(𝜃∗𝑖 − 𝜃∗𝑖+1)(𝐸∗
𝑖+1𝐴𝑖𝑣 − 𝐸∗

𝑖𝐴𝑖+1𝑣)) (34.5)

= (𝜃∗ℎ−1 − 𝜃∗ℎ)𝐸∗
ℎ𝐴ℎ−1𝑣 − (𝜃∗ℎ − 𝜃∗ℎ+1)𝐸∗

ℎ𝐴ℎ+1𝑣. (34.6)

(𝑖𝑖𝑖), (𝑖𝑣) Call the equation in (𝑖𝑖𝑖), 𝑖+ and call the equation in (𝑖𝑣) 𝑖−. Prove
in order,

0−, 0+, 1−, 1+, 2−, 2+,… .
0−: Trivial.
HS MEMO

LHS = (𝜃∗0 − 𝜃∗1)𝐸∗
0𝐴1𝑣 (34.7)

= (𝜃∗−1 − 𝜃∗1)𝐸∗
0𝐴−1𝑣 − 𝐸∗

ℎ𝑣∗ (by (𝑖𝑖)) (34.8)
= −𝐸∗

0𝑣∗ (34.9)
= RHS. (34.10)

𝑖+: using (𝑖) and 𝑖−.
LHS = (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐸∗

𝑖+1𝐴𝑖𝑣 (34.11)

= (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐸∗
𝑖𝐴𝑖+1𝑣 + (𝜃∗𝑖 − 𝜃∗𝑖+1) ̃𝐴𝑖𝑣 (by (𝑖)) (34.12)

= (
𝑖−1
∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖 )𝐴ℎ)𝑣 −(
𝑖

∑
ℎ=0

𝐸∗
ℎ)𝑣∗ + (𝜃∗𝑖 − 𝜃∗𝑖+1)(

𝑖
∑
ℎ=0

𝐴ℎ)𝑣 (by 𝑖−)

(34.13)

= (
𝑖

∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖+1)𝐴ℎ)𝑣 −(
𝑖

∑
ℎ=0

𝐸∗
ℎ)𝑣∗. (34.14)
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𝑖−: using (𝑖𝑖) and (𝑖 − 1)+.

LHS = (𝜃∗𝑖 − 𝜃∗𝑖+1)𝐸∗
𝑖𝐴𝑖+1𝑣 (34.15)

= (𝜃∗𝑖−1 − 𝜃∗𝑖 )𝐸∗
𝑖𝐴𝑖−1𝑣 − 𝐸∗

𝑖 𝑣∗ (by (𝑖𝑖)) (34.16)

= (
𝑖−1
∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖 )𝐴ℎ)𝑣 −(
𝑖−1
∑
ℎ=0

𝐸∗
ℎ)𝑣∗ −𝐸∗

𝑖 𝑣∗ (34.17)

= (
𝑖−1
∑
ℎ=0

(𝜃∗ℎ − 𝜃∗𝑖 )𝐴ℎ)𝑣 −(
𝑖

∑
ℎ=0

𝐸∗
ℎ)𝑣∗. (34.18)

(𝑣) Immediate from (𝑖) − (𝑖𝑣).

HS MEMO

𝑀𝑣 +𝑀∗𝑣∗ ⊆ Span{ ̃𝐴ℎ𝑣,𝐸∗
ℎ𝑣∗ ∣ 0 ≤ ℎ ≤ 𝐷} (34.19)

⊆ Span{𝐸∗
ℎ𝐴ℎ−1𝑣,𝐸∗

ℎ−1𝐴ℎ𝑣 ∣ 1 ≤ ℎ ≤ 𝐷} (34.20)

by (𝑖) and (𝑖𝑖).
On the other hand,

𝐸∗ℎ𝐴ℎ−1𝑣,𝐸∗
ℎ−1𝐴ℎ𝑣 ∈ 𝑀𝑣 +𝑀∗𝑣∗ 𝑖 ∈ {1, 2,… ,𝐷}

by (𝑖𝑖𝑖) and (𝑖𝑣).
Lemma 34.2. With the notation of Lemma 34.1, assume 0 ≠ 𝑣 ∈ (𝐸∗

1𝑉 )𝑛𝑒𝑤 is
an eigenvector for ̃𝐴 ∶= 𝐸∗

1𝐴𝐸∗
1. Then

(𝑖) 𝑇 𝑣 = 𝑀𝑣 +𝑀∗𝑣, where 𝑣∗ = |𝑋|𝐸1𝑣.

(𝑖𝑖) 𝑇 𝑣 = Span{𝑣+1 , 𝑣+2 ,… , 𝑣+𝐷, 𝑣−2 , 𝑣−3 ,… , 𝑣−𝐷−1}, where 𝑣+𝑖 = 𝐸∗
𝑖𝐴𝑖−1𝑣, 𝑣−𝑖 =

𝐸∗
𝑖𝐴𝑖+1𝑣.

(𝑖𝑖𝑖) dim𝐸∗
1𝑇𝑣 = 1, dim𝐸∗

𝑖𝑇𝑣 ≤ 2 for 𝑖 ∈ {2,… ,𝐷 − 1}, and dim𝐸∗
𝐷𝑇𝑣 ≤ 1.

(𝑖𝑣) 𝑇 𝑣 is an irreducible 𝑇 -module.

Proof.

(𝑖) ⊇: 𝑣 ∈ 𝑇𝑣. So 𝑀𝑣 ⊆ 𝑇𝑣, and

𝑣∗ ∈ 𝑀𝑣 ⊆ 𝑇𝑣.
Hence, 𝑀∗𝑣∗ ⊆ 𝑇𝑣.
⊆: It suffices to show that 𝑀𝑣 +𝑀∗𝑣∗ is a 𝑇 -module (since it clearly contains
𝑣).
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Show:

(𝑎) 𝑀∗𝑀𝑣 ⊆ 𝑀𝑣 +𝑀∗𝑣∗.
(𝑏) 𝑀𝑀∗𝑣 ⊆ 𝑀𝑣 +𝑀∗𝑣∗.
Proof of (𝑎). By the transpose of (𝑖) in Lemma 33.2,

𝑀∗𝑀𝐸∗
1 = 𝑀𝐸∗

1 +𝑀∗𝐸0𝐸∗
1 +𝑀∗𝐸1𝐸∗

1.
Since 𝑣 ∈ 𝐸∗

1𝑉 , 𝐸∗
1𝑣 = 𝑣 and

𝑀∗𝑀𝑣 = 𝑀𝑣 +𝑀∗𝐸0𝑣 +𝑀∗𝐸1𝑣.
But also 𝐸0𝑣 = 0 since 𝑣 is orthogonal to the trivial 𝑇 -module. Since 𝐸1𝑣 =
|𝑋|−1𝑣∗,

𝑀∗𝑀𝑣 = 𝑀𝑣 +𝑀∗𝑣∗
as desired.

(𝑏) is obtained from the traspose of (𝑖𝑖) in Lemma 33.2.

HS MEMO

𝑀𝑀∗𝑣 = 𝑀𝑀∗𝐸1𝑣∗ (34.21)
= 𝑀∗𝐸1𝑣∗ +𝑀𝐸∗

0𝐸1𝑣∗ +𝑀𝐸∗
1𝐸1𝑣∗ (34.22)

= 𝑀∗𝑣∗ +𝑀𝐸∗
0𝑣∗ +𝑀𝐸∗

1𝑣∗. (34.23)

𝐸∗
0𝑣∗ ∈ 𝑇𝑣 and 𝐸∗

0𝑇𝑣 = 0 as 𝑣 ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤. So, 𝐸∗

0𝑣∗ = 0.
𝐸∗

1𝑣∗ = |𝑋|𝐸∗
1𝐸1𝑣 (34.24)

= |𝑋|𝐸∗
1𝐸1𝐸∗

1𝑣 (34.25)
= ((𝜃∗0 − 𝜃∗2)𝐸∗

1 + (𝜃∗1 − 𝜃∗2)𝐸∗
1𝐴𝐸∗

1 + 𝜃∗2|𝑋|𝐸∗
1𝐸0𝐸∗

1)𝑣 (34.26)
= (𝜃∗0 − 𝜃∗2)𝑣 + (𝜃∗1 − 𝜃∗2)𝐸∗

1𝐴𝐸∗
1𝑣 + 𝜃∗2|𝑋|𝐸∗

1𝐸0𝑣 (34.27)
∈ Span{𝑣}, (34.28)

as 𝐸0𝑣 = 0, and 𝑣 is an eigenvector of 𝐸∗
1𝐴𝐸∗

1.

⋆ 𝑣 ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤. If 𝑣 is an eigenvector of 𝐸∗

1𝐴𝐸∗
1,

𝐸∗
1𝑣∗ ∈ Span{𝑣}.

(𝑖𝑖) We have

𝑇𝑣 = 𝑀𝑣 +𝑀∗𝑣∗ (34.29)
= Span{𝐸∗

𝑖𝐴𝑖−1𝑣,𝐸∗
𝑖−1𝐴𝑖𝑣 ∣ 1 ≤ 𝑖 ≤ 𝐷} (34.30)

= Span{𝑣+𝑖 , 𝑣−𝑖−1 ∣ 1 ≤ 𝑖 ≤ 𝐷} (34.31)
= Span{𝑣+1 , 𝑣+2 ,… , 𝑣∗𝐷, 𝑣−0 ,… , 𝑣−𝐷−1} (34.32)
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by Lemma 34.1 (𝑣).
But 𝑣−0 = 𝐸∗

0𝐴1𝑣 = 0 since 𝑣 ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤, and 𝑣−1 ∈ Span{𝑣+1 }.

Indeed,
𝑣−1 = 𝐸∗

1𝐴2𝑣 = (−1 − 𝑎0(𝑇 𝑣))𝑣+1 .

where 𝑎0(𝑇 𝑣) is the eigenvalue of 𝑣 associated with ̃𝐴.

To see this, observe

0 = ̃𝐽𝑣 (34.33)

= 𝐸∗
1 (

𝐷
∑
𝑖=0

𝐴𝑖)𝐸∗
1𝑣 (34.34)

= 𝐸∗
1 (

2
∑
𝑖=0

𝐴𝑖)𝐸∗
1𝑣 (34.35)

= 𝑣 + 𝑎0(𝑇 𝑣)𝑣 + 𝑣−1 . (34.36)

Therefore,
𝑇𝑣 = Span{𝑣+1 , 𝑣+2 ,… , 𝑣+𝐷, 𝑣−2 ,… , 𝑣−𝐷−1}.

(𝑖𝑖𝑖) 𝑣+𝑖 , 𝑣−𝑖 ∈ 𝐸∗
𝑖𝑉 .

(𝑖𝑣) Suppose 𝑇𝑣 is reducible, i.e., 𝑇𝑣 = 𝑊1 + 𝑊2. (orthogonal direct sum of
nonzero 𝑇 -modules)

𝐸∗
1𝑇𝑣 = 𝐸∗

1𝑊1 +𝐸∗
1𝑊2

has dimension 1 by (𝑖𝑖𝑖). Assume 𝑣 ∈ 𝐸∗
1𝑊1. Then 𝑇𝑣 ⊆ 𝑊1, a contradiction.

Lemma 34.3. With the notation of Lemma 34.1, assume 0 ≠ 𝑣 ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤 is

an eigenvector for ̃𝐴 ∶= 𝐸∗
1𝐴𝐸∗

1.

(𝑖) 𝑇 𝑣 is thin if and only if 𝑀∗𝑣∗ ⊆ 𝑀𝑣.

(𝑖𝑖) Let 𝑊 denote any irreducible 𝑇 -module with endpoint 1. Then

𝑊 = 𝑇𝑣′

for some 0 ≠ 𝑣′ ∈ (𝐸∗
1𝑉 )𝑛𝑒𝑤 that is an eigenvector of ̃𝐴.

(𝑖𝑖𝑖) Denote eigenvalue of ̃𝐴 associated to 𝑣 (resp. 𝑣′) by 𝑎0(𝑇 𝑣) (resp. 𝑎0(𝑇 𝑣′)).
Then 𝑇𝑣, 𝑇𝑣′ are isomorphic 𝑇 -module if and only if 𝑎0(𝑇 𝑣) = 𝑎0(𝑇 𝑣′).
(𝑖𝑣) 𝐸∗

1𝑇𝐸∗
1 has basis
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̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2,… , ̃𝐴ℓ−1,

where ℓ is the number of mutually nonisomorphic 𝑇 -modules with endpoint 1.

Proof.

(𝑖) If 𝑇𝑣 is thin, then by Lemma 9.1, 𝑇𝑣 = 𝑀𝑣. Hence 𝑀∗𝑣∗ ⊆ 𝑀𝑣.
HS MEMO

Originally, the statement was 𝑇𝑣 is thin if and only if 𝑀∗𝑣∗ = 𝑀𝑣. This is not
the case in general. Suppose Γ is thin. Let 𝑊 be an irreducible 𝑇 -module of
endpoint 1. Then, that 𝑊 ∩ 𝐸∗

1𝑉 ∋ 𝑣 ≠ 0 implies 𝑣∗ ∈ 𝑊 ∩ 𝐸1𝑉 gives one to
one and 𝑘 ≤ 𝑚.

However, by ‘Distance-Regular Graphs’ (A.E. Brouwer, 1989),

𝐽(𝑣, 𝑑): 𝑣 ≥ 2𝑑

𝑏𝑗 = (𝑑 − 𝑗)(𝑣 − 𝑑 − 𝑗), 𝑐𝑗 = 𝑗2, (34.37)

𝜃𝑗 = (𝑑 − 𝑗)(𝑣 − 𝑑 − 𝑗) − 𝑗, 𝑚𝑗 = (𝑣
𝑗) − ( 𝑣

𝑗 − 1). (34.38)

In particular,
𝑘 = 𝑏0 = 𝑑(𝑣 − 𝑑) > 𝑚1 = 𝑣 − 1 if 𝑑 ≥ 2,

and 𝐽(𝑣, 𝑑) is thin.
So |𝑋|𝐸1𝑣 = 𝑣∗ may be 0 sometimes. But as 𝑇𝑣 is dual thin of diameter at
least 𝐷−2. The dual endpint 𝑟∗ ≤ 2, so in that case, 𝐸2𝑣 ≠ 0. Hence, if 𝐷 ≥ 3,
𝐸2𝑣 ≠ 0 always.

HS MEMO

Now assume 𝑀∗𝑣∗ ⊆ 𝑀𝑣 = 𝑇𝑣. Then

𝑀𝑣 = {𝑓(𝐴)𝑣 ∣ 𝑓(𝜆) ∈ ℂ[𝜆]}.

So,
𝐸𝑖𝑇𝑣 = 𝐸𝑖𝑀𝑣 ∈ Span(𝐸𝑖𝑣).

Hence, 𝑇𝑣 is dual thin.

Now we can construct a basis, 0 ≠ 𝑤∗
0 ∈ 𝐸𝑟∗𝑊 , where 𝑟∗ is the dual endpoint,

and
𝑤∗

0, 𝑤∗
1,… ,𝑤∗

𝑑 ∈ 𝑊 = 𝑇𝑣,

where 𝑤∗
𝑖 = 𝐸∗

𝑟∗+𝑖𝐴∗
1
𝑖𝑤∗

0.

𝐴∗
1𝑤∗

𝑖 = 𝑤∗
𝑖+1 + 𝑎∗𝑖𝑤∗

𝑖 + 𝑥∗
𝑖𝑤∗

𝑖−1,
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and 𝑤∗
𝑖 = 𝑝∗𝑖 (𝐴∗)𝑤∗

0.

𝐸∗
𝑟∗+𝑖𝐴∗

1𝐸𝑟∗+𝑖|𝐸𝑟∗+𝑖𝑊 = 𝑎∗𝑖 ⋅ 1|𝐸𝑟∗+𝑖𝑊 ,

𝐸∗
𝑟∗+𝑖−1𝐴∗

1𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖−1|𝐸𝑟∗+𝑖−1𝑊 = 𝑥∗
𝑖 ⋅ 1|𝐸𝑟∗+𝑖−1𝑊 .

