Lecture Note on Terwilliger Algebra

P. Terwilliger, edited by H. Suzuki

Contents

About 7
Foreword 7
Preface by P. Terwilliger 8
1 Subconstituent Algebra of a Graph 13
2 Perron-Frobenius Theorem 19
3 Cayley Graphs 25
4 Examples 31
$5 T$-Modules of $H(D, 2)$, I 37
$6 T$-Modules of $H(D, 2)$, II 45
7 The Johnson Graph $J(D, N)$ 53
8 Thin Graphs 59
9 Thin T-Module, I 65
10 Thin T-Module, II 71
11 Examples of T-Module 77
12 Distance-Regular 81
13 Modules of a DRG 89
14 Parameters of Thin Modules, I 95
15 Parameters of Thin Modules, II 99
16 Thin Modoles of a DRG 105
17 Association Schemes 113
18 Polynomial Schemes 117
19 Commutative Association Schemes 119
20 Vanishing Conditions 127
21 Norton Algebras 133
22 -Polynomial Schemes 137
23 Representation of a Scheme 143
24 Balanced Conditions, I 149
25 Balanced Conditions, II 155
26 Representation Diagrams 161
$27 P$-and Q-Polynomial Schemes 167
28 The First Eigenspace of a Q-DRG 175
29 Tridiagonal Pair A, A^{*} 179
$30 R, F, L$ Matrices 187
31 The "Inverse" of R 195
32 Irreducible Modules of Endpoint i 199
33 Algebra on First Subconstitutent 207
34 Modules of Endpoint One 215
$35 \operatorname{dim} E_{\mathbf{1}}{ }^{*} T E_{\mathbf{1}}{ }^{*} \leq 5$ 225
36 Dual Endpoint 229
37 Generalized Adjacency Matrix 235
38 An Injection from $\mathrm{E}_{11}{ }^{*}$ to $\mathrm{E}_{22}{ }^{*}$ 241
$39 A^{+}$and A^{-} 247
40 Structure of 1-Thin DRG 251
A Open Problems 257

B Comparison Table 263
C Technical Memo 267
C. 1 To Do List . 268

About

- Original Hand Written Note Edited by Hiroshi Suzuki: https://icu-hsuz uki.github.io/lecturenote/
- PDF of this lecturenote: https://icu-hsuzuki.github.io/t-algebra/talgebra.pdf
- You can download from the download icon on the top menu.
- The style is a bit different from the HTML version
- This digital book is created by bookdown package on RStudio.
- For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).
- See technical memo

Foreword

April 4, 1995.
This book is a lecture note based on a series of lectures by Paul Terwilliger in 1993. The original is a manuscript written by Paul Terwilliger.

This note was rewritten by Hirosh Suzuki when he studied the lecture note during the following period.

January 13, 1995 - March 4, 1995.
He had a chance to meet the author for a week after reading through the lecture note. The author clarified almost everything he asked. So even in the part where he put "?", there seems to be no mathematical gap. But sometimes, it requires lengthy calculations.

In the last part, each result has two numbers because the original lecture note has duplications. He supposes that this lecture note is already two years old, so some statements are improved essentially.

Hiroshi Suzuki
hsuzuki@icu.a.jp

Preface by P. Terwilliger

This book attempts to prepare the way for an eventual classification of the graphs that are both thin and Q-polynomial. These graphs are distance-regular or bi-distance-regular, and since the distance-regular case is somewhat easier to handle, the focus will be on that case. (It is assumed the bi-distance-regular case is not too different). In the core of this book, we take a vertex x in a distanceregular graph, and study the irreducible modules for the subconstituent algebra $T(x)$ that have endpoint at most 2 . (The modules with endpoint at most 3 seems too complicated to consider, and do not seem to play much of a role anyway). The thin condition and the Q-polynomial property each affect the structure of these momdules, so these assumptions are first considered separately, and then jointly.

1. Introduction (Chapters 1-8)

1a. The subconstituent algebra $T(x)$ associated with any vertex x in a graph
1b. Example: The D-dimensional cube and the Lie algebra $s l_{2}(\mathbb{C})$
1c. The graphs of thin type: definition and characterizations
2. The structure of a thin $T(x)$-module W in an arbitrary graph (Chapters 9-11)
2a. The constants $a_{i}(W), x_{i}(W)$
2b. The measure $m(W)$
2c. The isomorphism class of W determines and is determined by $m(W)$
2d. How non-orthogonal thin irreducible $T(x)$-modules and thin, irreducible $T(y)$-modules are related

2e. The matrices R, F, L, and R^{-1}, L^{-1}
3. Distance-regularity (Chapters 12-13)

3a. Distance-regularity with respect to a vertex
3b. The trivial $T(x)$ modules
3c. A graph is distance-regular with respect to each vertex if and only if the trivial $T(x)$-module is thin if and only if the graph is distance-regular or bi-distance-regular
4. The structure of a thin irreducible $T(x)$-module W with endpoint 1 in a distance-regular graph (Chapters 14-17)
4a. The isomorphism class of W is determined by the intersection numbers and $a_{0}(W)$

4b. $\operatorname{Span}\left(\left\{v_{1}^{+}, v_{2}^{+}, \ldots, v_{D}^{+}\right\}\right)$is thin irreducible $T(x)$-module if and only if v_{i}^{+}, v_{i}^{-}are dependent, for all i

4c. If $m_{1}<k_{1}$, there exist at least one thin, irreducible $T(x)$-module with endpoint 1

4d. Formula for $a_{i}(W), x_{i}(W), \gamma_{i}(W)$
4e. Feasibility conditions arising from the above constants being algebraic integers

4f. Feasibility conditions arising from $\left|a_{i}(W)\right| \leq a_{i+1}$ (?)
4g. A combinatorial characterization of the distance-regular graphs where every irreducible $T(x)$-module with endpoint 1 is thin
5. Distance-regular graphs where each irreducible $T(x)$-module with endpoint 1 is thin
5a. Formulae for the multiplicities of the isomorphism class of $T(x)$-modules with endpoint 1

5 b . The b_{i} 's are determined by c_{i} 's and the structure of the first subconstituent

5c. $a_{1}=0$ implies $a_{i}=0(1 \leq i \leq D-1)$
$5 d$. Distance-regular graphs where the first subconstituent is strongly regular: restrictions on the parameters and possible classification (?)

5 e . Distance-regular graphs where the first subconstituent has 4 distinct eigenvalues: restrictions on the parameters (?)

5 f. Distance-regular graphs where the first subconstituent has 5 distinct eigenvalues: restrictions on the parameters (?)

5 g . What minimal assumption (weaker than Q) implies $Z(?)$
6. Structure of a thin, irreducible $T(x)$-module with endpoint 2 in a distanceregular graph

6a. Similar to 4 (?)
7. The distance-regular graphs where each irreducible $T(x)$-module with endpoint at most 2 is thin

7a. The intersection numbers are determined by the structure of the first and the second subconstituents

7 b . The bipartite case
7c. Classification of the examples where there are sufficiently few isomorphism classes of irreducible $T(x)$-modules with endpoint 1 or $2(?)$

7d. Classification of the almost-triply-regular graphs
8. The Q-polynomial property (Chapter 28)

8a. Graphs that are Q-polynomial with respect to each vertex (?)
9. Commutative association schemes (Chapters 17-27)

9a. The Bose-Mesner algebra M and the dual Bose-Mesner algebra M^{*}
9b. The Krein parameters
9 c . The fundamental relations between M, M^{*}
9d. An algebraic characterization of the Q-polynomial schemes
9 e . The representation of a commutative association scheme
9f. A representation-theoretic characterization of the P - and Q-polynomial schemes
10. Quantum Lie algebras (Chapter 29)

10a. The generators A, A^{*} satisfy two cubic polynomial equations
10b. How these equations simplify in the thin case
10c. Complete classification in the thin case
11. Q-polynomial distance-regular graphs (Chapters 30-31)

11a. Formulae for the intersection numbers
11b. A combinatorial characterization of the Q-polynomial distance-regular graphs that involves R, L, F

11c. Formulae for the z_{i} constants
12. Q-polynomial distance-regular graphs, continued: The structure of an arbitrary irreducible $T(x)$-module with endpoint 1 (Chapters 32-37)

12a. $E_{1}^{*} T E_{1}^{*}$ is commutative and has essentially one generator
12b. Description of the irreducible $T(x)$-modules with endpoint 1
12c. There are at most 4 mutually non-isomorphic thin, irreducible $T(x)$ modules with endpoint 1
13. The Q-polynomial distance-regular graphs of thin type: The ideal $T(x) E_{1}^{*}$ (Chapters 38-40)

13a. The constant $\psi=\psi(x, y)$ is independent of the edge $x y$
13b. $E_{1}^{*} T E_{1}^{*}$ is spanned by the all 1's matrix and 4 generalized adjacency matrices

13c. $T(x) \hat{y}=T(y) \hat{x}$ if $\partial(x . y)=1$. Complete description of this $T(x, y)$ module in terms of ψ and the intersection numbers (?)

13 d . The z_{i} are constatn functions
13e. Feasibility conditions forced by the integrality and non-negativity of the $z_{i}(?)$

13f. Feasibility conditions forced by the integrality and non-negativity of the multiplicities of the irreducible $T(x)$-modules with endpoint 1 (?)
14. The Q-polynomial distance-regular graphs, continued: The structure of an arbitrary irreducible $T(x)$-module with endpoint 2

14a. Similar to 12 (?)
15. The Q-polynomial distance-regular graphs of thin type: the ideal $T(x) E_{2}^{*}$

15a. Similar to 13 (?)
16. The classification of the thin Q-polynomial distance-regular graphs with diameter at least (?)
17. Bi-distance-regular graphs

17a. If a bipartite graphs is thin then so are the halved graphs
17 b . For any thin $T(x)$-module $W, m_{W}(\theta)=m_{W}(-\theta)$
17c. Mimic the above sections 4-14 (?) (I desperately hope that Q-polynomial bi-distance-regular graphs that are not already distance-regular do not exist)

Chapter 1

Subconstituent Algebra of a Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair $\Gamma=(X, E)$, where

$$
\begin{aligned}
X & =\text { finite set (of vertices) } \\
E & =\text { set of (distinct) } 2 \text {-element subsets of } X(=\text { edges of }) \Gamma
\end{aligned}
$$

The vertices x and $y \in X$ are adjacent if and only if $x y \in E$.
Example 1.1. Let Γ be a graph. $X=\{a, b, c, d\}, E=\{a b, a c, b c, b d\}$.

Set $n=|X|$, the order of Γ.
Pick a field $K(=\mathbb{R}$ or $\mathbb{C})$. Then $\operatorname{Mat}_{X}(K)$ denotes the K algebra of all $n \times n$ matrices with entries in K. (rows and columns are indexed by X)

Adjacency matrix $A \in \operatorname{Mat}_{X}(K)$ is defined by

$$
A_{x y}= \begin{cases}1 & \text { if } x y \in E \tag{1.1}\\ 0 & \text { else }\end{cases}
$$

Example 1.2. Let a, b, c, d be labels of rows and columns. Then

$$
A=\begin{gathered}
a \\
a \\
b \\
c \\
c \\
d
\end{gathered}\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

The subalgebra M of $\operatorname{Mat}_{X}(K)$ generated by A is called the Bose-Mesner algebra of Γ.

Set $V=K^{n}$, the set of n-dimensional column vectors, the coordinates are indexed by X.

Let \langle,$\rangle denote the Hermitean inner product:$

$$
\langle u, v\rangle=u^{\top} \cdot \bar{v} \quad(u, v \in V)
$$

V with \langle,$\rangle is the standard module of \Gamma$.
M acts on V : For every $x \in X$, write

$$
\hat{x}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \leftarrow x
$$

where 1 is at the x position.
Then

$$
A \hat{x}=\sum_{y \in X, x y \in E} \hat{y}
$$

Since A is a real symmetrix matrix,

$$
V=V_{0}+V_{1}+\cdots+V_{r} \quad \text { some } r \in \mathbb{Z}^{\geq 0}
$$

the orthogonal direct sum of maximal A-eigenspaces.
Let $E_{i} \in \operatorname{Mat}_{X}(K)$ denote the orthogonal projection,

$$
E_{i}: V \longrightarrow V_{i}
$$

Then E_{0}, \ldots, E_{r} are the primitive idempotents of M.

$$
\begin{gathered}
M=\operatorname{Span}_{K}\left(E_{0}, \ldots, E_{r}\right) \\
E_{i} E_{j}=\delta_{i j} E_{i} \quad \text { for all } i, j, \quad E_{0}+\cdots+E_{r}=I
\end{gathered}
$$

Let θ_{i} denote the eigenvalue of A for V_{i} in \mathbb{R}. Without loss of generality we may assume that

$$
\theta_{0}>\theta_{1}>\cdots>\theta_{r}
$$

Let

$$
m_{i}=\text { the multiplicity of } \theta_{i}=\operatorname{dim} V_{i}=\operatorname{rank} E_{i}
$$

Set

$$
\operatorname{Spec}(\Gamma)=\left(\begin{array}{cccc}
\theta_{0}, & \theta_{1}, & \ldots, & \theta_{r} \\
m_{0}, & m_{1}, & \ldots, & m_{r}
\end{array}\right)
$$

Problem. What can we say about Γ when $\operatorname{Spec}(\Gamma)$ is given?
The following Lemma 1.1, is an example of Problem.
For every $x \in X$,

$$
k(x) \equiv \text { valency of } x \equiv \text { degree of } x \equiv|\{y \mid y \in X, x y \in E\}|
$$

Definition 1.1. The graph Γ is regular of valency k if $k=k(x)$ for every $x \in X$.
Lemma 1.1. With the above notation,
(i) $\theta_{0} \leq \max \{k(x) \mid x \in X\}=k^{\max }$.
(ii) If Γ is regular of valency k, then $\theta_{0}=k$.

Proof. (i) Without loss of generality we may assume that $\theta_{0}>0$, else done. Let $v:=\sum_{x \in X} \alpha_{x} \hat{x}$ denote the eivenvector for θ_{0}.
Pick $x \in X$ with $\left|\alpha_{x}\right|$ maximal. Then $\left|\alpha_{x}\right| \neq 0$.
Since $A v=\theta_{0} v$,

$$
\theta_{0} \alpha_{x}=\sum_{y \in X, x y \in E} \alpha_{y}
$$

So,

$$
\theta_{0}\left|\alpha_{x}\right|=\left|\theta_{0} \alpha_{x}\right| \leq \sum_{y \in X, x y \in E}\left|\alpha_{y}\right| \leq k(x)\left|\alpha_{x}\right| \leq k^{\max }\left|\alpha_{x}\right|
$$

(ii) All 1's vector $v=\sum_{x \in X} \hat{x}$ satisfies $A v=k v$.

Let $x, y \in X$ and $\ell \in \mathbb{Z} \geq 0$.
Definition 1.2. A path of length ℓ connecting x, y is a sequence

$$
x=x_{0}, x_{1}, \ldots, x_{\ell}=y, \quad x_{i} \in X \quad(0 \leq i \leq \ell)
$$

such that $x_{i} x_{i+1} \in E$ for all $i(0 \leq i \leq \ell-1)$.
Definition 1.3. The distance $\partial(x, y)$ is the length of a shortest path connecting x and y.

$$
\partial(x, y) \in \mathbb{Z}^{\geq 0} \cup\{\infty\}
$$

Definition 1.4. The graph Γ is connected if and only if $\partial(x, y)<\infty$ for all $x, y \in X$.
From now on, assume that Γ is connected with $|X| \geq 2$.
Set

$$
d_{\Gamma}=d=\max \{\partial(x, y) \mid x, y \in X\} \equiv \text { the diameter of } \Gamma
$$

Definition 1.5. For each vertex $x \in X$,

$$
d(x)=\text { the diameter with respect to } x=\max \{\partial(x, y) \mid y \in X\} \leq d
$$

Fix a 'base' vertex $x \in X$.
Observe that

$$
V=V_{0}^{*}+V_{1}^{*}+\cdots+V_{d(x)}^{*} \quad(\text { orthogonal direct sum })
$$

where

$$
V_{i}^{*}=\operatorname{Span}_{K}(\hat{y} \mid \partial(x, y)=i) \equiv V_{i}^{*}(x)
$$

and $V_{i}^{*}=V_{i}^{*}(x)$ is called the i-th subconstituent with respect to x.
Let $E_{i}^{*}=E_{i}^{*}(x)$ denote the orthogonal projection

$$
E_{i}^{*}: V \longrightarrow V_{i}^{*}(x)
$$

View $E_{i}^{*}(x) \in \operatorname{Mat}_{X}(K)$. So, $E_{i}^{*}(x)$ is diagonal with $y y$ entry:

$$
\left(E_{i}^{*}(x)\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { else }
\end{array} \quad \text { for } y \in X\right.
$$

Set

$$
M^{*}=M^{*}(x) \equiv \operatorname{Span}_{K}\left(E_{0}^{*}(x), \ldots, E_{d(x)}^{*}(x)\right)
$$

Then $M^{*}(x)$ is a commutative subalgebra of $\operatorname{Mat}_{X}(K)$ and is called the dual Bose-Mesner algbara with respect to x.

Definition 1.6 (Subconstituent Algebra). Let $\Gamma=(X, E), x, M, M^{*}(x)$ be as above. Let $T=T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(K)$ generated by M and $M^{*}(x) . T$ is the subconstituent algebra of Γ with respect to x.

Definition 1.7. A T-module is any subspace $W \subseteq V$ such that $a w \in W$ for all $a \in T$ and $w \in W$.
T-module W is irreducible if and only if $W \neq 0$ and W does not properly contain a nonzero T-module.

For any $a \in \operatorname{Mat}_{X}(K)$, let a^{*} denbote the conjugate transpose of a.
Observe that

$$
\langle a u, v\rangle=\left\langle u, a^{*} v\right\rangle \quad \text { for all } a \in \operatorname{Mat}_{X}(K), \text { and for all } u, v \in V
$$

Lemma 1.2. Let $\Gamma=(X, E), x \in X$ and $T \equiv T(x)$ be as above.
(i) If $a \in T$, then $a^{*} \in T$.
(ii) For any T-module $W \subset V$,

$$
W^{\perp}:=\{v \in V \mid\langle w, v\rangle=0, \text { for all } w \in W\}
$$

is a T-module.
(iii) V decomposes as an orthogonal direct sum of irreducible T-modules.

Proof. (i) It is because T is generated by symmetric real matrices

$$
A, E_{0}^{*}(x), E_{1}^{*}(x), \ldots, E_{d(x)}^{*}(x)
$$

(ii) Pick $v \in W^{\perp}$ and $a \in T$, it suffices to show that $a v \in W^{\perp}$. For all $w \in W$,

$$
\langle w, a v\rangle=\left\langle a^{*} w, v\right\rangle=0
$$

as $a^{*} \in T$.
(iii) This is proved by the induction on the dimension of T-modules. If W is an irreducible T-module of V, then

$$
V=W+W^{\perp} \quad(\text { orthogonal direct sum })
$$

Problem. What does the structure of the $T(x)$-module tell us about Γ ?
Study those Γ whose modules take 'simple' form. The Γ 's involved are highly regular.

HS MEMO

1. The subconstituent algebra T is semisimple as the left regular representation of T is completely reducible. See Curtis-Reiner 25.2 (Charles W. Curtis, 2006).
2. The inner product $\langle a, b\rangle_{T}=\operatorname{tr}\left(a^{\top} \bar{b}\right)$ is nondegenerate on T.
3. In general,

$$
\begin{aligned}
T: \text { Semisimple and Artinian } & \Leftrightarrow T: \text { Artinian with } J(T)=0 \\
& \Leftarrow T: \text { Artinian with nonzero nilpotent element } \\
& \Leftarrow T \subset \operatorname{Mat}_{X}(K) \text { such that for all } a \in T \text { is normal. }
\end{aligned}
$$

Chapter 2

Perron-Frobenius Theorem

Friday, January 22, 1993
In this lecture, we use the Perron Frobenius theory of non-negative matrices to obtain information on eigenvalues of a graph.
Let $K=\mathbb{R}$. For $n \in \mathbb{Z}^{>0}$, pick a symmetric matrix $C \in \operatorname{Mat}_{n}(\mathbb{R})$.
Definition 2.1. The matrix C is reducible if and only if there is a bipartition $\{1,2, \ldots, n\}=X^{+} \cup X^{-}$(disjoint union of nonempty sets) such that $C_{i j}=0$ for all $i \in X^{+}$, and for all $j \in X^{-}$, and for all $i \in X^{-}$, and for all $j \in X^{+}$, i.e.,

$$
C \sim\left(\begin{array}{cc}
* & O \\
O & *
\end{array}\right)
$$

Definition 2.2. The matrix C is bipartite if and only if there is a bipartition $\{1,2, \ldots, n\}=X^{+} \cup X^{-}$(disjoint union of nonempty sets) such that $C_{i j}=0$ for all $i, j \in X^{+}$, and for all $i, j \in X^{-}$, i.e.,

$$
C \sim\left(\begin{array}{cc}
O & * \\
* & O
\end{array}\right)
$$

Note.

1. If C is bipartite, for every eigenvalue θ of $C,-\theta$ is an eigenvalue of C such that $\operatorname{mult}(\theta)=\operatorname{mult}(-\theta)$.
Indeed, let $C=\left(\begin{array}{ll}O & A \\ B & O\end{array}\right)$,

$$
\left(\begin{array}{ll}
O & A \\
B & O
\end{array}\right)\binom{x}{y}=\theta\binom{x}{y} \Leftrightarrow\left(\begin{array}{cc}
O & A \\
B & O
\end{array}\right)\binom{x}{-y}=-\theta\binom{x}{-y}
$$

where $A y=\theta x$ and $B x=\theta y$.
2. If C is bipartite, C^{2} is reducible.
3. The matrix C is irreducible and C^{2} is reducible, if $C_{i j} \geq 0$ for all i, j and C is bipartite. (Exercise)

HS MEMO

Note 1. Even if C is not symmetric

$$
\left(\begin{array}{cc}
O & A \\
B & O
\end{array}\right)\binom{x}{y}=\theta\binom{x}{y} \Leftrightarrow\left(\begin{array}{cc}
O & A \\
B & O
\end{array}\right)\binom{x}{-y}=-\theta\binom{x}{-y}
$$

holds. So the geometric multiplicities of θ and $-\theta$ coincide. How about the algebraic multiplicities?
Note 3. Set $x \sim y$ if and only if $C_{x y}>0$. So the graph may have loops. Then

$$
\left(C^{2}\right)_{x y}>0 \Leftrightarrow \text { if there exists } z \in X \text { such that } x \sim z \sim y
$$

Note that C is irreducible if and only if $\Gamma(C)$ is connected. Let

$$
\begin{align*}
& X^{+}=\{y \mid \text { there is a path of even length from } x \text { to } y\} \tag{2.1}\\
& X^{-}=\{y \mid \text { there is no path of even length from } x \text { to } y\} \neq \emptyset \tag{2.2}
\end{align*}
$$

If there is an edge $y \sim z$ in X^{+}and $w \in X^{-}$. Then there would be a path from x to y of even length. So $\mathrm{e}\left(X^{+}, X^{+}\right)=\mathrm{e}\left(X^{-}, X^{-}\right)=0$..

Theorem 2.1 (Perron-Frobenius). Given a matrix C in $\operatorname{Mat}_{n}(\mathbb{R})$ such that
(a) C is symmetric.
(b) C is irreducible.
(c) $C_{i j} \geq 0$ for all i, j.

Let θ_{0} be the maximal eigenvalue of C with eigenspace $V_{0} \subseteq \mathbb{R}^{n}$, and let θ_{r} be the minimal eigenvalue of C with eigenspace $V_{r} \subseteq \mathbb{R}^{n}$. Then the following hold.
(i) Suppose $0 \neq v=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right) \in V_{0}$. Then $\alpha_{i}>0$ for all i, or $\alpha_{i}<0$ for all i.
(ii) $\operatorname{dim} V_{0}=1$.
(iii) $\theta_{r} \geq-\theta_{0}$.
(iv) $\theta_{r}=\theta_{0}$ if and only if C is bipartite.

First, we prove the following lemma.

Lemma 2.1. Let \langle,$\rangle be the dot product in V=\mathbb{R}^{n}$. Pick a symmetric matrix $B \in \operatorname{Mat}_{n}(\mathbb{R})$. Suppose all eigenvalues of B are nonnegative. (i.e., B is positive semidefinite.) Then there exist vectors $v_{1}, v_{2}, \ldots, v_{n} \in V$ such that $B_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for all $i, j(1 \leq i, j \leq n)$.

Proof. By elementary linear algebra, there exists an orthonormal basis $w_{1}, w_{2}, \ldots, w_{n}$ of V consisting of eigenvectors of B. Set the i-th column of P is w_{i} and $D=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n}\right)$. Then $P^{\top} P=I$ and $B P=P D$.
Hence,

$$
B=P D P^{-1}=P D P^{\top}=Q Q^{\top}
$$

where

$$
Q=P \cdot \operatorname{diag}\left(\sqrt{\theta_{1}}, \sqrt{\theta_{2}}, \ldots, \sqrt{\theta_{n}}\right) \in \operatorname{Mat}_{n}(\mathbb{R})
$$

Now, let v_{i} be the i-th column of Q^{\top}. Then

$$
B_{i j}=v_{i}^{\top} \cdot v_{j}=\left\langle v_{i}, v_{j}\right\rangle
$$

This proves the lemma.
Now we start the proof of Theorem 2.1.
Proof. (i) Let \langle,$\rangle denote the dot product on V=\mathbb{R}^{n}$. Set

$$
\begin{align*}
B & =\theta I-C \tag{2.3}\\
& =\text { symmetric matrix with eigenvalues } \theta_{0}-\theta_{i} \geq 0 \tag{2.4}\\
& =\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \tag{2.5}
\end{align*}
$$

with the same $v_{1}, \ldots, v_{n} \in V$ by Lemma 2.1.
Observe:

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

$P f$.

$$
\begin{align*}
\left\|\sum_{i=1}^{n} \alpha_{i} v_{i}\right\|^{2} & =\left\langle\sum_{i=1}^{n} \alpha_{i} v_{i}, \sum_{i=1}^{n} \alpha_{i} v_{i}\right\rangle \tag{2.6}\\
& =\left(\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right) B\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \tag{2.7}\\
& =v^{\top} B v \tag{2.8}\\
& =0 \tag{2.9}
\end{align*}
$$

since $B v=\left(\theta_{0} I-C\right) v=0$.

Now set

$$
s=\text { the number of indices } i, \text { where } \alpha_{i}>0
$$

Replacing v by $-v$ if necessary, without loss of generality we may assume that $s \geq 1$. We want to show $s=n$.
Assume $s<n$. Without loss of generality, we may assume that $\alpha_{i}>0$ for $1 \leq i \leq s$ and $\alpha_{i} \leq 0$ for $s+1 \leq i \leq n$. Set

$$
\rho=\alpha_{1} v_{1}+\cdots+\alpha_{s} v_{s}=-\alpha_{s+1} v_{s+1}-\cdots-\alpha_{n} v_{n}
$$

Then, for $i=1, \ldots, s$,

$$
\begin{align*}
\left\langle v_{i}, \rho\right\rangle & =\sum_{j=s+1}^{n}-\alpha_{j}\left\langle v_{i}, v_{j}\right\rangle \quad\left(\left\langle v_{i}, v_{j}\right\rangle=B_{i j}, B=\theta_{0} I-C\right) \tag{2.10}\\
& =\sum_{j=s+1}^{n}\left(-\alpha_{i j}\right)\left(-C_{i j}\right) \tag{2.11}\\
& \leq 0 \tag{2.12}
\end{align*}
$$

Hence

$$
0 \leq\langle\rho, \rho\rangle=\sum_{i=1}^{s} \alpha_{i}\left\langle v_{i}, \rho\right\rangle \leq 0
$$

as $\alpha_{i}>0$ and $\left\langle v_{i}, \rho\right\rangle \leq 0$. Thus, we have $\langle\rho, \rho\rangle=0$ and $\rho=0$. For $j=$ $s+1, \ldots, n$,

$$
0=\left\langle\rho, v_{j}\right\rangle=\sum_{i=1}^{s} \alpha_{i}\left\langle v_{i}, v_{j}\right\rangle \leq 0
$$

as $\left\langle v_{i}, v_{j}\right\rangle=-C_{i j}$.
Therefore,

$$
0=\left\langle v_{i}, v_{j}\right\rangle=-C_{i j} \text { for } 1 \leq i \leq s, s+1 \leq j \leq n
$$

Since C is symmetric,

$$
C=\left(\begin{array}{ll}
* & O \\
O & *
\end{array}\right)
$$

Thus C is reducible, which is not the case. Hence $s=n$.
(ii) Suppose $\operatorname{dim} V_{0} \geq 2$. Then,

$$
\operatorname{dim}\left(V_{0} \cap\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{\perp}\right) \geq 1
$$

So, there is a vector

$$
0 \neq v=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in V_{0}
$$

with $\alpha_{1}=0$. This contradicts (i).
Now pick

$$
0 \neq w=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right) \in V_{r} .
$$

(iii) Suppose $\theta_{r}<-\theta_{0}$. Since the eigenvalues of C^{2} are the squares of those of C, θ_{r}^{2} is the maximal eigenvalue of C^{2}.