See Lemma 9.1, and Lemma 22.2.

From above, 𝑇𝑣 = 𝑀∗𝑤∗
0. So,

𝐸∗
𝑖𝑇𝑣 = 𝐸∗

𝑖𝑀∗𝑤∗
0 ∈ Span{𝐸∗

𝑖𝑤∗
0}.

Thus, 𝑇𝑣 is thin.

∗Need to write down the dual at least for Lemma 9.1, Corollary 9.1.

(𝑖𝑖𝑖) 𝐸∗
1𝑊 is an ̃𝐴-module. So, there exists 0 ≠ 𝑣′ ∈ 𝐸∗

1𝑊 that is an eigenvalue
for ̃𝐴. Also 𝑇𝑣′ ⊆ 𝑊 .

Since 𝑊 is irreducible, 𝑇𝑣′ = 𝑊 .

(𝑖𝑖𝑖) Suppose 𝑇𝑣 → 𝑇𝑣′ is an isomorsphism of 𝑇 -modules.

Recall 𝜎𝑠 = 𝑠𝜎 for all 𝑠 ∈ 𝑇 .

Span{𝜎𝑣} = 𝜎𝐸∗
1𝑇𝑣 = 𝐸∗

1𝜎𝑇𝑣 = 𝐸∗
1𝑇𝑣′ = Span{𝑣′}.

Hence,
𝑎0(𝑇 𝑣)𝜎𝑣 = 𝜎(𝑎0(𝑇 𝑣)𝑣) = 𝜎 ̃𝐴𝑣 = ̃𝐴𝜎𝑣 = 𝑎0(𝑇 𝑣′)𝜎𝑣.

Since 𝜎𝑣 ≠ 0, 𝑎0(𝑇 𝑣) = 𝑎0(𝑇 𝑣′).
Now suppose 𝑎0(𝑇 𝑣) = 𝑎0(𝑇 𝑣′). Show

𝜎 ∶ 𝑇𝑣 → 𝑇𝑣′ (𝑠𝑣 ↦ 𝑠𝑣′) (𝑠 ∈ 𝑇 )

is an isomorphism of 𝑇 -modules.

Pick 𝑠 ∈ 𝑇 . Require 𝑠𝑣 = 0 if and only if 𝑠𝑣′ = 0.
Without loss of generality , 𝑠 ∈ 𝑇𝐸∗

1, since 𝑣, 𝑣′ ∈ 𝐸∗
1𝑉 .

Now 0 = 𝑠𝑣 if and only if

0 = ‖𝑠𝑣‖2 = ̄𝑣⊤ ̄𝑠⊤𝑠𝑣.

But, ̄𝑠⊤𝑠 ∈ 𝐸∗
1𝑇𝐸∗

1.

Hence, by Lemma 33.4 (𝑖𝑖𝑖),

̄𝑠⊤𝑠 = 𝛼 ̃𝐽 + 𝑝( ̃𝐴)

for some 𝛼 ∈ ℂ and 𝑝(𝜆) ∈ ℂ[𝜆].



222 CHAPTER 34. MODULES OF ENDPOINT ONE

Thus, using the fact that ̃𝐽𝑣 = 0,

0 = ‖𝑠𝑣‖2 = ̄𝑣⊤(𝛼 ̃𝐽 + 𝑝( ̃𝐴))𝑣 = ‖𝑣‖2𝑝(𝑎0(𝑇 𝑣))

if and only if 0 = 𝑝(𝑎0(𝑇 𝑣)).
Replacing 𝑣 by 𝑣′, we have

0 = 𝑠𝑣′ ↔ 0 = 𝑝(𝑎0(𝑇 𝑣′)) (34.39)
↔ 0 = 𝑝(𝑎0(𝑇 𝑣)) (34.40)
↔ 0 = 𝑠𝑣 (34.41)

as desired.

(𝑖𝑣) The following hold.

ℓ = the number of mutually nonisomorphic 𝑇 -modules with endpoint 1
(34.42)

= the number of distinct eigenvalues of ̃𝐴 ∶ (𝐸∗
1𝑉 )𝑛𝑒𝑤 → (𝐸∗

1𝑉 )𝑛𝑒𝑤 (34.43)

= the degree of minimal polynomial of ̃𝐴 ∶ (𝐸∗
1𝑉 )𝑛𝑒𝑤 → (𝐸∗

1𝑉 )𝑛𝑒𝑤. (34.44)

Claim 1. ̃𝐽 .𝐸∗
1, ̃𝐴,… , ̃𝐴ℓ−1 are linearly independent.

Proof of Claim 1. Suppose not. Then

𝛼 ̃𝐽 + 𝑝( ̃𝐴) = 𝑂

for some 𝛼 ∈ C and 𝑝(𝜆) ∈ ℂ[𝜆] with deg 𝑝 ≤ ℓ − 1.
But ̃𝐽 |(𝐸∗

1𝑉 )𝑛𝑒𝑤
= 𝑂 impiles 𝑝( ̃𝐴)|(𝐸∗

1𝑉 )𝑛𝑒𝑤
= 𝑂.

Since
deg 𝑝 < the degree of minimal polynomial of ̃𝐴|(𝐸∗

1𝑉 )𝑛𝑒𝑤
,

we find 𝑝 is identically 0.
Then 𝛼 is identically 0 also.

Claim 2. ̃𝐽 .𝐸∗
1, ̃𝐴,… , ̃𝐴ℓ−1 span 𝐸∗

𝑖𝑇𝐸∗
𝑖 .

Proof of Claim 2. It needs to show

̃𝐽 .𝐸∗
1, ̃𝐴,… , ̃𝐴ℓ are linearly dependent. (34.45)

Let 𝑚 denote the minimal polynomial of ̃𝐴|(𝐸∗
1𝑉 )𝑛𝑒𝑤

. So,

𝑚( ̃𝐴|(𝐸∗
1𝑉 )𝑛𝑒𝑤

) = 0.
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Observe that
𝐸∗

1𝑉 = (𝐸∗
1𝑉 )𝑛𝑒𝑤 + Span{𝐴 ̂𝑥}.

(direct sum of 𝐸∗
1𝑇𝐸∗

1-modules.)

𝑚( ̃𝐴)𝐴 ̂𝑥 = 𝑓 ⋅ 𝐴 ̂𝑥 for some 𝑓 ∈ ℂ.

On the other hand,

̃𝐽𝐴 ̂𝑥 = 𝑘𝐴 ̂𝑥 (𝑘 ∶ valency of Γ).

Therefore,
𝑚( ̃𝐴) − 𝑓

𝑘
̃𝐽 = 𝑂,

and (34.45) holds.
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Chapter 35

dim𝐸1
*𝑇𝐸1

* ≤ 5

Monday, April 26, 1993

Theorem 35.1. Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3. Assume
Γ is 𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, and write
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥).

(𝑖) Up to isomorphism, there are at most four thin irreducible 𝑇 -modules with
endpoint 1.

(𝑖𝑖) Suppose Γ is thin with respect to 𝑥. Then

dim𝐸∗
1𝑇𝐸∗

1 ≤ 5.

Proof.

(𝑖𝑖) is immediate from (𝑖) and part (𝑖𝑣) of Lemma 34.3.

(𝑖)

Claim 1. 𝐸∗
1𝑀𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴).

Proof of Claim 1.

𝐸∗
1𝑀𝐸∗

1 = Span{𝐸∗
1, 𝐸∗

1𝐴𝐸∗
1, 𝐸∗

1𝐴2𝐸∗
1, 𝐸∗

1𝐴3𝐸∗
1,…}.

But 𝐸∗
1𝐴ℎ𝐸∗

ℎ = 𝑂 if ℎ > 2 (by Lemma 16.1). So,

𝐸∗
1𝑀𝐸∗

1 = Span{𝐸∗
1, 𝐸∗

1𝐴𝐸∗
1, 𝐸∗

1𝐴2𝐸∗
1}.
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Also,

̃𝐽 = 𝐸∗
1𝐽𝐸∗

1 (35.1)

= 𝐸∗
1 (

𝐷
∑
ℎ=0

𝐴ℎ)𝐸∗
1 (35.2)

= 𝐸∗
1 +𝐸∗

1𝐴𝐸∗
1 +𝐸∗

1𝐴2𝐸∗
1. (35.3)

So,
𝐸∗

1𝑀𝐸∗
1 = Span{𝐸∗

1, 𝐸∗
1𝐴𝐸∗

1, ̃𝐽}.
We are done, since ̃𝐴 = 𝐸∗

1𝐴𝐸∗
1.

Claim 2. 𝐸∗
1𝑀𝑀∗𝑀𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2).

Proof of Claim 2. ⊇: Clear.

⊆: In Lemma 33.4 (𝑖), we say

𝐸∗
1𝑇 = 𝐸∗

1𝐸0𝑀∗ +𝐸∗
1𝑀 +𝐸∗

1𝐸1𝑀∗ +𝐸∗𝐸1𝐸∗
1𝑀 +⋯ .

In fact, the proof of that lemma gives a sequence;

𝐸∗
1𝑀𝑀∗ = 𝐸∗

1𝐸0𝑀∗ +𝐸∗
1𝑀 +𝐸∗

1𝐸1𝑀∗, (35.4)
𝐸∗

1𝑀𝑀∗𝑀 = 𝐸∗
1𝐸0𝑀∗ +𝐸∗

1𝑀 +𝐸∗
1𝐸1𝑀∗ +𝐸∗𝐸1𝐸∗

1𝑀, (35.5)
𝐸∗

1𝑀𝑀∗𝑀𝑀∗ = 𝐸∗
1𝐸0𝑀∗ +𝐸∗

1𝑀 +𝐸∗
1𝐸1𝑀∗ +𝐸∗𝐸1𝐸∗

1𝑀 +𝐸∗𝐸1𝐸∗
1𝑀𝑀∗,

(35.6)
⋮ (35.7)

Multiply (35.5) through on the right by 𝐸∗
1 to get

𝐸∗
1𝑀𝑀∗𝑀𝐸∗

1 = 𝐸∗
1𝑀𝐸∗

1 +𝐸∗
1𝐸1𝐸∗

1𝑀𝐸∗
1 = Span{ ̃𝐽 , 𝐸∗

1, ̃𝐴, ̃𝐴2},

since ̃𝐽2, ̃𝐴 ̃𝐽 = ̃𝐽 ̃𝐴 ∈ Span{ ̃𝐽}.
This proves Claim 2.

Now, let 𝑊 denote any irreducible 𝑇 -module with endpoint 1, and pick 0 ≠ 𝑣 ∈
𝐸∗

1𝑊 . Set

𝑣+𝑖 = 𝐸∗
𝑖𝐴𝑖−1𝐸∗

1𝑣, 𝑣−𝑖 = 𝐸∗
𝑖𝐴𝑖+1𝐸∗

1𝑣, 𝑖 ∈ {1,… ,𝐷}.

We know by Lemma 34.2 (𝑖𝑖) that 𝑊 is thin if and only if 𝑣+𝑖 , 𝑣−𝑖 are linearly
dependent for all 𝑖 ∈ {2,… ,𝐷 − 1}.
In general,

Φ𝑖 = det( ‖𝑣+𝑖 ‖2 ⟨𝑣+𝑖 , 𝑣−𝑖 ⟩
⟨𝑣+𝑖 , 𝑣−𝑖 ⟩ ‖𝑣−𝑖 ‖2

) ≥ 0

with equality if and only if 𝑣+𝑖 , 𝑣−𝑖 are linearly dependent, (because Φ𝑖 is the
determinant of a Gram matrix).
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Let 𝑖 be an integer in {2,… ,𝐷 − 1}.
Claim 3. There exists 𝑝++ ∈ C[𝜆], deg 𝑝++ ≤ 2 (that depends only on the
intersection numbers) such that

‖𝑣+𝑖 ‖2 = ‖𝑣‖2𝑝++(𝑎0(𝑊)).

Proof of Claim 3.

‖𝑣+𝑖 ‖2 = ̄𝑣⊤𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐸∗
𝑖𝐴𝑖−1𝐸∗

1𝑣 = ̄𝑣⊤𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐴𝑖−1𝐸∗
1𝑣.

But,
𝐸∗

1𝐴𝑖−1𝐸∗
𝑖𝐴𝑖−1𝐸∗

1 ∈ 𝐸∗
1𝑀𝑀∗𝑀𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2)

by Claim 2.

So, there exists 𝛼 ∈ ℂ, and 𝑝++ ∈ ℂ[𝜆] with deg 𝑝++ ≤ 2 such that

𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐴𝑖−1𝐸∗
1 = 𝛼 ̃𝐽 + 𝑝++( ̃𝐴), ( ̃𝐴0 = 𝐸∗

1).

Now,
‖𝑣+𝑖 ‖2 = ̄𝑣⊤(𝛼 ̃𝐽 + 𝑝++( ̃𝐴))𝑣 = ‖𝑣‖2𝑝++(𝑎0(𝑊)),

since ̃𝐽𝑣 = 0, and ̃𝐴𝑣 = 𝑎0(𝑊)𝑣.
This proves Claim 3.

Similarly, there exist 𝑝−−, 𝑝+− ∈ ℂ[𝜆] with deg 𝑝−−,deg 𝑝+− ≤ 2 such that

‖𝑣−𝑖 ‖2 = ‖𝑣‖2𝑝−−𝑝(𝑎0(𝑊)), ⟨𝑣+𝑖 , 𝑣−𝑖 ⟩ = ‖𝑣‖2𝑝+−(𝑎0(𝑊)).

Claim 4. 𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐴𝑖+1𝐸∗
1 = ( ̃𝐽 − ̃𝐴 − 𝐸∗

1)𝑝2𝑖−1,𝑖+1. In particular,

𝑝+−(𝜆) = −𝑝2𝑖−1,𝑖+1(𝜆 + 1).

Proof of Claim 4. Pick vertices 𝑦, 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 1.

(LHS)𝑦𝑧 = ∑
𝑤∈𝑋

(𝐸∗
1𝐴𝑖−1𝐸∗

𝑖 )𝑦𝑤(𝐸∗
𝑖𝐴𝑖+1𝐸∗

1)𝑤𝑧 (35.8)

= ∑
𝑤∈𝑋,𝜕(𝑦,𝑤)=𝑖−1,𝜕(𝑥,𝑤)=𝑖,𝜕(𝑤,𝑧)=𝑖+1

1 (35.9)

=
⎧{
⎨{⎩

0 if 𝜕(𝑦, 𝑧) = 0,
0 if 𝜕(𝑦, 𝑧) = 1,
𝑝2𝑖−1,𝑖+1 if 𝜕(𝑦, 𝑧) = 2,

(35.10)

= RHS𝑦𝑧. (35.11)
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Note that 𝐸∗
1𝐴2𝐸∗

1 = ̃𝐽 − ̃𝐴 − 𝐸∗
1.

Now,

⟨𝑣+𝑖 , 𝑣−𝑖 ⟩ = ̄𝑣⊤𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐴𝑖+1𝐸∗
1𝑣 (35.12)

= 𝑝2𝑖−1,𝑖+1( ̄𝑣⊤( ̃𝐽 − ̃𝐴 − 𝐸∗
1)𝑣) (35.13)

= −(𝑎0(𝑊) + 1)𝑝2𝑖−1,𝑖+1‖𝑣‖2. (35.14)

Claim 5. deg 𝑝++ = deg 𝑝−− = 2. (only need for some 𝑖)
Proof of Claim 5. We need to calculate 𝑝++, 𝑝−−.

HS MEMO

Pick vertices 𝑦, 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 1. Then

(𝐸∗
1𝐴𝑖−1𝐸∗

𝑖𝐴𝑖−1𝐸∗
1)𝑦𝑧 = |Γ𝑖−1(𝑦) ∩ Γ𝑖(𝑥) ∩ Γ𝑖−1(𝑧)|,

which is equal to 𝑝1𝑖−1,𝑖 if 𝜕(𝑦, 𝑧) = 0.