Also we have $C^{2} w=\theta_{r}^{2} w$.
Observe that C^{2} is irreducible. (As otherwise, C is bipartite by Note 3, and we must have $\theta_{r}=-\theta_{0}$.) Therefore, $\beta_{i}>0$ for all i or $\beta_{i}<0$ for all i. We have

$$
\langle v, w\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{j} \neq 0
$$

This is a contradiction, as $V_{0} \perp V_{r}$.
$(i v) \Rightarrow$: Let $\theta_{r}=-\theta_{0}$. Then $\theta=\theta_{1}^{2}=\theta_{0}^{2}$ is the maximal eigenvalue of C^{2}, and v and w are linearly independent eigenvalues for θ for C^{2}. Hence, for C^{2}, $\operatorname{mult}(\theta) \geq 2$.

Thus by (ii), C^{2} must be reducible. Therefore, C is bipartite by Note 3 .
\Leftarrow : This is Note 1 .
Let $\Gamma=(X, E)$ be any graph.
Definition 2.3. Γ is said to be bipartite if the adjacency matrix A is bipartite. That is, X can be written as a disjoint union of X^{+}and X^{-}such that X^{+}, X^{-} contain no edges of Γ.

Corollary 2.1. For any (connected) graph Γ with

$$
\operatorname{Spec}(\Gamma)=\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{r} \\
m_{1} & m_{1} & \cdots & m_{r}
\end{array}\right) \text { with } \theta_{0}>\theta_{1}>\cdots>\theta_{r}
$$

Let V_{i} be the eigenspace of θ_{i}. Then the following holds.

1. Supppose $0 \neq v=\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right) \in V_{0} \in \mathbb{R}^{n}$. Then $\alpha_{i}>0$ for all i, or $\alpha_{i}<0$ for all i.
2. $m_{0}=1$.
3. $\theta_{r} \geq-\theta_{0}$ if and only if Γ is bipartite. In this case,

$$
-\theta_{i}=\theta_{r-i} \text { and } m_{i}=m_{r-i} \quad(0 \leq i \leq r)
$$

Proof. This is a direct consequences of Theorem 2.1 and Note 3.

Chapter 3

Cayley Graphs

Monday, January 25, 1993
Given graphs $\Gamma=(X, E)$ and $\Gamma^{\prime}=\left(X^{\prime}, E^{\prime}\right)$.
Definition 3.1. A map $\sigma: X \rightarrow X^{\prime}$ is an isomorphism of graphs whenever;
i. σ is one-to-one and onto,
ii. $x y \in E$ if and only if $\sigma x \sigma y \in E^{\prime}$ for all $x, y \in X$.

We do not distinguish between isomorphic graphs.
Definition 3.2. Suppose $\Gamma=\Gamma^{\prime}$. Above isomorphism σ is called an automorphism of Γ. Then set $\operatorname{Aut}(\Gamma)$ of all automorphisms of Γ becomes a finite group under composition.

Definition 3.3. If $\operatorname{Aut}(\Gamma)$ acts transitive on X, Γ is called vertex transitive.
Definition 3.4 (Cayley Graphs). Let G be any finite group, and Δ any generating set for G such that $1_{G} \notin \Delta$ and $g \in \Delta \rightarrow g^{-1} \in \Delta$. Then Cayley graph $\Gamma=\Gamma(G, \Delta)$ is defined on the vetex set $X=G$ with the edge set E define by the following.

$$
E=\left\{\left(h_{1}, h_{2}\right) \mid h_{1}, h_{2} \in G, h_{1}^{-1} h_{2} \in \Delta\right\}=\{(h, h g) \mid h \in G, g \in \Delta\}
$$

Example 3.1. $G=\left\langle a \mid a^{6}=1\right\rangle, \Delta=\left\{a, a^{-1}\right\}$.

Example 3.2. $G=\left\langle a \mid a^{6}=1\right\rangle, \Delta=\left\{a, a^{-1}, a^{2}, a^{-2}\right\}$.

Example 3.3. $G=\left\langle a, b \mid a^{6}=1=b^{2}, a b=b a\right\rangle, \Delta=\left\{a, a^{-1}, b\right\}$.

HS MEMO
$\operatorname{Aut}(\Gamma) \simeq D_{6} \times \mathbb{Z}_{2}$ contains two regular subgroups isomorphic to D_{6} and $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ and Γ is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.
Theorem 3.1. The following hold.
(i) For any Cayley graph $\Gamma=\Gamma(G, \Delta)$, the map

$$
G \rightarrow \operatorname{Aut}(\Gamma)(g \mapsto \hat{g})
$$

is an injective homomorphism of groups, where

$$
\hat{g}(x)=g x \quad \text { for all } g \in G \text { and for all } x \in X(=G) .
$$

Also, the image \hat{G} is regular on X. i.e., the image \hat{G} acts transitively on X with trivial vertex stabilizers.
(ii) For any graph $\Gamma=(X, E)$, suppose there exists a subgroup $G \subseteq \operatorname{Aut}(\Gamma)$ that is regular on X. Pick $x \in X$, and let

$$
\Delta=\{g \in G \mid\langle x, g(x) \in E\}
$$

Then $1 \notin \Delta, g \in \Delta \rightarrow g^{-1} \in \Delta$, and Δ generates G. Moreover, $\Gamma \simeq \Gamma(G, \Delta)$.
Proof. (i) Let $g \in G$. We want to show that $\hat{g} \in \operatorname{Aut}(\Gamma)$. Let $h_{1}, h_{2} \in X=G$. Then,

$$
\begin{align*}
\left(h_{1}, h_{2}\right) \in E & \rightarrow h_{1}^{-1} h_{2} \in \Delta \tag{3.1}\\
& \rightarrow\left(g h_{1}\right)^{-1}\left(g h_{2}\right) \in \Delta \tag{3.2}\\
& \rightarrow\left(g h_{1}, g h_{2}\right) \in E \tag{3.3}\\
& \rightarrow\left(\hat{g}\left(h_{1}\right), \hat{g}\left(h_{2}\right)\right) \in E \tag{3.4}
\end{align*}
$$

Hence, $\hat{g} \in \operatorname{Aut}(\Gamma)$.
Observe: $g \mapsto \hat{g}$ is a homomorphism of groups:

$$
\hat{1}_{G}=1, \widehat{g_{1} g_{2}}=\widehat{g_{1} g_{2}}
$$

Observe: $g \mapsto \hat{g}$ is one-to-one:

$$
\widehat{g_{1}}=\widehat{g_{2}} \rightarrow g_{1}=\widehat{g_{1}}\left(1_{G}\right)=\widehat{g_{2}}\left(1_{G}\right)=g_{2} .
$$

Observe: \hat{G} is regular on X : Clear by construction.
(ii) $1_{G} \notin \Delta$: Since Γ has not loops, $\left(x, 1_{G} x\right) \notin E$.
$g \in \Delta \rightarrow g^{-1} \in \Delta:$

$$
g \in \Delta \rightarrow(x, g(x)) \in E \rightarrow E \ni\left(g^{-1}(x), g^{-1}(g(x))\right)=\left(g^{-1}(x), x\right)
$$

Δ generates G : Suppose $\langle\Delta\rangle \subsetneq G$. Let $\hat{X}=\{g(x) \mid g \in\langle\Delta\rangle\} \subsetneq X .(\hat{X} \subsetneq X$ as G acts regularly on X.)
Since Γ is connected, there exists $y \in \hat{X}$ and $z \in X \quad \hat{X}$ with $y z \in E$.
Let $y=g(x), g \in\langle\Delta\rangle, z \in h(x), h \in G\langle\Delta\rangle$. Then

$$
(y, z)=(g(x), h(x)) \in E \rightarrow\left(x, g^{-1} h(x)\right) \in E \rightarrow g^{-1} h \in\langle\Delta\rangle \rightarrow h \in\langle\Delta\rangle
$$

This is a contradition. Therefore, Δ generates G.
Let $\Gamma^{\prime}=\left(X^{\prime}, E^{\prime}\right)$ denote $\Gamma(G, \Delta)$. We shall show that

$$
\theta: X^{\prime} \rightarrow X(g \mapsto g(x))
$$

is an isomorphism of graphs.
θ is one-to-one: For $h_{1}, h_{2} \in X^{\prime}=G$,
$\theta\left(h_{1}\right)=\theta\left(h_{2}\right) \rightarrow h_{1}(x)=h_{2}(x) \rightarrow h_{2}^{-1} h_{1}(x)=x \rightarrow h_{2}^{-1} h_{1} \in \operatorname{Stab}_{G}(x)=\left\{1_{G}\right\} \rightarrow h_{1}=h_{2}$.
$\left(\operatorname{Stab}_{G}(x)=\{g \in G \mid g(x)=x\}.\right)$
θ is onto: Since G is transitive,

$$
X=\{g(x) \mid g \in G\}=\theta\left(X^{\prime}\right)=\theta(G)
$$

θ respects adjacency: For $h_{1}, h_{2} \in X^{\prime}=G$,
$\left(h_{1}, h_{2}\right) \in E^{\prime} \leftrightarrow h_{1}^{-1} h_{2} \in \Delta \leftrightarrow\left(x, h_{1}^{-1} h_{2}(x)\right) \in E \leftrightarrow\left(h_{1}(x), h_{2}(x)\right) \in E \leftrightarrow\left(\theta\left(h_{1}\right), \theta\left(h_{2}\right)\right) \in E$.
Therefore θ is an isomorphism between graphs $\Gamma(G, \Delta)$ and $\Gamma(X, E)$.
How to compute the eigenvalues of the Cayley graph of and abelian group.
Let G be any finite abelian group. Let \mathbb{C}^{*} be the multiplicative group on $\mathbb{C}\{0\}$.
Definition 3.5. A (linear) G-character is any group homomorphism $\theta: G \rightarrow$ \mathbb{C}^{*}.
Example 3.4. $G=\left\langle a \mid a^{3}=1\right\rangle$ has three characters, $\theta_{0}, \theta_{1}, \theta_{2}$.

$$
\begin{array}{c|ccc}
\theta_{i}\left(a^{j}\right) & 1 & a & a^{2} \\
\hline \theta_{0} & 1 & 1 & 1 \\
\theta_{1} & 1 & \omega & \omega^{2} \\
\theta_{2} & 1 & \omega^{2} & \omega
\end{array}, \quad \text { with } \omega=\frac{-1+\sqrt{-3}}{2}
$$

Here ω is a primitive cube root of q in \mathbb{C}^{*}, i.e., $1+\omega+\omega^{2}=0$.
For arbitraty group G, let $X(G)$ be the set of all characters of G.
Observe: For $\theta_{1}, \theta_{2} \in X(G)$, one can define product $\theta_{1} \theta_{2}$:

$$
\theta_{1} \theta_{2}(g)=\theta_{1}(g) \theta_{2}(g) \quad \text { for all } g \in G
$$

Then $\theta_{1} \theta_{2} \in X(G)$.
Observe: $X(G)$ with this product is an (abelian) group.
Lemma 3.1. The groups G and $X(G)$ are isomorphic for all finite abelian groups G.

Proof. G is a direct sum of cyclic groups;

$$
G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{m}, \quad \text { where } \quad G_{i}=\left\langle a_{i} \mid a_{i}^{d_{i}}=1\right\rangle \quad(1 \leq i \leq m)
$$

Pick any element ω_{i} of order d_{i} in \mathbb{C}^{*}, i.e., a primitive d_{i}-the root of 1 . Define

$$
\theta_{i}: G \rightarrow \mathbb{C}^{*} \quad\left(a_{1}^{\varepsilon_{1}} \cdots a_{m}^{\varepsilon_{m}} \mapsto \omega_{i}^{\varepsilon_{i}} \quad \text { where } 0 \leq \varepsilon_{i}<d_{i}, 1 \leq i \leq m\right)
$$

Then $\theta_{i} \in X(G)$. (Exercise)
Claim: There exists an isomorphism of groups $G \rightarrow X(G)$ that sends a_{i} to θ_{i}.
Observe: $\theta_{i}^{d_{i}}=1$. For every $g=a_{1}^{\varepsilon_{1}} \cdots a_{m}^{\varepsilon_{m}} \in G$,

$$
\theta_{i}^{d_{i}}(g)=\left(\theta_{i}(g)\right)^{d_{i}}=\left(\omega_{i}^{\varepsilon_{i}}\right)^{d_{i}}=\left(\omega_{i}^{d_{i}}\right)^{\varepsilon_{i}}=1 .
$$

Observe: If $\theta_{1}^{\varepsilon_{1}} \theta_{2}^{\varepsilon_{2}} \cdots \theta_{m}^{\varepsilon_{m}}=1$ for some $0 \leq \varepsilon_{i}<d_{i}, 1 \leq i \leq m$. Then $\varepsilon_{1}=\varepsilon_{2}=$ $\cdots=\varepsilon_{m}=0$.
Pf. $1=\theta_{1}^{\varepsilon_{1}} \theta_{2}^{\varepsilon_{2}} \cdots \theta_{m}^{\varepsilon_{m}}\left(a_{i}\right)=\omega_{i}^{\varepsilon_{i}}$, Since ω_{i} is a primitive d_{i}-th root of $1, \varepsilon_{i}=0$ for $1 \leq i \leq m$.

Observe: $\theta_{1}, \ldots, \theta_{m}$ generate $X(G)$. Pick $\theta \in X(G)$. Since $a_{i}^{d_{i}}=1,1=\theta\left(a_{i}^{d_{i}}\right)=$ $\theta\left(a_{i}\right)^{d_{i}}$.

Hence $\theta\left(a_{i}\right)=\omega^{\varepsilon_{i}}$ for some ε_{i} with $0 \leq \varepsilon_{i}<d_{i}$.
Now $\theta=\theta_{1}^{\varepsilon_{1}} \cdots \theta_{m}^{\varepsilon_{m}}$, since these are both equal to $\omega_{i}^{\varepsilon_{i}}$ at a_{i} for $1 \leq i \leq m$.
Therefore,

$$
G \rightarrow X(G) \quad\left(a_{i} \mapsto \theta_{i}\right)
$$

is an isomorphism of groups.
Note. The correspondence above is clearly a group homomorphism.

Chapter 4

Examples

Wednesday, January 27, 1993
Theorem 4.1. Given a Cayley graph $\Gamma=\Gamma(G, \Delta)$. View the standard module $V \equiv \mathbb{C} G$ (the group algebra), so

$$
\left\langle\sum_{g \in G} \alpha_{g} g, \sum_{g \in G} \beta_{g} g\right\rangle=\sum_{g \in G} \alpha_{g} \overline{\beta_{g}}, \quad \text { with } \alpha_{g}, \beta_{g} \in \mathbb{C} .
$$

For any $\theta \in X(G)$, write

$$
\hat{\theta}=\sum_{g \in G} \theta\left(g^{-1}\right) g
$$

Then the following hold.
(i) $\left\langle\hat{\theta_{1}}, \hat{\theta_{2}}\right\rangle=|G|$ if $\theta_{1}=\theta_{2}$ and 0 othewise for $\theta_{1}, \theta_{2} \in X(G)$. In particular, $\{\hat{\theta} \mid \theta \in X(G)\}$ forms a basis for V.
(ii) $A \hat{\theta}=\Delta_{\theta} \hat{\theta}$ for $\theta \in X(G)$, where A is the adjacency matrix and

$$
\Delta_{\theta}=\sum_{g \in \Delta} \theta(g)
$$

In particular, the eigenvalues of Γ are precisely

$$
\left\{\Delta_{\theta} \mid \theta \in X(G)\right\}
$$

Proof.
(i) Claim: For every $\theta \in X(G)$, let

$$
s:=\sum_{g \in G} \theta\left(g^{-1}\right)= \begin{cases}|G| & \text { if } \theta=1 \\ 0 & \text { if } \theta \neq 1\end{cases}
$$

Pf. Clear if $\theta=1$.
Let $\theta \neq 1$. Then $\theta(h) \neq 1$ for some $h \in G$.

$$
s \cdot \theta(h)=\left(\sum_{g \in G} \theta\left(g^{-1}\right)\right) \theta(h)=\sum_{g \in G} \theta\left(g^{-1} h\right)=\sum_{g^{\prime} \in G} \theta\left(g^{\prime-1}\right)=s .
$$

Since $\theta(h) \neq 1, s=0$.
Claim. $\theta\left(g^{-1}\right)=\overline{\theta(g)}$ for every $\theta \in X(G)$ and every $g \in G$.
Since $\theta(g) \in \mathbb{C}$ is a root of 1 ,

$$
|\theta(g)|^{2}=\theta(g) \overline{\theta(g)}=1 .
$$

On the other hand, since θ is a homomorphism,

$$
\theta(g) \theta\left(g^{-1}\right)=\theta(1)=1 .
$$

Hence $\theta\left(g^{1}\right)=\overline{\theta(g)}$.
Now

$$
\begin{align*}
\left\langle\widehat{\theta_{1}}, \widehat{\theta_{2}}\right\rangle & =\sum_{g \in G} \theta_{1}\left(g^{-1}\right) \overline{\theta_{2}\left(g^{-1}\right)} \tag{4.1}\\
& =\sum_{g \in G} \theta_{1}\left(g^{-1}\right) \theta_{2}(g) \tag{4.2}\\
& =\sum_{g \in G} \theta_{1} \theta_{2}^{-1}\left(g^{-1}\right) \tag{4.3}\\
& =\left\{\begin{array}{lll}
|G| & \text { if } & \theta_{1} \theta_{2}^{-1}=1 \\
0 & \text { if } & \theta_{1} \theta_{2}^{-1} \neq 1 .
\end{array}\right. \tag{4.4}
\end{align*}
$$

Since $|G|=|X(G)|$ by Lemma 3.1, and $\widehat{\theta_{i}}$'s are orthogonal nonzero elements in V, that form a basis of V.
(ii) Let $\Delta=\left\{g_{1}, \ldots, g_{r}\right\}$. Then

$$
\begin{align*}
A \hat{\theta} & =A\left(\sum_{g \in G} \theta\left(g^{-1} g\right)\right) \tag{4.5}\\
& =\sum_{g \in G} \theta\left(g^{-1}\right)\left(g g_{1}+\cdots+g g_{r}\right) \quad\left(\Gamma(g)=\left\{g g_{1}, \ldots, g g_{r}\right\}\right) \tag{4.6}\\
& =\sum_{i=1}^{r}\left(\sum_{g \in G} \theta\left(g^{-1}\right)\left(g g_{i}\right)\right) \tag{4.7}\\
& =\sum_{i=1}^{r}\left(\sum_{g \in G} \theta\left(g_{i} g_{i}^{-1} g^{-1}\right)\left(g g_{i}\right)\right) \tag{4.8}\\
& =\sum_{i=1}^{r}\left(\sum_{g \in G} \theta\left(g_{i}\right) \theta\left(\left(g g_{i}\right)^{-1}\right) g g_{i}\right) \tag{4.9}\\
& =\sum_{i=1}^{r} \theta\left(g_{i}\right) \sum_{h \in G} \theta\left(h^{-1}\right) h \tag{4.10}\\
& =\Delta_{\theta} \cdot \hat{\theta} . \tag{4.11}
\end{align*}
$$

Since $\{\hat{\theta} \mid \theta \in X(G)\}$ forms a basis, the eigenvalues of Γ are precisely,

$$
\left\{\Delta_{\theta} \mid \theta \in X(G)\right\}
$$

This completes the proof.

Example 4.1. Let $G=\left\langle a \mid a^{6}=1\right\rangle$, and $\Delta=\left\{a, a^{-1}\right\}$. Pick a primitive 6 -th root of $1, \omega$. Then

$$
X(G)=\left\{\theta^{i} \mid 0 \leq i \leq 5\right\} \quad \text { such that } \quad \theta(a)=\omega, \omega+\omega^{-1}=1
$$

$\varphi \in X(G)$	$\varphi(a)$	$\Delta_{\varphi}=\theta(a)+\theta(a)^{-1}$
1	1	2
θ	ω	$\omega+\omega^{-1}=1$
θ^{2}	ω^{2}	-1
θ^{3}	$\omega^{3}=-1$	-2
θ^{4}	ω^{4}	-1
θ^{5}	ω^{5}	1
$\operatorname{Spec}(\Gamma)=\left(\begin{array}{cccc}2 & 1 & -1 & -2 \\ 1 & 2 & 2 & 1\end{array}\right)$.		

Example 4.2. D-cube, $H(D, 2)$. Let

$$
X=\left\{\left(a_{1}, \ldots, a_{D}\right) \mid a_{i} \in\{1,-1\}, 1 \leq i \leq D\right\}
$$

$E=\{x y \mid x, y \in X, x, y:$ different in exactly one coordinate $\}$.
Also $H(D, 2)$ is a Cayley graph $\Gamma(G, \Delta)$, where

$$
\begin{gathered}
G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{D} \\
G_{i}=\left\langle a_{i} \mid a_{i}^{2}=1\right\rangle, \quad \Delta=\left\{a_{1}, \ldots, a_{D}\right\}
\end{gathered}
$$

Homework: The spectrum of $H(D, 2)$ is

$$
\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{D} \\
m_{0} & m_{1} & \cdots & m_{D}
\end{array}\right)
$$

where

$$
\theta_{i}=D-2 i \quad(0 \leq i \leq D), \quad m_{i}=\binom{D}{i}
$$

HS MEMO

Let $\theta \in X(G)$. Then $\theta: X \rightarrow\{ \pm 1\}$. If

$$
\nu(\theta)=\left|\left\{i \mid \theta\left(a_{i}\right)=-1\right\}\right|
$$

then $\Delta_{\theta}=D-2 i$. Since there are $\binom{D}{i}$ such θ, we have te assertion.
We want to compute the subconstituent algebra for $H(D, 2)$. First, we make a few observations about arbitrary graphs.

Let $\Gamma=(X, E)$ be any graph, A, the adjacemcy matrix of Γ, and V, the standard module over $K=\mathbb{C}$.

Fix a base $x \in X$. Write $E_{i}^{*}=E_{i}^{*}(x)$, and

$$
T \equiv T(x)=\text { the algebra generated by } A, E_{0}^{*}, E_{1}^{*}, \ldots
$$

Definition 4.1. Let W be any irreducible T-module $(\subseteq V)$. Then the endpoint $r \equiv r(W)$ satisfied

$$
r=\min \left\{i \mid E_{i}^{*} W \neq 0\right\}
$$

The diameter $d=d(W)$ satisfied

$$
d=\left|\left\{i \mid E_{i}^{*} W \neq 0\right\}\right|-1
$$

Lemma 4.1. With the above notation, let W be an irreducible T-module. Then
(i) $E_{i}^{*} A E_{j}^{*}=0$ if $|i-j|>1, E_{i}^{*} A E_{j}^{*} \neq 0 \quad$ if $|i-j|=1, \quad 0 \leq i, j \leq d(x)$.
(ii) $A E_{j}^{*} W \subseteq E_{j-1}^{*} W+E_{j}^{*} W+E_{j+1}^{*} W, 0 \leq j \leq d(x)$. $\left(E_{i}^{*} W=0 \quad\right.$ if $i<j$ or $i>d(x)$.)
(iii) $E_{j}^{*} W \neq 0$ if $r \leq j \leq r+d,=0$ if $0 \leq j \leq r$ or $r+d<j \leq d(x)$.
(iv) $E_{i}^{*} A E_{j}^{*} W \neq 0$, if $|i-j|=1(r \leq i, j \leq r+d)$.

Proof.
(i) Pick $y \in X$ with $\partial(x, y)=j$. We want to find $E_{i}^{*} A E_{j}^{*} \hat{y}$. Note,

$$
E_{j}^{*} \hat{y}= \begin{cases}0 & \text { if } \partial(x . y) \neq j \\ \hat{y} & \text { if } \partial(x, y)=j\end{cases}
$$

$$
\begin{align*}
E_{i}^{*} A E_{j}^{*} \hat{y} & =E_{i}^{*} A \hat{y} \tag{4.12}\\
& =E_{i}^{*} \sum_{z \in X, y z \in E} \hat{z} \tag{4.13}\\
& =\sum_{z \in X, y z \in E, \partial(x, z)=i} \hat{z} \tag{4.14}
\end{align*}
$$

$$
\begin{equation*}
=0 \text { if }|i-j|>1 \quad \text { by triangle inequality. } \tag{4.15}
\end{equation*}
$$

If $|i-j|=1$, there exist $y, y^{\prime} \in X$ such that $\partial(x, y)=j, \partial\left(x, y^{\prime}\right)=i, y y^{\prime} \in E$ by connectivity of Γ. Hence (4.14) contains $\widehat{y^{\prime}}$ and (4.14) is not equal to zero.
(ii) We have

$$
\begin{align*}
A E_{j}^{*} W & =\left(\sum_{i=0}^{d(x)} E_{i}^{*}\right) A E_{j}^{*} W \tag{4.16}\\
& =E_{j-1}^{*} A E_{j}^{*} W+E_{j}^{*} A E_{j}^{*} W+E_{j+1}^{*} A E_{j}^{*} W \tag{4.17}\\
& \subseteq E_{j-1}^{*} W+E_{j}^{*} W+E_{j+1}^{*} W \tag{4.18}
\end{align*}
$$

(iii) Suppose $E_{j}^{*} W=0$ for some $j(r \leq j \leq r+d)$. Then $r<j$ by the definition of r. Set

$$
\widetilde{W}=E_{r}^{*} W+E_{r+1}^{*} W+\cdots+E_{j-1}^{*} W .
$$

Observe $0 \subsetneq \widetilde{W} \subsetneq W$. Also $A \widetilde{W} \subseteq \widetilde{W}$ by (ii), and $E_{i}^{*} \widetilde{W} \subseteq \widetilde{W}$ for every i by construction.
Thus, $T \widetilde{W} \subseteq \widetilde{W}$, contradicting W being irreducible.

Chapter 5

T-Modules of $H(D, 2), \mathbf{I}$

Friday, January 29, 1993

Let $\Gamma=(X, E)$ be a graph, A the adjacency matrix, and V the standard module over $K=\mathbb{C}$.

Fix a base $x \in X$ and write $E_{i}^{*} \equiv E_{i}^{*}(x)$, and $T \equiv T(x)$.
Let W be an irreducible T-module with endpoint $r:=\min \left\{i \mid E_{i}^{*} W \neq 0\right\}$ and diameter $d:=\left|\left\{i \mid E_{i}^{*} W \neq 0\right\}\right|-1$.