(𝐸∗
1𝐴𝑖+1𝐸∗

𝑖𝐴𝑖+1𝐸∗
1)𝑦𝑧 = |Γ𝑖+1(𝑦) ∩ Γ𝑖(𝑥) ∩ Γ𝑖+1(𝑧)|,

which is equal to 𝑝1𝑖+1,𝑖 if 𝜕(𝑦, 𝑧) = 0.
Conclusion.

Φ𝑖 = det( ‖𝑣+𝑖 ‖2 ⟨𝑣+𝑖 , 𝑣−𝑖 ⟩
⟨𝑣+𝑖 , 𝑣−𝑖 ⟩ ‖𝑣−𝑖 ‖2

) ≥ 0 (35.15)

= ‖𝑣‖4(𝑝++(𝜆)𝑝−−(𝜆) − (𝑝2𝑖−1,𝑖+1)2(𝜆 + 1)2 (35.16)
≥ 0, (35.17)

where 𝜆 = 𝑎0(𝑊).
𝑊 is thin if and only if Φ𝑖(𝜆) = 0 for all 𝑖 ∈ {2,… ,𝐷 − 1}.
Each Φ𝑖 is degree 4 solutions for 𝜆. Since 𝜆 determines the isomorphism class of
𝑊 by Lemma 34.3 (iii), there are at most 4 different thin irreducible modules
𝑊 of endpoint 1 up to isomorphism.

Note. In fact Φ𝑖(𝜆) is independent of 𝑖 up to scalar multiple for 𝑖 ∈ {2,… ,𝐷−
1}.
If Γ has classical parameters (𝑞,𝐷, 𝛼, 𝛽), the roots are;

𝛽 − 𝛼 − 1,−1,−𝑞 − 1, 𝑑𝑞 𝑞
𝐷−1 − 1
𝑞 − 1 − 1.



Chapter 36

Dual Endpoint

Wednesday, April 28, 1993

Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3, 𝑄-polynomial with
respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥).

Let 𝑊 be an irreducible 𝑇 -module of diameter 𝑑.
Recall that the endpoint

𝑟(𝑊) = min{𝑖 ∣ 0 ≤ 𝑖 ≤ 𝐷,𝐸∗
𝑖𝑊 ≠ 0}.

Definition 36.1. The dual endpoint (with respect to above ordering
𝐸0, 𝐸1,… ,𝐸𝐷),

𝑟∗(𝑊) = min{𝑖 ∣ 0 ≤ 𝑖 ≤ 𝐷,𝐸𝑖𝑊 ≠ 0}.

𝑟(𝑊) = 0 ↔ 𝑟∗(𝑊) = 0 ↔ 𝑊 ∶ trivial 𝑇 -module,
(by Lemma 10.1).

Suppose 𝑊 is thin. Then 𝑊 is dual thin. (See Corollary 9.1.)

Moreover, {𝑖 ∣ 𝐸𝑖𝑊 ≠ 0} is a subinterval of {0, 1,… ,𝐷}. (same proof as for
distance regular)

HS MEMO

Dual version of Lemma 4.1.

Lemma 4.1’. Let 𝐴∗ ≡ 𝐴∗
1(𝑥), 𝑊 an irreducible 𝑇 -moduoe, and 𝑑∗ = {𝑖 ∣

𝐸𝑖𝑊 ≠ 0}| − 1.
(𝑖) 𝐸𝑖𝐴∗𝐸𝑗 = 0 if |𝑖 − 𝑗| > 1, 𝐸𝑖𝐴∗𝐸𝑗 ≠ 0 if |𝑖 − 𝑗| = 1, 0 ≤ 𝑖, 𝑗 ≤ 𝑑∗(𝑥).
(𝑖𝑖) 𝐴∗𝐸𝑗𝑊 ⊆ 𝐸𝑗−1𝑊 + 𝐸𝑗𝑊 + 𝐸𝑗+1𝑊 , 0 ≤ 𝑗 ≤ 𝑑∗(𝑥). (𝐸𝑖𝑊 = 0 if 𝑖 < 𝑗 or
𝑖 > 𝑑∗(𝑥).)

229
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(𝑖𝑖𝑖) 𝐸𝑗𝑊 ≠ 0 if 𝑟∗ ≤ 𝑗 ≤ 𝑟∗ +𝑑∗, 𝐸𝑗𝑊 = 0 if 0 ≤ 𝑗 ≤ 𝑟∗ or 𝑟∗ +𝑑∗ < 𝑗 ≤ 𝑑∗(𝑥).
(𝑖𝑣) 𝐸𝑖𝐴∗𝐸𝑗𝑊 ≠ 0, if |𝑖 − 𝑗| = 1 (𝑟∗ ≤ 𝑖, 𝑗 ≤ 𝑟∗ + 𝑑∗).
Proof of 4.1’

(𝑖) By Lemma 20.3,

𝐸𝑖𝐴∗𝐸𝑗 = 𝑂 ↔ 𝑞𝑗𝑖1 = 0.
By Lemma 22.2,

Γ: 𝑄-polynomial ↔ 𝑞𝑗𝑖1 {= 0 if |𝑗 − 𝑖| > 1,
≠ 0 if |𝑗 − 𝑖| = 1. (36.1)

↔ 𝐸𝑖𝐴∗𝐸𝑗 {= 𝑂 if |𝑗 − 𝑖| > 1,
≠ 𝑂 if |𝑗 − 𝑖| = 1. (36.2)

(𝑖𝑖) We have

𝐴∗𝐸𝑗𝑊 = (
𝐷
∑
𝑖=0

𝐸𝑖)𝐴∗𝐸𝑗𝑊 (36.3)

= 𝐸𝑗−1𝐴∗𝐸𝑗𝑊 +𝐸𝑗𝐴∗𝐸𝑗𝑊 +𝐸𝑗+1𝐴∗𝐸𝑗𝑊 (36.4)
⊆ 𝐸𝑗−1𝑊 +𝐸𝑗𝑊 +𝐸𝑗+1𝑊. (36.5)

(𝑖𝑖𝑖) Suppose 𝐸𝑗𝑊 = 0 for some 𝑗 ∈ {𝑟∗,… , 𝑟∗ + 𝑑∗}. Then 𝑟∗ < 𝑗 by the
definition of 𝑟∗. Set

𝑊 = 𝐸𝑟∗𝑊 +𝐸𝑟∗+1𝑊 +⋯+𝐸𝑗−1𝑊.
Observe 0 ⊊ 𝑊 ⊊ 𝑊 . Also 𝐴𝑊 ⊆ 𝑊 by (𝑖𝑖), and 𝐸∗

𝑖𝑊 ⊆ 𝑊 for every 𝑖 by
construction.

Thus, 𝑇𝑊 ⊆ 𝑊 , contradicting 𝑊 being irreducible.

(𝑖𝑣) Suppose 𝐸𝑗+1𝐴∗𝐸𝑗𝑊 = 0 for some 𝑗 ∈ {𝑟∗,… , 𝑟∗ + 𝑑∗ − 1}. Then,

𝑊 = 𝐸𝑟∗𝑊 +𝐸𝑟∗+1𝑊 +⋯+𝐸𝑗𝑊
is 𝑇 -invariant. If 𝐸𝑗−1𝐴∗𝐸𝑗𝑊 = 0 for some 𝑗 ∈ {𝑟∗ + 1,… , 𝑟∗ + 𝑑∗}, then

𝑊 = 𝐸𝑗𝑊 +𝐸𝑗+1𝑊 +⋯+𝐸𝑟∗+𝑑∗𝑊

is 𝑇 -invariant. Moreover, 0 ⊊ 𝑊 ⊊ 𝑊 in both cases. A contradiction.
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Definition. Let 𝑊 be an irreducible dual thin 𝑇 -module with dual endpoint
𝑟∗ and diameter 𝑑∗.

Let 𝑎∗𝑖 = 𝑎∗𝑖 (𝑊) ∈ ℂ satisfying

𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖|𝐸𝑟∗+𝑖𝑊 = 𝑎∗𝑖 ⋅ 1|𝐸𝑟∗+𝑖𝑊 .

Let 𝑥∗
𝑖 = 𝑥∗

𝑖 (𝑊) ∈ ℂ satisfying

𝐸𝑟∗+𝑖−1𝐴∗𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖−1|𝐸𝑟∗+𝑖−1𝑊 = 𝑥∗
𝑖 ⋅ 1||𝐸𝑟∗+𝑖−1𝑊 .

Lemma 9.1’. With above notation, the following hold.

(𝑖) 𝑎∗𝑖 ∈ ℝ for all 𝑖 ∈ {0,… , 𝑑∗}.
(𝑖𝑖) 𝑥∗

𝑖 ∈ ℝ>0 for all 𝑖 ∈ {1,… , 𝑑∗}.
(𝑖𝑖𝑖) Pick 0 ≠ 𝑤∗

0 ∈ 𝐸∗
𝑟∗𝑊 . Set 𝑤∗

𝑖 = 𝐸𝑟∗+𝑖𝐴∗𝑖𝑤∗
0 for all 𝑖. Then

(𝑖𝑖𝑖𝑎) 𝑤∗
0, 𝑤∗

1,… ,𝑤∗
𝑑∗ is a basis for 𝑊 , 𝑤∗

−1 = 𝑤∗
𝑑∗+1 = 0.

(𝑖𝑖𝑖𝑏) 𝐴∗𝑤∗
𝑖 = 𝑤∗

𝑖+1 + 𝑎∗𝑖𝑤𝑖 + 𝑥∗
𝑖𝑤∗

𝑖−1 for all 𝑖 ∈ {0,… , 𝑑∗}.
(𝑖𝑣) Define 𝑝∗0, 𝑝∗1,… , 𝑝∗𝑑∗+1 ∈ ℝ[𝜆] by

𝑝∗0 = 1, 𝜆𝑝∗𝑖 = 𝑝∗𝑖+1 + 𝑎∗𝑖𝑝∗𝑖 + 𝑥∗
𝑖𝑝∗𝑖−1 for all 𝑖 ∈ {0,… , 𝑑∗}, 𝑝∗−1 = 0.

(𝑖𝑣𝑎) 𝑝∗𝑖 (𝐴∗)𝑤∗
0 = 𝑤∗

𝑖 , for all 𝑖 ∈ {0,… , 𝑑∗ + 1}.
(𝑖𝑣𝑏) 𝑝∗𝑑∗+1 is the minimal polynomial of 𝐴∗|𝑊 .

Proof of Lemma 9.1’

(𝑖) Recall

𝐴∗ =
𝐷
∑
𝑗=0

𝜃∗𝑗𝐸∗
𝑗 , 𝜃∗𝑗 = 𝑞1(𝑗) = |𝑋|(𝐸1)𝑥𝑦 ∈ ℝ, 𝜕(𝑥, 𝑦) = 𝑗.

𝑎∗𝑖 is an eigenvalue of a real symmetric matrix 𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖.

(𝑖𝑖) Let 𝐵 = 𝐸∗
𝑟∗+𝑖𝐴𝐸∗

𝑟∗+𝑖−1.

Then, 𝑥∗
𝑖 is an eigenvalue of a real symmetrix matrix 𝐵⊤𝐵. Let Span{𝑣𝑖−1} =

𝐸𝑟∗+𝑖−1𝑊 , and 𝐵𝑣𝑖−1 ≠ 0 by Lemma 4.1’ (𝑖𝑣) for 𝑖 ∈ {1,… , 𝑑∗}. So, 𝑥𝑖 ∈ ℝ>0

for all 𝑖 ∈ {1,… , 𝑑∗}.
(𝑖𝑖𝑖𝑎) Observe

𝑤∗
𝑖 = 𝐸𝑟∗+𝑖𝐴∗𝐸∗

𝑟∗+𝑖−1𝑤∗
𝑖−1 for all 𝑖 ∈ {1,… , 𝑑∗}.

So 𝑤∗
𝑖 ≠ 0 for all 𝑖 ∈ {1,… , 𝑑∗} by Lemma 4.1’ (𝑖𝑣).
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Hence,
𝑊 = Span(𝑤∗

0,… ,𝑤∗
𝑑)

by Lemma 4.1’ (𝑖𝑖𝑖).
(𝑖𝑖𝑖𝑏) We have that

𝐴∗𝑤∗
𝑖 = 𝐸𝑟∗+𝑖+1𝐴∗𝑤∗

𝑖 +𝐸𝑟∗+𝑖𝐴∗𝑤∗
𝑖 +𝐸𝑟∗+𝑖−1𝐴∗𝑤∗

𝑖 (36.6)
= 𝑤∗

𝑖+1 +𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖𝑤∗
𝑖 +𝐸𝑟∗+𝑖−1𝐴∗𝐸𝑟∗+𝑖𝐴∗𝐸𝑟∗+𝑖−1𝑤𝑖−1 (36.7)

= 𝑤∗
𝑖+1 + 𝑎∗𝑖𝑤∗

𝑖 + 𝑥∗
𝑖𝑤∗

𝑖−1. (36.8)

(𝑖𝑣𝑎) Clear for 𝑖 = 0. Assume it is valid for 0,… , 𝑖.

𝑝∗𝑖+1(𝐴∗)𝑤∗
0 = (𝐴∗ − 𝑎∗𝑖𝐼)𝑤∗

𝑖 − 𝑥∗
𝑖𝑤∗

𝑖−1 = 𝑤∗
𝑖+1.

(𝑖𝑣𝑏) By definition,
𝑝∗𝑑∗+1(𝐴∗)𝑤∗

0 = 0.
Since 𝑊 = {𝑝(𝐴∗)𝑤∗

0 ∣ 𝑝 ∈ ℂ[𝜆]}, 𝑝∗𝑑∗+1(𝐴∗)𝑊 = 0, and 𝑝∗𝑑∗+1 is a minimal
polynomial, as 𝑤∗

0, 𝑤∗
1,… ,𝑤∗

𝑑∗ is a basis of 𝑊 .

Corollary 9.1’. With the notation above, let 𝑊 be a dualthin irreducible
𝑇 -module with dual endpoint 𝑟∗(𝑊), and dual diameter 𝑑∗. Then,

(𝑖) 𝑊 is thin,

(𝑖𝑖) 𝑑∗ = 𝑑 = |{𝑖 ∣ 𝐸∗
𝑖𝑊 ≠ 0}| − 1.

Proof of Corollary 9.1’

Set as in Lemma {4.1}’.

𝑤∗
𝑖 = 𝑝∗𝑖 (𝐴∗)𝑤∗

0 ∈ 𝐸𝑟∗+𝑖𝑊.

Then, 𝑤∗
0, 𝑤∗

1,… ,𝑤∗
𝑑∗ is a basis for 𝑊 . We have 𝑊 = 𝑀∗𝑤∗

0.

So, 𝐸∗
𝑖𝑊 = 𝐸∗

𝑖𝑀∗𝑤∗
0 = Span(𝐸∗

𝑖𝑤∗
0).

Thus, 𝑊 is thin, and so, we have (𝑖𝑖).

Suppose 𝑟(𝑊) = 1. Then 𝑑(𝑊) = 𝐷−2 or 𝐷−1 by Lemma 14.1 (𝑖𝑖𝑖). See also
Lemma 14.2.

Case 𝑑(𝑊) = 𝐷− 2. Then
𝐸1𝑊 = 0 implies 𝑟∗(𝑊) = 2.
𝐸1𝑊 ≠ 0 implies 𝑟∗(𝑊) = 1.