We have

$$
\begin{array}{rlr}
E_{i}^{*} W & \neq 0 \\
& =0 \tag{5.2}
\end{array} \quad 0 \leq i<r \text { or } r+d<i \leq r+d .
$$

Claim: $E_{i}^{*} A E_{j}^{*} W \neq 0$ if $|i-j|=1$ for $r \leq i, j \leq r+d$. (See Lemma 4.1.)
Suppose $E_{j+1}^{*} A E_{j}^{*} W=0$ for some j with $r \leq j<r+d$. Observe that

$$
\tilde{W}=E_{r}^{*} W+\cdots+E_{j}^{*} W
$$

is T-invariant with

$$
0 \subsetneq \tilde{W} \subsetneq W
$$

Becase $A \tilde{W} \subseteq \tilde{W}$ since $A E_{j}^{*} W \subseteq E_{j-1}^{*} W+E_{j}^{*} W$,

$$
E_{k}^{*} \tilde{W} \subseteq \tilde{W} \quad \text { for all } k
$$

we have $T \tilde{W} \subseteq W$.
Suppose $E_{i-1}^{*} A E_{i}^{*} W=0$ for some i with $r \leq i<r+d$.
Similarly,

$$
\tilde{W}=E_{i}^{*} W+\cdots+E_{r+d}^{*} W
$$

is a T-module with $0 \subsetneq \tilde{W} \subsetneq W$.
Definition 5.1. Let Γ, E_{i}^{*}, and T be as above. Irreducible T-modules W and W^{\prime} are isomorphic whenever there is an isomorphism $\sigma: W \rightarrow W^{\prime}$ of vector spaces such that $a \sigma=\sigma a$ for all $a \in T$.
Recall that the standard module V is an orthogonal direct sum of irreducible T-modules

$$
W_{1} \oplus W_{2} \oplus \cdots \oplus W_{\ell}, \text { for some } \ell .
$$

Given W in this list, the multiplicity of W in V is

$$
\left|\left\{j \mid W_{j} \simeq W\right\}\right| .
$$

HS MEMO

It is known that the multiplicity does not depend on the decomposition.
Now assume that Γ is the D-cube, $H(D, 2)$ with $D \geq 1$. View

$$
\begin{align*}
X & =\left\{a_{1} \cdots a_{D} \mid a_{i} \in\{1,-1\}, 1 \leq i \leq D\right\}, \tag{5.3}\\
E & =\{x y \mid x, y \in X, x, y \text { differ in exactly } 1 \text { coordinate }\} . \tag{5.4}
\end{align*}
$$

Find T-modules.
Claim: $H(D, 2)$ is bipartite with a partition $X=X^{+} \cup X^{-}$, where

$$
\begin{align*}
& X^{+}=\left\{a_{1} \cdots a_{D} \in X \mid \prod a_{i}>0\right\} \tag{5.5}\\
& X^{-}=\left\{a_{1} \cdots a_{D} \in X \mid \prod a_{i}<0\right\} \tag{5.6}
\end{align*}
$$

Observe: for all $y, z \in X$,

$$
\partial(y, z)=i \Leftrightarrow y, z \text { differ in exactly in } i \text { coorinates with } 0 \leq i \leq D .
$$

Here, the diameter of $H(D, 2)=D=d$ for all $x \in X$.
Theorem 5.1. Let $\Gamma=H(D, 2)$ be as above. Fix $x \in X$, and write $E_{i}^{*}=E_{i}^{*}(x)$, and $T=T(x)$.
Let W be an irreducible T-module with endpoint r, and diameter d with $0 \leq r \leq$ $r+d \leq D$.
(i) W has a basis $w_{0}, w_{1}, \ldots, w_{d}$ with $w_{i} \in E_{i+r}^{*} W$ for $0 \leq i \leq d$. With respect to which the matrix representing A is

$$
\left(\begin{array}{ccccccc}
0 & d & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & d-1 & \cdots & 0 & 0 & 0 \\
0 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 3 & \cdots & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \ddots & \ddots & \cdots & \cdots \\
0 & 0 & 0 & \ddots & 0 & 2 & 0 \\
0 & 0 & 0 & \cdots & d-1 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & d & 0
\end{array}\right)
$$

(ii) $d=D-2 r$. In particular, $0 \leq r \leq D / 2$.
(iii) Let W^{\prime} denote an irreducible T-module with endpoint r^{\prime}. Then W and W^{\prime} are isormorphic as T-modules if and only if $r=r^{\prime}$.
(iv) The multiplicity of the irreducible T-module with endpoint r is

$$
\binom{D}{r}-\binom{D}{r-1} \quad \text { if } 1 \leq r \leq R / 2
$$

and 1 if $r=0$.
Proof. Recall that Γ is vertex transitive. It is a Cayley graph.
Hence without loss of generality, we may assume that $x=\overbrace{11 \cdots 1}^{D}$.
Notation: Set $\Omega=\{1,2, \ldots, D\}$. For every subset $S \subseteq \Omega$, let

$$
\hat{S}=a_{1} \cdots a_{d} \in X \quad a_{i}= \begin{cases}-1 & \text { if } i \in S \\ 1 & \text { if } i \notin S\end{cases}
$$

In particular, $\hat{\emptyset}=x$ and

$$
|S|=i \Leftrightarrow \partial(x, \widehat{S})=i \Leftrightarrow \hat{S} \in E_{i}^{*} V
$$

For all $S, T \subseteq \Omega$, we say S covers T if and only if $S \supseteq T$ and $|S|=|T|+1$.
Observe that \hat{S}, \hat{T} are adjacent in Γ if and only if either T coverse S or S coverr T.

Define the 'raising matrix'

$$
R=\sum_{i=0}^{D} E_{i+1}^{*} A E_{i}^{*}
$$

Observe that

$$
R E_{i}^{*} V \subseteq E_{i+1}^{*} V \text { for } 0 \leq i \leq D, \text { and } E_{D+1}^{*} V=0
$$

Indeed for any $S \subseteq \Omega$ with $|S|=i$,

$$
\begin{align*}
R \hat{S} & =R E_{i}^{*} \hat{S} \tag{5.7}\\
& =E_{i+1}^{*} A \widehat{S} \tag{5.8}\\
& =\sum_{T_{1} \subseteq \Omega, S \text { covers } T_{1}} E_{i+1}^{*} \widehat{T_{1}}+\sum_{T \subseteq \Omega, T \text { covers } S} E_{i+1}^{*} \hat{T} \tag{5.9}\\
& =\sum_{T \subseteq \Omega, T \text { covers } S} E_{i+1}^{*} \hat{T} \tag{5.10}
\end{align*}
$$

Define the 'lowering matrix'

$$
L=\sum_{i=0}^{D} E_{i-1}^{*} A E_{i}^{*}
$$

Observe that

$$
L E_{i}^{*} V \subseteq E_{i-1}^{*} V \text { for } 0 \leq i \leq D, \text { and } E_{-1}^{*} V=0
$$

Indeed for any $S \subseteq \Omega$,

$$
L \hat{S}=\sum_{T \subseteq \Omega, S \text { covers } T} \hat{T}
$$

Observe that $A=L+R$.
For convenience, set

$$
A^{*}=\sum_{i=0}^{D}(D-2 i) E_{i}^{*}
$$

Claim: The following hold.
(a) $L R-R L=A^{*}$.
(b) $A^{*} L-L A^{*}=2 L$.
(c) $A^{*} R-R A^{*}=-2 R$.

In particular $\operatorname{Span}\left(R, L, A^{*}\right)$ is a 'representation of Lie algebra $\mathrm{sl}_{2}(\mathbb{C})$.

HS MEMO

$$
\operatorname{sl}_{2}(\mathbb{C})=\{X \mid \operatorname{Mat}(\mathbb{C} \mid \operatorname{tr}(X)=0\}
$$

For $X, Y \in \operatorname{sl}_{2}(\mathbb{C})$, define a binary operation $[X, Y]=X Y-Y X$.

$$
A^{*} \sim\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad L \sim\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad R \sim\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then these satisfy the relations $(a)-(c)$ above.
Proof of Claim. Apply both sides to $\widehat{S} \quad(S \subseteq \Omega)$. Say $|S|=i$.

Proof of (a):

$$
\begin{align*}
(L R-R L) \hat{S}= & L\left(\sum_{\substack{T \subseteq \Omega, T \text { covers } S \\
(D-i \text { of them })}} \hat{T}\right)-R\left(\sum_{\substack{U \subseteq \Omega, S \text { covers } U \\
(i \text { of them })}} \hat{U}\right) \tag{5.11}\\
= & (D-i) \hat{S}+\sum_{V \subseteq \Omega,|V|=i,|S \cap V|=i-1} \hat{V} \tag{5.12}\\
& -\left(i \widehat{S}+\sum_{V \subseteq \Omega,|V|=i,|S \cap V|=i-1} \hat{V}\right) \tag{5.13}\\
= & (D-2 i) \hat{S} \tag{5.14}\\
= & A^{*} \hat{S} . \tag{5.15}
\end{align*}
$$

Proof of (b):

$$
\begin{align*}
\left(A^{*} L-L A^{*}\right) \hat{S} & =(D-2(i-1)) L \hat{S}-(D-2 i) L \hat{S} \quad\left(\text { since } L \hat{S} \in E_{i-1}^{*} V\right) \tag{5.16}\\
& =2 L \hat{S} \tag{5.17}
\end{align*}
$$

Proof of (c):

$$
\begin{align*}
\left(A^{*} R-R A^{*}\right) \hat{S} & =(D-2(i+1)) R \hat{S}-(D-2 i) R \hat{S} \quad\left(\text { since } R \hat{S} \in E_{i+1}^{*} V\right) \tag{5.18}\\
& =-2 R \hat{S} \tag{5.19}
\end{align*}
$$

Let W be an irreducible T-module with endpoint r and diameter $d(0 \leq r \leq$ $r+d \leq D)$.

Proof of (i) and (ii):
Pick $0 \neq w \in E_{r}^{*} W$.
Claim: $L R w=(D-2 r) w$.
$P f$.

$$
\begin{align*}
L R w & =\left(A^{*}+R L\right) w \quad(\text { by Claim }(a)) \tag{5.20}\\
& =A^{*} w \quad\left(L w \in E_{r-1}^{*} W=0\right) \tag{5.21}\\
& =(D-2 r) w \tag{5.22}
\end{align*}
$$

Define

$$
w_{i}=\frac{1}{i!} R^{i} w \in E_{r+i}^{*} W \quad(0 \leq i \leq d)
$$

Then,

$$
\begin{align*}
& R w_{i}=(i+1) w_{i+1} \quad(0 \leq i \leq d) \tag{5.23}\\
& R w_{d}=0 \quad(\text { by definition of } d) \tag{5.24}
\end{align*}
$$

Claim: $L w_{0}=0$ and

$$
L w_{i}=(D-2 r-i+1) w_{i-1} \quad(1 \leq i \leq d)
$$

Pf. We prove by induction on i. The case $i=0$ is trivial, and the case $i=1$ follows from above claim. Let $i \geq 2$,

$$
\begin{equation*}
L w_{i}=\frac{1}{i} L R w_{i-1}=\frac{1}{i}\left(A^{*}+R L\right) w_{i-1} \quad(\text { by Claim }(\mathrm{a})) \tag{5.25}
\end{equation*}
$$

(by induction hypothesis)
$=\frac{1}{i}\left((D-2(r+i-1)) w_{i-1}+(D-2 r-(i-1)+1) R w_{i-2} \quad\left(R w_{i-2}=(i-1) w_{i-1}\right)\right.$
$=\frac{1}{i} i(D-2 r-i+1) w_{i-1}$

$$
\begin{equation*}
=(D-2 r-i+1) w_{i-1} \tag{5.28}
\end{equation*}
$$

Claim: w_{0}, \ldots, w_{d} is a basis for W.
Pf. Let $W^{\prime}=\operatorname{Span}\left\{w_{0}, \ldots, w_{d}\right\}$. Then W^{\prime} is R and L invariant. So it is $A=R+L$ invariant.

Also it is E_{i}^{*}-invariant for every i.
Hence W^{\prime} is a T-module.
Since W is irreducible, $W^{\prime}=W$.
As w_{i} 's are orthogonal, they are linearly independent. Note that $w_{i} \neq 0$ by the definition of d and Lemma 4.1 (iv).

Claim: $d=D-2 r$.
Pf. By (a),

$$
\begin{align*}
0 & =\left(L R-R L-A^{*}\right) w_{d} \tag{5.30}\\
& =0-(D-2 r-d+1) R w_{d-1}-(D-2(r+d)) w_{d} \tag{5.31}\\
& =-d(D-2 r-d+1) w_{d}-(D-2(r+d)) w_{d} \tag{5.32}\\
& =\left(-d D+2 r d+d^{2}-d-D+2 r+2 d\right) w_{d} \tag{5.33}\\
& =\left(d^{2}+(2 r-D+1) d+2 r-D\right) w_{d} \tag{5.34}\\
& =(d+2 r-D)(d+1) w_{d} \tag{5.35}
\end{align*}
$$

Hence $d=D-2 r$.
Therefore, with respect to a bais $w_{0}, w_{1}, \ldots, w_{d}, A=L+R, w_{-1}=w_{d+1}=0$,

$$
L w_{i}=(d-i+1) w_{i-1}, \quad R w_{i}=(i+1) w_{i+1}
$$

$$
L=\left(\begin{array}{cccccc}
0 & d & 0 & \cdots & 0 & 0 \\
0 & 0 & d-1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \cdots & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 2 & 0 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & 1 \\
0 & 0 & 0 & \cdots & d & 0
\end{array}\right) .
$$

This completes the proof of (i) and (ii).

Chapter 6

T-Modules of $H(D, 2)$, II

Monday, February 1, 1993

Proof of Theorem 5.1 Continued.
(iii) Let $r=r^{\prime}$,
w_{0}, \ldots, w_{d} : a basis for W with $w_{i} \in E_{i}^{*} W$, and
$w_{0}^{\prime}, \ldots, w_{d}^{\prime}:$ a basis for W^{\prime} with $w_{i}^{\prime} \in E_{i}^{*} W^{\prime}$.
Then $d=D-2 r=D-2 r^{\prime}=d^{\prime}$, and

$$
\sigma: W \rightarrow W^{\prime} \quad\left(w_{i} \mapsto w_{i}^{\prime}\right)
$$

is an isomorsphism of T-modules by (i).
If $r \neq r^{\prime}$, then

$$
d=D-2 r \neq D-2 r^{\prime}=d^{\prime}
$$

hence, $\operatorname{dim} W \neq \operatorname{dim} W^{\prime}$.
(iv) Let W_{i} be an irreducible T-module with endpoint i. Then

$$
\operatorname{dim} E_{r}^{*} V=\binom{D}{r}=\sum_{i=0}^{r} \operatorname{mult}\left(W_{i}\right)
$$

Hence, we have that

$$
\operatorname{mult}\left(W_{r}\right)=\binom{D}{r}-\binom{D}{r-1}
$$

by induction on r.

Theorem 6.1. Let $\Gamma=H(D, 2)$ with $D \geq 1$. Fix a vertex $x \in X$ and write

$$
E_{i}^{*} \equiv E_{i}^{*}(x), \quad T=T(x), \text { and } A^{*} \equiv \sum_{i=0}^{D}(D-2 i) E_{i}^{*}
$$

Let W be an irreducible T-module with endpoint r with $0 \leq r \leq D / 2$. Then, (i) W has a basis

$$
w_{0}^{*}, w_{1}^{*}, \ldots, w_{d}^{*} \quad(d=D-2 r), \quad \text { such that } w_{i}^{*} \in E_{i+r} W(0 \leq i \leq d)
$$ with respect to which the matrix corresponding to A^{*} is

$$
\left(\begin{array}{ccccccc}
0 & d & 0 & & & & \\
1 & 0 & d-1 & & & & \\
0 & 2 & 0 & & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & 0 & 2 & 0 \\
& & & & d-1 & 0 & 1 \\
& & & 0 & d & 0
\end{array}\right)
$$

In particular,
(ii) $E_{i} A^{*} E_{j}=0$ if $|i-j| \neq 1$ for $0 \leq i, j \leq D$.

Proof. We use the notation,

$$
[\alpha, \beta]=\alpha \beta-\beta \alpha(=-[\beta, \alpha])
$$

Recall that
(a) $[L, R]=A^{*}$,
(b) $\left[A^{*}, L\right]=w L$,
(c) $\left[A^{*}, R\right]=-2 R$,
and $A=L+R$.
Write $(a)-(c)$ in terms of A and A^{*}, we have,

$$
\begin{gathered}
{\left[A, A^{*}\right]=\left[L, A^{*}\right]+\left[R, A^{*}\right]=2(R-L)} \\
\left\{\begin{array}{l}
R+L=A \\
R-L=\left[A, A^{*}\right] / 2
\end{array}\right.
\end{gathered}
$$

Hence,

$$
\begin{align*}
R & =\frac{1}{4}\left(2 A+\left[A, A^{*}\right]\right) \quad \text { and } \tag{6.1}\\
L & =\frac{1}{4}\left(2 A-\left[A, A^{*}\right]\right) \tag{6.2}
\end{align*}
$$

Now (a), (b) become

$$
\begin{align*}
& A^{2} A^{*}-2 A A^{*} A+A^{*} A^{2}-4 A^{*}=0 \tag{6.3}\\
& A^{* 2} A-2 A^{*} A A^{*}+A A^{* 2}-4 A=0 \tag{6.4}
\end{align*}
$$

Pf. By (b),

$$
\begin{align*}
2 A-A A^{*}+A^{*} A & =4 L \tag{6.5}\\
& =2\left[A^{*}, L\right] \tag{6.6}\\
& =A^{*} \frac{2 A-\left[A, A^{*}\right]}{2}-\frac{2 A-\left[A, A^{*}\right]}{2} A^{*} \tag{6.7}\\
& =A^{*} A-A A^{*}+\frac{1}{2}\left(-A^{*} A A^{*}+A^{*^{2}} A+A A^{*^{2}}-A^{*} A A^{*}\right) \tag{6.8}
\end{align*}
$$

So we have (6.4)

$$
A^{*^{2}} A-2 A^{*} A A^{*}+A A^{*^{2}}-4 A=0
$$

By (a),

$$
\begin{align*}
-16 A^{*}= & {\left[2 A+\left[A, A^{*}\right], 2 A-\left[A, A^{*}\right]\right] } \tag{6.9}\\
= & \left(2 A+\left[A, A^{*}\right]\right)\left(2 A-\left[A, A^{*}\right]\right)-\left(2 A-\left[A, A^{*}\right]\right)\left(2 A+\left[A, A^{*}\right]\right) \tag{6.10}\\
= & {\left[4 A^{2}-2 A\left[A, A^{*}\right]+\left[A, A^{*}\right](2 A)-\left[A, A^{*}\right]^{2}\right.} \tag{6.11}\\
& -4 A^{2}-2 A\left[A, A^{*}\right]+\left[A, A^{*}\right](2 A)+\left[A, A^{*}\right]^{2} \tag{6.12}\\
= & -4 A^{2} A^{*}+4 A A^{*} A+4 A A^{*} A-4 A^{*} A^{2} \tag{6.13}
\end{align*}
$$

So,

$$
A^{2} A^{*}-2 A A^{*} A+A^{*} A^{2}-4 A^{*}=0
$$

Claim: $E_{i}^{*} A^{*} E_{j}=0$ if $|i-j| \neq 1$ for $0 \leq i, j \leq D$.
Pf. We have,

$$
\begin{align*}
0= & E_{i}\left(A^{2} A^{*}-2 A A^{*} A+A^{*} A^{2}-4 A^{*}\right) E_{j} \tag{6.14}\\
= & E_{i} A^{*} E_{j}\left(\theta_{i}^{2}-2 \theta_{i} \theta_{j}+\theta_{j}^{2}-4\right) \tag{6.15}\\
& \left(A E_{j}=\theta_{j} E_{j}, E_{i} A=\left(A E_{j}\right)^{\top}=\left(\theta_{i} E_{i}\right)^{\top}=\theta_{i} E_{i}\right) \tag{6.16}\\
= & E_{i} A^{*} E_{j}\left(\theta_{i}-\theta_{j}-2\right)\left(\theta_{i}-\theta_{j}+2\right) \tag{6.17}\\
= & E_{i} A^{*} E_{j}(D-2 i-(D-2 j)-2)(D-2 i-(D-2 j)+2) \tag{6.18}\\
& \left(\theta_{k}=D-2 k\right) \tag{6.19}\\
= & E_{i} A^{*} E_{j} \cdot 4(i-j+1)(i-j-1) \tag{6.20}
\end{align*}
$$

and $i-j+1 \neq 0, i-j-1 \neq 0$. Hence, $E_{i}^{*} A^{*} E_{j}=0$.

Now define "dual raising matrix",

$$
R^{*}=\sum_{i=0}^{D} E_{i+1} A^{*} E_{i}
$$

So,

$$
R^{*} E_{i} V \subseteq E_{i+1} V, \quad\left(0 \leq i \leq D, E_{D+1} V=0\right)
$$

Define "dual lowering matrix"

$$
L^{*}=\sum_{i=0}^{D} E_{i-1} A^{*} E_{i}
$$

Then

$$
L^{*} E_{i} V \subseteq E_{i-1} V \quad\left(0 \leq i \leq D, E_{-1} V=0\right)
$$

Observe that

$$
A^{*}=\left(\sum_{i=0}^{D} E_{i}\right) A^{*}\left(\sum_{j=0}^{D} E_{j}\right)=L^{*}+R^{*}
$$

by Claim 1.
Claim 2. We have
(a) $\left[L^{*}, R^{*}\right]=A$,
(b) $\left[A, L^{*}\right]=2 L^{*}$,
(c) $\left[A, R^{*}\right]=-2 R^{*}$.

Pf. (b)

$$
\begin{align*}
A L^{*}-L^{*} A= & \sum_{i=0}^{D}\left(A E_{i-1} A^{*} E_{i}-E_{i-1} A^{*} E_{i} A\right) \tag{6.21}\\
= & \sum_{i=0}^{D} E_{i-1} A^{*} E_{i}\left(\theta_{i-1}-\theta_{i}\right) \tag{6.22}\\
& \left(\theta_{k}=D-2 k, \quad \theta_{i-1}-\theta_{i}=2 I-2(i-1)=2\right. \tag{6.23}\\
= & 2 L^{*} \tag{6.24}
\end{align*}
$$

(c) Similar.

HS MEMO

$$
\begin{align*}
A R^{*}-R^{*} A & =\sum_{i=0}^{D}\left(A E_{i+1} A^{*} E_{i}-E_{i+1} A^{*} E_{i} A\right) \tag{6.25}\\
& =\sum_{i=0}^{D} E_{i+1} A^{*} E_{i}\left(\theta_{i+1}-\theta_{i}\right) \tag{6.26}\\
& =-2 R^{*} \tag{6.27}
\end{align*}
$$

(a) We have, by (b), (c)

$$
\begin{equation*}
\left[A, A^{*}\right]=\left[A, L^{*}\right]+\left[A, R^{*}\right]=2\left(L^{*}-R^{*}\right) \tag{6.28}
\end{equation*}
$$

Since $A^{*}=L^{*}+R^{*}$,

$$
R^{*}=\frac{2 A^{*}+\left[A^{*}, A\right]}{4}, \quad L^{*}=\frac{2 A^{*}-\left[A^{*}-A\right]}{4} .
$$

Now (a) is seen to be equivalent to (6.4) upon evaluation. This proves Claim 2.

HS MEMO

$$
\begin{align*}
{\left[L^{*}, R^{*}\right]=} & \frac{1}{16}\left(\left(2 A^{*}-\left[A^{*}, A\right]\right)\left(2 A^{*}+\left[A^{*}, A\right]\right)-\left(2 A^{*}+\left[A^{*}, A\right]\right)\left(2 A^{*}-\left[A, A^{*}\right]\right)\right) \tag{6.29}\\
= & \frac{1}{16}\left(4 A^{*^{2}}+2 A^{*}\left[A^{*}, A\right]-\left[A^{*}, A\right] 2 A^{*}-\left[A^{*}, A\right]^{2}-4 A^{* 2}\right. \tag{6.30}\\
& \left.\quad+2 A^{*}\left[A^{*}, A\right]-\left[A^{*}, A\right] 2 A^{*}+\left[A^{*}, A\right]^{2}\right) \tag{6.31}\\
= & \frac{1}{4}\left(A^{*^{2}} A-2 A^{*} A A^{*}+A A^{*^{2}}\right) \tag{6.32}\\
= & A \tag{6.33}
\end{align*}
$$

by (6.4).
Now apply same argument as for (6.3), (6.4) of Theorem 5.1 and observe A^{*} has $D+1$ distinct eigenvalues. So,

$$
A^{*}=\sum_{i=0}^{D}(D-2 i) E_{i}^{*}
$$

generates

$$
M^{*}=\operatorname{Span}\left(E_{0}^{*}, \ldots, E_{D}^{*}\right)
$$

Hence, $E_{0}, \ldots, E_{D}, A^{*}$ generates T.
Take an irreducible T-module W with endpoint r with $0 \leq r \leq D / 2$. Set $t=\min \left\{i \mid E_{i} W\right\}$.

Pick $0 \neq w_{0}^{*} \in E_{t} W$. Set

$$
w_{i}^{*}=\frac{1}{i!} R^{* i} w_{0}^{*} \in E_{t+i} W \quad \text { for all } i
$$

Then,

$$
R^{*} w_{i}^{*}=(i+1) w_{i+1}^{*} \quad \text { for all } i
$$

By (a), we get by induction, $L^{*} w_{i}^{*}=(D-2 t-i+1) w_{i-1}^{*}$,

$$
\begin{align*}
L^{*} w_{i}^{*} & =\frac{1}{i} L^{*} R^{*} w_{i-1}^{*} \tag{6.34}\\
& =\frac{1}{i}\left(A+R^{*} L^{*}\right) w_{i-1}^{*} \tag{6.35}\\
& =\frac{1}{i}\left((D-2(t+i-1)) w_{i-1}^{*}+(i-1)(D-2 t-i+2) w_{i-1}^{*}\right) \tag{6.36}\\
& =(D-2 t-i+1) w_{i-1}^{*} \tag{6.37}
\end{align*}
$$

So $\operatorname{Span}\left(w_{0}^{*}, w_{1}^{*}, \ldots\right)$ is L^{*}, R^{*}, A^{*}-invariant. Hence, $W=\operatorname{Span}\left(w_{0}^{*}, w_{1}^{*}, \ldots, w_{d}^{*}\right)$, $w_{0}^{*}, w_{1}^{*}, \ldots, w_{d}^{*} \neq 0, w_{i}^{*}=0$ for every $i>d$ by dimension.
Thus $d=D-2 t$.
$P f$.

$$
\begin{align*}
(D-2(t+d)) w_{d}^{*} & =A w_{d}^{*} \tag{6.38}\\
& =\left(L^{*} R^{*}-R^{*} L^{*}\right) w_{d}^{*} \tag{6.39}\\
& =-(D-2 t-d+1) R^{*} w_{d-1}^{*} \tag{6.40}\\
& =-(D-2 t-d+1) d w_{d}^{*} \tag{6.41}
\end{align*}
$$

Hence,

$$
0=d^{2}+(2 t-D-1+2) d-(D-2 t)=(d-D+2 t)(d+1)
$$

So $d=D-2 t$.
Definition 6.1. For any graph $\Gamma=(X, E)$, pick a vertex $x \in X$, and set $E_{i}^{*} \equiv E_{i}^{*}(x)$ and $T \equiv T(x)$.
(i) An irreducible T-module W is thin if $\operatorname{dim} E_{i}^{*} W \leq 1$ for every i.
(ii) Γ is thin with respet to x, if every irreducible $T(x)$-module is thin,
(iii) An irreducible T-module W is dual thin if $\operatorname{dim} E_{i} W \leq 1$ for every i.
(iv) Γ is dual thin with respect to x, if every irreducible $T(x)$-module is dual thin.

Observe: $H(D, 2)$ is thin, dual thin with respect to each $x \in X$.

Definition 6.2. With above notation, write $D \equiv D(x)$.
(i) An ordering $E_{0}, E_{1}, \ldots, E_{R}$ of primitive idempotents of Γ is restricted if E_{0} corresponds to the maximal eigenvalue.