Case 𝑑(𝑊) = 𝐷− 1. Then
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𝑟∗(𝑊) = 1.
Up to isomorphism,

there are at most 3 thin irreducible 𝑇 -modules with 𝑟(𝑊) = 1 and 𝑟∗(𝑊) = 1,
there are at most 1 thin irreducible 𝑇 -module with 𝑟(𝑊) = 1 and 𝑟∗(𝑊) = 2,
there are none thin irreducible 𝑇 -modules with 𝑟(𝑊) = 1 and 𝑟∗(𝑊) > 2.
By dual argument,

there are at most 3 thin irreducible 𝑇 -modules with 𝑟∗(𝑊) = 1 and 𝑟(𝑊) = 1,
there are at most 1 thin irreducible 𝑇 -module with 𝑟∗(𝑊) = 1 and 𝑟(𝑊) = 2,
there are none thin irreducible 𝑇 -modules with 𝑟 and 𝑟(𝑊) > 2.
Conjecture 36.1. Let Γ = (𝑋,𝐸) be a thin distance regular graph of diameter
𝐷 ≥ 3. Let 𝐸1 be any primitive idempotent not equal to 𝐸0.

Then the following are equivalent.

(𝑖) For every vertex 𝑥 ∈ 𝑋, there is no irreducible 𝑇 -module 𝑊 with 𝑟(𝑊) > 2,
and 𝐸1𝑊 ≠ 0, there exists at most 1 irreducible 𝑇 -module with 𝑟(𝑊) = 2, and
𝐸1𝑊 ≠ 0, and there exist at most 3 irreducible 𝑇 -modules 𝑊 with 𝑟(𝑊) = 1,
and 𝐸1𝑊 ≠ 0.

(𝑖𝑖) Γ is 𝑄-polynomial with respect to 𝐸1.

Conjecture 36.2. Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3,
𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, and write
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥). Let 𝑊 denote an irreducible 𝑇 -module with endpoint 𝑟,

dual endpoint 𝑟∗, diameter 𝑑 and dual diameter 𝑑∗.

Then the following hold.

(𝑖) 𝑑 = 𝑑∗.

(𝑖𝑖) there exists 𝑠 ∈ {𝑟,… , 𝑟 + 𝑑} such that

1 = dim𝐸∗
𝑟𝑊 ≤ dim𝐸∗

𝑟+1𝑊 ≤ ⋯ ≤ dim𝐸∗
𝑠𝑊 ≥ ⋯ ≥ dim𝐸∗

𝑟+𝑑𝑊.

(𝑖𝑖𝑖) there exists 𝑠∗ ∈ {𝑟∗,… , 𝑟∗ + 𝑑∗} such that

1 = dim𝐸𝑟∗𝑊 ≤ dim𝐸𝑟∗+1𝑊 ≤ ⋯ ≤ dim𝐸𝑠∗𝑊 ≥ ⋯ ≥ dim𝐸𝑟∗+𝑑∗𝑊.

Let Γ = (𝑋,𝐸) be distance regular of diameter 𝐷 ≥ 3, 𝑄-polynomial with
respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, write 𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥) and 𝑇 ≡ 𝑇(𝑥).

Let 𝑊 denote an irreducible module with endpoint 1.
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Conjecture 36.3. The following are equivalent.

(𝑖) The sequence dim𝐸∗
1𝑊, dim𝐸∗

2𝑊,… ,𝐸∗
𝐷𝑊 equals

1, 2, 2,… , 2, 1.

(𝑖𝑖) 𝑣, 𝐴𝑣,𝐴2𝑣,… ,𝐴𝐷−2𝑣, 𝑣∗, 𝐴∗𝑣∗, 𝐴∗
2𝑣∗,… ,𝐴∗

𝐷−2𝑣∗ is a basis for 𝑊 , where

0 ≠ 𝑣 ∈ 𝐸∗
𝑖𝑊, and 𝑣∗ = |𝑋|𝐸1𝑣.

(𝑖𝑣) 𝑣+1 , 𝑣+2 ,… , 𝑣+𝐷, 𝑣−2 , 𝑣−3 ,… , 𝑣−𝐷−1 is a basis for 𝑊 , where

𝑣+𝑖 = 𝐸∗
𝑖𝐴𝑖−1𝑣, 𝑣−𝑖 = 𝐸∗

𝑖𝐴𝑖+1𝑣.

Problem. Let 𝐵 denote the orthogonal basis for 𝑊 obtained by applying the
Gram-Schemidt procedure to be basis in (𝑖𝑣).
Find the matrix representation 𝐴 with respect to this basis.

I believe the entries are necely foctorable expressions in the basic variables,

𝑞, 𝑠, 𝑠∗, 𝑟1, 𝑟1.

(Hint: use Theorem 35.1.)

If not, find some nice basis for 𝑊 , and find the matrices representing 𝐴, 𝐴∗

with respect to this basis.

Perhaps, some orthogonal basis based on (𝑖𝑖𝑖).
Algebraically, everything is determined by the intersection numbers and 𝑎0(𝑊).
Combinatorically, certain quantities mulst be nonnegative integers. Does this
give some new bounds, or other information on 𝑎0(𝑊)?
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Lemma 37.1. Let Γ = (𝑋,𝐸) be a distance-regular graph of diameter 𝐷 ≥ 3,
and 𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Fix a vertex 𝑥 ∈ 𝑋, and write
𝐸∗

𝑖 ≡ 𝐸∗
𝑖 (𝑥), and 𝑇 ≡ 𝑇(𝑥). Let 𝑊 be an irreducible 𝑇 -module of endpoint 1.

If dim𝐸∗
2𝑊 = 1, then 𝑊 is thin.

Proof. Pick 0 ≠ 𝑣 ∈ 𝐸∗
1𝑊 .

We want to show that

• 𝐹𝑅𝑖𝑣 ∈ Span(𝑅𝑖𝑣) for 𝑖 ∈ {0,… ,𝐷 − 1}.
• 𝐿𝑅𝑖𝑣 ∈ Span(𝑅𝑖−1𝑣) for 𝑖 ∈ {1,… ,𝐷 − 1}.

We have that

(1) 𝐹𝑅2𝐸∗
𝑗 ∈ Span(𝑅𝐹𝑅𝐸∗

𝑗 , 𝑅2𝐹𝐸∗
𝑗 , 𝑅2𝐸∗

𝑗 ) for 𝑖 ∈ {0,… ,𝐷 − 3}.

(2) 𝐿𝑅2𝐸∗
𝑗 ∈ Span(𝑅𝐿𝑅𝐸∗

𝑗 , 𝑅2𝐿𝐸∗
𝑗 , 𝐹 2𝑅𝐸∗

𝑗 , 𝐹𝑅𝐹𝐸∗
𝑗 , 𝑅𝐹 2𝐸∗

𝑗 , 𝑅𝐹𝐸∗
𝑗 , 𝐹𝑅𝐸∗

𝑗 , 𝑅𝐸∗
𝑗 )

for 𝑖 ∈ {0,… ,𝐷 − 3}
by Corollary 30.1.

Claim (𝑎) 𝐹𝑅𝑖𝑣 ∈ Span(𝑅𝑖𝑣) for 𝑖 ∈ {0,… ,𝐷 − 2},
(𝑏) 𝐿𝑅𝑖𝑣 ∈ Span(𝑅𝑖−1𝑣) for 𝑖 ∈ {1,… ,𝐷 − 2}.
HS MEMO

Proof of Claim.

(𝑎) By Lemma 34.2, and our assumption

235
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dim𝐸∗
1𝑊 = dim𝐸∗

2𝑊 = 1.
So, 𝑅𝑣 ≠ 0, and 𝐸∗

2𝑊 = Span(𝑅𝑣).
We may assume 𝑖 ≥ 2. Then 𝑅𝑖−2𝑣 ∈ 𝐸∗

𝑖−1𝑊 ,

𝐹𝑅𝑖𝑣 = 𝐹𝑅2𝑅𝑖−2𝑣, if 𝑖 ≤ 𝐷 − 2, (37.1)
= 𝑅(𝐹𝑅 +𝑅𝐹 +𝑅)𝑅𝑖−2𝑣 (37.2)
∈ 𝑅(Span(𝑅𝑖−1𝑣)) (37.3)
= Span(𝑅𝑖𝑣), (37.4)

by the induction hypothesis.

(𝑏) If 𝑖 ≤ 𝐷 − 2, then 𝑅𝑖−2𝑣 ∈ 𝐸∗
𝑖−1𝑊 with 𝑖 − 1 ≤ 𝐷− 3. Hence,

𝐿𝑅𝑖𝑣 = 𝐿𝑅2(𝑅𝑖−2𝑣) (37.5)
= (𝑅𝐿𝑅 +𝑅2𝐿 + 𝐹 2𝑅 + 𝐹𝑅𝐹 +𝑅𝐹 2 +𝑅𝐹 + 𝐹𝑅 +𝑅)𝑅𝑖−2𝑣 (37.6)
∈ Span(𝑅𝑖−1𝑣), (37.7)

by induction and (𝑎).
Suppose 𝑅𝐷−1𝑣 = 0. Then,

Span(𝑣,𝑅𝑣,… ,𝑅𝐷−2𝑣) = 𝑊

is invariant under 𝑀 and 𝑀∗, hence, under 𝑇 .
Since 𝑊 is irreducible, 𝑊 = 𝑊 , and 𝑊 is thin in this case.

Suppose 𝑅𝐷−1𝑣 ≠ 0.
Observe: 𝑣,𝐴𝑣,… ,𝐴𝐷−1𝑣 ∈ Span(𝑣,𝑅𝑣,… ,𝑅𝐷−1𝑣).
Hence, each 𝑅𝑖𝑣 is a polynomial of degree 𝑖 in 𝐴 applied to 𝑣, and

Span(𝑣, 𝐴𝑣,… ,𝐴𝐷−1𝑣) = Span(𝑣,𝑅𝑣,… ,𝑅𝐷−1𝑣) = Span(𝑣, 𝐴1𝑣,… ,𝐴𝐷−1𝑣).

Also,

𝐴𝐷𝑣 = 𝐽𝑣 −(
𝐷−1
∑
ℎ=0

𝐴ℎ)𝑣 ∈ Span(𝑣,𝐴1𝑣,… ,𝐴𝐷−1𝑣).

Thus,
𝑀𝑣 = Span(𝑣,𝑅𝑣,… ,𝑅𝐷−1𝑣).

Therefore,
Span(𝑣,𝑅𝑣,… ,𝑅𝐷−1𝑣) = 𝑊

is invariant under 𝑀 , 𝑀∗, and hence 𝑇 . We have 𝑊 = 𝑊 and 𝑊 is thin.
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Definition 37.1. Let Γ = (𝑋,𝐸) be any regular graph (not necessarily con-
nected).

Let 𝐴 be the adjacency matrix of Γ, and let 𝐽 be the all 1’s matrix.

Pick 𝑂 ≠ 𝐵 ∈ Mat𝑋(ℂ).
𝐵 is a generalized adjacency matrix , if

(𝑖) for all vertices 𝑥, 𝑦 ∈ 𝑋, 𝐵𝑥𝑦 ≠ 0 implies 𝐴𝑥𝑦 ≠ 0 or 𝑥 = 𝑦,
(𝑖𝑖) 𝐵 is in the subalgebra of Mat𝑋(ℂ) generated by 𝐴 and 𝐽 .
Example 37.1. Any nonzero matrix of form

𝛼𝐴 + 𝛽𝐼 (𝛼, 𝛽 ∈ ℂ)

is a generalized adjacency matrix.

If Γ is distance regular, all generalized adjacecy matrices are of this form.

Let Γ = (𝑋,𝐸) be a distance-regular graph of diameter 𝐷 ≥ 3. Assume Γ is
thin, and 𝑄-polynomial.

Pick a vertex 𝑥 ∈ 𝑋, and write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑇 ≡ 𝑇(𝑥). Then,

𝐸∗
1𝑇𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2, ̃𝐴3),

and dim𝐸∗
1𝑇𝐸∗

1 ≤ 5.
We will produce a ‘nice’ spanning set

𝐸∗
1𝑇𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴,𝐴+ (= 𝑅−1𝐸∗

2𝐴𝐸∗
1), 𝐴+ ̃𝐴).

Lemma 37.2. Let Γ = (𝑋,𝐸) be a thin distance-regular graph of diameter
𝐷 ≥ 4.

Fix a vertex 𝑥 ∈ 𝑋, and write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥) and 𝑅 ≡ 𝑅(𝑥).
Let Γ1 denote the vertex subgraph induced on the first subconstituent of Γ relative
to 𝑥. Then,

Δ = (𝑅−1)𝑖−1𝐸∗
𝑖𝐴𝑖𝐸∗

1

is a generalized adjacency matrix for Γ1 for all 𝑖 ∈ {1,… ,𝐷 − 3}.

Proof. Write 𝑇 ≡ 𝑇(𝑥). Fix 𝑖 ∈ {1,… ,𝐷 − 3}.
Recall 𝑅−1 ∈ 𝑇 by Lemma 31.1 (𝑖𝑣).
Since 𝐸∗

𝑖−1𝑅−1𝐸∗
𝑖 = 𝑅−1𝐸∗

𝑖 by Lemma 31.1 (𝑖𝑖),

Δ ∈ 𝐸∗
1𝑇𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴, ̃𝐴2,…)

by Lemma 34.3 (𝑖𝑣).
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Hence, Δ satisfied the condition (𝑖𝑖) of Definition 37.1.

To show (𝑖), pick vertices 𝑦, 𝑧 ∈ 𝑋 such that

𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 1, 𝜕(𝑦, 𝑧) = 2.

We need to show
Δ𝑦𝑧 = 0.

Suppose Δ𝑦𝑧 ≠ 0. Then,
⟨Δ ̂𝑦, ̂𝑧⟩ ≠ 0.

We will show this cannot occur.

Notation: Set
𝐸∗

𝑖𝑗 = 𝐸∗
𝑖 (𝑥)𝐸∗

𝑗 (𝑦), 𝑖, 𝑗 ∈ {0, 1,… ,𝐷}.
Then,

𝐸∗
𝑖𝑗𝑉 = Span(𝑤̂ ∣ 𝑤 ∈ 𝑋, 𝜕(𝑥, 𝑤) = 𝑖, 𝜕(𝑦, 𝑤) = 𝑗) for 𝑖, 𝑗 ∈ {0, 1,… ,𝐷}.

Let 𝛿 denote the all 1’s vector in 𝑉 . Let

𝛿𝑖𝑗 = 𝐸∗
𝑖𝑗𝛿 = ∑

𝑤∈𝑋,𝜕(𝑥,𝑤)=𝑖,𝜕(𝑦,𝑤)=𝑗
𝑤̂.

Now,

Δ ̂𝑦 ∈ 𝐸∗
1(𝑥)𝑉 = 𝐸∗

10𝑉 + 𝐸∗
11𝑉 + 𝐸∗

12𝑉 (orthogonal direct sum).

So, there exist 𝛿+10 ∈ 𝐸∗
10𝑉 , 𝛿+11 ∈ 𝐸∗

11𝑉 , and 𝛿+12 ∈ 𝐸∗
12𝑉 such that

Δ ̂𝑦 = 𝛿+10 + 𝛿+11 + 𝛿+12.

Observe: ̂𝑧 ∈ 𝐸∗
12𝑉 is not orthogonal to Δ ̂𝑦.

So, 𝛿+12 ≠ 0.
Observe:

𝑅𝑖−1(𝛿+10 + 𝛿+11 + 𝛿+12) = 𝑅𝑖−1Δ ̂𝑦 (37.8)
= 𝑅𝑖−1(𝑅−1)𝑖−1𝐸∗

𝑖𝐴𝑖𝐸∗
1 ̂𝑦 (37.9)

= 𝐸∗
𝑖𝐴𝑖𝐸∗

1 ̂𝑦 (37.10)
= 𝛿𝑖𝑖 (37.11)
∈ 𝐸𝑖𝑖𝑉 . (37.12)

HS MEMO

It is because on each irreducible thin module with standard basis 𝑤𝑟, 𝑤𝑟+1,… ,𝑤𝑟+𝑑,

𝑅−1𝑤𝑖 = 𝑤𝑖−1, 𝑖 > 𝑟, 𝑅−1𝑤𝑟 = 0,
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and 𝐸∗
1𝑉 is an orthogonal direct sum of irreducible modules and 𝑟 ≤ 1.

But we can control 𝑅𝑖−1𝛿+10, 𝑅𝑖−1𝛿+11, also.
Claim. 𝑅𝐸∗

𝑗𝑗𝑉 ⊆ 𝐸∗
𝑗+1,𝑗+1𝑉 + 𝐸∗

𝑗+1,𝑗𝑉 , 𝑗 ∈ {1,… ,𝐷 − 1}.
Proof of Claim. Clear.

By Claim

𝑅𝑖−1𝛿+10 ∈ 𝐸∗
𝑖,𝑖−1𝑉 , and (37.13)

𝑅𝑖−1𝛿+11 ∈ 𝐸∗
𝑖,𝑖−1𝑉 + 𝐸∗

𝑖,𝑖𝑉 . (37.14)

Hence, we conclude that

𝑅𝑖−1𝛿+12 = 𝑅𝑖−1Δ ̂𝑦 − 𝑅𝑖−1𝛿+10 −𝑅𝑖−1𝛿+11 ∈ 𝐸∗
𝑖,𝑖−1𝑉 + 𝐸∗

𝑖𝑖𝑉 .

But now
0 = 𝐸∗

𝑖,𝑖+1𝑅𝑖−1𝛿+12 = 𝐸∗
𝑖,𝑖+1𝐴𝑖−1𝐸∗

12𝛿+12 = 𝑅(𝑦)𝑖−1𝛿+12. (37.15)

By Lemma 32.1 (𝑖𝑖),
𝑅(𝑦)𝑖−1 ∶ 𝐸∗

2(𝑦)𝑉 ⟶ 𝐸∗
𝑖+1𝑉

is one-to-one, since Γ is thin, and 𝑖 − 1 ≤ 𝐷− 4.
So, 𝛿+12 = 0 by (37.15).

But this contradicts (2). Hence our assumption Δ𝑦𝑧 ≠ 0 is false, and the
condition (𝑖) of the definition of generalised adjacency matrices is satisfied.

This proves the lemma.
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Chapter 38

An Injection from E11
* to

E22
*

Monday, May 3, 1993

Lemma 38.1. Let Γ = (𝑋,𝐸) be a thin distance-regular graph of diameter
𝐷 ≥ 5, and 𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷. Pick vertices 𝑥, 𝑦 ∈ 𝑋
such that 𝜕(𝑥, 𝑦) = 1, and write 𝐸∗

𝑖𝑗 ∶= 𝐸∗
𝑖 (𝑥)𝐸∗

𝑗 (𝑦) for 𝑖, 𝑗 ∈ {0, 1,… ,𝐷}. Then
the following hold.

(𝑖) 𝐸∗
22𝐴𝐸∗

11 ∶ 𝐸∗
11𝑉 → 𝐸∗

22𝑉 is one-to-one.

(𝑖𝑖) For every 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑧) = 𝜕(𝑦, 𝑧) = 1, there is 𝑤 ∈ 𝑋 such that

𝜕(𝑤, 𝑥) = 𝜕(𝑤, 𝑦) = 2, 𝜕(𝑤, 𝑧) = 1.

Proof.

(𝑖) Write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑅 ≡ 𝑅(𝑥), 𝐹 ≡ 𝐹(𝑥), 𝐿 ≡ 𝐿(𝑥), and 𝑇 ≡ 𝑇(𝑥).
Suppose there exists

0 ≠ 𝑣 ∈ 𝐸∗
11𝑉 such that 𝐸∗

22𝐴𝐸∗
11𝑣 = 0. (38.1)

Claim 1. 𝐸∗
34𝐴2𝐸∗

12𝐴𝐸∗
11𝑣 ≠ 0.

Proof of Claim 1. Recall by Lemma 32.1 (𝑖𝑖), (3 ≤ 5 − 2 ≤ 𝐷− 2𝑡),

𝑅(𝑦)3 ∶ 𝐸∗
1(𝑦)𝑉 → 𝐸∗

4(𝑦)𝑉

is one-to-one.
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Since 𝑣 ∈ 𝐸∗
1(𝑦)𝑉 , we find

0 ≠ 𝑅3(𝑦)𝑣 (38.2)
= 𝐸∗

4(𝑦)𝐴3𝐸∗
1(𝑦)𝑣 (38.3)

= 𝐸∗
4(𝑦)𝐴2𝐸∗

2(𝑦)𝐴𝐸∗
11𝑣 (38.4)

= 𝐸∗
4(𝑦)𝐴2 (

𝐷
∑
ℎ=0

𝐸∗
ℎ,2)𝐴𝐸∗

11𝑣 (38.5)

= 𝐸∗
4(𝑦)𝐴2(𝐸∗

12 +𝐸∗
22)𝐴𝐸∗

11𝑣 (38.6)
= 𝐸∗

4(𝑦)𝐴2𝐸∗
12𝐴𝐸∗

11𝑣 (38.7)
= 𝐸∗

34(𝑦)𝐴2𝐸∗
12𝐴𝐸∗

11𝑣, (38.8)

by (38.1). This proves the claim.

By Theorem 30.1 (𝑖),
0 = (𝑔−3 𝑅2𝐹 + 𝑅𝐹𝑅 + 𝑔+3 𝐹𝑅2 − 𝛾𝑅2)𝐸∗

1. (38.9)

HS MEMO

Theorem 30.1 (𝑖) states
(𝑔−𝑖 𝐹𝐿2 + 𝐿𝐹𝐿 + 𝑔+𝑖 𝐿2𝐹 − 𝛾𝐿2)𝐸∗

𝑖 = 𝑂 for 𝑖 ∈ {2,… ,𝐷}.
For 𝑖 = 3,

𝐸∗
1(𝑔−3 𝐹𝐿2 + 𝐿𝐹𝐿 + 𝑔+3 𝐿2𝐹 − 𝛾𝐿2)𝐸∗

3 = 𝑂.
Taking the transpose, we have

𝐸∗
3(𝑔−3 𝑅2𝐹 + 𝑅𝐹𝑅 + 𝑔+3 𝐹𝑅2 − 𝛾𝑅2)𝐸∗

1 = 𝑂.
Hence, we have (38.9).

Multiplying each term on the left by 𝐸∗
4(𝑦), on the right by 𝐸∗

1(𝑦), we find

𝑂 = 𝑔−3 𝐸∗
34𝑅2𝐹𝐸∗

11 +𝐸∗
34𝑅𝐹𝑅𝐸∗

11 + 𝑔+3 𝐸∗
34𝐹𝑅2𝐸∗

11 − 𝛾𝐸∗
34𝑅2𝐸∗

11 (38.10)
= 𝑔−3 𝐸∗

34𝐴2𝐸∗
12𝐴𝐸∗

11 +𝐸∗
34𝐴𝐸∗

23𝐴𝐸∗
22𝐴𝐸∗

11 + 𝑔+3 𝐸∗
34𝐴𝐸∗

33𝐴𝐸∗
22𝐴𝐸∗

11.
(38.11)

Applying this to 𝑣, we find by (38.1) that

0 = 𝑔−3 𝐸∗
34𝐴2𝐸∗

12𝐴𝐸∗
11𝑣.

So, 𝑔−3 = 0 by Claim 1. But by Lemma 30.1,

𝑔−3 = 𝜃∗1 − 𝜃∗0
𝜃∗1 − 𝜃∗3

≠ 0,

a contradiction.
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Let Γ, 𝑥, 𝑦 be as in Lemma 38.1. We saw in Lemma 37.2,

𝑅−1𝐸∗
2𝐴2𝐸∗

1 ̂𝑦 = 𝛿+10 + 𝛿+11,

where
𝛿+10 ∈ 𝐸∗

10𝑉 = Span( ̂𝑦), 𝛿+11 ∈ 𝐸∗
11𝑉 .

Definition 38.1. Define Ψ = Ψ(𝑥, 𝑦) ∈ ℂ by 𝛿+10 = Ψ ̂𝑦.
We will show that Ψ(𝑥, 𝑦) is independent of 𝑥, 𝑦.
Observe 𝑅−1, 𝐴𝑖, 𝐸∗

𝑖 ∈ Mat𝑋(ℚ). So Ψ ∈ ℚ.
Firstly, show

Ψ(𝑥, 𝑦) = Ψ(𝑦, 𝑥).

Lemma 38.2. With the notation of Lemma 38.1, the following hold.

(𝑖) 𝐸∗
22𝐴𝐸∗

11𝛿+11 = 𝛿22.

(𝑖𝑖) 𝐸∗
21𝐴𝐸∗

11𝛿+11 = −Ψ(𝑥, 𝑦)𝛿21.

(𝑖𝑖𝑖) ⟨𝛿+11, 𝛿11⟩ = 𝑎2
𝑐2 −Ψ(𝑥, 𝑦).

(𝑖𝑣) Ψ(𝑥, 𝑦) = Ψ(𝑦, 𝑥).
(𝑣) 𝐸∗

12𝐴𝐸∗
11𝛿+11 = −Ψ(𝑥, 𝑦)𝛿12.

Proof. Write Ψ ≡ Ψ(𝑥, 𝑦), 𝑅 ≡ 𝑅(𝑥), 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), etc.
(𝑖) We have

𝑅(𝛿+11 +Ψ ̂𝑦) = 𝑅(𝛿+11 + 𝛿+10) (38.12)
= 𝑅(𝑅−1(𝐸∗

2𝐴2𝐸∗
1)) ̂𝑦 (38.13)

= 𝐸∗
2𝐴2𝐸∗

1 ̂𝑦 (38.14)
= 𝛿22. (38.15)

So,

𝛿22 = 𝑅(𝛿+11 +Ψ ̂𝑦) (38.16)
= 𝐸∗

2𝐴𝐸∗
1(𝛿+11 +Ψ ̂𝑦) (38.17)

= 𝐸∗
22𝐴𝐸∗

11𝛿+11 +Ψ𝐸∗
22𝐴𝐸∗

10 ̂𝑦. (38.18)

The second term is zero.

(𝑖𝑖) We have
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0 = 𝐸∗
21𝛿22 (38.19)

= 𝐸∗
21𝑅(𝛿+11 +Ψ ̂𝑦) (38.20)

= 𝐸∗
21𝐴𝐸∗

11𝛿+11 +Ψ𝐸∗
21𝐴𝐸∗

10 ̂𝑦 (38.21)
= 𝐸∗

21𝐴𝐸∗
11 +Ψ𝛿21. (38.22)

(𝑖𝑖𝑖) We have

𝑝122 = ‖𝛿22‖2 (38.23)
= ⟨𝛿22, 𝛿21 + 𝛿22 + 𝛿23⟩ (38.24)
= ⟨𝑅(𝛿+11 +Ψ ̂𝑦), 𝛿21 + 𝛿22 + 𝛿23⟩ (38.25)
= ⟨𝛿+11 +Ψ ̂𝑦, 𝐿(𝛿21 + 𝛿22 + 𝛿23)⟩ (38.26)
= 𝑏1⟨𝛿+11 +Ψ ̂𝑦, 𝛿10 + 𝛿11 + 𝛿12⟩ (38.27)
= 𝑏1(⟨𝛿+11, 𝛿11⟩ + Ψ). (38.28)

So,
⟨𝛿+11, 𝛿11⟩ = 𝑏−1

1 𝑝122 −Ψ = 𝑎2
𝑐2

−Ψ.

HS MEMO

𝑏−1
1 𝑝122 = 𝑏−1

1
𝑘1
𝑘1

𝑝122 = 𝑏−1
1

1
𝑘1

𝑘2𝑝212 = 𝑏−1
1

𝑏1
𝑐2

𝑎2 = 𝑎2
𝑐2

.

(𝑖𝑣) Interchanging roles of 𝑥, 𝑦 above, we find there exists 𝛿+′
11 ∈ 𝐸∗

11𝑉 such that

𝑅(𝑦)−1𝐸∗
2(𝑦)𝐴2𝐸∗

1(𝑦) ̂𝑥 = 𝛿+′
11 +Ψ(𝑦, 𝑥) ̂𝑦.

Then,
𝐸∗

22𝐴𝐸∗
11(𝛿+

′
11 ) = 𝛿22.

So,
𝐸∗

22𝐴𝐸∗
11(𝛿+11 − 𝛿+′

11 ) = 0.

Hence, 𝛿+11 = 𝛿+′
11 since

𝐸∗
22𝐴𝐸∗

11 ∶ 𝐸∗
11𝑉 → 𝐸∗

22𝑉
is one-to-one.

Now,
𝑎2
𝑐2

−Ψ(𝑥, 𝑦) = ⟨𝛿+11, 𝛿11⟩ = ⟨𝛿+′
11 , 𝛿11⟩ =

𝑎2
𝑐2

−Ψ(𝑦, 𝑥).
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Thus,
Ψ(𝑥, 𝑦) = Ψ(𝑦, 𝑥).

(𝑣) Immediate from (𝑖𝑖), (𝑖𝑣).
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Chapter 39

𝐴+ and 𝐴−

Wednesday, May 5, 1993

Assume Γ = (𝑋,𝐸) is thin, distance regular of diameter 𝐷 ≥ 5, and 𝑄-
polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷.

Fix a vertex 𝑥 ∈ 𝑋, write 𝐸∗
𝑖 ≡ 𝐸∗

𝑖 (𝑥), 𝑅 ≡ 𝑅(𝑥), 𝑇 ≡ 𝑇(𝑥).
Pick 𝑦 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 1. Write 𝐸∗

𝑖,𝑗 ≡ 𝐸∗(𝑥)𝐸∗(𝑦), 𝛿𝑖𝑗 = 𝐸∗
𝑖𝑗𝛿, and

̃𝐴 = 𝐸∗
1𝐴𝐸∗

1.

Recall that 𝛿+11 ∈ 𝐸∗
11𝑉 and

𝑅−1𝐸∗
2𝐴2𝐸∗

1 ̂𝑦 = 𝛿+11 +Ψ(𝑥, 𝑦) ̂𝑦.

We saw Ψ(𝑥, 𝑦) = Ψ(𝑦, 𝑥). We shall show below that Ψ(𝑥, 𝑦) is independent of
edge 𝑥𝑦.
Lemma 39.1. With the above notation, set Ψ ∶= Ψ(𝑥, 𝑦). Then the following
hold.

(𝑖) 𝛿−11 = ̃𝐴𝛿+11 − (𝑎2
𝑐2 −Ψ) ̂𝑦 + Ψ𝛿12 ∈ 𝐸∗

11𝑉 .

(𝑖𝑖) 𝛿−11(𝑥, 𝑦) = 𝛿−1
11 (𝑦, 𝑥).

Proof.

(𝑖) 𝛿−12 ∈ 𝐸∗
12𝑉 , 𝛿−11 ∈ 𝐸∗

11𝑉 and 𝛿−10 ∈ 𝐸∗
10𝑉 , and

̃𝐴𝛿+11 = 𝛿−12 + 𝛿−11 + 𝛿−10, (39.1)

𝛿−12 = 𝐸∗
12𝐴𝐸∗

11𝛿+11 = −Ψ(𝑥, 𝑦)𝛿12, (39.2)

by Lemma 38.2 (𝑣).
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Also, 𝛿−10 = 𝜎 ̂𝑦 for some 𝜎 ∈ ℂ, where

𝜎 = ⟨ ̃𝐴𝛿+11, ̂𝑦⟩ = ⟨𝛿+11, ̃𝐴 ̂𝑦⟩ = ⟨𝛿+11, 𝛿11⟩ =
𝑎2
𝑐2

−Ψ. (39.3)

Solving for 𝛿−11 in (39.1), using (39.2) and (39.3), we have

𝛿−11 = ̃𝐴𝛿+11 − 𝛿−12 − 𝛿−10 (39.4)

= 𝐴𝛿+11 +Ψ𝛿12 −(𝑎2
𝑐2

−Ψ) ̂𝑦. (39.5)

(𝑖𝑖) Since

𝛿−11 = 𝐸∗
11𝐴𝐸∗

11𝛿+11,
we have 𝛿+11(𝑥, 𝑦) = 𝛿+11(𝑦, 𝑥).