Fix a restricted ordering,
(ii) Γ is Q-polynomial with respect to x, above ordering if there exists $A^{*} \equiv$ $A^{*}(x)$ such that
(a) $E_{0}^{*} V, \ldots, E_{D}^{*} V$ are the maximal eigenspaces for A^{*}.
(b) $E_{i} A^{*} E_{j}=0$ if $|i-j|>1$ for $0 \leq i, j \leq R$.

Observe $H(D, 2)$ is Q-polynomial with respect to the natural ordering of the idempotents and every vetex.

Program. Study graphs that are thin and Q-polynomial with respect to each vertex.
(In fact, thin with respect to x implies dual thin with respect to x.)
Get a situation like $H(D, 2)$, where T is generated by A, A^{*}. Except $\mathrm{sl}_{2}(\mathbb{C})$ is replaced by a quantum Lie algebra.

Chapter 7

The Johnson Graph $J(D, N)$

Wednesday, February 3, 1993
Definition 7.1. The Johnson graph, $\Gamma=J(D, N)(1 \leq D \leq N-1)$ satisfies

$$
\begin{align*}
X & =\{S|S \subset \Omega,|S|=D\} \quad \text { where } \Omega=\{1,2, \ldots, N\} \tag{7.1}\\
E & =\{S T|S, T \in X, \quad| S \cap T \mid=D-1\} \tag{7.2}
\end{align*}
$$

Example 7.1. $J(2,4)$

Note 1. The symmetric group S_{N} acts on Ω. $S_{N} \subseteq$ Aut (Γ) acts vertex transitively on Γ.

Note 2. $\Gamma=J(D, N)$ is isomorphic to $\Gamma^{\prime}=J(N-D, N)$.

$$
\begin{array}{rlr}
\Gamma=(X, E) & \longrightarrow & \Gamma^{\prime}=\left(X^{\prime}, E^{\prime}\right) \\
X \ni S & \longmapsto & \bar{S}=\Omega \quad S \in X^{\prime} \tag{7.4}
\end{array}
$$

This correspondence induces an isomorphism of graphs.
$P f$.

$$
\begin{align*}
S T \in E & \Leftrightarrow|S \cap T|=D-1 \tag{7.5}\\
& \Leftrightarrow|\Omega-(S \cup T)|=N-D-1 \tag{7.6}\\
& \Leftrightarrow|\bar{S} \cap \bar{T}|=N-D-1 \tag{7.7}\\
& \Leftrightarrow \bar{S} \bar{T} \in E^{\prime} \tag{7.8}
\end{align*}
$$

Hence, without loss of generality, assume

$$
D \leq N / 2 \quad \text { for } \quad J(D, N)
$$

We will need the eigenvalues of $J(D, N)$ for certain problem later in the course. We can get these eigenvalues from our study of $H(D, 2)$.
Lemma 7.1. The eigenvalues for $J(D, N)$ with $1 \leq D \leq N / 2$ are give by

$$
\begin{align*}
\theta_{i} & =(N-D-i)(D-i)-i \quad(0 \leq i \leq D) \tag{7.9}\\
m_{i} & =\binom{N}{i}-\binom{N}{i-1} \tag{7.10}
\end{align*}
$$

Proof. Let

$$
\begin{align*}
& \Gamma_{J} \equiv J(D, N) \tag{7.11}\\
&=\left(X_{J}, E_{J}\right) \tag{7.12}\\
& \Gamma_{H} \equiv H(N, 2)
\end{align*}=\left(X_{H}, E_{H}\right) .
$$

Set $x \equiv 11 \cdots 1 \in X_{H}$.
Define $\tilde{\Gamma} \equiv(\tilde{X}, \tilde{E})$, where

$$
\begin{align*}
\tilde{X} & =\left\{y \in X_{H} \mid \partial_{H}(x, y)=D\right\} \quad \partial_{H}: \text { distance in } \Gamma_{H} \tag{7.13}\\
\tilde{E} & =\left\{y z \in X_{H} \mid \partial_{H}(y, z)=2\right\} \tag{7.14}
\end{align*}
$$

Observe

$$
\begin{array}{rll}
X_{J} & \rightarrow & \tilde{X} \tag{7.15}\\
S & \mapsto & \hat{S}
\end{array}
$$

where

$$
\hat{S}=a_{1} \cdots a_{N}, \quad a_{i}= \begin{cases}-1 & \text { if } i \in S \\ 1 & \text { if } i \notin S\end{cases}
$$

induces an isomorphism of graphs $\Gamma_{J} \rightarrow \tilde{\Gamma}$.
Pf.

$$
\begin{align*}
S T \in E_{J} & \Leftrightarrow|S \cap T|=D-1 \tag{7.17}\\
& \Leftrightarrow \partial_{H}(\hat{S}, \hat{T})=2 \tag{7.18}\\
& \Leftrightarrow(\hat{S}, \hat{T}) \in \tilde{E} \tag{7.19}
\end{align*}
$$

Identify, Γ_{J} with $\tilde{\Gamma}$. Then the standard module V_{J} of Γ_{J} becomes $\tilde{V}=E_{D}^{*} V_{H}$, where V_{H} is the standard module of Γ_{H}, and $E_{D}^{*} \equiv E_{D}^{*}(x)$.

Let R be the raising matrix with respect to x in Γ_{H}, and
let L be the lowering matrix with respect to x in Γ_{H}.
Recall

$$
\left.\left(R L-D E_{D}^{*}\right)\right|_{\tilde{V}}
$$

is the adjacency map in $\tilde{\Gamma}$.
To find eigenvalues of \tilde{A}, pick any irreducible $T(x)$-module W with the endpoint $r \leq D$. Then by Theorem 5.1

$$
\operatorname{diam}(W)=N-2 r
$$

Let $w_{0}, w_{1}, \ldots, w_{N-2 r}$ denote a basis for W as in Theorem 5.1. Then,

$$
w_{D-r} \in E_{D}^{*} W \subseteq \tilde{V}
$$

Observe:

$$
\begin{align*}
\tilde{A} w_{D-r} & =R L w_{D-r}-D E_{D}^{*} w_{D-r} \tag{7.20}\\
& =R(N-2 r-D+r+1) w_{D-r-1}-D w_{D-r} \tag{7.21}\\
& =((N-D-r+1)(D-r)-D) w_{D-r} \tag{7.22}
\end{align*}
$$

Note that this is valid for $D=r$ as well.
Hence,

$$
\tilde{A} w_{D-r}=((N-D-r)(D-r)-r) w_{D-r}
$$

Let

$$
V_{H}=\sum W \quad(\text { direct sum of irreducible } T(x) \text {-modules })
$$

Then,

$$
\begin{align*}
V_{J} & =E_{D}^{*} V_{H} \tag{7.23}\\
& =\sum_{W: r(W) \leq D} E_{D}^{*} W \tag{7.24}\\
& =\text { a direct sum of } 1 \text { dimensional eigenspaces for } \tilde{A} \tag{7.25}
\end{align*}
$$

The eigenspace for eigenvalue

$$
(N-D-r)(D-r)-r \quad(\text { monotonously decreasing with respec to } r)
$$

appears with multiplicity

$$
\binom{N}{r}-\binom{N}{r-1}
$$

in this sum by Theorem 5.1 (iv).
Theorem 7.1. Let $\Gamma=(X, E)$ be any graph. For a fixed vertex $x \in X$, let

$$
E_{i}^{*} \equiv E_{i}^{*}(x), \quad T \equiv T(x), \quad D \equiv D(x), \text { and } K=\mathbb{C}
$$

Then we have the following implications of conditions:

$$
T H \Leftrightarrow C \Leftarrow S \Leftarrow G
$$

where
(TH) Γ is thin with respect to x.
(C) $E_{i}^{*} T E_{i}^{*}$ is commutative for every $i,(0 \leq i \leq D)$.
(S) $E_{i}^{*} T E_{i}^{*}$ is symmetric for every $i,(0 \leq i \leq D)$.
(G) For every $y, z \in X$ with $\partial(x, y)=\partial(x, z)$, there exists $g \in \operatorname{Aut}(\Gamma)$ such that

$$
g x=x, g y=z, g z=y
$$

Proof.
$(\mathrm{TH}) \Rightarrow(\mathrm{C})$
Fix i with $0 \leq i \leq D$. Let
$V=\sum W$. The standard module written as a direct sum of irreducible T-modules.
Then,

$$
E_{i}^{*} V=\sum E_{i}^{*} W . \text { The direct sum of 1-dimensional } E_{i}^{*} T E_{i}^{*} \text {-modules. }
$$

Since $\operatorname{dim} E_{i}^{*} W=1$, for $a, b \in E_{i}^{*} T E_{i}^{*}, a b-b a_{\mid E_{i}^{*} W}=0$. Hence $a b-b a=0$.
$(\mathrm{C}) \Rightarrow(\mathrm{TH})$
Suppose $\operatorname{dim} E_{i}^{*} W \geq 2$ for some irreducible T-module W with some i with $1 \leq i \leq D$.
Claim 1. $E_{i}^{*} W$ is an irreducible $E_{i}^{*} T E_{i}^{*}$-module.
Proof of Claim 1. Suppose

$$
0 \subsetneq U \subsetneq E_{i}^{*} W
$$

where U is an $E_{i}^{*} T E_{i}^{*}$-module. Then by the irreducibility,

$$
T U=W
$$

So,

$$
U \supseteq E_{i}^{*} T E_{i}^{*} U=E_{i}^{*} T U=E_{i}^{*} W
$$

This is a contradiction.
Claim 2. Each irreducible $S=E_{i}^{*} T E_{i}^{*}$-module U has dimension 1. In particular, Γ is thin with respect to x.
Proof of Claim 2. Pick

$$
0 \neq a \in E_{i}^{*} T E_{i}^{*} .
$$

Since \mathbb{C} is algebraically closed, a has an eigenvector $w \in U$ with eigenvalue θ. Then,

$$
\begin{align*}
(a-\theta I) U & =(a-\theta I) S w \tag{7.26}\\
& =S(a-\theta I) w \tag{7.27}\\
& =0 \tag{7.28}
\end{align*}
$$

Hence,

$$
a_{\mid U}=\theta I_{\mid U} \quad \text { for all } a \in S
$$

Thus each 1 dimensional subspace of U is an S-module. We have

$$
\operatorname{dim} U=1
$$

By Claim 1 and Claim 2, we have (TH).

HS MEMO

Claim 1 shows the following: If W is an irreducible T-module, then $E_{i}^{*} W$ is either 0 or an irreducible $E_{i}^{*} T E_{i}^{*}$-module.

Chapter 8

Thin Graphs

Friday, February 5, 1993
Proof of Theorem 7.1 continued.
$(\mathrm{S}) \Rightarrow(\mathrm{C})$
Fix i and pick $a, b \in E_{i}^{*} T E_{i}^{*}$.
Since a, b and $a b$ are symmetric,

$$
a b=(a b)^{\top}=b^{\top} a^{\top}=b a
$$

Hence $E_{i}^{*} T E_{i}^{*}$ is commutative.
$(\mathrm{G}) \Rightarrow(\mathrm{S})$
Fix i and pick $a \in E_{i}^{*} T E_{i}^{*}$. Pick vertices $y, z \in X$.
We want to show that

$$
a_{y z}=a_{z y} .
$$

We may assume that

$$
\partial(x, y)=\partial(x, z)=i
$$

otherwise

$$
a_{y z}=a_{z y}=0
$$

By our assumption, there exists $g \in G$ such that

$$
g(y)=z, \quad g(z)=y, \quad g(x)=x .
$$

Let \hat{g} denote the permutation matrix representing g, i.e.,

$$
\hat{g} \hat{y}=\widehat{g(y)} \quad \text { for all } y \in X, \quad \hat{y}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) \leftarrow y
$$

If $g \in \operatorname{Aut}(\Gamma)$, then

$$
\hat{g} A=A \hat{g} \quad(\text { Exercise })
$$

Also, we have

$$
\hat{g} E_{j}^{*}=E_{j}^{*} \hat{g} \quad(0 \leq j \leq D)
$$

since

$$
\partial(x, y)=\partial(g(x), g(y))=\partial(x, g(y))
$$

Hence, \hat{g} commutes with each element of T. We have

$$
\begin{align*}
a_{y z}= & \left(\hat{g}^{-1} a \hat{g}\right)_{y z}, \quad(\hat{g})_{y z}= \begin{cases}1 & g(z)=y \\
0 & \text { else. }\end{cases} \tag{8.1}\\
= & \sum_{y^{\prime}, z^{\prime}}\left(\hat{g}^{-1}\right)_{y y^{\prime}} a_{y^{\prime} z^{\prime}} \hat{g}_{z^{\prime} z} \tag{8.2}\\
& \left(\text { zero except for } g^{-1}\left(y^{\prime}\right)=y, g(z)=z^{\prime} .\right) \tag{8.3}\\
= & a_{g(y) g(z)} \tag{8.4}\\
= & a_{z y} \tag{8.5}
\end{align*}
$$

This proves Theorem 7.1.

Open Problem: Find all the graphs that satisfy the condition (G) for every vertex x.
$H(N, 2)$ is one example, because

$$
\operatorname{Aut} \Gamma_{1 \cdots 1} \simeq S_{\Omega}, \quad x=(1 \cdots 1), \quad \Gamma_{i}(x)=\{\hat{S}| | S \mid=i\}
$$

Property (G) is clearly related to the distance-transitive property.
Definition 8.1. Let $\Gamma=(X, E)$ be any graph. Γ with $G \subseteq \operatorname{Aut}(\Gamma)$ is said to be distance-transitive (or two-point homogeneous), whenever

$$
\text { for all } x, x^{\prime}, y, y^{\prime} \in X \text { with } \partial(x, y)=\partial\left(x^{\prime}, y^{\prime}\right)
$$

there exists $g \in G$ such that

$$
g(x)=x^{\prime}, \quad g(y)=y^{\prime}
$$

(This means G is as close to being doubly transitive as possible.)
Lemma 8.1. Suppose a graph $\Gamma=(X, E)$ satisfies the property $(G)=(G(x))$ for every $x \in X$. Then,
(i) either
(ia) Γ is vertex transitive; or
(iia) Γ is bipartite $\left(X=X^{+} \cup X^{-}\right)$with X^{+}, X^{-}each an orbit of $\operatorname{Aut}(\Gamma)$.
(ii) if (ia) holds, then Γ is distance-transitive.

Proof. (i) Claim. Suppose $y, z \in X$ are conneced by a path of even length. Then y, z are in the same orbit of $\operatorname{Aut}(\Gamma)$.

Pf of Claim. It suffices to assume that the path has lenght $2, y \sim w \sim z$.
Now $\partial(y, w)=\partial(w, z)=1$. So there exits $g \in \operatorname{Aut}(\Gamma)$ such that

$$
g w=w, \quad g y=z, \quad g z=y
$$

This proves Claim.
Fix $x \in X$. Now suppose that Γ is not vertex transitive, and we shall show (ib).
Observe that $X=X^{+} \cup X^{-}$, where

$$
\begin{align*}
& X^{+}=\{y \in X \mid \text { there exists a path of even length connecting } x \text { and } y\} \tag{8.6}\\
& X^{-}=\{y \in X \mid \text { there exists a path of odd length connecting } x \text { and } y\} . \tag{8.7}
\end{align*}
$$

Also, X^{+}is contained in an orbit O^{+}of $\operatorname{Aut}(\Gamma)$, and X^{-}is contained in an orbit O^{-}of $\operatorname{Aut}(\Gamma)$.
Now $O^{+} \cap O^{-}=\emptyset$ (else $O^{+}=O^{-}=X$ and vertex transitive). So, $X=O^{+}$, and $X^{-}=O^{-}$.

Also $X^{+} \cup X^{-}=X$ is a bipartition by construction.
(ii) Fix $x, y, x^{\prime}, y^{\prime}$ with $\partial(x, y)=\partial\left(x^{\prime}, y^{\prime}\right)$.

By vertex transitivity, there exists an element

$$
g_{1} \in G \text { such that } g_{1} x=x^{\prime} .
$$

Observe that

$$
\partial\left(x^{\prime}, y^{\prime}\right)=\partial(x, y)=\partial\left(g_{1} x, g_{1} y\right)=\partial\left(x^{\prime}, g_{1} y\right)
$$

Hence, there exisits an element

$$
g_{2} \in G \text { such that } g_{1} x^{\prime}=x^{\prime}, g_{2} y^{\prime}=g_{1} y, g_{2} g_{1} y=y^{\prime}
$$

by $\left(\mathrm{G}\left(x^{\prime}\right)\right)$ property.
Set $g=g_{2} g_{1}$. Then

$$
g x=x^{\prime}, g y=y^{\prime}
$$

by construction.
The following graphs $\Gamma=(X, E)$ are vertex transitive, and satisfy the property $(\mathrm{G}(x))$ for all $x \in X$.

$$
J(D, N), \quad H(D, r), \quad J_{q}(D, N)
$$

where
$H(D, r)$:

$$
\begin{align*}
X= & \left\{a_{1} \cdots a_{D} \mid a_{i} \in F, 1 \leq i \leq D\right\} \tag{8.8}\\
& F: \text { any set of cardinality } r \tag{8.9}\\
E= & \{x y \mid y, x \in X, x \text { and } y \text { differ in exactly one coordiate }\} . \tag{8.10}
\end{align*}
$$

$J_{q}(D, N):$
$X=$ the set of all D-dimensional subspaces of N-dimensional vector space over $G F(q)$.
F : any set of cardinality r
$E=\{x y \mid y, x \in X, \operatorname{dim}(x \cap y)=D-1\}$.

The following graph is distance-transitive but does not satisify $(\mathrm{G}(x))$ for any $x \in G$.
$H_{q}(D, N)$:

$$
\begin{align*}
X & =\text { the set of all } D \times N \text { matrices with entries in } G F(q) . \tag{8.14}\\
E & =\{x y \mid y, x \in X, \operatorname{rank}(x-y)=1\} . \tag{8.15}
\end{align*}
$$

HS MEMO

$H(D, r): G=S_{r} \mathrm{wr} S_{D}, G_{x}=S_{r-1} \mathrm{wr} S_{D}$,
For $x, y \in X$ with $\partial(x, y)=\partial(x, z)=i$,

$$
\begin{align*}
Y=\left\{j \in \Omega \mid x_{j} \neq y_{j}\right\} & \leftrightarrow Z=\left\{j \in \Omega \mid x_{j} \neq z_{j}\right\} \tag{8.16}\\
\left(y_{j_{1}}, \ldots, y_{j_{i}}\right) & \leftrightarrow\left(z_{\ell_{1}}, \ldots, z_{\ell_{i}}\right) \tag{8.17}
\end{align*}
$$

$J(D, N): G=S_{N}, G_{x}=S_{D} \times S_{N-D}$.

$$
\begin{gather*}
X \cap Y \leftrightarrow X \cap Z \tag{8.18}\\
(\Omega \quad X) \cap Y \leftrightarrow(\Omega \quad X) \cap Z . \tag{8.19}
\end{gather*}
$$

$J_{q}(D, N):$

$$
X \cap Y \leftrightarrow X \cap Z
$$

The theory of a single thin irreducible T-module.
Let $\Gamma=(X, E)$ be any graph.
$M=$ Bose-Mesner algebra over K / \mathbb{C} generated by the adjacency matrix A.
$=\operatorname{Span}\left(E_{0}, \ldots, E_{R}\right)$.
M acts on the standard module $V=\mathbb{C}^{|X|}$.
Fix $x \in X$, let $D \equiv D(x)$ be the x-diameter, and $k=k(x)$ be the valency of x.

Chapter 9

Thin T-Module, I

Monday, February 8, 1993

Let $\Gamma=(X, E)$ be any graph.
M : Bose-Mesner algebra over K / \mathbb{C} generated by the adjacency matrix A.

$$
M=\operatorname{Span}\left(E_{0}, \ldots, E_{R}\right)
$$

M acts on the standard module $V=\mathbb{C}^{|X|}$.
Fix $x \in X$, let $D \equiv D(x)$ be the x-diameter, and $k=k(x)$ be the valency of x.
Definition 9.1. Pick $x \in X$ and write $E_{i}^{*} \equiv E_{i}^{*}(x)$ and $T \equiv T(x)$.
Let W be an irreducible thin T-module with endpoint r, diameter d.
Let $a_{i}=a_{i}(W) \in \mathbb{C}$ satisfying

$$
\left.E_{r+i}^{*} A E_{r+i}^{*}\right|_{E_{r+i}^{*} W}=\left.a_{i} 1\right|_{E_{r+i}^{*}} \quad(0 \leq i \leq d)
$$

Let $x_{i}=x_{i}(W) \in \mathbb{C}$ satisfying

$$
\left.E_{r+i-1}^{*} A E_{r+i}^{*} A E_{r+i-1}^{*}\right|_{E_{r+i-1}^{*} W}=\left.x_{i} 1\right|_{E_{r+i-1}^{*}} \quad(0 \leq i \leq d)
$$

Lemma 9.1. With above notation, the following hold.
(i) $a_{i} \in \mathbb{R} \quad(0 \leq i \leq d)$.
(ii) $x_{i} \in \mathbb{R}^{>0} \quad(0 \leq i \leq d)$.
(iii) Pick $0 \neq w_{0} \in E_{r}^{*} W$. Set $w_{i}=E_{r+i}^{*} A^{i} w_{0}$ for all i. Then
(iiia) $w_{0}, w_{1}, \ldots, w_{d}$ is a basis for $W, w_{-1}=w_{d+1}=0$.
(iiib) $A w_{i}=w_{i+1}+a_{i} w_{i}+x_{i} w_{i-1} \quad(0 \leq i \leq d)$.
(iv) Define $p_{0}, p_{1}, \ldots, p_{d+1} \in \mathbb{R}[\lambda]$ by

$$
\begin{aligned}
& p_{0}=1, \quad \lambda p_{i}=p_{i+1}+a_{i} p_{i}+x_{i} p_{i-1} \quad(0 \leq i \leq d), \quad p_{-1}=0 . \\
& \text { (iva) } p_{i}(A) w_{0}=w_{i}, \quad(0 \leq i \leq d+1) . \\
& \text { (ivb) } p_{d+1} \text { is the minimal polynomial of }\left.A\right|_{W} .
\end{aligned}
$$

Proof. (i) a_{i} is an eigenvalue of a real symmetric matrix $E_{r+i}^{*} A E_{r+i}^{*}$.
(ii) x_{i} is an eigenvalue of a real symmetrix matrix $B^{\top} B$, where

$$
B=E_{r+i}^{*} A E_{r+i-1}^{*} .
$$

Hence, $x_{i} \in \mathbb{R}$.
Since $B^{\top} B$ is positive semidefinite,

$$
x_{i} \geq 0 .
$$

Pf. If $B^{\top} B v=\sigma v$ for some $\sigma \in \mathbb{R}, v \in \mathbb{R}^{m} \quad\{0\}$, then

$$
0 \leq\|B v\|^{2}=v^{\top} B^{\top} B v=\sigma v^{\top} v=\sigma\|v\|^{2}, \quad\|v\|^{2}>0 .
$$

Hence, $\sigma \geq 0$.
Moreover, $x_{i} \neq 0$ by Lemma 4.1 (iv).
(iiia) Observe

$$
w_{i}=E_{r+i}^{*} A E_{r+i-1}^{*} w_{i-1} \quad(1 \leq i \leq d) .
$$

So $w_{i} \neq 0 \quad(0 \leq i \leq d)$ by Lemma 4.1 (iv).
Hence,

$$
W=\operatorname{Span}\left(w_{0}, \ldots, w_{d}\right)
$$

by Lemma 4.1. (iii).
(iiib) We have that

$$
\begin{align*}
A w_{i} & =E_{r+i+1}^{*} A w_{i}+E_{r+i}^{*} A w_{i}+E_{r+i-1}^{*} A w_{i} \tag{9.1}\\
& =w_{i+1}+E_{r+i}^{*} A E_{r+i}^{*} w_{i}+E_{r+i-1}^{*} A E_{r+i}^{*} A E_{r+i-1}^{*} w_{i-1} \tag{9.2}\\
& =w_{i+1}+a_{i} w_{i}+x_{i} w_{i-1} . \tag{9.3}
\end{align*}
$$

(iva) Clear for $i=0$. Assume it is valid for $0, \ldots, i$.

$$
p_{i+1}(A) w_{0}=\left(A-a_{i} I\right) w_{i}-x_{i} w_{i-1}=w_{i+1} .
$$

(ivb) By definition,

$$
p_{d+1}(A) w_{0}=0
$$

Moreover, $p_{d+1}(A) W=0$ because of the following.

For every $w \in W$, write

$$
\begin{array}{rlrl}
w & =\sum_{i=0}^{d} \alpha_{i} w_{i} & \\
& =\sum_{i=0}^{d} \alpha_{i} p_{i}(A) w_{0} & & \text { for some } \alpha_{i} \in \mathbb{C} \\
& =p(A) w_{0} & & \text { for some } p \in \mathbb{C}[\lambda] . \tag{9.6}
\end{array}
$$

Hence,

$$
\begin{align*}
p_{d+1}(A) w & =p_{d+1}(A) p(A) w_{0} \tag{9.7}\\
& =p(A) p_{d+1}(A) w_{0} \tag{9.8}\\
& =0 \tag{9.9}
\end{align*}
$$

Note that p_{d+1} is the minimal polynomial.
Pf. Suppose $q(A) W=0$ for some $0 \neq q \in \mathbb{C}[\lambda]$ with $\operatorname{deg} q<\operatorname{deg} p_{d+1}=d+1$. Then,

$$
q=\sum_{i=0}^{d} \beta_{i} p_{i} \quad \text { for some } \beta_{i} \in \mathbb{C}
$$

We have,

$$
0=q(A) w_{0}=\sum_{i=0}^{d} \beta_{i} w_{i}
$$

Hence $\beta_{0}=\cdots=\beta_{d}=0$ by (iiia). Thus $q=0$, and a contradiction.
Corollary 9.1. Let Γ, W, r, d be as above. Then
(i) W is dual thin, that is,

$$
\operatorname{dim} E_{i} W \leq 1 \quad(1 \leq i \leq d)
$$

(ii) $d=\left|\left\{i \mid E_{i} W \neq 0\right\}\right|-1$.

Proof. (i) Set as in Lemma 9.1,

$$
w_{i}=p_{i}(A) w_{0} \in E_{r+i}^{*} W
$$

Then $w_{0}, w_{1}, \ldots, w_{d}$ is a basis for W. We have

$$
W=M w_{0}
$$

So,

$$
E_{i} W=E_{i} M w_{0}=\operatorname{Span}\left(E_{i} w_{0}\right)
$$

Thus,

$$
\operatorname{dim} E_{i} W= \begin{cases}1 & \text { if } E_{i} w_{0} \neq 0 \\ 0 & \text { if } E_{i} w_{0}=0\end{cases}
$$

In particular,

$$
\operatorname{dim} E_{i}^{*} W \leq 1
$$

(ii) Immediate as

$$
\operatorname{dim} W=d+1
$$

This proves the lemma.
Lemma 9.2. Given an irreducible $T(x)$-module W with endpoint $r=r(W)$, diameter $d=d(W)$. Write
$x_{i}=x_{i}(W)(0 \leq i \leq d), \quad w_{i}=p_{i}(A) w_{0} \in E_{r+i}^{*} W(0 \leq i \leq d), \quad 0 \neq w_{0} \in E_{r}^{*} W$.
Then,

$$
\frac{\left\|w_{i}\right\|^{2}}{\left\|w_{0}\right\|^{2}}=x_{1} x_{2} \cdots x_{i} \quad(1 \leq i \leq d)
$$

Proof. It suffices to show that

$$
\left\|w_{i}\right\|^{2}=x_{i}\left\|w_{i-1}\right\|^{2} \quad(1 \leq i \leq d)
$$

Recall by Lemma 9.1 (iiib) that

$$
A w_{j}=w_{j+1}+a_{j} w_{j}+x_{j} w_{j-1} \quad(0 \leq j \leq d), \quad w_{-1}=w_{d+1}=0
$$

Now observe,

$$
\begin{align*}
\left\langle w_{i-1}, A w_{i}\right\rangle & =\left\langle w_{i-1}, w_{i+1}+a_{i} w_{i}+x_{i} w_{i-1}\right\rangle \tag{9.10}\\
& =\overline{x_{i}}\left\|w_{i-1}\right\|^{2} \tag{9.11}\\
& =x_{i}\left\|w_{i-1}\right\|^{2} \tag{9.12}
\end{align*}
$$

by Lemma 9.1 (ii). Also,

$$
\begin{align*}
\left\langle w_{i-1}, A w_{i}\right\rangle & =\left\langle A w_{i-1}, w_{i}\right\rangle \quad\left(\text { since } \bar{A}^{\top}=A\right) \tag{9.13}\\
& =\left\langle w_{i}+a_{i-1} w_{i-1}+x_{i-1} w_{i-2}, w_{i}\right\rangle \tag{9.14}\\
& =\left\|w_{i}\right\|^{2} . \tag{9.15}
\end{align*}
$$

This proves the lemma.
Definition 9.2. Let W be an irreducible thin $T(x)$ module with endpoint r, $E_{i}^{*} \equiv E_{i}^{*}(x)$.
The measure $m=m_{W}$ is the function

$$
m: \mathbb{R} \rightarrow \mathbb{R}
$$

such that

$$
m(\theta)= \begin{cases}\frac{\left\|E_{i} w\right\|^{2}}{\|w\|^{2}} & \text { where } 0 \neq w \in E_{r}^{*} W \\ & \text { if } \theta=\theta_{i} \text { is an eigenvalue for } \Gamma \\ 0 & \text { if } \theta \text { is not an eigenvalue for } \Gamma\end{cases}
$$

Chapter 10

Thin T-Module, II

Wednesday, February 10, 1993

Let $\Gamma=(X, E)$ be any graph.
Fix a vertex $x \in X$. Let $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x)$, the subconstituent algebra over \mathbb{C}, and $V=\mathbb{C}^{|X|}$ the standard module.

Lemma 10.1. With above notation, let W denote a thin irreducible $T(x)$-module with endpoint r and diameter d. Let

$$
\begin{array}{ll}
a_{i}=a_{i}(W) & (0 \leq i \leq d) \\
x_{i}=x_{i}(W) & (1 \leq i \leq d) \\
p_{i}=p_{i}(W) & (0 \leq i \leq d+1) \tag{10.3}
\end{array}
$$

be from Lemma 9.1, and measure $m=m_{W}$. Then,
(i) p_{0}, \ldots, p_{d+1} are orthogonal with respect to m, i.e.,

$$
\sum_{\theta \in \mathbb{R}} p_{i}(\theta) p_{j}(\theta) m(\theta)=\delta_{i j} x_{1} x_{2} \cdots x_{i} \quad(0 \leq i, j \leq d+1) \text { with } x_{d+1}=0
$$

(ia) $\sum_{\theta \in \mathbb{R}} p_{i}(\theta)^{2} m(\theta)=x_{1} \cdots x_{i} \quad(0 \leq i \leq d)$.
(iia) $\sum_{\theta \in \mathbb{R}} m(\theta)=1$.
(iiia) $\sum_{\theta \in \mathbb{R}} p_{i}(\theta)^{2} \theta m(\theta)=x_{1} \cdots x_{i} a_{i} \quad(0 \leq i \leq d)$.
Proof. Pick $0 \neq w_{0} \in E_{r}^{*} W$. Set

$$
w_{i}=p_{i}(A) w_{0} \in E_{r+i}^{*} W
$$

Since $E_{i}^{*} W$ and $E_{j}^{*} W$ are orthogonal if $i \neq j$,

$$
\begin{align*}
\delta_{i j}\left\|w_{i}\right\|^{2} & =\left\langle w_{i}, w_{j}\right\rangle \tag{10.4}\\
& =\left\langle p_{i}(A) w_{0}, p_{j}(A) w_{0}\right\rangle \tag{10.5}\\
& =\left\langle p_{i}(A)\left(\sum_{\ell=0}^{R} E_{\ell}\right) w_{0}, p_{j}(A)\left(\sum_{\ell=0}^{R} E_{\ell}\right) w_{0}\right\rangle \tag{10.6}\\
& =\left\langle\sum_{\ell=0}^{R} p_{i}\left(\theta_{\ell}\right) E_{\ell} w_{0}, \sum_{\ell=0}^{R} p_{j}\left(\theta_{\ell}\right) E_{\ell} w_{0}\right\rangle \tag{10.7}\\
& =\sum_{\ell=0}^{R} p_{i}\left(\theta_{\ell}\right) \overline{p_{j}\left(\theta_{\ell}\right)}\left\|E_{\ell} w_{0}\right\|^{2} \tag{10.8}\\
& =\sum_{\theta \in \mathbb{R}} p_{i}(\theta) p_{j}(\theta) m(\theta)\left\|w_{0}\right\|^{2} . \tag{10.9}
\end{align*}
$$

Now we are done by Lemma 9.2 as

$$
\left\|w_{i}\right\|^{2}=\left\|w_{0}\right\|^{2} x_{1} x_{2} \ldots x_{i}
$$

For $(i a)$, set $i=j$, and for $(i b)$, set $i=j=0$.
(ii) We have

$$
\begin{align*}
\left\langle w_{i}, A w_{i}\right\rangle & =\left\langle w_{i}, w_{i+1}+a_{i} w_{i}+x_{i} w_{i-1}\right\rangle \tag{10.11}\\
& =\overline{a_{i}}\left\|w_{i}\right\|^{2} \tag{10.12}\\
& =a_{i} x_{1} \cdots x_{i}\left\|w_{0}\right\|^{2}, \tag{10.13}
\end{align*}
$$

as $a_{i} \in \mathbb{R}$ by Lemma 9.1.
Also,

$$
\begin{align*}
\left\langle w_{i}, A w_{i}\right\rangle & =\left\langle p_{i}(A) w_{0}, A p_{i}(A) w_{0}\right\rangle \tag{10.14}\\
& =\left\langle p_{i}(A)\left(\sum_{\ell=0}^{R} E_{\ell}\right) w_{0}, A p_{i}(A)\left(\sum_{\ell=0}^{R} E_{\ell}\right) w_{0}\right\rangle \tag{10.15}\\
& =\sum_{\ell=0}^{D} p_{i}\left(\theta_{\ell}\right)^{2} \theta_{\ell}\left\|E_{\ell} w_{0}\right\|^{2} \tag{10.16}\\
& =\sum_{\theta \in \mathbb{R}} p_{i}(\theta)^{2} \theta m(\theta)\left\|w_{0}\right\|^{2} . \tag{10.17}
\end{align*}
$$

Thus, we have (ii).

Lemma 10.2. With above notation, let W be a thin irreducible $T(x)$-module with measure m. Then m determines diameter $d(W)$,

$$
\begin{array}{ll}
a_{i}=a_{i}(W) & (0 \leq i \leq d) \\
x_{i}=x_{i}(W) & (1 \leq i \leq d) \\
p_{i}=p_{i}(W) & (0 \leq i \leq d+1) \tag{10.20}
\end{array}
$$

Proof. Note that $d+1$ is the number of $\theta \in \mathbb{R}$ such that $m(\theta) \neq 0$. Hence m determines d.

Apply (ia), (ii) of Lemma 10.1.

$$
\begin{array}{ll}
\sum_{\theta \in \mathbb{R}} m(\theta)=1 & p_{0}=1 . \\
\sum_{\theta \in \mathbb{R}} \theta m(\theta)=a_{0} & p_{1}=\lambda-a_{0} \\
\sum_{\theta \in \mathbb{R}} p_{1}(\theta)^{2} m(\theta)=x_{1} & \\
\sum_{\theta \in \mathbb{R}} p_{1}(\theta)^{2} \theta m(\theta)=x_{1} a & \rightarrow a_{1} \\
p_{2}=\left(\lambda-a_{1}\right) p_{1}-x_{1} p_{0} & \\
\sum_{\theta \in \mathbb{R}} p_{2}(\theta)^{2} m(\theta)=x_{1} x_{2} & \rightarrow x_{2} \\
\sum_{\theta \in \mathbb{R}} p_{2}(\theta)^{2} \theta m(\theta)=x_{1} x_{2} a_{2} & \rightarrow a_{2} \\
p_{3}=\left(\lambda-a_{2}\right) p_{2}-x_{2} p_{1} & \\
\vdots & \rightarrow x_{d} \\
\sum_{\theta \in \mathbb{R}} p_{d}(\theta)^{2} m(\theta)=x_{1} x_{2} \cdots x_{d} & \rightarrow a_{d} \\
\sum_{\theta \in \mathbb{R}} p_{d}(\theta)^{2} \theta m(\theta)=x_{1} x_{2} \cdots x_{d} a_{d} & \\
p_{d+1}=\left(\lambda-a_{d}\right) p_{d}-x_{d} p_{d-1} & \tag{10.32}
\end{array}
$$

This proves the assertions.
Corollary 10.1. With above notation, let W, W^{\prime} denote thin irreducible $T(x)$ modules. The following are equivalent.
(i) W, W^{\prime} are isomorphic as T-modules.
(ii) $r(W)=r\left(W^{\prime}\right)$ and $m_{W}=m_{W^{\prime}}$.
(iii) $r(W)=r\left(W^{\prime}\right), d(W)=d\left(W^{\prime}\right), a_{i}(W)=a_{i}\left(W^{\prime}\right)$ and $x_{i}(W)=x_{i}\left(W^{\prime}\right)$ ($0 \leq i \leq d$).

Proof. $(i) \Rightarrow($ iii $)$ Write $r \equiv r(W), r^{\prime} \equiv r\left(W^{\prime}\right), d \equiv d(W), d^{\prime} \equiv d\left(W^{\prime}\right)$, $a_{i} \equiv a_{i}(W), a_{i}^{\prime} \equiv a_{i}\left(W^{\prime}\right), x_{i} \equiv x_{i}(W)$ and $x_{i}^{\prime} \equiv x_{i}\left(W^{\prime}\right)$.
Let $\sigma: W \rightarrow W^{\prime}$ denote an isomorphism of T-modules. (See Definition 5.1.)
For every i,

$$
\sigma E_{i}^{*} W=E_{i}^{*} \sigma W=E_{i}^{*} W^{\prime}
$$

So, $r=r^{\prime}$ and $d=d^{\prime}$.
To show $a_{i}=a_{i}^{\prime}$, pick $w \in E_{r+i}^{*} W \quad\{0\}$. Then,

$$
E_{r+i}^{*} A E_{r+i}^{*} \sigma(W)=\sigma\left(E_{r+i}^{*} A E_{r+i}^{*} w\right)=\sigma\left(a_{i} w\right)=a_{i} \sigma(w)
$$

and $\sigma w \neq 0$. So,

$$
\begin{align*}
a_{i} & =\text { eigenvalue of } E_{r+i}^{*} A E_{r+i}^{*} \text { on } E_{r+i}^{*} W \tag{10.34}\\
& =a_{i}^{\prime} \tag{10.35}
\end{align*}
$$

It is similar to show $x=x^{\prime}$.

HS MEMO

Pick $w \in E_{r+i-1}^{*} W \quad\{0\}$, then

$$
E_{r+i-1}^{*} A E_{r+i}^{*} A E_{r+i-1}^{*} \sigma(W)=\sigma\left(E_{r+i-1}^{*} A E_{r+i}^{*} A E_{r+i-1}^{*} w\right)=x_{i} \sigma(w)
$$

Hence, x_{i} is the eigenvalue of $E_{r+i-1}^{*} A E_{r+i}^{*} A E_{r+i-1}^{*}$ on $E_{r+i-1}^{*} W=x_{i}^{\prime}$.
$(i i i) \Rightarrow(i)$
Pick $0 \neq w_{0} \in E_{r}^{*} W, 0 \neq w_{0}^{\prime} \in E_{r}^{*} W^{\prime}$. Let p_{i} be in Lemma 9.1, and set

$$
\begin{array}{ll}
w_{i}=p_{i}(A) w_{0} \in E_{r+i}^{*} W & (0 \leq i \leq d) \\
w_{i}^{\prime}=p_{i}^{\prime}(A) w_{0}^{\prime} \in E_{r+i}^{*} W & (0 \leq i \leq d) \tag{10.37}
\end{array}
$$

Define a linear transformation,

$$
\sigma: W \rightarrow W^{\prime} \quad\left(w_{i} \mapsto w_{i}^{\prime}\right)
$$

Since $\left\{w_{i}\right\}$ and $\left\{w_{i}^{\prime}\right\}$ are bases with $d=d^{\prime}, \sigma$ is an isomorphism of vector spaces.
We need to show

$$
a \sigma=\sigma a \quad(\text { for all } a \in T)
$$

Take $a=E_{j}^{*}$ for some $j(0 \leq j \leq d(x))$. Then for all i, we have

$$
\begin{gathered}
E_{j}^{*} \sigma w_{i}=E_{j}^{*} w_{i}^{\prime}=\delta_{i j} w_{i}^{\prime} \\
\sigma E_{j}^{*} w_{i}=\delta_{i j} \sigma\left(w_{i}\right)=\delta_{i j} w_{i}^{\prime} \\
E_{j}^{*} \sigma w_{i}=\sigma E_{j}^{*} w_{i} ?
\end{gathered}
$$

Take an adjacency matrix A of a. Then,

$$
A \sigma w_{i}=A w_{i}^{\prime}=w_{i+1}^{\prime}+a_{i}^{\prime} w_{i}^{\prime}+x_{i}^{\prime} w_{i-1}^{\prime}=\sigma\left(w_{i+1}+a_{i} w_{i}+x_{i} w_{i-1}\right)=\sigma A w_{i} .
$$

(ii) \Rightarrow (iii) Lemma 10.2.
$($ iii $) \Rightarrow(i i)$ Given d, a_{i}, x_{i}, we can compute the polynomial sequence

$$
p_{0}, p_{1}, \ldots, p_{d+1}
$$

for W.
Show $p_{0}, p_{1}, \ldots, p_{d+1}$ determines $m=m_{W}$. Set

$$
\Delta=\left\{\theta \in \mathbb{R} \mid p_{d+1}(\theta)=0\right\} .
$$

Observe: $|\Delta|=d+1$. See 'An Introcuction to Interlacing'.
$m(\theta)=0$ if $\theta \notin \Delta \quad(\theta \in \mathbb{R})$. So it suffices to find $m(\theta), \theta \in \Delta$.
By Lemma 10.1 (i),

$$
\left\{\begin{array}{cc}
\sum_{\theta \in \Delta} m(\theta) p_{0}(\theta) & =1 \\
\sum_{\theta \in \Delta} m(\theta) p_{1}(\theta) & =0 \\
\vdots & \\
\sum_{\theta \in \Delta} m(\theta) p_{d}(\theta) & =0
\end{array}\right.
$$

$d+1$ linear equation with $d+1$ unknowns $m(\theta)(\theta \in \Delta)$.
But the coefficient matrix is essentially Vander Monde (since $\operatorname{deg} p_{i}=i$). Hence the system is nonsingular and there are unique values for $m(\theta)(\theta \in \Delta)$.

HS MEMO

$$
\left(\begin{array}{ccccc}
\theta-a_{0} & -1 & \cdots & 0 & 0 \\
-x_{1} & \theta-a_{1} & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \theta-a_{d-1} & -1 \\
0 & 0 & \cdots & -x_{d} & \theta-a_{d}
\end{array}\right)\left(\begin{array}{c}
p_{0}(\theta) \\
\vdots \\
\vdots \\
\vdots \\
p_{d}(\theta)
\end{array}\right)=0
$$

where θ is an eigenvalue of a diagonalizable matrix

$$
L=\left(\begin{array}{ccccc}
a_{0} & 1 & \cdots & 0 & 0 \\
x_{1} & a_{1} & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & a_{d-1} & 1 \\
0 & 0 & \cdots & x_{d} & \theta a_{d}
\end{array}\right)
$$

with multiplicity $\operatorname{dim}(\operatorname{Ker}(\theta I-L)=1)$.

Chapter 11

Examples of T-Module

Friday, February 12, 1993
Let $\Gamma=(X, E)$ be a connected graph.
Let θ_{0} be the maximal eigenvalue of Γ, and δ its corresponding eigenvector.

$$
\delta=\sum_{y \in X} \delta_{y} \hat{y}
$$

Without loss of generality, we may assume that $\delta_{y} \in \mathbb{R}^{*}$ for all $y \in X$.
Lemma 11.1. Fix a vertex $x \in X$. Write $T \equiv T(x), E_{i}^{*} \equiv E_{i}^{*}(x)$.
(i) $T \delta=T \hat{x}$ is an irreducible T-module.
(ii) Given any irreducible T-module W, the following are equivalent:
(iia) $W=T \delta$.
(iib) The diameter $d(W)=d(x)$.
(iic) The endpoint $r(W)=0$.
Proof. (i) Observe: there exists an irreducible T-module W that contains δ.
Let $V=\sum_{i} W_{i}$ be a direct sum decomposition of the standard module. Then

$$
\operatorname{Span}(\delta)=E_{0} V=\sum_{i} E_{0} W_{i}
$$

So, $E_{0} W_{i} \neq 0$ for some i. Then,

$$
\delta \in E_{0} W_{i} \subseteq W_{i}
$$

Observe: $T \delta$ is an irreducible T-module.
Since $\delta \in W$, where W is a T-module. As $T \delta \subseteq W$ and W is irreducible, $T \delta=W$.

Observe: $T \delta=T \hat{x}$.
Since $\hat{x}=\delta_{x}^{-1} E_{0}^{*} \delta \in T \delta, T \hat{x} \subseteq T \delta$. Since $T \delta$ is irreducible, $T \hat{x}=T \delta$.
$($ ii) $)(a) \rightarrow(b)$:

$$
E_{i}^{*} \delta=\sum_{y \in X, \partial(x, y)=i} \delta_{y} \hat{y} \neq 0, \quad(0 \leq i \leq d(x))
$$

because $\delta_{y}>0$ for every $y \in X$.
Hence,

$$
E_{i}^{*} T \delta \neq 0, \quad(0 \leq i \leq d(x))
$$

Thus, $d(x)=d(W)$.
$(b) \rightarrow(c):$ Immediate.
$(c) \rightarrow(a):$ Since $r(W)=0, E_{0}^{*} W \neq 0$. Hence, $\hat{x} \in W$ and $T \hat{x} \subseteq W$.
By the irreduciblity, we have $T \hat{x}=W$.

Lemma 11.2. Assume Γ is bipartite $\left(X=X^{+} \cup X^{-}\right)\left(X^{+}\right.$and X^{-}are nonempty). Then the following are equivalent.
(i) There exist α^{+}and $\alpha^{-} \in \mathbb{R}$ such that

$$
\delta_{x}= \begin{cases}\alpha^{+} & \text {if } x \in X^{+} \\ \alpha^{-} & \text {if } x \in X^{-}\end{cases}
$$

(ii) There exist k^{+}and $k^{-} \in \mathbb{Z}^{>0}$ such that

$$
k(x)= \begin{cases}k^{+} & \text {if } x \in X^{+} \\ k^{-} & \text {if } x \in X^{-}\end{cases}
$$

In this xase, $k^{+} k^{-}=\theta_{0}^{2}$, and Γ is called bi-regular.

Proof. $(i) \rightarrow(i i)$

$$
\begin{align*}
A \delta & =A\left(\alpha^{+} \sum_{x \in X^{+}} \hat{x}+\alpha^{-} \sum_{y \in X^{-}} \hat{y}\right) \tag{11.1}\\
& =\alpha^{+} \sum_{y \in X^{-}} k(y) \hat{y}+\alpha^{-} \sum_{x \in X^{+}} k(x) \hat{x} \tag{11.2}\\
& =\theta_{0} \delta . \tag{11.3}
\end{align*}
$$

So,

$$
k(x) \alpha^{-}=\theta_{0} \alpha^{+}, \quad k(y) \alpha^{+}=\theta_{0} \alpha^{-} .
$$

As $\alpha^{+} \neq 0$ and $\alpha^{-} \neq 0$,

$$
\begin{align*}
& k^{+}:=k(x) \text { is independent of the choice of } x \in X^{+}, \text {and } \tag{11.4}\\
& k^{-}:=k(y) \text { is independent of the choice of } y \in X^{-} . \tag{11.5}
\end{align*}
$$

Moreover, $k^{+} k^{-}=\theta_{0}^{2}$.
(ii) \rightarrow (i) Set

$$
\delta^{\prime}=\sum_{y \in X} \alpha_{y} \hat{y} \quad \text { where } \alpha= \begin{cases}1 / \sqrt{k^{-}} & \text {if } y \in X^{+} \\ 1 / \sqrt{k^{+}} & \text {if } y \in X^{-}\end{cases}
$$

Then one checks

$$
\begin{align*}
A \delta^{\prime} & =A\left(\frac{1}{\sqrt{k^{-}}} \sum_{y \in X^{+}} \hat{y}+\frac{1}{\sqrt{k^{+}}} \sum_{y \in X^{-}} \hat{y}\right) \tag{11.6}\\
& =\frac{k^{-}}{\sqrt{k^{-}}} \sum_{y \in X^{-}} \hat{y}+\frac{k^{+}}{\sqrt{k^{+}}} \sum_{y \in X^{+}} \hat{y} \tag{11.7}\\
& =\sqrt{k^{+} k^{-}} \delta^{\prime} \tag{11.8}
\end{align*}
$$

Since $\delta^{\prime}>0, \delta^{\prime} \in \operatorname{Span}(\delta)$, and $\theta_{0}=\sqrt{k^{+} k^{-}}$.
Definition 11.1. For any graph $\Gamma=(X, E)$, fix a vertex $x \in X$. Set $d=d(x)$. Γ is distance-regular with respect to x, if for all $i:(0 \leq i \leq d)$, and all $y \in X$ such that $\partial(x, y)=i$:

$$
\begin{align*}
c_{i}(x) & :=|\{z \in X \mid \partial(x, z)=i-1, \partial(y, z)=1\}|, \tag{11.9}\\
a_{i}(x) & :=|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=1\}| \tag{11.10}\\
b_{i}(x) & :=|\{z \in X \mid \partial(x, z)=i+1, \partial(y, z)=1\}| \tag{11.11}
\end{align*}
$$

depends only on i, x, and not on y.
(In this case, $c_{0}(x)=a_{0}(x)=b_{d}(x)=0, c_{1}(x)=1, b_{0}(x)=k(x)$ is the valency of x.)
We call $c_{i}(x), a_{i}(x)$ and $b_{i}(x)$ the intersection numbers with respect to x.

Example 11.1.

$$
\begin{array}{lll}
c_{0}=1, & c_{1}=1, & c_{2}=1, \\
a_{0}=0, & a_{1}=1, & a_{2}=1, \\
b_{0}=2, & b_{1}=1, & b_{2}=0 .
\end{array}
$$

Chapter 12

Distance-Regular

Monday, February 15, 1993
Lemma 12.1. For any connected graph $\Gamma=(X, E)$, the following are equivalent.
(i) The trivial $T(x)$-module is thin for all $x \in X$.
(ii) $\left\{\sum_{y \in X, \partial(x, y)=i} \hat{y} \mid 0 \leq i \leq d(x)\right\}$ is a basis for the trivial $T(x)$-module for every $x \in X$.
(iii) Γ is distance-regular with respect to x for all $x \in X$.

Note. Let $\Gamma=(X, E)$ be a graph, with $X=\left\{x, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right\}, E=$ $\left\{x y_{1}, x y_{2}, x y_{3}, y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{3}, y_{3} z_{3}\right\}$.

Then $(i),(i i)$ are not equivalent for a single vertex x.

$$
\begin{align*}
& E_{0}^{*} T \hat{x}=\langle\hat{x}\rangle \tag{12.1}\\
& E_{1}^{*} T \hat{x}=\left\langle\hat{y}_{1}+\hat{y}_{2}+\hat{y}_{3}\right\rangle, \tag{12.2}\\
& E_{2}^{*} T \hat{x}=\left\langle\hat{z}_{1}+\hat{z}_{2}+2 \hat{z}_{3}\right\rangle . \tag{12.3}
\end{align*}
$$

Proof of Lemma 12.1. (i) $\rightarrow\left(\right.$ ii) Let $\delta=\sum_{y \in X} \delta_{y} \hat{y}$ be an eigenvector for the maximal eigenvalue θ_{0}. Then,

$$
\begin{align*}
\sum_{y \in X, \partial(x, y)=1} \hat{y} & =A \hat{x} \in T(x) \hat{x}=T(x) \delta \ni E_{1}^{*} \delta \tag{12.4}\\
& =\sum_{y \in X, \partial(x, y)=1} \delta_{y} \hat{y} \tag{12.5}
\end{align*}
$$

If the trivial $T(x)$-module is thin,

$$
\delta_{y}=\delta_{z} \text { for } y, z \in X, \partial(x, y)=\partial(x, z)=1
$$

Hence, $\delta_{y}=\delta_{z}$ if y and z in X are connected by a path of even length.
So, Γ is regular or bipartite biregular by Lemma 11.2.
In particular, $\delta_{y}=\delta_{z}$ if $\partial(x, y)=\partial(x, z)$, as there is a path of length $2 \cdot \partial(x, y)$;

$$
y \sim \cdots \sim x \sim \cdots \sim z
$$

Hence,

$$
E_{i}^{*} \delta \in \operatorname{Span}\left(\sum_{y \in X, \partial(x, y)=i} \hat{y}\right)
$$

Since $E_{0}^{*} \delta, E_{1}^{*} \delta, \ldots, E_{d}^{*} \delta$ form a basis for $T(x) \delta$, we have (ii).
$(i i) \rightarrow($ iii $)$ Fix $x \in X$, and let $T \equiv T(x), E_{i}^{*} \equiv E_{i}^{*}(x)$, and $d \equiv d(x)$.

$$
\begin{align*}
& A \sum_{y \in X, \partial(x . y)=i} \hat{y}= \sum_{z \in X}|\{y \in X \mid \partial(y, z)=1, \partial(x, y)=i\}| \hat{z} \tag{12.6}\\
&= \sum_{z \in X, \partial(x, z)=i-1} b_{i-1}(x, z) \hat{z} \tag{12.7}\\
& \quad+\sum_{z \in X, \partial(x, z)=i} a_{i}(x, z) \hat{z} \tag{12.8}\\
& \quad+\sum_{z \in X, \partial(x, z)=i+1} c_{i+1}(x, z) \hat{z} \tag{12.9}\\
& \in \operatorname{Span}\left\{\sum_{z \in X, \partial(x, z)=j} \hat{z} \mid j=0,1, \ldots, d\right\} \tag{12.10}
\end{align*}
$$

Hence, $b_{i-1}(x, z), a_{i}(x, z)$ and $c_{i+1}(x, z)$ depend only on i and x, and not on z. Therefore, Γ is distance-regular with respect to x.
(iii) $\rightarrow(i)$ Fix $x \in X$, and let $T \equiv T(x), E_{i}^{*} \equiv E_{i}^{*}(x)$, and $d \equiv d(x)$. By defintion of distance-regularity, for every $i(0 \leq i \leq d)$,

$$
\begin{align*}
& A\left(\sum_{y \in X, \partial(x, y)=i} \hat{y}\right)=b_{i-1}(x) \sum_{y \in X, \partial(x, y)=i-1} \hat{y} \tag{12.11}\\
&+a_{i}(x) \sum_{y \in X, \partial(x, y)=i} \hat{y} \tag{12.12}\\
&+c_{i+1}(x) \sum_{y \in X, \partial(x, y)=i+1} \hat{y} \tag{12.13}
\end{align*}
$$

Hence,

$$
W=\operatorname{Span}\left\{\sum_{y \in X, \partial(x, y)=i} \hat{y} \mid 0 \leq i \leq d\right\}
$$

is A-invariant and so T-invariant. Since $\hat{x} \in W, T \hat{x}=W$ is the trivial module and $T \hat{x}$ is thin.