Lemma 39.2. With the above noation, Ψ = Ψ(𝑢, 𝑣) is independent of 𝑢, 𝑣,
where 𝑢, 𝑣 ∈ 𝑋, with 𝜕(𝑢, 𝑣) = 1.

Proof. Let 𝑥, 𝑦 be as above (𝑥 ∼ 𝑦), and pick 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑧) = 1, but
𝑧 ≠ 𝑦. Then it suffices to show:

Ψ(𝑥, 𝑦) = Ψ(𝑥, 𝑧).

Case: 𝜕(𝑦, 𝑧) = 2.
Set Δ ∶= ̃𝐴𝑅−1𝐸∗

2𝐴2𝐸∗
1.

Observe: Δ ∈ 𝐸∗
1𝑇𝐸∗

1 and 𝐸∗
1𝑇𝐸∗

1 is symmetrix by Lemma 33.4.

Hence, Δ𝑦𝑧 = Δ𝑧𝑦.

Since Δ ∈ Mat𝑋(ℝ),
⟨Δ ̂𝑦, ̂𝑧⟩ = ⟨Δ ̂𝑧, ̂𝑦⟩.

But,

⟨Δ ̂𝑦, ̂𝑧⟩ = ⟨ ̃𝐴𝛿+11 +Ψ(𝑥, 𝑦) ̂𝑦, ̂𝑧⟩ (39.6)

= ⟨ ̃𝐴𝛿+11, ̂𝑧⟩ (39.7)

= ⟨𝛿−11 +(𝑎2
𝑐2

−Ψ) ̂𝑦 − Ψ(𝑥, 𝑦)𝛿12, ̂𝑧⟩ (39.8)

= −Ψ(𝑥, 𝑦). (39.9)

Note that 𝜕(𝑥, 𝑦) = 2 by Lemma 39.1 (𝑖).
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Similarly,
⟨Δ ̂𝑧, ̂𝑦⟩ = −Ψ(𝑥, 𝑧).

Hence, Ψ(𝑥, 𝑦) = Ψ(𝑥, 𝑧).
Case: 𝜕(𝑦, 𝑧) = 1.
By Lemma 38.1 (𝑖𝑖), there exists 𝑤 ∈ 𝑋 such that

𝜕(𝑥, 𝑧) = 1, 𝜕(𝑤, 𝑦) = 2, 𝜕(𝑤, 𝑧) = 2.

y

z

x w

Now,
Ψ(𝑥, 𝑦) = Ψ(𝑥,𝑤) = Ψ(𝑥, 𝑧)

from the first case.

Lemma 39.3. With the above notation, the following hold.

(𝑖) 𝐴+ ∶= 𝑅−1𝐸∗
2𝐴2𝐸∗

1 −Ψ𝐸∗
1, and

(𝑖𝑖) 𝐴− = ̃𝐴𝐴+ − (𝑎2
𝑐2 −Ψ)𝐸∗

1 +Ψ( ̃𝐽 − ̃𝐴 − 𝐸∗
1)

are both generalized adjacency matrices for the subgraph induced on the first
subconstituent with respect to 𝑥.

Moreover, 𝐴+, 𝐴− have 0 diagonal.

Proof. Pick vertices 𝑦, 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 1.
Show that 𝐴+

𝑦𝑧, 𝐴−
𝑦𝑧 are both 0 if 𝜕(𝑦, 𝑧) = 0 or 2.

Since 𝐴+
𝑦𝑧 = 𝑅−1𝐸∗

2𝐴2𝐸∗
1 ̂𝑦 − Ψ𝐸∗

1 ̂𝑦 = 𝛿+11,
𝐴+

𝑦𝑧 = ⟨𝐴+ ̂𝑦, ̂𝑧⟩ = ⟨𝛿+11, ̂𝑧⟩ = 0,
if 𝜕(𝑦, 𝑧) = 0 or 2.
Since

𝐴− ̂𝑦 = ̃𝐴𝐴+ ̂𝑦 − (𝑎2
𝑐2

−Ψ)𝐸∗
1 ̂𝑦 + Ψ( ̃𝐽 − ̃𝐴 − 𝐸∗

1) ̂𝑦 (39.10)

= ̃𝐴𝛿+11 −(𝑎2
𝑐2

−Ψ) ̂𝑦 + Ψ𝛿12 (39.11)

= 𝛿−11, (39.12)
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𝐴−
𝑦𝑧 = ⟨𝐴− ̂𝑦, ̂𝑧⟩ = ⟨𝛿−11, ̂𝑧⟩ = 0,

if 𝜕(𝑦, 𝑧) = 0 or 2.
Since 𝐸∗

1𝑇𝐸∗
1 = Span( ̃𝐽 , 𝐸∗

1, ̃𝐴, ̃𝐴2,…) by Lemma 33.4.

𝐴+, 𝐴− are both generalized matrices for the adjacency subgraph induced on
the first subconstituent concerning 𝑥.

Similarly,
𝐸∗

1𝑇𝐸∗
1 ∋ ̃𝐽, 𝐸∗

1, ̃𝐴,𝐴+, 𝐴−,
and dim𝐸∗

1𝑇𝐸∗
1 ≤ 5.

Fact: With the above assumption,

𝐸∗
1𝑇𝐸∗

1 = Span( ̃𝐽 , 𝐸∗
1, ̃𝐴,𝐴+, 𝐴−)

(may not be independent).

Lemma 39.4. If 𝜕(𝑥, 𝑦) = 1, then

𝑇 (𝑦) ̂𝑦 = 𝑇 (𝑥) ̂𝑦.

Proof.

𝑇 (𝑥) ̂𝑥 = 𝑇 (𝑥)𝐸∗
1 ̂𝑦 (39.13)

= 𝑀(𝐸∗
0 +𝐸∗

1)𝑇 (𝑥)𝐸∗
1 ̂𝑦 (as Γ is thin) (39.14)

= 𝑀 ̂𝑥 +𝑀𝐸∗
1𝑇𝐸∗

1 ̂𝑦 (39.15)

= 𝑀 ̂𝑥 +𝑀Span( ̃𝐽 , 𝐸∗
1, ̃𝐴,𝐴+, 𝐴−) ̂𝑦 (39.16)

= 𝑀 ̂𝑥 +𝑀Span(𝛿12 + 𝛿11 + 𝛿10, 𝛿10, 𝛿11, 𝛿+11, 𝛿−11) (39.17)
= 𝑀Span(𝛿01, 𝛿10, 𝛿11, 𝛿+11, 𝛿−11). (39.18)

But the identity of these conditions does not change if we interchange 𝑥 and 𝑦.
Hence,

𝑇 (𝑦) ̂𝑦 = 𝑇 (𝑥) ̂𝑦.
This proves the lemma.



Chapter 40

Structure of 1-Thin DRG

Friday, May 7, 1993

Lemma 40.1. With the above notation, let 𝑊 denota a thin irreducible 𝑇 -
module of endpoint 0 or 1. Pick 0 ≠ 𝑣 ∈ 𝐸∗

1𝑉 . Then the following hold.

(𝑖) Eigenvalue for ̃𝐽 is 0 if 𝑟(𝑊) = 1, and 𝑘 if 𝑟(𝑊) = 0.

(𝑖𝑖) Eigenvalue for 𝐸∗
1 is 1 if 𝑟(𝑊) = 1, and 1 if 𝑟(𝑊) = 0.

(𝑖𝑖𝑖) Eigenvalue for ̃𝐴 is 𝑎0(𝑊) if 𝑟(𝑊) = 1, and 𝑎1 if 𝑟(𝑊) = 0.

(𝑖𝑣) Eigenvalue for 𝐴+ is 𝑎+(𝑊) = 𝛾1
𝑐2 − 1 − Ψ if 𝑟(𝑊) = 1, and 𝑎2

𝑐2 − Ψ if
𝑟(𝑊) = 0.

(𝑣) Eigenvalue for 𝐴− is 𝑎−(𝑊) = 𝑎0(𝑊) (𝛾1
𝑐2 − 1 − 2Ψ) − 𝑎2

𝑐2 if 𝑟(𝑊) = 1,

where

𝛾0 = 1 + 𝑎0(𝑊), and 𝛾1 = 𝑐2𝑏2𝛾0
𝑏1 + 𝛾0(𝑎1 + 2 − 𝑐2) − 𝛾2

0

as in Theorem 14.2. (The eigenvalue for 𝐴− on 𝑣 will be discussed later in this
lecture.)

Proof.

(𝑖) − (𝑖𝑖𝑖) Clear.

(𝑖𝑣) We have
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𝐴+ = 𝑅−1𝐸∗
2𝐴2𝐸∗

1 −Ψ𝐸∗
1, (40.1)

𝐴2 = 𝐴2 − 𝑎1𝐴− 𝑘𝐼
𝑐2

, (40.2)

𝐸∗
2𝐴2𝐸∗

1 = 𝐸∗
2 (

𝐴2 − 𝑎1𝐴− 𝑘𝐼
𝑐2

)𝐸∗
1 (40.3)

= 1
𝑐2

(𝑅𝐹 + 𝐹𝑅 − 𝑎1𝑅)𝐸∗
1. (40.4)

If 𝑟(𝑊) = 1,

𝐴+𝑣 = 1
𝑐2

(𝑅−1𝑅𝐹𝑣 + 𝑅−1𝐹𝑅𝑣 − 𝑎1𝑅−1𝑅𝑣) − Ψ𝑣 (40.5)

= 1
𝑐2

(𝑅−1𝑅𝑎0(𝑊)𝑣 + 𝑅−1𝑎1(𝑊)𝑅𝑣 − 𝑎1𝑅−1𝑅𝑣) − Ψ𝑣 (40.6)

= 1
𝑐2

(𝑎0(𝑊) + 𝑎1(𝑊) − 𝑎1) − Ψ) 𝑣. (40.7)

But,
𝑎1(𝑊) = 𝛾1 − 𝛾0 + 𝑎1 + 1 − 𝑐2, 𝛾0 = 𝑎0(𝑊) + 1

by Theorem 16.1.

So,

𝐴+𝑣 = ( 1
𝑐2

(𝑎0(𝑊) + 𝛾1 − 𝛾0 + 𝑎1 + 1 − 𝑐2 − 𝑎1) − Ψ))𝑣 (40.8)

= (𝛾1
𝑐2

− 1 −Ψ)𝑣. (40.9)

If 𝑟(𝑊) = 0,

𝐴+𝑣 = 1
𝑐2

(𝑅−1𝑅𝐹𝑣 + 𝑅−1𝐹𝑅𝑣 − 𝑎1𝑅−1𝑅𝑣) − Ψ𝑣 (40.10)

= 1
𝑐2

(𝑅−1𝑅𝑎1𝑣 + 𝑅−1𝑎2𝑅𝑣 − 𝑎1𝑅−1𝑅𝑣) − Ψ𝑣 (40.11)

= (𝑎2
𝑐2

−Ψ)𝑣. (40.12)

(𝑣) Immediate from (𝑖𝑣), and

𝐴− = ̃𝐴𝐴+ −(𝑎2
𝑐2

−Ψ)𝐸∗
1 +Ψ( ̃𝐽 − ̃𝐴 − 𝐸∗

1).
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If 𝑟(𝑊) = 1,

𝐴−𝑣 = (𝑎0(𝑊)(𝛾1
𝑐2

− 1 −Ψ)−(𝑐2
𝑎2

−Ψ)+Ψ(−𝑎0(𝑊) − 1)) 𝑣 (40.13)

= (𝑎0(𝑊)(𝛾1
𝑐2

− 1 − 2Ψ)− 𝑐2
𝑎2

)𝑣. (40.14)

If 𝑟(𝑊) = 0,

𝐴−𝑣 = (𝑎1 (
𝑎2
𝑐2

−Ψ)−(𝑎2
𝑐2

−Ψ)+Ψ(𝑘 − 𝑎1 − 1))𝑣 (40.15)

= ((𝑎1 − 1)𝑎2𝑐2
+ (𝑘 − 2𝑎1)Ψ)𝑣. (40.16)

This completes the proof.

Let 𝑊1,𝑊2,𝑊3,𝑊4 denote 4 possible isomorphism classes of 𝑇 -modules of end-
point 1. Then 𝑎0(𝑊1), 𝑎0(𝑊2), 𝑎0(𝑊3), 𝑎0(𝑊4) are roots of a fourth degree
polynomial whose coefficients are determined from intersection numbers of Γ.

So, 𝑎0(𝑊1), 𝑎0(𝑊2), 𝑎0(𝑊3), 𝑎0(𝑊4) are determined by intersection numbers.

Let 𝑚𝑖 denote the multiplicity of 𝑊𝑖 (1 ≤ 𝑖 ≤ 4), which is equal to the multi-
plicity of 𝑎0(𝑊) as eigenvalue 1 of ̃𝐴|(𝐸∗

1𝑉 )𝑛𝑒𝑤
.

Lemma 40.2. With the above notation, we have the following.

(𝑖) 𝑚̃1, 𝑚̃2, 𝑚̃3, 𝑚̃4 are determined from intersection numbers and Ψ.

(𝑖𝑖) 𝑚̃𝑖 is independent of vertex 𝑥. (1 ≤ 𝑖 ≤ 4).

(𝑖𝑖𝑖) ℓ ∶= dim𝐸∗
1𝑇𝐸∗

1 is independent of 𝑥.

Proof.

(𝑖) Let 𝑒𝑖 ∈ 𝐸∗
1𝑇𝐸∗

1 (1 ≤ 𝑖 ≤ 4) denote the orthogonal projection on to the
maximal eigenspace of (𝐸∗

1𝑉 )𝑛𝑒𝑤 corresponding to 𝜆𝑖. (𝑒 = 0 if and only if 𝜆𝑖
does not appear.) Set

𝑒0 = 1
𝑘

̃𝐽 .
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Then eigenvalues for each 𝑒1, 𝑒1, 𝑒3, 𝑒4 are as follows.

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4
̃𝐽 𝑘 0 0 0 0

𝐸∗
1 1 1 1 1 1
̃𝐴 𝑎1 𝑎0(𝑊1) 𝑎0(𝑊2) 𝑎0(𝑊3) 𝑎0(𝑊4)

𝐴+ 𝑎2
𝑐2 −Ψ 𝑎+(𝑊1) 𝑎+(𝑊2) 𝑎+(𝑊3) 𝑎+(𝑊4)

𝐴− ⋆ 𝑎−(𝑊1) 𝑎−(𝑊2) 𝑎−(𝑊3) 𝑎−(𝑊4)

Observe that 𝑒2𝑖 = 𝑒𝑖, trace 𝑒𝑖 = rank 𝑒𝑖 = 𝑚̃𝑖 (1 ≤ 𝑖 ≤ 4), and trace 𝑒0 =
rank 𝑒0 = 1.
By taking the trace of ̃𝐽 , 𝐸∗

1, ̃𝐴,𝐴+, 𝐴−, we have

𝑘 = 𝑘, (40.17)
𝑘 = 1 + 𝑚̃1 + 𝑚̃2 + 𝑚̃3 + 𝑚̃4, (40.18)
0 = 𝑎1 + 𝑎0(𝑊1)𝑚̃1 + 𝑎0(𝑊2)𝑚̃2 + 𝑎0(𝑊3)𝑚̃3 + 𝑎0(𝑊4)𝑚̃4, (40.19)

0 = (𝑎2
𝑐2

−Ψ)+ 𝑎+(𝑊1)𝑚̃1 + 𝑎+(𝑊2)𝑚̃2 + 𝑎+(𝑊3)𝑚̃3 + 𝑎+(𝑊4)𝑚̃4, (40.20)

0 = (⋆) + 𝑎−(𝑊1)𝑚̃1 + 𝑎−(𝑊2)𝑚̃2 + 𝑎−(𝑊3)𝑚̃3 + 𝑎−(𝑊4)𝑚̃4. (40.21)

The coefficient matrix for 𝑚̃1, 𝑚̃2, 𝑚̃3, 𝑚̃4 is nonsingular (this is what you need
to check and show).

HS MEMO

Complutation is not completed.

(𝑖𝑖) Ψ is independent of base vertex 𝑥.
(𝑖𝑖𝑖) We have

dim𝐸∗
1𝑇𝐸∗

1 = |{𝑖 ∣ 1 ≤ 𝑖 ≤ 4, 𝑒𝑖 ≠ 0}| + 1 (40.22)
= |{𝑖 ∣ 1 ≤ 𝑖 ≤ 4, 𝑚̃𝑖 ≠ 0}| + 1. (40.23)

This completes the proof of the lemma.

Let Γ = (𝑋,𝐸) be thin distance regular of diameter 𝐷 ≥ 5, and 𝑄-polynomial
with respect to 𝐸0, 𝐸1,… ,𝐸𝐷.

Fix vertices 𝑥, 𝑦 ∈ 𝑋 with 𝜕(𝑥, 𝑦) = 1,

𝐸∗
𝑖𝑗 ≡ 𝐸∗

𝑖 (𝑥)𝐸∗
𝑗 (𝑦), 𝛿𝑖𝑗 = 𝐸∗

𝑖𝑗𝛿.
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We saw
𝑇 (𝑥) ̂𝑦 = 𝑇 (𝑦) ̂𝑥.

Hence,
𝐻 ∶= 𝑇(𝑥) ̂𝑦 = 𝑇 (𝑦) ̂𝑥

is a 𝑇 (𝑥, 𝑦) module. 𝑇 (𝑥, 𝑦) ⊆ Mat𝑋(ℂ) is generated by 𝑀 , 𝑀∗(𝑥), 𝑀∗(𝑦).
Lemma 40.3. With the above notation, we have the following.

(𝑖) 𝐸∗
𝑖,𝑖+1𝐻 = Span(𝛿𝑖,𝑖+1) (0 ≤ 𝑖 ≤ 𝐷 − 1).

(𝑖𝑖) 𝐸∗
𝑖+1,𝑖𝐻 = Span(𝛿𝑖+1,𝑖) (0 ≤ 𝑖 ≤ 𝐷 − 1).

(𝑖𝑖𝑖) 𝐸∗
𝑖,𝑖𝐻 = ℓ − 2 ≤ 3 (1 ≤ 𝑖 ≤ 𝐷 − 1).

Proof.

(𝑖) ⊇: We have

𝛿𝑖,𝑖+1 = 𝐸∗
𝑖𝐴𝑖+1 ̂𝑦 ∈ 𝑇 (𝑥) ̂𝑦 = 𝐻.

⊆: Pick ℎ ∈ 𝐸∗
𝑖,𝑖+1𝐻. Then ℎ = 𝑅𝑖−1𝑣, where 𝑣 = (𝑅−1)𝑖−1ℎ ∈ 𝐸∗

1𝑉 .

So, 𝑣 ∈ Span(𝛿12, 𝛿11, 𝛿10, 𝛿+11, 𝛿−11).
HS MEMO

𝑣 ∈ 𝐸∗
1𝑉 ∩ 𝑇(𝑥) ̂𝑦 (40.24)

= 𝐸∗
1𝑇 (𝑥)𝐸∗

1 ̂𝑦 (40.25)

= Span( ̃𝐽 , 𝐸∗
1, ̃𝐴,𝐴+, 𝐴−) ̂𝑦 (40.26)

= Span(𝛿10 + 𝛿11 + 𝛿12, 𝛿10, 𝛿11, 𝛿+11, 𝛿−11) (40.27)
= Span(𝛿10, 𝛿11, 𝛿12, 𝛿+11, 𝛿−11). (40.28)

Hence, there exists 𝛼 ∈ ℂ such that

𝑣 − 𝛼𝛿12 ∈ Span(𝛿10, 𝛿11, 𝛿+11, 𝛿−11) = 𝐸∗
11𝐻 +𝐸∗

10𝐻.

So,
𝑣 − 𝛼(𝛿12 + 𝛿11 + 𝛿10) ∈ 𝐸∗

11𝐻 +𝐸∗
10𝐻.

𝐸∗
𝑖𝑖𝐻 +𝐸∗

𝑖,𝑖−1𝐻 ∋ 𝑅𝑖−1(𝑣 − 𝛼(𝛿12 + 𝛿11 + 𝛿10)) (40.29)
= ℎ − 𝛼′(𝛿𝑖,𝑖+1 + 𝛿𝑖𝑖 + 𝛿𝑖,𝑖−1). (40.30)

Hence,
ℎ − 𝛼′𝛿𝑖,𝑖+1 ∈ (𝐸∗

𝑖𝑖𝐻 +𝐸∗
𝑖,𝑖−1𝐻) ∩ 𝐸∗

𝑖,𝑖+1𝐻.
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Thus,
ℎ = 𝛼′𝛿𝑖,𝑖+1 ∈ Span(𝛿𝑖,𝑖+1).

(𝑖𝑖) By symmetry, we have the assertion.

(𝑖𝑖𝑖) 𝐸∗
𝑖𝐻 = 𝐸∗

𝑖,𝑖+1𝐻 + 𝐸∗
𝑖,𝑖𝐻 + 𝐸∗

𝑖,𝑖−1𝐻, and dim𝐸∗
𝑖𝐻 = ℓ, dim𝐸∗

𝑖,𝑖+1𝐻 = 1,
and dim𝐸∗

𝑖,𝑖−1𝐻 = 1.
Hence, dim𝐸∗

𝑖,𝑖𝐻 = ℓ − 2.

HS MEMO

Since 𝐻 = 𝑇(𝑥) ̂𝑦 ⊆ 𝑇 (𝑥)𝐸∗
1(𝑥)𝑉 , and

(𝑅−1)𝑖−1 ∶ 𝐸∗
𝑖𝐻 → 𝐸∗

1𝐻

is one-to-one and onto if 𝑖 ≤ 𝐷.

Theorem 40.1. Let Γ = (𝑋,𝐸) be thin distance regular of diameter 𝐷 ≥ 5,
and 𝑄-polynomial with respect to 𝐸0, 𝐸1,… ,𝐸𝐷.

Pick 𝑖 (2 ≤ 𝑖 ≤ 𝐷), and pick 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that 𝜕(𝑥, 𝑦) = 1, 𝜕(𝑦, 𝑧) = 𝑖 − 1,
𝜕(𝑥, 𝑧) = 𝑖.
Then,

𝑧𝑖 = |{𝑤 ∣ 𝑤 ∈ 𝑊, 𝜕(𝑥, 𝑤) = 1, 𝜕(𝑦, 𝑤) = 1, 𝜕(𝑧, 𝑤) = 𝑖 − 1}|

is independent of 𝑥, 𝑦, 𝑧.

Proof. Observe that 𝑧𝑖 is the 𝑧𝑥 entry in

Δ = 𝐸∗
𝑖−1(𝑦)𝐴𝑖−1𝐸∗

1(𝑦)𝐴𝐸∗
1(𝑦)

as
Δ ̂𝑥 = ∑

𝑧∈𝑋,𝜕(𝑥,𝑧)=𝑖,𝜕(𝑦,𝑧)=𝑖−1
𝑧𝑖(𝑥, 𝑦, 𝑧) ̂𝑧.

Hence, 𝑧𝑖(𝑥, 𝑦, 𝑧) is independent of 𝑧.
So, 𝑧𝑖(𝑥, 𝑦, 𝑧) is determined by intersection numbers and Ψ = Ψ(𝑥, 𝑦), which is
independent of 𝑥, 𝑦 as well.



Appendix A

Open Problems

Some Open Problems Concerning Distance-Regular Graphs, the Thin
Condition, and the 𝑄-Polynomial Property

Paul Terwilliger

The questions below are unsolved as of May, 1993 (to my knowledge). A com-
plete solution (or even a significant partial solution in some cases) to any one
of these problems would be publishable. I have tried to estimate the level of
difficulty of each problem listed below. A ⋆ means I believe the problem is rela-
tively easy in the sense that it can be solved using ideas from the course. There
are no conceptual gaps to overcome that I am aware of (but the calculations
might be quite difficult, however!). A ⋆⋆⋆⋆ means I have no idea how to begin
to attack the problem. I am only mentioning problems of this kind to give you
an idea about what is known in this field.

Dist: Γ is distance-transitive.

Q: Γ is 𝑄-polynomial with respect to the ordering 𝐸0, 𝐸1,… ,𝐸𝐷 of the primitive
idempotents.

Bip: Γ is bipartite.

Th: Γ is thin (over the field of complex numbers).

Few1: The subgraph induced on the first subconstituent of Γ with respect to 𝑥
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has at most 5 distince eigenvalues.

Few2: The subgraph induced on the second subconstituent of Γ with respect to
𝑥 has at most 16 distinct eigenvalues.

Z : For all integers 𝑖 (2 ≤ 𝑖 ≤ 𝐷), and all triples 𝑢, 𝑣, 𝑤 (𝑢, 𝑣, 𝑤 ∈ 𝑋) such that
𝜕(𝑢, 𝑣) = 1, 𝜕(𝑣, 𝑤) = 𝑖 − 1, and 𝜕(𝑣, 𝑤) = 𝑖, the number

𝑧𝑖 ∶= |{𝑦 ∣ 𝑦 ∈ 𝑋, 𝜕(𝑦, 𝑢) = 𝜕(𝑦, 𝑣) = 1, 𝜕(𝑦, 𝑤) = 𝑖 − 1}|
is a constant that does not depend on 𝑢, 𝑣, 𝑤.
The following implications are known:

Q + Bip → TH, Q + TH → Few1, Few2, Z.

(1) ⋆⋆⋆⋆ Classify all the distance-regular graphs (with sufficiently large diam-
eter). If necessary, assume some combination of the above properties. (My
personal goal is to classify all the graphs Γ satisfying Q, TH. I expect this will
take a number of years.)

(2) ⋆⋆ Assume Q, Bip, and classify Γ.

(3) ⋆ Find generalization to the theorems of the course for non-regular, bipartite
distance-regular graphs.

(4) ⋆ Assume, Q, and let 𝑊 denote an irreducible 𝑇 -module with endpoint 1
that is not thin. Find a nice basis for 𝑊 and find the matrices representing the
adjacency matrix 𝐴 and the dual adjacency matrix 𝐴∗ with respect to this basis.
Perhaps assume classical parameters. Theorem 30.1, and Lemma 31.1 should
be useful.

(5) ⋆ Is it true that Γ is thin over the field of complex numbers if and only
if Γ is thin over the field of real numbers? What does it mean for Γ to be
thin over the field of rational numbers? The examples suggest that if Γ is thin
over the complex numbers then it is already thin over the rational numbers. If
this is true, it would be nice to have a proof. For the moment, suppose it is
not true. Assume Γ is thin over the field of complex numbers, and define the
splitting field of Γ to be the minimal extension of the rational field over which
Γ is thin. Then the elements of the Galois group of the splitting field act on
the standard module, and permute the isomorphism classes of irreducible 𝑇 -
modules. How are the isomorphism classes of 𝑇 -modules involved related? Can
the permutations be nontrivial?
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(6) ⋆⋆ Assume Q, and assume there is a second 𝑄-polynomial ordering of the
primitive idempotent. Prove TH. I believe in this case the first subconstituent
has at most 4 distinct eigenvalues, and the constant Ψ from class if determined
by the intersection numbers. It may be possible to classify all such Γ.

(7) ⋆⋆ Assume Q, and assume there is a second 𝑃 -polynomial ordering of the
distance matrices. I believe the same thing happens as in (6) above.

(8) ⋆⋆ A path 𝑦 = 𝑦0, 𝑦1,… , 𝑦𝑡 = 𝑧 in Γ is said to be geodetic whenever 𝜕(𝑦, 𝑧) =
𝑡. Let us say a subset Δ of 𝑋 is geodetically closed whenever all vertices on all
geodetic paths with endpoints in Δ are also in Δ. For any vertices 𝑦, 𝑧 ∈ 𝑋,
observe there exists a unique minimal geodetically closed subset containing 𝑦, 𝑧,
denoted [𝑦𝑧].
If the diameter of [𝑦𝑧] equals 𝜕(𝑦, 𝑧), we say [𝑦𝑧] is a subspace. Furthermore,
show the subgraph induced on [𝑦𝑧] is distance-regular, and satisfies Q, TH. If
this proves not to be the case, find a simple additional assumption on Γ under
which it is true. (It seems to hold for the known examples). I believe these
subspaces are the key to an eventual classification of the graphs satisfying Q,
TH (and possibly all distance-regular graphs with sufficiently large diameter).
In the examples, the partially ordered set of all subspaces, ordered by reverse
inclusion, is some classical geometry. There are many classification theorems
in the area of finite projective geometry. My hope is that given any Γ, the
partially ordered set of all subspaces is some highly regular geometry that can
be classified using one of these theorems, leading us to a classification of the
original Γ. (By the way, I intend to explore this area in the course I am teaching
next fall on partiallly ordered sets).

(9) ⋆⋆ Assume Q, TH. Find a nice basis for 𝐸∗
2𝑇𝐸∗

2 in a way that generalized
what we did in class for 𝐸∗

1𝑇𝐸∗
1.

(10) ⋆ Assume B, TH, and that the dimension of 𝐸∗
2𝑇𝐸∗

2 is at most 4. Show
that Q holds. Find a nice basis for 𝐸∗

2𝑇𝐸∗
2.

(11) It is not hard to show that in general

𝑐𝑖 ≥ 𝑐𝑖−1 (1 ≤ 𝑖 ≤ 𝐷), (A.1)
𝑏𝑖 ≤ 𝑏𝑖−1 (0 ≤ 𝑖 ≤ 𝐷 − 1). (A.2)

It is known that if Γ has at least one cyle 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦1 such that 𝜕(𝑦1, 𝑦3) =
𝜕(𝑦2, 𝑦4) = 2 then

𝑐𝑖 − 𝑐𝑖−1 + 𝑏𝑖−1 − 𝑏𝑖 ≥ 𝑎1 + 2 (1 ≤ 𝑖 ≤ 𝐷).
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This bound has proved to be quite fndamental. For example, the graphs Γ where
equality holds for all 𝑖 all satisfy Q, and in fact they are precisely the graphs of
type IIA or IIC (refereng to p.10, 11 in the thick paper I handed out in class).
These graphs have all been classified. I have some papers describing some more
general bounds of the above sort, but they are unsatisfactory in the sense that
the class of graphs for which equality is attained is not interesting, and may even
be empty. Hence one problem (⋆⋆) is to find a bound that controls the growth
of the 𝑐𝑖’s and the decrease of the 𝑏𝑖’s, where equality is attained for some nice,
large class of graphs. Ideally, this class would contain all the known examples of
Γ with sufficiently large diameter, or perhaps all the graphs Γ satisfying Q + TH.
Specific proble (⋆): Assume Z and redo the arguments in the above-mentioned
papers. Dramatic improvements in the bounds obtained are expected (I did
not realise the significance of Z and redo the arguments in the above-mentioned
papers). Since Q + TH → Z, the new bounds are expected to give important
feasibility conditions on the intersection numbers of any Γ satisfying Q and TH.

(12) ⋆ Explore the class of graphs that are𝑄-polynomial with respect to each ver-
tex. but not assumed to be distance-regular. Are these graphs in fact distance-
regular or bi-distance-regular? (This result would be very esthetically pleasing
to me, since as we have seen, the sibling property of being thin does not imply
distance-regularity or bi-distance-regularity). If the answer to the above ques-
tion is “no”, just what sort of regularity do these graphs have? For a graph
that is 𝑄-polynomial with respect to each vertex, how must the orderings of
the primitive idempotents associated with adjacent vertices be related? Is it
possible for a distance-regular graph to be 𝑄-polynomial with respect to each
vertex, but still not be 𝑄-polynomial? (This is a completely new area. Up until
now, the 𝑄-polynomial property was only defined for distance-regular graphs.)