Next, we show more is true if $(i)-(i i i)$ hold in Lemma 12.1.
In fact, $d(x), a_{i}(x), c_{i}(x)$, and $b_{i}(x)$ are

$$
\begin{cases}\text { independent of } X & \text { if } \Gamma \text { is regular; or } \\ \text { constant over } X^{+} \text {and } X^{-} & \text {if } \Gamma \text { is biregular. }\end{cases}
$$

Let $\Gamma=(X, E)$ be any (connected) graph. Pick vertices $x, y \in X$.
Let W be a thin, irreducible $T(x)$-module, and measure $m: \mathbb{R} \rightarrow \mathbb{R}$ determined by W.

Let W^{\prime} be a thin, irreducible $T(y)$-module, and measure $m: \mathbb{R} \rightarrow \mathbb{R}$ determined by W^{\prime}.

Recall W, W^{\prime} are orthogonal if

$$
\left\langle w, w^{\prime}\right\rangle=0 \quad \text { for all } w \in W, w^{\prime} \in W^{\prime}
$$

We shall show if W and W^{\prime} are not orthogonal, then m and m^{\prime} are related:

$$
m \cdot \operatorname{poly}_{1}=m^{\prime} \cdot \operatorname{poly}_{2}
$$

for some polynomials with

$$
\operatorname{deg} \text { poly }_{1}+\operatorname{deg} \text { poly }_{2} \leq 2 \cdot \partial(x, y)
$$

Notation. V : standard module of Γ.
H : any subspace of V.

$$
V=H+H^{\perp} \quad \text { orthogonal direct sum }
$$

and for $v=v_{1}+v_{2} \operatorname{proj}_{H}: V \rightarrow H\left(v \mapsto v_{1}\right)$: linear transformation.
Observe: For every $v \in V$,

$$
v-\operatorname{proj}_{H} v \in H^{\perp}
$$

So,

$$
\begin{array}{r}
\left\langle v-\operatorname{proj}_{H} v, h\right\rangle=0 \quad \text { for all } h \in H \text { or, } \\
\langle v, h\rangle=\left\langle\operatorname{proj}_{H} v, h\right\rangle \quad \text { for all } v \in V, \text { and for all } h \in H .
\end{array}
$$

Theorem 12.1. Let $\Gamma=(X, E)$ be any graph. Pick vertices $x, y \in X$ and set $\Delta=\partial(x, y)$. Assume
W : thin irreducible $T(x)$-module with endpoint r, diameter d, and measure m.
W^{\prime} : thin irreducible $T(y)$-module with endpoint r^{\prime}, diameter d^{\prime}, and measure m^{\prime}.
W and W^{\prime} are not orghotonal.
Now pick

$$
0 \neq w \in E_{r}^{*}(x) W, \quad 0 \neq w \in E_{r^{\prime}}^{*}(x) W^{\prime}
$$

Then,
(i) $\operatorname{proj}_{W^{\prime}} w=p(A) \frac{\|w\|}{\left\|w^{\prime}\right\|} w^{\prime}$
for some $0 \neq p \in \mathbb{C}[\lambda]$ with $\operatorname{deg} p \leq \Delta-r^{\prime}+r, d^{\prime}$, $\operatorname{proj}_{W} w^{\prime}=p^{\prime}(A) \frac{\left\|w^{\prime}\right\|}{\|w\|} w$
for some $0 \neq p^{\prime} \in \mathbb{C}[\lambda]$ with $\operatorname{deg} p \leq \Delta-r+r^{\prime}, d$.
(ii) For all eigenvalues θ_{i} of Γ,

$$
\frac{\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle}{\|w\|\left\|w^{\prime}\right\|}=m\left(\theta_{i}\right) \overline{p^{\prime}\left(\theta_{i}\right)}=m^{\prime}\left(\theta_{i}\right) p\left(\theta_{i}\right)
$$

(iii) For all eigenvalues θ_{i} of Γ,

$$
p\left(\theta_{i}\right) p^{\prime}\left(\theta_{i}\right)
$$

is a real number in interval $[0,1]$.

Proof. (i) Since W, W^{\prime} are not orthogonal, there exist

$$
v \in W, v^{\prime} \in W^{\prime} \text { sich that }\left\langle v, v^{\prime}\right\rangle \neq 0
$$

Then there exists $a \in M$ such that

$$
v^{\prime}=a w^{\prime} .
$$

(This is because $w_{i}^{\prime}=p_{i}^{\prime}(A) w_{0}^{\prime}$ and hence for every $v^{\prime} \in W^{\prime}$, there is a polynomial $\left.q \in \mathbb{C}[\lambda], q(A) w_{0}^{\prime}=v.\right)$

We have

$$
0 \neq\left\langle v^{\prime}, v\right\rangle=\left\langle a w^{\prime}, v\right\rangle=\left\langle w^{\prime}, a^{*} v\right\rangle
$$

and $a^{*} v \in W$.
Hence, $\operatorname{proj}_{W} w^{\prime} \neq 0$.
Let $p_{0}, \ldots, p_{d} \in \mathbb{C}[\lambda]$ be from Lemma 9.1.
Then, $w_{i}=p_{i}(A) w$ is a basis for $E_{r+i}^{*}(x) W \quad(0 \leq i \leq d)$.
Hence,

$$
\operatorname{proj}_{W} w^{\prime}=\alpha_{0} w_{0}+\cdots+\alpha_{d} w_{d} \quad \text { for some } \quad \alpha_{j} \in \mathbb{C}
$$

Set

$$
p^{\prime}:=\frac{\|w\|}{\left\|w^{\prime}\right\|} \sum_{i=0}^{d} \alpha_{i} p_{i}
$$

Then $0 \neq p^{\prime} \in \mathbb{C}[\lambda]$ and $\operatorname{deg} p^{\prime} \leq d$.
Claim: $\alpha_{i}=0\left(\Delta-r+r^{\prime}<i \leq d\right)$.
In particular, $\operatorname{deg} p^{\prime} \leq \Delta-r+r^{\prime}$.
Pf. Observe:

$$
w^{\prime} \in E_{r^{\prime}}^{*}(y) V, \quad w \in E_{r}^{*}(x) V
$$

for $\partial(x, y)=\Delta$.

$$
E_{r^{\prime}}^{*}(y) V \cap E_{r+i}^{*}(x) V=0
$$

by triangle inequality.
$\left(\Delta=\partial(x, y)<r+i-r^{\prime}\right.$ or $\Delta+r^{\prime}<r+i$ by our choice of i.)

Hence,

$$
E_{r^{\prime}}^{*}(y) V \perp E_{r+i}^{*}(x) V
$$

or

$$
\begin{align*}
0 & =\left\langle w^{\prime}, w_{i}\right\rangle \tag{12.14}\\
& =\left\langle\operatorname{proj}_{W} w^{\prime}, w_{i}\right\rangle \tag{12.15}\\
& =\sum_{j=0}^{d} \alpha_{j}\left\langle w_{j}, w_{i}\right\rangle \tag{12.16}\\
& =\alpha_{i}\left\|w_{i}\right\|^{2} \tag{12.17}
\end{align*}
$$

Hence, $\alpha_{i}=0$. Thus,

$$
\begin{align*}
\operatorname{proj}_{W} w^{\prime} & =\sum_{i=0}^{\Delta+r^{\prime}-r} \alpha_{i} w_{i} \tag{12.18}\\
& =\sum_{i=0}^{\Delta+r^{\prime}-r} \alpha_{i} p_{i}(A) w_{0} \tag{12.19}\\
& =p^{\prime}(A) \frac{\left\|w^{\prime}\right\|}{\|w\|} w \tag{12.20}
\end{align*}
$$

(ii) We have

$$
\begin{align*}
\frac{\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle}{\|w\|\left\|w^{\prime}\right\|} & =\frac{\left\langle E_{i} w, w^{\prime}\right\rangle}{\|w\|\left\|w^{\prime}\right\|} \tag{12.21}\\
& =\frac{\left\langle E_{i} w, \operatorname{proj}_{W} w^{\prime}\right\rangle}{\|w\|\left\|w^{\prime}\right\|} \quad \text { as } \operatorname{proj}_{W} w^{\prime}=p^{\prime}(A) \frac{\|w\|}{\left\|w^{\prime}\right\|} w \tag{12.22}\\
& =\frac{\left\langle E_{i} w, p^{\prime}(A) w\right\rangle}{\|w\|^{2}} \tag{12.23}\\
& =\frac{\left\langle E_{i} w, E_{i} p^{\prime}(A) w\right\rangle}{\|w\|^{2}} \tag{12.24}\\
& =\overline{p^{\prime}\left(\theta_{i}\right)} \frac{\left\|E_{i} W\right\|^{2}}{\|w\|^{2}} \tag{12.25}\\
& =\overline{p^{\prime}\left(\theta_{i}\right)} m\left(\theta_{i}\right) \tag{12.26}
\end{align*}
$$

Moreover, as $m\left(\theta_{i}\right), m^{\prime}\left(\theta_{i}\right) \in \mathbb{R}$,

$$
\frac{\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle}{\|w\|\left\|w^{\prime}\right\|}=\frac{\overline{\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle}}{\left\|w^{\prime}\right\|\|w\|}=\overline{\overline{p\left(\theta_{i}\right)} m^{\prime}\left(\theta_{i}\right)}=p\left(\theta_{i}\right) m^{\prime}\left(\theta_{i}\right)
$$

(iii) Sicne,

$$
\frac{\mid\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle \|^{2}}{\|w\|^{2}\left\|w^{\prime}\right\|^{2}}=p\left(\theta_{i}\right) p^{\prime}\left(\theta_{i}\right) m\left(\theta_{i}\right) m^{\prime}\left(\theta_{i}\right)
$$

$$
\begin{align*}
p\left(\theta_{i}\right) p^{\prime}\left(\theta_{i}\right) & =\frac{\mid\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle \|^{2}}{m\left(\theta_{i}\right) m^{\prime}\left(\theta_{i}\right)\|w\|^{2}\left\|w^{\prime}\right\|^{2}} \in \mathbb{R} \tag{12.27}\\
& =\frac{\mid\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle \|^{2}}{\frac{\left\|E_{i} w\right\|^{2}}{\|w\|^{2}} \frac{\left\|E_{i} w^{\prime}\right\|^{2}}{\left\|w w^{\prime}\right\|^{2}}\|w\|^{2}\left\|w^{\prime}\right\|^{2}} . \tag{12.28}
\end{align*}
$$

By Cauchy-Schwartz inequality,

$$
\begin{gathered}
(|\langle a, b\rangle| \leq\|a\|\|b\|,) \\
\frac{\mid\left\langle E_{i} w, E_{i} w^{\prime}\right\rangle \|^{2}}{\left\|E_{i} w\right\|^{2}\left\|E_{i} w^{\prime}\right\|^{2}} \leq 1 .
\end{gathered}
$$

Hence, we have the assertion.

Chapter 13

Modules of a DRG

Wednesday, February 17, 1993

Lemma 13.1. Let $\Gamma=(X, E)$ be any graph. Pick an edge $x y \in E$.
Assume the trivial $T(x)$-module $T(x) \delta$ is thin with measure m_{x}, and the trivial $T(y)$-module $T(y) \delta$ is thin with measure m_{y}.
Then,
(ia) $\frac{m_{x}(\theta)}{k_{x}}=\frac{m_{y}(\theta)}{k_{y}}$ for all $\theta \in \mathbb{R} \backslash\{0\}$.
(ib) $\frac{m_{x}(0)-1}{k_{x}}=\frac{m_{y}(0)-1}{k_{y}}$ for all $\theta \in \mathbb{R} \backslash\{\mathbb{O}\}$.

$$
\left(\delta=\sum_{y \in X} \delta_{y} \hat{y} \text { eigenvector corresponding to the maximal eigenvalue }\right)
$$

Proof. Apply Theorem 12.1,

$$
\begin{align*}
& W=T(x) \delta \quad r=0, \quad d=d(x) \tag{13.1}\\
& W^{\prime}=T(y) \delta \quad r^{\prime}=0, \quad d^{\prime}=d(y) . \tag{13.2}
\end{align*}
$$

Take $w=\hat{x}, w^{\prime}=\hat{y}$.
Claim. $\operatorname{proj}_{T(y) \delta} \hat{x}=k_{y}^{-1} A \hat{y}$.
Pf. Since

$$
\hat{y} \in T(y) \delta, \quad A \hat{y} \in T(y) \delta
$$

Show

$$
\left(\hat{x}-k_{y}^{-1} A \hat{y}\right) \perp(T(y) \delta) .
$$

Recall

$$
\begin{gathered}
A \hat{y}=\sum_{z \in X, y z \in E} \hat{z} . \\
\hat{x}-k_{y}{ }^{-1} A y \in E_{1}^{*}(y) V .
\end{gathered}
$$

So,

$$
\widehat{x}-\frac{1}{k_{y}} A \hat{y} \perp E_{j}^{*}(y) T(y) \delta \quad \text { if } j \neq 1(0 \leq j \leq k(y)) .
$$

And we have,

$$
\begin{align*}
\left\langle\hat{x}-\frac{1}{k_{y}} A \hat{y}, A \hat{y}\right\rangle & =\left\langle\hat{x}, \sum_{z \in X, y z \in E} \hat{z}\right\rangle-\frac{1}{k_{y}}\left\|\sum_{z \in X, y z \in E} \hat{z}\right\|^{2} \tag{13.3}\\
& =1-1 \tag{13.4}\\
& =0 \tag{13.5}
\end{align*}
$$

This proves Claim.
Similarly,

$$
\operatorname{proj}_{T(x) \delta} \hat{y}=k_{x}^{-1} A \hat{x}
$$

Hence, the polynomials $p, p^{\prime} \in \mathbb{C}[\lambda]$ from Theorem 12.1 equal

$$
\frac{\lambda}{k_{y}} \quad \text { and } \quad \frac{\lambda}{k_{x}}
$$

respectively.
By Theorem 12.1,

$$
\frac{m_{x}(\theta) \theta}{k_{x}}=m_{x}(\theta) \overline{p^{\prime}(\theta)}=m_{y}(\theta) \overline{p(\theta)}=\frac{m_{y}(\theta) \theta}{k_{y}}
$$

If $\theta \neq 0$, we have $(i a)$.
Also,

$$
\begin{align*}
\frac{1-m_{x}(0)}{k_{x}} & =\left(\sum_{\theta \in \mathbb{R}\{0\}} m_{x}(0)\right) \frac{1}{k_{x}} \quad \text { by }(i a) \tag{13.6}\\
& =\left(\sum_{\theta \in \mathbb{R}\{0\}} m_{y}(0)\right) \frac{1}{k_{y}} \tag{13.7}\\
& =\frac{1-m_{y}(0)}{k_{y}} \tag{13.8}
\end{align*}
$$

Hence, we have (ib).

Theorem 13.1. Suppose any graph $\Gamma=(X, E)$ is distance-regular with respect to every vertex $x \in X$. (So Γ is regular or biregular by Lemma 12.1.)

Then,
Case Γ is regular: the diameter $d(x)$ and the intersection numbers $a_{i}(x), b_{i}(x)$, $c_{i}(x)(0 \leq i \leq d(x))$ are independent of $x \in X$.
(And Γ is called distance-regular.)
Case Γ is biregular: $\left(X=X^{+} \cup X^{-}\right)$
$d(x)$ and $a_{i}(x), b_{i}(x), c_{i}(x)(0 \leq i \leq d(x))$ are constant over X^{+}and X^{-}. (And Γ is called distance-biregular.)

Proof. We apply Lemma 13.1.
Case Γ : regular.
Then $m_{x}=m_{y}$ for all $x y \in E$. Hence, the measure of the trivial $T(x)$-module is independent of $x \in X$.
Case Γ is biregular.
Then $m_{x}=m_{x^{\prime}}$ for all $x, x^{\prime} \in X$ with $\partial\left(x, x^{\prime}\right)=2$.
Hence, the measure of the trivial $T(x)$-module is constant over $x \in X^{+}, X^{-}$.
Fix $x \in X$. Write $T \equiv T(x), E_{i}^{*} \equiv E_{i}^{*}(x), W=T \delta$ with measure m, diameter $d=d(x)$.

We know by Corollary 10.1 that m determines

$$
d, \quad a_{i}(W)(0 \leq i \leq d), \quad x_{i}(W) \quad(1 \leq i \leq d)
$$

(as $d=D(x)=d(W)$ by Lemma 11.1.)
We shall show that m determines

$$
a_{i}(x), c_{i}(x), b_{i}(x) \quad(0 \leq i \leq d)
$$

Observe:

$$
\begin{align*}
& a_{i}(W)=a_{i}(x) \quad(0 \leq i \leq d) \tag{13.9}\\
& x_{i}(W)=b_{i-1}(x) c_{i}(x) \quad(1 \leq i \leq d) \tag{13.10}
\end{align*}
$$

HS MEMO

$a_{i}=a_{i}(W)$ is an eigenvalue of

$$
E_{i}^{*} A E_{i}^{*} \text { on } E_{i}^{*} W=\left\langle\sum_{y \in \Gamma_{i}(x)} \hat{y}\right\rangle .
$$

(See Lemma 12.1.)
$x_{i}=x_{i}(W)$ is an eigenvalue of

$$
E_{i-1}^{*} A E_{i}^{*} A E_{i-1}^{*} \text { on } E_{i-1}^{*} W
$$

and

$$
\begin{align*}
A \sum_{y \in X, \partial(x, y)} \hat{y}= & b_{i-1}(x) \sum_{y \in X, \partial(x, y)=i-1} \hat{y} \tag{13.11}\\
& +a_{i}(x) \sum_{y \in X, \partial(x, y)=i} \hat{y} \tag{13.12}\\
& +c_{i+1}(x) \sum_{y \in X, \partial(x, y)=i+1} \hat{y} \tag{13.13}
\end{align*}
$$

So $x_{i}=b_{i-1}(x) c_{i}(x)$.
Set $k^{+}=k_{x}$. Define

$$
k^{-}=\frac{\theta_{0}^{2}}{k^{+}}
$$

where θ_{0} is the maximal eigenvalue. (See Lemma 11.1.)
(So, $k^{+}=k^{-}$is the valency, if Γ is regular.)
For every $i(0 \leq i \leq d)$ and for every $z \in X$ with $\partial(x, z)=i$,

$$
\begin{align*}
k_{z} & =c_{i}(x)+a_{i}(x)+b_{i}(x) \tag{13.14}\\
& = \begin{cases}k^{+} & \text {if } i \text { is even } \\
k^{-} & \text {if } i \text { is odd }\end{cases} \tag{13.15}
\end{align*}
$$

Now m determines

$$
\begin{gather*}
c_{0}(x)=a_{0}(x)=0, \quad c_{1}(x)=1 \\
b_{0}(x)=b_{0}(x) c_{1}(x)=x_{1}(W) \\
k^{+}=b_{0}(x) \tag{13.16}\\
k^{-}=\theta_{0}^{2} / k^{+} \tag{13.17}\\
c_{i}(x)=x_{i}(W) / b_{i-1}(x) \quad(1 \leq i \leq d) \tag{13.18}\\
b_{i}(x)= \begin{cases}k^{+}-a_{i}(x)-c_{i}(x) & i ; \text { even } \\
k^{-}-a_{i}(x)-c_{i}(x) & i: \text { odd }\end{cases} \tag{13.19}
\end{gather*}
$$

This proves the assertions.
Proposition 13.1. Under the assumption of Theorem 13.1, the following hold.
Case Γ : regular.
(i) $\operatorname{dim} E_{i} V=|X| m\left(\theta_{i}\right)$.
(ii) Γ has exactly $d+1$ distinct eigenvalues
($d=\operatorname{diam} \Gamma=d(x), \quad$ for all $x \in X)$.
Case Γ : biregular.
(i) $\operatorname{dim} E_{i} V=\left|X^{+}\right| m^{+}\left(\theta_{i}\right)+\left|X^{-}\right| m^{-}\left(\theta_{i}\right)$.
(ii) Γ has exactly $d^{+}+1$ distinct eigenvalues $\left(d^{+} \geq d^{-}\right)$.
(iii) If d^{+}is odd, the Γ is regular.
(iv) $d^{+}=d^{-}$, or $d^{+}=d^{-}+1$ is even.
(v) $a_{i}(x)=0$ for all i and for all x.

Proof. (i) Suppose Γ is regular.
Let m_{x} be the measure of the trivial $T(x)$-module,

$$
m_{x}\left(\theta_{i}\right)=\left\|E_{i} \hat{x}\right\|^{2}, \quad \text { as }\|\hat{x}\|=1
$$

Now,

$$
\begin{align*}
|X| m_{x}\left(\theta_{i}\right) & =\sum_{x \in X} m_{x}\left(\theta_{i}\right) \tag{13.20}\\
& =\sum_{x \in X}\left\|E_{i} \hat{x}\right\|^{2} \tag{13.21}\\
& =\sum_{y, z \in X}\left|\left(E_{i}\right)_{y z}\right|^{2} \tag{13.22}\\
& =\operatorname{trace} E_{i}{\overline{E_{i}}}^{\top} \tag{13.23}
\end{align*}
$$

Since A is real symmetric and

$$
E_{i}{\overline{E_{i}}}^{\top}=E_{i}^{2}=E_{i}
$$

with E_{i} symmetric

$$
\begin{gathered}
E_{i} \sim\left(\begin{array}{cc}
I & O \\
O & O
\end{array}\right) \\
\operatorname{trace} E_{i}=\operatorname{rank} E_{i}=\operatorname{dim} E_{i} V
\end{gathered}
$$

Thus, we have the assertion in this case.
Suppose Γ is biregular.
Then, same except,

$$
\sum_{x \in X} m_{x}\left(\theta_{i}\right)=\left|X^{+}\right| m^{+}\left(\theta_{i}\right)+\left|X^{-}\right| m^{-}\left(\theta_{i}\right)
$$

(ii) Γ : regular. Immediately, if θ is an eigenvalue of Γ, then $m(\theta) \neq 0$.
Γ : biregular. For each $\theta=\theta_{i} \in \mathbb{R}\{0\}$,

$$
\begin{align*}
m^{-}(\theta) \neq 0 & \Leftrightarrow m^{+}(\theta) \neq 0 \tag{13.24}\\
& \Leftrightarrow \theta \text { is an eigenvalue of } \Gamma \tag{13.25}\\
& \quad\left(\frac{m^{+}(\theta)}{k^{+}}=\frac{m^{-}(\theta)}{k^{-}}\right) \tag{13.26}
\end{align*}
$$

(iv) and (v) are clear.

HS MEMO

(iii) If d^{+}is odd, $d^{+}=d^{-}$and Γ has even number of eigenvalues, i.e., 0 is not an eigenvalue. So A is nonsingular, and Γ is regular.

Chapter 14

Parameters of Thin Modules, I

Friday, February 19, 1993
Summary.
Definition 14.1. Assume $\Gamma=(X, E)$ is distance-regular with respect to every vertex $x \in X$.

Notation: Let $x \in X$. The data of the trivial $T(x)$-module.

	Case DR	Case DBR
valency k_{x}	k	$\begin{cases}k^{+} & \text {if } x \in X^{+} \\ k^{-} & \text {if } x \in X^{-}\end{cases}$
x-diameter D_{x}	D	$\begin{cases}D^{+} & \text {if } x \in X^{+} \\ D^{-} & \text {if } x \in X^{-}\end{cases}$
measure m_{x}	m	$\begin{cases}m^{+} & \text {if } x \in X^{+} \\ m^{-} & \text {if } x \in X^{-}\end{cases}$
int. number $c_{i}(x)$	c_{i}	$\begin{cases}c_{i}^{+} & \text {if } x \in X^{+} \\ c_{i}^{-} & \text {if } x \in X^{-} \\ b_{i}^{+} & \text {if } x \in X^{+} \\ b_{i}^{-} & \text {if } x \in X^{-}\end{cases}$
int. number $b_{i}(x)$	b_{i}	
int. number $a_{i}(x)$	a_{i}	0

Call $m, m^{ \pm 1}$ the measure of Γ.
Assume $\Gamma=(X, E)$ is distance-regular.

To what extent do a_{i} 's, b_{i} 's and c_{i} 's determine the structure of irreducible $T(x)$ modules? In general, the following hold.

Lemma 14.1. Assume $\Gamma=(X, E)$ is distance-regular. Pick $x \in X$. Let W be a thin irreducible $T(x)$-module with endpoint r, diameter d and measure m_{W}.
(i) There is a unique polynomial $f_{W} \in \mathbb{C}[\lambda]$ with the following properties.
(ia) $\operatorname{deg} f_{W} \leq D$ (diameter of Γ).
(ib) $m_{W}(\theta)=m(\theta) f_{W}(\theta)$ for every $\theta \in \mathbb{R}$, where m is the measure of Γ.
Moreover, $f_{W} \in \mathbb{R}[\lambda]$, and
(ii) $\operatorname{deg} f_{W} \leq 2 r$.
(iii) For all eigenvalues θ_{i} of $\Gamma, \lambda-\theta_{i}$ is a factor of f_{W} whenever, $E_{i} W=0$.

In particular, $2 r-D+d \geq 0$.
Proof. Let $\theta_{0}, \ldots, \theta_{D}$ denote distinct eigenvalues of Γ. Then $m\left(\theta_{i}\right) \neq 0(0 \leq i \leq$ $D)$ by Proposition 13.1.
There exists a unique $f_{W} \in \mathbb{C}[\lambda]$ with $\operatorname{deg} f_{W} \leq D$ such that

$$
f_{W}\left(\theta_{i}\right)=\frac{m_{W}\left(\theta_{i}\right)}{m\left(\theta_{i}\right)} \quad(0 \leq i \leq D)
$$

by polynomial interpolation.
$f_{W} \in \mathbb{R}[\lambda]$ since

$$
\theta_{0}, \ldots, \theta_{D} \in \mathbb{R} \quad \text { and } \quad f_{W}\left(\theta_{0}\right), \ldots, f_{W}\left(\theta_{D}\right) \in \mathbb{R}
$$

(ii) Without loss of generality, we may assume $r<D / 2$, else trivial.

Pick $0 \neq w \in E_{r}^{*}(x) W$.

$$
w=\sum_{y \in W, \partial(x, y)=r} \alpha_{y} \hat{y} \quad \text { for some } \alpha_{y} \in \mathbb{C}
$$

Pick $y \in X$ such that $\alpha_{y} \neq 0$.
Set W^{\prime} be the trivial $T(y)$-module. $\left(\langle w, \hat{y}\rangle \neq 0\right.$, as $\left.W \underline{\Lambda} W^{\prime}.\right)$

$$
r^{\prime}=0, \quad m^{\prime}=m, \quad \Delta=r
$$

Apply Theorem 12.1, we have

$$
\begin{gather*}
\operatorname{deg} p \leq \Delta-r^{\prime}+r=2 r, \quad p \neq 0 \tag{14.1}\\
\operatorname{deg} p^{\prime} \leq \Delta-r+r^{\prime}=0, \quad p^{\prime} \neq 0 \tag{14.2}\\
m_{W}(\theta) \overline{p^{\prime}(\theta)}=m(\theta) p(\theta) \quad(\text { for all } \theta \in \mathbb{R})
\end{gather*}
$$

So,

$$
\operatorname{deg} p / \bar{p}^{\prime} \leq 2 r
$$

and p / \bar{p}^{\prime} satisfies the conditions of f_{W}.

$$
\left(\frac{p(\theta)}{\bar{p}^{\prime}(\theta)}=\frac{m_{W}(\theta)}{m(\theta)}\right)
$$

(iii)

$$
E_{i} W=0 \Rightarrow m_{W}\left(\theta_{i}\right)=0 \Rightarrow f_{W}\left(\theta_{i}\right)=0
$$

that is, $E_{i} W=0$. Hence θ_{i} is a root of $f_{W}(\lambda)=0$. So,

$$
2 r \geq \operatorname{deg} f_{W} \geq\left|\left\{\theta_{i} \mid E_{i} W=0\right\}\right|=D-d
$$

Hence,

$$
2 r-D+d \geq 0
$$

This proves the assertions.
Lemma 14.2. Let $\Gamma=(X, E)$ be any distance-regular graph with valency k, diameter $D(D \geq 2)$, measure m, and eigenvalues

$$
k=\theta_{0}>\theta_{1}>\cdots>\theta_{D}
$$

Pick $x \in X$. Let W be a thin irreducible $T(x)$-module with endpoint $r=1$, diameter d and measure $m_{W}=m f_{W}$. Then one fo the following cases $(i)-(i v)$ occurs.