(13) ⋆⋆ To what extent do the polynomial relations on 𝑅, 𝐿, 𝐹 given in Theorem
30.1 actually characterize the 𝑄-polynomial property? For example, suppose

(𝑖) 𝐿2𝐹𝐸∗
𝑖 , 𝐿𝐹𝐿𝐸∗

𝑖 , 𝐹𝐿2𝐸∗
𝑖 , 𝐿2𝐸∗

𝑖 are linearly dependent for all 𝑖 (2 ≤ 𝑖 ≤ 𝐷).
(𝑖𝑖) 𝐹𝐿𝑅𝐸∗

𝑖 , 𝐹𝑅𝐿𝐸∗
𝑖 are linearly dependent for all 𝑖 (0 ≤ 𝑖 ≤ 𝐷), and

(𝑖𝑖𝑖) 𝑅𝐿2𝐸∗
𝑖 , 𝐿𝑅𝐿𝐸∗

𝑖 , 𝐿2𝑅𝐸∗
𝑖 , 𝐿𝐹 2𝐸∗

𝑖 , 𝐹𝐿𝐹𝐸∗
𝑖 , 𝐿𝐹𝐸∗

𝑖 , 𝐹 2𝐿𝐸∗
𝑖 , 𝐹𝐿𝐸∗

𝑖 , 𝐿𝐸∗
𝑖 are

linearly dependent, for all 𝑖 (1 ≤ 𝑖 ≤ 𝐷).
Then does Q hold? what if we assume TH? If not, what other graphs can
one get? are they “almost” 𝑄-polynomial in some sense (pserhaps many Krein
parameters vanish, but not quite enough to imply 𝑄). What is the essential
assumption about the coefficients in the above dependencies that is needed to
insure Q.

(14) ⋆⋆⋆ Assume Q and TH. Find the abstract structure of the Norton algebra
𝑁 . My intuition says that this structure can be computed in terms of the
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intersection numbers and a small list of additional parameters such as 𝜓. The
examples suggest that 𝑁 is “almost associative” in some sense. Specific problem
(⋆) Find the precise structure of the Norton algebra for the examples 𝐽(𝑑, 𝑛),
𝐽𝑞(𝑑, 𝑛), …, and find some pattern. The dual of Theorem 30.1 is relevent to this
problem. My intuition says that the idempotents of 𝑁 should correspond to the
subspaces of Γ referred to in problem 8, and that somehow the multiplication
operation in𝑁 should be related to the meet and join operations in the geometry
of subspaces referred to in that problem.

(15) ⋆⋆ Assume Q and TH, and pick 𝑦 ∈ 𝑋. Show

𝑇 (𝑥) ̂𝑦 = 𝑇 (𝑦) ̂𝑥.

(I can show this for 𝜕(𝑥, 𝑦) = 1.) If the above line holds, then apparently
𝐻 ∶= 𝑇(𝑥) ̂𝑦 = 𝑇 (𝑦) ̂𝑥 is a module for the algebra 𝑇 (𝑥, 𝑦) generated by the Bose-
Mesner algebra 𝑀 , the dual Bose-Mesner algebra 𝑀∗(𝑥), and 𝑀∗(𝑦). Observe
the elements of 𝑀∗(𝑥), 𝑀∗(𝑦) mutually commute, and in fact that the maximal
common engenspaces of 𝑀∗(𝑥), 𝑀∗(𝑦) are the 𝐸∗

𝑖𝑗𝑉 (0 ≤ 𝑖, 𝑗 ≤ 𝐷), where
𝐸∗

𝑖𝑗 = 𝐸∗
𝑖 (𝑥)𝐸∗

𝑗 (𝑦). Find a nice orthogonal basis for each 𝐸∗
𝑖𝑗𝐻. Observe the

union 𝐵 of these bases is a basis for 𝐻. Find the matrices representing 𝐴,
𝐴∗(𝑥), 𝐴∗(𝑦) with respect to 𝐵. Choose 𝐵 so that the entries in these matrices
are nice, factorable expressions in the intersection numbers and whatever other
parameters are needed. In the case 𝜕(𝑥, 𝑦) = 1, these entries can be deteermined
from the intersection numbers and the parameter 𝜓. If 𝜕(𝑥, 𝑦) ≥ 2, presumably
there are some more free parameters analoguous to 𝜓 that play a role. My
intuition says that as a 𝑇 (𝑥, 𝑦)-module, 𝐻 is determined from the intersection
numbers of Γ and 𝑡 free parameters, where 𝑡 = 𝜕(𝑥, 𝑦).

(16) ⋆⋆ Does TH and Few1 imply Z? If not, what extra assumption is needes?

(17) ⋆⋆ Does TH, Few1, Few2, imply Q? If not, what extra assumption is
needed?

(18) ⋆⋆ Let Γ be an arbitrary grarph, not assumed to be distance-regular. Con-
jecture: Γ is thin if and only if for all integers 𝑖, 𝑗, 𝑘, and all vertices 𝑥, 𝑦, 𝑧 ∈ 𝑋
such that 𝜕(𝑥, 𝑦) = 𝜕(𝑥, 𝑧) = 𝑖, the number of vertices 𝑤 ∈ 𝑋 with 𝜕(𝑤, 𝑥) = 𝑗,
𝜕(𝑤, 𝑦) = 1, 𝜕(𝑤, 𝑧) = 𝑘 equals the number of vertices 𝑤′ ∈ 𝑋 with 𝜕(𝑤′, 𝑥) = 𝑗,
𝜕(𝑤′, 𝑧) = 1, 𝜕(𝑤′, 𝑦) = 𝑘. If Γ assumed to be distance-regular, then the con-
jecrure is true and there is a long proof in the thick paper I handed out in
class (Theorem 5.1 (iii)) . A short, slick proof (assuming distance-regularity or
not) is very much needed. If the conjecture turns out not to be true in the
bi-distance-regular case, find some similar combinatorial characterization of the
thin property.
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There are a number of additional problems in section 7 of the thick paper I
handed out in class. Essentially all the known examples of thin, 𝑄-polynomial
distance-regular graphs are listed in section 6 of that paper.

For each of the above problems, I have a good deal of background information
to communicate, but unfortunately in most cases it is not in published form! If
you tell me what problem you want to focus on, I can tailor a series of lectures
this summer towards communicating what I know on the subject. But one key
point: Often “I don’t know what I know”. If you are constantly asking probing
questions of me it makes my job a lot easier: it often reminds me of information
that is relevant that I had forgotten, or that I had forgotten was relevant.
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Comparison Table

We list Definitions, Theorems, Lemmas, etc. with the numbers in the original
handwritten note.

Chapter New Numbering
Old
Numbering

1 Example 1.1 Example
Example 1.2 Example
Definition 1.1 Definition
Lemma 1.1 Lemma 1
Definition 1.2 Definition
Definition 1.3 Definition
Definition 1.4 Definition
Definition 1.5 Definition
Definition 1.6 Definition
Definition 1.7 Definition
Lemma 1.2 Lemma 2

2 Definition 2.1 Definition
Definition 2.2 Definition
Theorem 2.1 Theorem 3
Lemma 2.1 Lemma 4
Definition 2.3 Definition
Corollary 2.1 Corollary 5

3 Definition 3.1 Definition
Definition 3.2 Definition
Definition 3.3 Definition
Definition 3.4 Definition
Example 3.1 Example
Example 3.2 Example
Example 3.3 Example
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Chapter New Numbering
Old
Numbering

Theorem 3.1 Theorem 6
Definition 3.5 Definition
Example 3.4 Example
Lemma 3.1 Lemma 7

4 Theorem 4.1 Theorem 8
Example 4.1 Example
Example 4.2 Example
Definition 4.1 Definition
Lemma 4.1 Lemma 9

5 Definition 5.1 Definition
Theorem 5.1 Theorem 10

6 Theorem 6.1 Theorem 11
Definition 6.1 Definition
Definition 6.2 Definition

7 Definition 7.1 Definition
Example 7.1 Example
Lemma 7.1 Lemma 12
Theorem 7.1 Theorem 13

8 Lemma 8.1 Lemma 14
9 Lemma 9.1 Lemma 15

Corollary 9.1 Corollary 16
Lemma 9.2 Lemma 17
Definiton 9.2 Definition

10 Lemma 10.1 Lemma 18
Lemma 10.2 Lemma 19
Corollary 10.1 Corollary 20

11 Lemma 11.1 Lemma 21
Lemma 11.2 Lemma 22

12 Lemma 12.1 Lemma 23
Theorem 12.1 Theorem 24

13 Lemma 13.1 Lemma 25
Theorem 13.1 Theorem 26
Proposition 13.1 Proposition 27

14 Lemma 14.1 Lemma 28
Lemma 14.2 Lemma 29

15 Definition 15.1 Definition
Lemma 15.1 Lemma 30

16 Definition 16.1 Definition
Lemma 16.1 Lemma 31
Theorem 16.1 Theorem 32
Lemma 16.2 Lemma 33*

17 Definition 17.1 Definition
Definition 17.2 Definition
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Chapter New Numbering
Old
Numbering

Example 17.1 Example 1
Example 17.2 Example 2
Exercise 17.1 Exercise
Example 17.3 Example 3

18 Lemma 18.1 Lemma 33
19 Lemma 19.1 Lemma 34

Definition 19.1 Definition:
20 Lemma 20.1 Lemma 34-a

Lemma 20.2 Lemma 34-b
Lemma 20.3 Lemma 35
Corollary 20.1 Corollary 36
Lemma 20.4 Lemma 37

21 Lemma 21.1 Lemma 38
Lemma 21.2 Lemma 39

22 Lemma 22.1 Lemma 40
Definition 22.1 Definition
Lemma 22.2 Lemma 41

23 Theorem 23.1 Theorem 42
Definition 23.1 Definition
Example 23.1 Example

24 Definition 23.2 Definition
Lemma 23.1 Lemma 43
Definition 24.1 Definition
Theorem 24.1 Theorem 44

26 Corollary 26.1 Corollary 45
Lemma 26.1 Lemma 46

27 Theorem 27.1 Theorem 47
Definition 27.1 Definition
Definition 27.2 Definition
Lemma 27.1 Lemma 48
Example 27.1 Example

28 Lemma 28.1 Lemma 49
Conjecture 28.1 Conjecture

29 Theorem 29.1 Theorem 50
30 Theorem 30.1 Theorem 51

Lemma 30.1 Lemma 52
Corollary 30.1 Corollary 53

31 Lemma 31.1 Lemma 54
32 Lemma 32.1 Lemma 55

Lemma 32.2 Lemma 56
Lemma 32.3 Lemma 57

33 Lemma 33.1 Lemma 58
Lemma 33.2 Lemma 59
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Chapter New Numbering
Old
Numbering

Lemma 33.3 Lemma 60
Lemma 33.4 Lemma 61

34 Lemma 34.1 Lemma 62
Lemma 34.2 Lemma 63
Lemma 34.3 Lemma 64

35 Theorem 35.1 Theorem 65
36 Conjecture 36.1 Conjecture

Conjecture 36.2 Conjecture
Conjecture 36.3 Conjecture

37 Lemma 37.1 Lemma 66
Definition 37.1 Definition
Example 37.1 Example
Lemma 37.2 Lemma 67

38 Lemma 38.1 Lemma 68
Definition 38.1 Definition
Lemma 38.2 Lemma 69

39 Lemma 39.1 Lemma 70
Lemma 39.2 Lemma 71
Lemma 39.3 Lemma 72
Lemma 39.4 Lemma 73

40 Lemma 40.1 Lemma 74
Lemma 40.2 Lemma 75
Lemma 40.3 Lemma 76
Theorem 40.1 Theorem 77
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Technical Memo

This note is created by bookdown package on RStudio.

For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).

The following is a memo.

A. Install R and R Studio with necessary packages if needed

B. Create and setup ssh key by ssh-keygen

C. Setup Git-GitHub connection

1. Create a GitHub account if needed

2. Set ssh key by copying the value of the public SSH key to the clipboard
using pbcopy and paste it into SSH Keys in the GitHub account

D. Remote Repository

1. Log-in to the GitHub account
2. Go to RStudio/bookdown-demo repository: https://github.com/rstudio

/bookdown-demo
3. Use This Template
4. Input Repository Name
5. Select Public - default
6. Create a repository from the template
7. Set Pages: Branch main, docs

E. Local Repository

1. Copy: Code > Clone > SSH from the GitHub repository
2. Create a new project by Version Control Git
3. Change directory name _book to docs
4. Edit YAMLs
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https://github.com/rstudio/bookdown-demo
https://github.com/rstudio/bookdown-demo
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All source files are in the GitHub Repository.

C.1 To Do List
• Environment align in ePub_book.

– It may be better to give up ePub book mode.

• https://github.com/rstudio/bookdown/issues/530

• See also bookdown ePub version page 33. I could not retrieve the same.
(See page 32 as well.)

• Environment of align

1. align

𝐴 = 𝐵 (C.1)
= 𝐶 (C.2)

2. eqnarray*

𝐴 = 𝐵
= 𝐶

3. array in equation with minus spacing

𝐴 = 𝐵
= 𝐶

4. split in equation

𝐴 = 𝐵
= 𝐶 (C.3)

• Shaded Box using frame with environment hs in PDF
• Controlling top icons
• My template of bookdown

Minor

• Difference in numbering; HTML and PDF
• bs4_book format
• bookdown template and doc directory
• Style of citation in PDF

https://github.com/icu-hsuzuki/t-algebra
https://github.com/rstudio/bookdown/issues/530


Bibliography

A.E. Brouwer, A.M. Cohen, A. N. (1989). Distance-Regular Graphs. Springer-
Verlag, Berlin Heidelberg. 3-540-50619-5, 0-387-50619-5.

Charles W. Curtis, I. R. (2006). Representation Theory of Finite Groups and
Associative Algebras. Chelsea Pub Co, uk edition. 978-1138359420.

Terwilliger, P. (1992). The subconstituent algebra of an association scheme. i.
J. Algebraic Combin., 1(4):363–388.

Terwilliger, P. (1993a). The subconstituent algebra of an association scheme. ii.
J. Algebraic Combin., 2(1):73–103.

Terwilliger, P. (1993b). The subconstituent algebra of an association scheme. iii.
J. Algebraic Combin., 2(2):177–210.

Terwilliger, P. (1995). A new inequality for distance-regular graphs. Discrete
Math., 137(1-3):319–332.

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC,
Boca Raton, Florida, 2nd edition. 978-0821840665.

Xie, Y. (2017). bookdown: Authoring Books and Technical Documents with R
Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN
978-1138469280.

Yihui Xie, J.J Allaire, G. G. (2018). R Markdown: The Definitive Guide. Chap-
man and Hall/CRC, Boca Raton, Florida, 1st edition. 978-1138359420.

269



Index

𝑄-polynomial, 139, 150

association matrix, 114
association scheme, 114
automorphism, 25

bipartite, 19
bipartite graph, 23

Cayley graph, 25
character, 28
complete graph, 102
connected, 16

diameter, 35
diameter of Γ, 16
diameter wrt 𝑥, 16
distance, 16
distance-regular, 79
distance-transitive, 60
dual associate matrix, 123
dual Bose-Mesner algebra, 123
dual endpoint, 229
dual thin, 50

endpoint, 35

generalized adjacency matrix, 237
graph, 13

irreducible, 17
isomorophism, 25
isomorphic, 38

measure, 68
module, 17
multiplicity, 38

Norton algebra, 134

path, 16

reducible, 19
regular, 15
restricted, 50

subconstituent algebra, 17
symmetrix, 114

thin, 50

valency, 15
vertex transitive, 25
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