Case	d	$f_{W}(\lambda)$	$a_{0}(W)$
(i)	$D-2$	$\frac{(\lambda-k)\left(\lambda-\theta_{1}\right)}{k\left(\theta_{1}+1\right)}$	$-\frac{b_{1}}{\theta_{1}+1}-1$
$(i i)$	$D-2$	$\frac{(\lambda-k)\left(\lambda-\theta_{D}\right)}{k\left(\theta_{D}+1\right)}$	$-\frac{b_{1}}{\theta_{D}+1}-1$
$($ iii $)$	$D-1$	$\frac{k-\lambda}{k}$	-1
$(i v)$	$D-1$	$\frac{(\lambda-k)(\lambda-\beta)}{k(\beta+1)}$	$-\frac{b_{1}}{\beta+1}-1$

for some $\beta \in \mathbb{R}$ with $\beta \in\left(-\infty, \theta_{D}\right) \cup\left(\theta_{1}, \infty\right)$. Moreover, the isomorphism class of W is determined by $a_{0}(W)$.
Note. By (iii), the possible "shapes" of a thin irreducible $T(x)$-modules are:

$$
\begin{array}{ll}
r=0 & d=D \\
r=1 & d=D-1 \\
r=1 & d=D-2 \tag{14.5}
\end{array}
$$

Chapter 15

Parameters of Thin Modules, II

Monday, February 22, 1993
Proof of Lemma 14.2 Continued.
We have $\operatorname{deg} f_{W} \leq 2$ by Lemma 14.1 (ii).
Also by Lemma 11.1, $E_{0} W=0$.
(As otherwise $\langle\delta\rangle=E_{0} V \subseteq W$ and $r(W)=0$.)
Hence, $\lambda-\theta_{0}=\lambda-k$ is a factor of f_{W} by Lemma 14.1 (iii).
Let $p_{0}, p_{1}, \ldots, p_{D}$ denote the polynomials for the trivial $T(x)$-module from Lemma 9.1.

Recall,

$$
\begin{align*}
\sum_{\theta \in \mathbb{R}} m(\theta) p_{i}(\theta) p_{j}(\theta) & =\delta_{i j} x_{1} x_{2} \cdots x_{i} \quad(0 \leq i, j \leq D) \tag{15.1}\\
& =\delta_{i j} b_{0} b_{1} \cdots b_{i-1} c_{1} c_{2} \cdots c_{i} \tag{15.2}
\end{align*}
$$

Note that $x_{i}=b_{i-1} c_{i}$ is in the proof of Theorem 13.1.
By construction,

$$
\begin{align*}
& p_{0}(\lambda)=1 \tag{15.3}\\
& p_{1}(\lambda)=\lambda \tag{15.4}\\
& p_{2}(\lambda)=\lambda^{2}-a_{1} \lambda-k \tag{15.5}
\end{align*}
$$

Apparently,

$$
f_{W}=\sigma_{0} p_{0}+\sigma_{1} p_{1}+\sigma_{2} p_{2}
$$

for some $\sigma_{0}, \sigma_{1}, \sigma_{2} \in \mathbb{C}$.
Claim:

$$
\begin{align*}
\sigma_{0} & =1 \tag{15.6}\\
\sigma_{1} & =\frac{a_{0}(W)}{k} \tag{15.7}\\
\sigma_{2} & =-\frac{1+a_{0}(W)}{k b_{1}} \tag{15.8}
\end{align*}
$$

Pf of Claim.

$$
\begin{align*}
1 & =\sum_{\theta \in \mathbb{R}} m_{W}(\theta) \tag{15.9}\\
& =\sum_{\theta \in \mathbb{R}} m(\theta) f_{W}(\theta) \tag{15.10}\\
& =\sum_{j=0}^{2} \sigma_{j}\left(\sum_{\theta \in \mathbb{R}} m(\theta) p_{j}(\theta)\right) \tag{15.11}\\
& =\sigma_{0} \tag{15.12}
\end{align*}
$$

We applied Lemma 10.1 (ib), Lemma $14.1(i b)$, and Lemma $10.1(i)$ in this order. Next by Lemma $10.1(i i)$, and $p_{1}(\theta)=\theta$,

$$
\begin{align*}
a_{0}(W) & =\sum_{\theta \in \mathbb{R}} m_{W}(\theta) \theta \tag{15.13}\\
& =\sum_{\theta \in \mathbb{R}} m(\theta) f_{W}(\theta) \theta \tag{15.14}\\
& =\sum_{j=0}^{2} \sigma_{j} \sum_{\theta \in \mathbb{R}} m(\theta) p_{j}(\theta) p_{1}(\theta) \tag{15.15}\\
& =\sigma_{1} x_{1}(T \delta) \tag{15.16}\\
& =\sigma_{1} b_{0} c_{1} \tag{15.17}\\
& =\sigma_{1} k \tag{15.18}
\end{align*}
$$

So far,

$$
f_{W}(\lambda)=1+\frac{a_{0}(W)}{k} \lambda+\sigma_{2}\left(\lambda^{2}-a_{1} \lambda-k\right)
$$

But,

$$
\begin{align*}
0 & =f_{W}(k) \tag{15.19}\\
& =1+a_{0}(W)+\sigma_{2} k\left(k-a_{1}-1\right) \tag{15.20}\\
& =1+a_{0}(W)+\sigma_{2} k b_{1} \tag{15.21}
\end{align*}
$$

Thus,

$$
\sigma_{2}=-\frac{1+a_{0}(W)}{k b_{1}}
$$

This proves Claim.
Case: $a_{0}(W)=-1$.
Here, $\sigma_{2}=0$ and

$$
f_{W}(\lambda)=1+\frac{a_{0}(W) \lambda}{k}=1-\frac{\lambda}{k}
$$

Also,

$$
d+1=\mid\left\{\theta \mid \theta \text { is an eigenvalue of } \Gamma, f_{W}(\theta) \neq 0\right\} \mid=D
$$

Case: $a_{0}(W) \neq-1$.
Here, $\sigma_{2} \neq 0$, and $\operatorname{deg} f_{W}=2$. So,

$$
f_{W}(\lambda)=(\lambda-k)(\lambda-\beta) \alpha
$$

for some $\alpha, \beta \in \mathbb{C}, \alpha \neq 0$.
Comparing the coefficients in

$$
(\lambda-k)(\lambda-\beta) \alpha=1+\frac{a_{0}(W)}{k} \lambda-\frac{a_{0}(W)+1}{k b_{1}}\left(\lambda^{2}-a_{1} \lambda-k\right)
$$

we find

$$
\begin{align*}
\alpha & =-\frac{a_{0}(W)+1}{k b_{1}} \tag{15.22}\\
-(k+\beta) \alpha & =\frac{a_{0}(W)}{k}+\frac{a_{0}(W)+1}{k b_{1}} a_{1} \tag{15.23}\\
k \beta \alpha & =1+\frac{a_{0}(W)+1}{b_{1}} . \tag{15.24}
\end{align*}
$$

Hence,

$$
-\beta\left(a_{0}(W)+1\right)=b_{1}+\left(a_{0}(W)+1\right)
$$

Thus, we have

$$
\begin{equation*}
\left(1+a_{0}(W)\right)(1+\beta)=-b_{1} \tag{15.25}
\end{equation*}
$$

In particular, $\beta \neq-1$, and

$$
\alpha=-\frac{1+a_{0}(W)}{k b_{1}}=\frac{1}{k(\beta+1)}
$$

Also, by Definition 9.2,

$$
\begin{align*}
0 & \leq m_{W}(\theta) \tag{15.26}\\
& =m(\theta) f_{W}(\theta) \quad(\text { for all } \theta \in \mathbb{R}) \tag{15.27}
\end{align*}
$$

But if θ is an eigenvalue of Γ,

$$
0<m(\theta)
$$

So,

$$
\begin{align*}
0 & \leq f_{W}(\theta) \tag{15.28}\\
& =\frac{(\theta-k)(\theta-\beta)}{k(\beta+1)} \tag{15.29}
\end{align*}
$$

Either

$$
\beta+1>0 \rightarrow \theta-\beta \leq 0 \text { or } \beta \geq \theta_{1}
$$

or

$$
\beta+1<0 \rightarrow \theta-\beta \geq 0 \text { or } \beta \leq \theta_{D}
$$

If $\beta=\theta_{1}$,

$$
\begin{align*}
& a_{0}(W)=-\frac{b_{1}}{\beta+1}-1=-\frac{b_{1}}{\theta_{1}+1}-1 \tag{15.30}\\
& f_{W}(\lambda)=\frac{(\lambda-k)\left(\lambda-\theta_{1}\right)}{k\left(\theta_{1}+1\right)} \tag{15.31}
\end{align*}
$$

and we have (i).
If $\beta=\theta_{D}$,

$$
\begin{align*}
a_{0}(W) & =-\frac{b_{1}}{\theta_{D}+1}-1 \tag{15.32}\\
f_{W}(\lambda) & =\frac{(\lambda-k)\left(\lambda-\theta_{D}\right)}{k\left(\theta_{D}+1\right)} \tag{15.33}
\end{align*}
$$

and we have (ii).
If $\beta \notin\left\{\theta_{1}, \theta_{D}\right\}$,

$$
\beta \in\left(-\infty, \theta_{D}\right) \cup\left(\theta_{1}, \infty\right)
$$

we have (iv).
Note using (15.25), we have (iv).

Note. Using (15.25),

$$
a_{0}(W) \rightarrow \beta \rightarrow f_{W} \rightarrow m_{W} \rightarrow \text { isomorphism class of } W
$$

Note on Lemma 14.2. In fact, $\theta_{1}>-1, \theta_{D}<-1$ if $D \geq 2$.
Definition 15.1. The complete graph K_{n} has n vertices and diameter $D=1$, i.e., $x y \in E$ for all vertices x, t.
K_{n} is distance-regular with valency $k=n-1$ and $a_{1}=n-2, D=1$. Moreover, it has two distince eigenvalues θ_{0}, θ_{1}.

Recall, $\theta_{0}, \ldots, \theta_{D}$ are roots of p_{D+1}, i.e., $D+1$ st polynomial for the trivial module.

$$
\begin{align*}
p_{0} & =1 \tag{15.34}\\
p_{1} & =\lambda, \tag{15.35}\\
p_{2} & =\lambda^{2}-a_{1} \lambda-k \tag{15.36}\\
& =\lambda^{2}-(n-2) \lambda-(n-1) \tag{15.37}\\
& =(\lambda-(n-1))(\lambda+1) \tag{15.38}
\end{align*}
$$

The roots are $\theta_{0}=n-1=k$ and $\theta_{1}=-1$.
Lemma 15.1. Let $\Gamma=(X, E)$ be distance-regular of diameter $D \geq 1$ with distinct eigenvalues

$$
k=\theta_{0}>\theta_{1}>\cdots>\theta_{D}
$$

(i) $\theta_{D} \leq-1$ with equality if and only if $D=1$.
(ii) $\theta_{1} \geq-1$ with equality if and only if $D=1$.

Proof. (i) Suppose $\theta_{D} \geq-1$.
Then $I+A$ is positive semi-definite.
By Lemma 2.1, there exists vectors $\left\{v_{x} \mid x \in X\right\}$ in a Euclidean space such that

$$
\begin{align*}
\left\langle v_{x}, v_{y}\right\rangle & =(I+A)_{x y} \tag{15.39}\\
& = \begin{cases}1 & \text { if } x=y \text { or } x y \in E \\
0 & \text { othewise }\end{cases} \tag{15.40}
\end{align*}
$$

For every $x y \in E$,

$$
\left\langle v_{x}, v_{y}\right\rangle=\left\|v_{x}\right\|\left\|v_{y}\right\|=1
$$

Hence, $v_{x}=v_{y}$, and v_{x} is independent of $x \in X$.
Thus $\left\langle v_{x}, v_{y}\right\rangle=1$ for all $x, y \in X$.
We have $I+A=J$, (all 1's matrix), and $D=1$.
(ii) Let m be the trivial measure. Then,

$$
\begin{align*}
1 & =\sum_{\theta \in \mathbb{R}} m(\theta)+\sum_{\theta \in \mathbb{R}} m(\theta) \theta \tag{15.41}\\
& =\sum_{\theta \in \mathbb{R}} m(\theta)(\theta+1) \tag{15.42}\\
& =m(k)(k+1)+\sum_{\theta \neq k} m(\theta)(\theta+1) \tag{15.43}\\
& \leq(k+1)|X|^{-1} \tag{15.44}
\end{align*}
$$

Note that $m(k)=|X|^{-1} \operatorname{dim} E_{0} V=|X|^{-1}$.
So $k+1 \geq|X|$ or $k=|X|-1$. Thus, $x y \in E$ for every $x, y \in X$, and $D=1$.
Note. Lemma 15.1 does not require distance-regular assumption.

Chapter 16

Thin Modoles of a DRG

Wednesday, February 24, 1993

Let $\Gamma=(X, E)$ denote any graph of diameter D.
Definition 16.1. For all integers i, the i-th incidence matrix $A_{i} \in \operatorname{Mat}_{X}(\mathbb{C})$ satisfies

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { if } \partial(x, y) \neq i,
\end{array} \quad(x, y \in X)\right.
$$

Observe,

$$
\begin{align*}
A_{0} & =I & & \text { (identity) } \tag{16.1}\\
A_{1} & =A & & \text { (adjacency matrix) } \tag{16.2}\\
A_{0}+A_{1}+\cdots+A_{D} & =J & & \text { (all 1's matrix). } \tag{16.3}
\end{align*}
$$

In general, A_{i} may not belong to Bose-Mesner algebra.
Lemma 16.1. Assume $\Gamma=(X, E)$ is distance-regular with diameter $D \geq 1$ and intersection numbers c_{i}, a_{i}, b_{i}.
(i)

$$
A A_{i}=c_{i+1} A_{i+1}+a_{i} A_{i}+b_{i-1} A_{i-1}, \quad\left(0 \leq i \leq D, A_{-1}=A_{D+1}=O\right)
$$

(ii) $A_{i}=\frac{p_{i}(A)}{c_{1} c_{2} \cdots c_{i}}, \quad(0 \leq i \leq D)$, where $p_{0}, p_{1}, \ldots, p_{D}$ are polynomials for the trivial module from Lemma 9.1.
(iii) $A_{0}, A_{1}, \ldots, A_{D}$ form a bais for Bose-Mesner algebra M.
(iv) For all distances $h, i, j \quad(0 \leq, i, j, h \leq D)$, and for all vertices $x, y \in X$ with $\partial(x, y)=h$, the constant

$$
p_{i, j}^{h}=|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=j\}|
$$

depends only on h, i, j and not on x, y.
(v) $E_{0}=\frac{1}{|X|} J$.

Proof.

(i) Pick $x \in X$. Apply each side to \hat{x}, we want to show that

$$
\begin{align*}
& A A_{i} \hat{x}=c_{i+1} A_{i+1} \hat{x}+a_{i} A_{i} \hat{x}+b_{i-1} A_{i-1} \hat{x} . \\
& \text { LHS }=A\left(\sum_{y \in X, \partial(x, y)=i} \hat{y}\right) \tag{16.4}\\
&=c_{i+1}\left(\sum_{z \in X, \partial(x, z)=i+1} \hat{z}\right)+a_{i}\left(\sum_{z \in X, \partial(x, z)=i} \hat{z}\right)+b_{i-1}\left(\sum_{z \in X, \partial(x, z)=i-1} \hat{z}\right) \tag{16.5}\\
&=\text { RHS. } \tag{16.6}
\end{align*}
$$

(ii) Recall (Lemma 9.1)

$$
A p_{i}(A)=p_{i+1}(A)+a_{i} p_{i}(A)+b_{i-1} c_{i} p_{i-1}(A) \quad(0 \leq i \leq D)
$$

Dividing by $c_{1} c_{2} \cdots c_{i}$, we have

$$
A \frac{p_{i}(A)}{c_{1} c_{2} \cdots c_{i}}=c_{i+1} \frac{p_{i+1}(A)}{c_{1} c_{2} \cdots c_{i+1}}+a_{i} \frac{p_{i}(A)}{c_{1} c_{2} \cdots c_{i}}+b_{i-1} \frac{p_{i-1}(A)}{c_{1} c_{2} \cdots c_{i}}
$$

So, $A_{i}, p_{i}(A) /\left(c_{1} c_{2} \cdots c_{i}\right)$ satisfy the same recurrence.
Also boundary condition,

$$
A_{0}=p_{0}(A)=I
$$

Hence,

$$
A_{i}=\frac{p_{i}(A)}{c_{1} c_{2} \cdots c_{i}} \quad(0 \leq i \leq D)
$$

(iii) Since $E_{0}, E_{1}, \ldots, E_{D}$ form a basis for $M, \operatorname{dim} M=D+1$.

Observe $A_{0}, A_{1}, \ldots, A_{D} \in M$ by (ii), $A_{0}, A_{1}, \ldots, A_{D}$ are linearly independent, since $p_{0}, p_{1}, \ldots, p_{D}$ are linearly independent.
Thus, $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for M.
(iv) $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for an algebra M,

$$
\begin{equation*}
A_{i} A_{j}=\sum_{\ell=0}^{D} p_{i j}^{\ell} A_{\ell} \quad \text { for some } p_{i j}^{\ell} \in \mathbb{C} \tag{16.7}
\end{equation*}
$$

Fix $h \quad(0 \leq h \leq D)$. Pick $x, y \in X$ with $\partial(x, y)=h$.
Compute x, y entry in (16.7),

$$
\begin{align*}
\left(A_{i} A_{j}\right)_{x y} & =\sum_{z \in X}\left(A_{i}\right)_{x z}\left(A_{j}\right)_{z y} \tag{16.8}\\
& =\sum_{z \in X, \partial(x, z)=i, \partial(y, z)=j} 1 \cdot 1 \tag{16.9}\\
& =|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=j\}| \tag{16.10}
\end{align*}
$$

On the other hand,

$$
\left(\sum_{\ell=0}^{D} p_{i j}^{\ell} A_{\ell}\right)_{x y}=p_{i j}^{h}\left(A_{h}\right)_{x y}=p_{i j}^{h}
$$

(v) $\frac{1}{|X|} J$ is the orthogonal projection onto $\operatorname{Span}(\delta)=E_{0} V$. Hence,

$$
\frac{1}{|X|}=E_{0}
$$

This proves the assertions.

Theorem 16.1. Let $\Gamma=(X, E)$ be distance-regular with diameter $D \geq 2$ and intersection numbers c_{i}, a_{i}, b_{i}. Pick a vertex $x \in X$. Let W be a thin irreducible $T(x)$-module with endpoint $r=1$ and diameter $d \quad(d=D-2$ or $D-1)$. Set $\gamma_{0}=a_{0}(W)+1$.
(i) The scalars

$$
\begin{equation*}
\gamma_{i}:=\frac{c_{2} c_{3} \cdots c_{i+1} b_{2} b_{3} \cdots b_{i+1} \gamma_{0}}{x_{1}(W) x_{2}(W) \cdots x_{i}(W)} \quad(0 \leq i \leq d) \tag{16.11}
\end{equation*}
$$

$a_{i}(W), x_{i}(W)$ are algebraic integers in $\mathbb{Q}\left[\gamma_{0}\right]$. In particular, if $\gamma_{0} \in \mathbb{Q}$, then γ_{i}, $a_{i}(W)$ and $x_{i}(W)$ are integers for all i.
(ii) The numbers, $\gamma_{i}, a_{i}(W), x_{i}(W)$ can all be determined from γ_{0} and the intersection numbers of Γ in order

$$
x_{1}(W), \gamma_{1}, a_{1}(W), x_{2}(W), \gamma_{2}, a_{2}(W), \ldots
$$

using (i),

$$
\begin{equation*}
x_{i}(W)=c_{i} b_{i}+\gamma_{i-1}\left(a_{i}+c_{i}-c_{i+1}-a_{i-1}(W)\right) \quad(1 \leq i \leq D-1) \tag{16.12}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}(W)=\gamma_{i}-\gamma_{i-1}+a_{i}+c_{i}-c_{i+1} \quad(1 \leq i \leq D) \tag{16.13}
\end{equation*}
$$

Note.

$$
p_{i}=p_{1}^{W}+\gamma_{i-1} p_{i-1}^{W}-c_{i}\left(p_{i-1}^{W}+\gamma_{i-2} p_{i-2}^{W}\right),\left(\gamma_{-1}=-\gamma_{-2}=0,0 \leq i \leq d+1\right)
$$

Proof. Set

$$
\tilde{A}_{i}=A_{0}+A_{1}+\cdots+A_{i} \quad(0 \leq i \leq D)
$$

Claim 1. $A \tilde{A}_{i}=c_{i+1} \tilde{A}_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) \tilde{A}_{i}+b_{i} \tilde{A}_{i-1} \quad(0 \leq i \leq D-1)$.
Proof of Claim 1.

$$
\begin{align*}
& \mathrm{LHS}= \sum_{j=0}^{i} A_{j} \tag{16.14}\\
&= \sum_{j=0}^{i}\left(c_{j+1} A_{j+1}+a_{j} A_{j}+b_{j-1} A_{j-1}\right) \tag{16.15}\\
&= \sum_{j=0}^{i-1} A_{j}\left(c_{j}+a_{j}+b_{j}\right)+A_{i}\left(c_{i}+a_{i}\right)+A_{i+1} c_{i+1} \tag{16.16}\\
&= k\left(A_{0}+\cdots+A_{i-1}\right)+\left(a_{i}+c_{i}\right) A_{i}+c_{i+1} A_{i+1} \tag{16.17}\\
& \text { RHS }=c_{i+1}\left(A_{0}+A_{1}+\cdots+A_{i-1}+A_{i}+A_{i+1}\right) \tag{16.18}\\
&+\left(a_{i}-c_{i+1}+c_{i}\right)\left(A_{0}+A_{1}+\cdots+A_{i-1}+A_{i}\right) \tag{16.19}\\
&+b_{i}\left(A_{0}+A_{1}+\cdots+A_{i-1}\right) \tag{16.20}\\
&= k\left(A_{0}+\cdots+A_{i-1}\right)+A_{i}\left(a_{i}+c_{i}\right)+A_{i+1} c_{i+1} \tag{16.21}
\end{align*}
$$

This proves Claim 1.
Now pick $0 \neq w \in E_{1}^{*}(x) W$ and let

$$
w=\sum_{z \in X, \partial(x, z)=1} \alpha_{z} \hat{z}
$$

Pick y, where $\alpha_{y} \neq 0$.
For all $i(0 \leq i \leq D)$, define

$$
\begin{align*}
B_{i} & =\tilde{A}_{i}(\hat{x}-\hat{y}) \tag{16.22}\\
& =\sum_{z \in X, \partial(x, z) \leq i} \hat{z}-\sum_{z \in X, \partial(y, z) \leq i} \hat{z} \tag{16.23}\\
& =\sum_{z \in X, \partial(x, z)=i, \partial(y, z)=i+1} \hat{z}-\sum_{z \in X, \partial(y, z)=i+1, \partial(y, z)=i} \hat{z} \tag{16.24}
\end{align*}
$$

Note that $B_{D}=O, B_{0}=\hat{x}-\hat{y}$, and

$$
\left\langle B_{0}, w_{0}\right\rangle=-\alpha_{y} \neq 0
$$

From Claim 1,

$$
A B_{i}=c_{i+1} B_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) B_{i}+b_{i} B_{i-1}(0 \leq i \leq D), B_{-1}=O
$$

Let $p_{0}^{W}, \ldots, p_{d}^{W}$ denote polynomials for W from Lemma 9.1. So,

$$
w_{i}=p_{i}^{W}(A) w \in E_{1+i}^{*}(x) W, \quad(0 \leq i \leq d)
$$

Claim 2. $\left\langle w_{i}, B_{j}\right\rangle=0$ if $j \notin\{i, i+1\},(0 \leq i \leq d, 0 \leq j \leq D)$.
Proof of Claim 2.

$$
w_{i} \in E_{1+i}^{*}(x) W, \quad B_{j} \in E_{j}^{*}(x) W+E_{j+1}^{*}(x) W
$$

Vertical lines indicate possible non-orthogonality.
Compute

$$
\begin{gather*}
\left\langle A w_{i}, B_{j}\right\rangle=\left\langle w_{i}, A B_{j}\right\rangle, \quad(0 \leq i \leq D, 0 \leq j \leq D-1) \tag{16.25}\\
\mathrm{LHS}=\left\langle w_{i+1}, B_{j}\right\rangle+a_{i}(W)\left\langle w_{i}, B_{j}\right\rangle+x_{i}(W)\left\langle w_{i-1}, B_{j}\right\rangle \tag{16.26}\\
\mathrm{RHD}=b_{j}\left\langle w_{i}, B_{j-1}\right\rangle+\left(a_{j}-c_{j+1}+c_{j}\right)\left\langle w_{i}, B_{j}\right\rangle+c_{j+1}\left\langle w_{i}, B_{j+1}\right\rangle . \tag{16.27}
\end{gather*}
$$

Evaluate for $i=j-2, j-1, j, j+1$.
Set $i=j-2$.

Then (16.25) becomes

$$
\left\langle w_{j-1}, B_{j}\right\rangle=b_{j}\left\langle w_{j-2}, B_{j-1}\right\rangle \quad(2 \leq j \leq D-1)
$$

By induction,

$$
\left\langle w_{j-1}, B_{j}\right\rangle=b_{2} b_{3} \cdots b_{j}\left\langle w_{0}, B_{1}\right\rangle \quad(1 \leq j \leq D-1)
$$

Define

$$
\gamma_{0}=\frac{\left\langle w_{0}, B_{1}\right\rangle}{\left\langle w_{0}, B_{0}\right\rangle}
$$

(We will show $\gamma_{0}=1+a_{0}(W)$.)
Then,

$$
\begin{equation*}
\left\langle w_{j-1}, B_{j}\right\rangle=b_{2} b_{3} \cdots b_{j} \gamma_{0}\left\langle w_{0}, B_{0}\right\rangle \tag{16.28}
\end{equation*}
$$

Set $i=j+1$. Then (16.25) becomes

$$
x_{j+1}(W)\left\langle w_{j}, B_{j}\right\rangle=c_{j+1}\left\langle w_{0}, B_{j+1}\right\rangle \quad(0 \leq j \leq d)
$$

Hence,

$$
\begin{equation*}
\left\langle w_{j}, B_{j}\right\rangle=\frac{x_{1}(W) \cdots w_{j}(W)}{c_{1} c_{2} \cdots c_{j}}\left\langle w_{0}, B_{0}\right\rangle \quad(0 \leq j \leq d) \tag{16.29}
\end{equation*}
$$

Set $i=j-1$. Then (16.25) becomes

$$
\left\langle w_{j}, B_{j}\right\rangle+a_{j-1}(W)\left\langle w_{j-1}, B_{j}\right\rangle=\left(a_{j}-c_{j+1}+c_{j}\right)\left\langle w_{j-1}, B_{j}\right\rangle+b_{j}\left\langle w_{j-1}, B_{j-1}\right\rangle
$$

Evaluate this using (16.28) and (16.29). $\left(\left\langle w_{0}, B_{0}\right\rangle \neq 0\right)$. Then we have

$$
\begin{gathered}
\frac{w_{1}(W) \cdots x_{j}(W)}{c_{1} \cdots c_{j}}+\left(a_{j-1}(W)-a_{j}+c_{j+1}-c_{j}\right) b_{2} \cdots b_{j} \gamma_{0}=b_{j} \frac{x_{1}(W) \cdots x_{j-1}(W)}{c_{1} \cdots c_{j-1}} \\
\left(\gamma_{i}:=\frac{c_{2} c_{3} \cdots c_{i+1} b_{2} b_{3} \cdots b_{i+1} \gamma_{0}}{x_{1}(W) x_{2}(W) \cdots x_{i}(W)}\right) \\
\frac{x_{j}(W)}{c_{j}}=b_{j}+\frac{c_{1} c_{3} \cdots c_{j-1} b_{2} b_{3} \cdots b_{j} \gamma_{0}}{x_{1}(W) x_{2}(W) \cdots x_{j-1}(W)}\left(a_{j}+c_{j}-c_{j+1}-a_{j-1}\right)
\end{gathered}
$$

So,

$$
x_{j}(W)=c_{j} b_{j}+\gamma_{j-1}\left(a_{j}+c_{j}-c_{j+1}-a_{j-1}(W)\right)
$$

This proves (16.12).
Set $i=j$. Then (16.25) becomes

$$
\begin{aligned}
& a_{j}(W)\left\langle w_{j}, B_{j}\right\rangle+x_{j}(W)\left\langle w_{j-1}, B_{j}\right\rangle=\left(a_{j}-c_{j+1}+c_{j}\right)\left\langle w_{j}, B_{j}\right\rangle+c_{j+1}\left\langle w_{j}, B_{j+1}\right\rangle \\
& \left(a_{j}(W)-\left(a_{j}-c_{j+1}+c_{j}\right)\right) \frac{x_{1}(W) \cdots x_{j}(W)}{c_{1} \cdots c_{j}} x_{j}(W) b_{2} \cdots b_{j} \gamma_{0}-c_{j+1} b_{2} \cdots b_{j+1} \gamma_{0}=0
\end{aligned}
$$

Thus,

$$
a_{j}(W)-\left(a_{j}-c_{j+1}+c_{j}\right)+\frac{c_{1} \cdots c_{j} b_{2} \cdots b_{j} \gamma_{0}}{x_{1}(W) \cdots x_{j-1}(W)}-\frac{c_{1} \cdots c_{j} c_{j+1} b_{2} \cdots b_{j+1} \gamma_{0}}{x_{1}(W) \cdots x_{j}(W)}=0
$$

or

$$
a_{j}(W)=a_{j}+c_{j}-c_{j+1}-\gamma_{j-1}+\gamma_{j}
$$

This proves (16.13).
Also by setting $i=j=0$, we have

$$
\begin{align*}
a_{0}(W)\left\langle w_{0}, B_{0}\right\rangle & =\left(a_{0}-c_{1}+c_{0}\right)\left\langle w_{0}, B_{0}\right\rangle+c_{1}\left\langle w_{0}, B_{1}\right\rangle \tag{16.30}\\
& =-\left\langle w_{0}, B_{0}\right\rangle+\gamma_{0}\left\langle w_{0}, B_{0}\right\rangle \tag{16.31}
\end{align*}
$$

Hence,

$$
\gamma_{0}=1+a_{0}(W)
$$

Both $a_{i}(W)$ and $x_{i}(W)$ are algebraic integers, since they are eigenvalues of matrices with integer entries, namely,

$$
E_{i+1}^{*}(x) A E_{i+1}^{*}(x) \text { and } E_{i}^{*}(x) A E_{i+1}^{*}(x) A E_{i}^{*}(x)
$$

Also $\gamma_{0}=1+a_{0}(W)$ is an algebraic integer, and $\gamma_{i}-\gamma_{i-1}$ is an algebraic integer by (16.12).

Hence, γ_{i} is an algebraic integer by induction.
This completes the proof of Theorem 16.1.
Example $16.1(\mathrm{D}=2)$.

$$
D=2 \Leftrightarrow \text { strongly regular. }
$$

Free parameters are k, a_{1}, c_{2}. Let W be an irreducible module of endpoint 1 . The matrix representation of $\left.A\right|_{W}$ is

$$
\left(\begin{array}{cc}
a_{0}(W) & x_{1}(W) \\
1 & a_{1}(W)
\end{array}\right)
$$

$a_{0}(W):$ free.

$$
\begin{align*}
x_{1}(W)= & c_{1} b_{1}+\left(a_{0}(W)+1\right)\left(a_{1}+c_{1}-c_{2}-a_{0}(W)\right) \tag{16.32}\\
= & k-a_{1}-1+a_{1} a_{0}(W)+a_{0}(W)-c_{2} a_{0}(W)-a_{0}(W)^{2} \tag{16.33}\\
& \quad+a_{1}+a-c_{2}-a_{0}(W) \tag{16.34}\\
= & a_{1} a_{0}(W)-c_{2} a_{0}(W)+k-c_{2}-a_{0}(W)^{2} \tag{16.35}\\
\gamma_{1}= & 0 \tag{16.36}\\
a_{1}(W)= & -\left(a_{0}(W)+1\right)+a_{1}+c_{1}-c_{2} \tag{16.37}\\
= & -a_{0}(W)+a_{1}-c_{2} \tag{16.38}
\end{align*}
$$

Then the matrix has eigenvalues θ, θ_{1}. There is one feasible condition: $a_{0}(W)$ is an algebraic integer.

Example 16.2 $(\mathrm{D}=3)$. Free parameters $c_{2}, c_{3}, k, a_{1}, a_{2}$. The matrix representation becomes

$$
\left.A\right|_{W}=\left(\begin{array}{ccc}
a_{0}(W) & x_{1}(W) & 0 \\
1 & a_{1}(W) & x_{2}(W) \\
0 & 1 & a_{2}(W)
\end{array}\right)
$$

Here, $a_{0}(W)$ is free $(=\gamma-1)$

$$
\begin{align*}
x_{1}(W) & =k-1-a_{1}+\gamma_{0}\left(a_{1}+1-c_{2}-a_{0}(W)\right) \tag{16.39}\\
& =\gamma_{0}\left(a_{1}-c_{2}-a_{0}(W)\right)+k-a_{1}+a_{0}(W) . \tag{16.40}
\end{align*}
$$

Set

$$
\begin{align*}
& \gamma_{1}(W)=\frac{c_{2} b_{2} \gamma_{0}}{x_{1}(W)} \\
& a_{1}(W)=\gamma_{1}-\gamma_{0}+a_{1}+1-c_{2} \tag{16.41}\\
& x_{2}(W)=\gamma_{1}\left(a_{2}-c_{3}-a_{1}(W)\right)+c_{2}\left(\gamma_{0}+b_{1}-a_{2}+a_{1}(W)\right) \tag{16.42}\\
& a_{2}(W)=-\gamma_{1}+a_{2}+c_{2}-c_{2} \tag{16.43}
\end{align*}
$$

The matrix has eigenvalues, $\theta, \theta_{2}, \theta_{3}$.
There are two feasibility conditions; γ_{0}, γ_{1} are algebraic integers.
For arbitrary D, there are $D-1$ feasibility conditions; $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{D-1}$ are algebraic integers.

Lemma 16.2. With the notation of Theorem 16.1, suppose

$$
f_{W}=\frac{k-\lambda}{k} \quad\left(\text { so, } a_{0}(W)=-1\right)
$$

Then,

$$
\begin{align*}
& a_{i}(W)=a_{i}+c_{i}-c_{i+1} \quad(0 \leq i \leq D-1) \tag{16.44}\\
& x_{i}(W)=b_{i} c_{i} \quad(1 \leq i \leq D-1) \tag{16.45}\\
& \gamma_{i}(W)=0 \quad(0 \leq i \leq D-1) \tag{16.46}
\end{align*}
$$

Proof. Since $\gamma_{0}=a_{0}(W)+1, \gamma_{i}=0$.

Chapter 17

Association Schemes

Monday, March 1, 1993

Review

Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $D \geq 2$. Pick a vertex $x \in X$.

Let W be a thin irreducible $T(x)$-module with endpoint $r=1$, diameter $d=$ $D-1$ or $D-2$, and $r_{0}=a_{0}(W)+1$.
Show

$$
\gamma_{i}=\frac{c_{2} c_{2} \cdots c_{i+1} b_{2} b_{3} \cdots b_{i+1} \gamma_{0}}{x_{1}(W) \cdots x_{i}(W)}
$$

$a_{i}(W)$ and $x_{i}(W)$ are all algebraic integers in $\mathbb{Q}\left[\gamma_{0}\right]$, where

$$
\begin{align*}
x_{i}(W) & =c_{i} b_{i}+\gamma_{i-1}\left(a_{i}+c_{i}-c_{i+1}-a_{i-1}(W)\right) & & (1 \leq i \leq d) \tag{17.1}\\
a_{i}(W) & =\gamma_{i}-\gamma_{i-1}+a_{i}+c_{i}-c_{i+1} & & (1 \leq i \leq d) \tag{17.2}
\end{align*}
$$

Certainly, $x_{i}(W), \gamma_{i}$, and $a_{i}(W)$ are in $\mathbb{Q}\left[\gamma_{0}\right]$ by the above lines and so on.

$$
\gamma_{0} \rightarrow a_{0}(W) \rightarrow x_{1}(W) \rightarrow \gamma_{1} \rightarrow a_{1}(W) \rightarrow x_{1}(W) \rightarrow \cdots
$$

Recall some $B \in \operatorname{Mat}_{n}(\mathbb{C})$ is integral whenever

$$
B \in \operatorname{Mat}_{n}(\mathbb{Z})
$$

In this case, the characteristic polynomial

$$
\operatorname{det}(\lambda I-B)=\lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0}, \text { for some } \alpha_{0}, \ldots, \alpha_{n-1} \in \mathbb{Z}
$$

Hence, eigenvalues of B are algebraic integers. But $a_{i}(W)$ is an eigenvalue of an integral matrices,

$$
B=E_{i+1}^{*}(x) A E_{i+1}^{*}(x)
$$

Hence, $a_{i}(W)$ is an algebraic integer.
Also, $x_{i}(W)$ is an eigenvalue of an integral matrix

$$
B=E_{i}^{*}(x) A E_{i+1}^{*}(x) A E_{i}^{*}(x) .
$$

So $x_{i}(W)$ is an algebraic integer.

$$
\gamma_{i}-\gamma_{i-1}=a_{i}(W)-a_{i}-c_{i}+c_{i+1}
$$

is an algebraic integer.
Since $\gamma_{0}=a_{0}(W)+1$ is an algebraic integer, we find γ_{i} is an algebraic integer for all i.

Definition 17.1. A (commutative) association scheme is a configuration $Y=$ ($X,\left\{R_{i}\right\}_{0 \leq i \leq D}$), where X is a finite nonempty set (of vertices), $R_{0}, R_{1}, \ldots, R_{D}$ are nonempty subsets of $X \times X$ such that
(i) $R_{0}=\{(x, x) \mid x \in X\}$,
(ii) $R_{0} \cup \cdots \cup R_{D}=X \times X \quad$ (disjoint union),
(iii) for every $i, R_{i}^{\top}=\{(y, x) \mid x y \in R\}=R_{i^{\prime}}$ for some $i^{\prime} \in\{0,1, \ldots, D\}$,
(iv) for every $h, i, j(0 \leq h, i, j \leq D)$, and every $x, y \in X$ such that $(x, y) \in R_{h}$,

$$
p_{i j}^{h}=\left|\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j}\right\}\right|
$$

depends only on h, i, j and not on x, y; and
(v) $p_{i j}^{h}=p_{j i}^{h}$ for all h, i, j.

If $i^{\prime}=i$ for all i, we say Y is symmetric. We call D the class of scheme and R_{i}, the i th relation of Y. We say vertices $x, y \in X$ are i-related, or 'at distance i ', whenever $(x, y) \in R_{i}$.
We always assume that a 'scheme' is a commutative association scheme.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be an association scheme.
Definition 17.2. The i-the association matrix $A_{i} \in \operatorname{Mat}_{X}(\mathbb{C})$

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if }(x, y) \in R_{i} \tag{17.3}\\
0 & \text { if }(x, y) \notin R_{i},
\end{array} \quad(x, y \in X, 0 \leq i \leq D)\right.
$$

Then,
(i^{\prime}) $A_{0}=I$.
(ii') $A_{0}+A_{1}+\cdots+A_{D}=J$ (= all 1's matrix).
(iií) $A_{i}^{\top}=A_{i^{\prime}}(0 \leq i \leq D)$.
(iv') $A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h} \quad(0 \leq i, j \leq D)$.
(v') $A_{i} A_{j}=A_{j} A_{i}$.
$M:=\operatorname{Span}_{\mathbb{C}}\left(A_{0}, \ldots, A_{D}\right)$ (Bose-Mesner algebra of Y) is a commutative \mathbb{C}-algebra of dimension $D+1$.
Observe:
Y is symmetric $\leftrightarrow A_{i}^{\top}=A_{i}$ for all $i \leftrightarrow M$ is symmetric.

Example 17.1. Let $\Gamma=(X, E)$ be distance-regular of diameter D. Set

$$
\begin{equation*}
R_{i}=\{(x, y) \mid \partial(x, y)=i\} \quad(0 \leq i \leq D) \tag{17.4}
\end{equation*}
$$

Then,

$$
Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)
$$

is a symmetric scheme.

$$
i \text {-th association matrix }=i \text {-th distance matrix for all } i \text {. }
$$

Example 17.2. Suppose a group G acts transitively on a seet X. Assume G is generously transitive, i.e.,

$$
\text { for all } x, y \in X \text {, there exists } g \in G \text { such that } g x=y, g y=x \text {. }
$$

Then G acts on $X \times X$ by rule;

$$
g(x, y)=(g x, g y), \quad \text { for all } g \in G, \text { and for all } x, y \in X .
$$

Let R_{0}, \ldots, R_{D} denote orbits of G on $X \times X$.
Observe that $R_{i}^{\top}=R_{i}$ for all i by generously transitivity, and

$$
Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)
$$

is a symmetric scheme.
Exercise 17.1. In Example Example 17.2, Bose-Mesner algebra

$$
\begin{align*}
M & =\left\{B \in \operatorname{Mat}_{X}(\mathbb{C}) \mid B g=g B, \text { for all } g \in G\right\} \tag{17.5}\\
& =\text { the commuting algebra of } G \text { on } X . \tag{17.6}
\end{align*}
$$

Here, we view each $g \in G$ as a permutation matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ satisfying

$$
g \widehat{x}=\widehat{g x} \quad \text { for all } x \in G .
$$

Example 17.3. Let G be any finite group. G acts on $X=G$ by conjugation.

$$
G \times X \rightarrow X, \quad(g, x) \mapsto g x g^{-1}
$$

Let $C_{0}, C_{1}, \ldots, C_{D}$ denote orbits (i.e., conjugacy classes), and let $C_{0}=\left\{1_{G}\right\}$. Claim that $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ is a commutative scheme (not symmetric in general).
(i) $R_{0}=\{x x \mid x \in X\}$ as $C_{0}=\left\{1_{G}\right\}$.
(ii) R_{0}, \ldots, R_{D} is a partition of $X \times X$ since C_{0}, \ldots, C_{D} is a partition of $X=G$.
(iii) $R_{i}^{\top}=R_{i^{\prime}}$, where $C_{i^{\prime}}=\left\{g^{-1} \mid g \in C_{i}\right\}$.
(iv) Set $H=G \oplus G$, the direct sum. Then H acts on $X=G$:

$$
\begin{align*}
& \text { for all } h=(g, g z), \text { for all } x \in X, \quad h(x)=g x(g x)^{-1}=g x z^{-1} g^{-1} \\
& \qquad \begin{aligned}
R_{i}=\left\{(x, y) \mid x^{-1} y\right. & \left.\in C_{i}\right\}, h_{i} \in C_{i}, x^{-1} y=g h_{i} g^{-1}
\end{aligned} \\
& \qquad \begin{aligned}
(x, y) & =\left(x, x g h_{i} g^{-1}\right) \\
& =\left(x g g^{-1}, x g h_{i} g^{-1}\right) \\
& =(x g, g)\left(1, h_{i}\right)
\end{aligned} \tag{17.7}
\end{align*}
$$

So, R_{0}, \ldots, R_{D} are the orbits of H on $X \times X$.
(v) $p_{i j}^{h}=p_{j i}^{h}$?

Fix i, j, h and $x, y \in X$ with $(x, y) \in R_{h}$. Set

$$
\begin{align*}
& S=\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j}\right\} \tag{17.10}\\
& T=\left\{z \in X \mid(x, z) \in R_{j},(z, y) \in R_{i}\right\} \tag{17.11}
\end{align*}
$$

Show $|S|=|T|$.

$$
\text { For all } z \in S, \text { set } \hat{z}=x z^{-1} y
$$

Observe, $\hat{z} \in T$.

$$
\begin{array}{ll}
x^{-1} z \in C_{i} & x^{-1} \hat{z}=x^{-1} x z^{-1} y \in C_{j} \\
z^{-1} y \in C_{j} & \hat{z}^{-1} y=y^{-1} z x^{-1} x^{-1} y=y^{-1} x\left(x^{-1} z\right) x^{-1} y \in C_{i} \tag{17.13}
\end{array}
$$

Observe

$$
S \rightarrow T \quad\left(z \mapsto z^{-1}\right) \quad \text { is one-to-one and onto. }
$$

Chapter 18

Polynomial Schemes

Wednesday, March 3, 1993

Lemma 18.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ denote the symmetric scheme with associated matrices $A_{0}, A_{1}, \ldots, A_{D}$. Then the following are equivalent.
(i) The graph $\Gamma=\left(X, R_{1}\right)$ is distance-regular, and R_{0}, \ldots, R_{D} are labelled so that

$$
R_{i}=\{x y \mid \partial(x, y)=i\} .
$$

(ii) There exists $f_{i} \in \mathbb{C}[\lambda]$, $\operatorname{deg} f_{i}=i$ such that $f_{i}\left(A_{1}\right)=A_{i}$ for all i with $0 \leq i \leq D$.
(iii) The parameter $p_{i j}^{h}$

$$
\begin{cases}=0 & \text { if one of } h, i, j \text { is larger than the sum of the other two, } \\ \neq 0 & \text { if one of } h, i, j \text { is equal to the sum of the other two. }\end{cases}
$$

Proof.
$(i) \Rightarrow(i i)$: Lemma 16.1.
$(i i) \Rightarrow(i i i):$ Define

$$
k_{i} \equiv p_{i i}^{0}=\left|\left\{z \mid z \in X, \partial(x, z)=i,\left((x, z) \in R_{i}\right)\right\}\right|
$$

for any $x \in X$. Then $k_{i} \neq 0(0 \leq i \leq D), k_{0}=1$.
(By symmetricity, $(x, y) \in R_{i}$ if and only if $(y, x) \in R_{i}$.)

Claim.

$$
\begin{align*}
k_{h} p_{i j}^{h} & =k_{i} p_{h j}^{i}=k_{j} p_{i h}^{j} \tag{18.1}\\
& =|X|^{-1}\left|\left\{x y z \in X^{3} \mid \partial(x, y)=h, \partial(x, z)=i, \partial(y, z)=j\right\}\right| . \tag{18.2}
\end{align*}
$$

Pf. The number of $x y z \in X^{3}, \partial(x, y)=h, \partial(x, z)=i, \partial(y, z)=j$ is equal to

$$
|X| k_{h} p_{i j}^{h}=|X| k_{i} p_{h j}^{i}=k_{j} p_{i h}^{j} .
$$

In particular,

$$
p_{i j}^{h}=0 \leftrightarrow p_{h j}^{i}=0 \leftrightarrow p_{i h}^{j}=0 .
$$

Hence, it suffices to show

$$
\begin{cases}p_{i j}^{h}=0 & \text { if } \quad h>i+j \\ p_{i j}^{h} \neq 0 & \text { if } h=i+j .\end{cases}
$$

Fix i, j. Without loss of generality, we may assume that $i+j \leq D$ as trivial otherwise.

$$
\begin{align*}
f_{i}(A) f_{j}(A)= & A_{i} A_{j}=\sum_{\ell=0}^{D} p_{i j}^{\ell} A_{\ell}=\sum_{\ell=0}^{D} p_{i j}^{\ell} f_{\ell}(A) . \\
i+j & =\operatorname{deg} \text { LHS } \tag{18.3}\\
& =\operatorname{deg} \text { RHS } \tag{18.4}\\
& =\max \left\{\ell \mid p_{i j}^{\ell} \neq 0\right\} . \tag{18.5}
\end{align*}
$$

$(i i i) \Rightarrow(i)$
Let $A=A_{1}$, and consider a graph Γ with adjacency matrix A.

$$
\begin{align*}
A A_{j} & =\sum_{h} p_{1 j}^{h} A_{h} \tag{18.6}\\
& =p_{1 j}^{j+1} A_{j+1}+p_{1 j}^{j} A_{j}+p_{1 j}^{j-1} A_{j-1} . \tag{18.7}
\end{align*}
$$

Then, $p_{1 j}^{j+1} \neq 0 \neq p_{1 j}^{j-1}$.
Fix a vertex $x \in X$, and set $R_{i}(x)=\left\{y \mid(x, y) \in R_{i}\right\}$.
Then each $y \in R_{i}(x)$ is adjacent in Γ to exactly

$$
\begin{gather*}
p_{1, i+1}^{i} \neq 0 \quad \text { vertices in } R_{i+1}(x), \tag{18.8}\\
p_{1 i}^{i} \quad \text { vertices in } R_{i}(x), \tag{18.9}\\
p_{1, i-1}^{i} \neq 0 \quad \text { vertices in } R_{i-1}(x) . \tag{18.10}
\end{gather*}
$$

Hence, by induction,

$$
\begin{equation*}
R_{i}(x)=\{y \mid \partial(x, y)=i \text { in } \Gamma\} \quad(0 \leq i \leq D), \tag{18.11}
\end{equation*}
$$

and Γ is distance regular.

Chapter 19

Commutative Association Schemes

Friday, March 5, 1993
Lemma 19.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme with BoseMesner algebra M.

Then there exists a basis $E_{0}, E_{1}, \ldots, E_{D}$ for M such that
(i) $E_{0}=|X|^{-1} J$.
(ii) $E_{i} E_{j}=E_{j} E_{i}=\delta_{i j} E_{i} \quad(0 \leq i, j \leq D)$.
(iii) $E_{0}+E_{1}+\cdots+E_{D}=I$.
(iv) $E_{i}^{\top}=\overline{E_{i}}=E_{\hat{i}}$ for some $\hat{i} \in\{0,1, \ldots, D\}$.

Proof. M acts on Hermitean space $V=\mathbb{C}^{n}(n=|X|)$.
If W is an M-module, so is W^{\perp}.
Each irreducible M-module is 1 dimensional by commutativity of M. So V is orthognal direct sum of 1-dimensional M-modules.

Let v_{1}, \ldots, v_{n} be an orthonormal basis for V consisiting of eigenvectors for all $m \in M$.

Set $P \in \operatorname{Mat}_{X}(\mathbb{C})$ so that the i-th column of P is equal to v_{i}. So,

$$
\bar{P}^{\top} P=I=P \bar{P}^{\top}=\bar{P} P^{\top}
$$

and P is unitary.

Also, for all $m \in M$,

$$
\begin{align*}
P^{-1} m P & =\operatorname{diagonal} \tag{19.1}\\
& =\operatorname{diag}\left(\theta_{1}(m), \ldots, \theta_{n}(m)\right) \tag{19.2}
\end{align*}
$$

for some functions

$$
\theta_{i}: M \longrightarrow \mathbb{C}
$$

Observe: each $\theta=\theta_{i}$ is a character of M, i.e.,

$$
\theta: M \longrightarrow \mathbb{C}
$$

is a \mathbb{C}-algebra homomorphism.
Observe: the $\theta_{1}, \ldots, \theta_{n}$ are not all distinct.
Let $\sigma_{0}, \ldots, \sigma_{r}$ denote distinct elements of

$$
\theta_{1}, \ldots, \theta_{n}
$$

Say σ_{i} appears m_{i} times. Without loss of generality, we may assume that

$$
P^{-1} m P=\left(\begin{array}{cccc}
\sigma_{0}(m) I_{m_{0}} & O & O & O \\
O & \sigma_{1}(m) I_{m_{1}} & O & O \\
O & O & \ddots & O \\
O & O & O & \sigma_{r}(m) I_{m_{r}}
\end{array}\right)
$$

Set

$$
E_{i}=P\left(\begin{array}{ccc}
O & O & O \\
O & I_{m_{i}} & O \\
O & O & O
\end{array}\right) P^{-1}
$$

where $I_{m_{i}}$ is in the i-th block.
Then,

$$
\begin{gathered}
E_{i} E_{j}=\delta_{i j} E_{i} \quad(0 \leq i, j \leq r) \\
E_{0}+E_{1}+\cdots+E_{r}=I
\end{gathered}
$$

Hence for all $m \in M$,

$$
m=\sum_{i=0}^{r} \sigma_{i}(m) E_{i} \in \operatorname{Span}\left(E_{0}, \ldots, E_{r}\right)
$$

So,

$$
M \subseteq \operatorname{Span}\left(E_{0}, \ldots, E_{r}\right)
$$

Since E_{0}, \ldots, E_{r} are linearly independent, $r \geq D$.
Show $E_{i} \in M$.
Claim 1. For all distinct $i, j \quad(0 \leq i, j \leq D)$, there exists $m \in M$ such that $\sigma_{i}(m) \neq 0, \sigma_{j}(m)=0$.

Pf of Claim 1. $\sigma_{i} \neq \sigma_{j}$ implies that there exists $m^{\prime} \in M$ such that $\sigma_{i}\left(m^{\prime}\right) \neq$ $\sigma_{j}\left(m^{\prime}\right)$.
Set $m=m^{\prime}-\sigma_{j}\left(m^{\prime}\right) I$. Then,

$$
\begin{align*}
\sigma_{j}(m) & =\sigma_{j}\left(m^{\prime}\right)-\sigma_{j}\left(m^{\prime}\right)=0 \tag{19.3}\\
\sigma_{i}(m) & =\sigma_{i}\left(m^{\prime}\right)-\sigma_{j}\left(m^{\prime}\right) \neq 0 \tag{19.4}
\end{align*}
$$

Claim 2. $E_{i} \in M \quad(0 \leq i \leq D)$.
Pf of Claim 2. Fix a vertex $x \in X$. For all $j \neq i$, there exists $m_{j} \in M$ such that

$$
\sigma_{i}\left(m_{j}\right) \neq 0, \quad \sigma_{j}\left(m_{j}\right)=0, \quad i \neq j
$$

Observe

$$
s=\sigma_{i}\left(\prod_{\ell \neq i} m_{\ell}\right) \neq 0
$$

Set

$$
m^{*}=\left(\prod_{\ell \neq i} m_{\ell}\right) s^{-1}
$$

Observe

$$
\sigma_{i}\left(m^{*}\right)=1, \quad \sigma_{j}\left(m^{*}\right)=0, \quad \text { for all } j \neq i \quad(0 \leq j \leq D)
$$

So

$$
P^{-1} m^{*} P=\left(\begin{array}{ccc}
O & O & O \\
O & I_{m_{i}} & O \\
O & O & O
\end{array}\right)
$$

We have

$$
E_{i}=m^{*} \in M
$$

Now $r=D, M=\operatorname{Span}\left(E_{0}, \ldots, E_{D}\right)$ and E_{0}, \ldots, E_{D} is a basis for M.
Observe

$$
P^{-1} E_{i} P=\left(\begin{array}{ccc}
O & O & O \\
O & I_{m_{i}} & O \\
O & O & O
\end{array}\right)
$$

implies

$$
P^{-1}{\overline{E_{i}}}^{\top} P=\bar{P}^{\top}{\overline{E_{i}}}^{\top}{\overline{P^{-1}}}^{\top}=\left(\begin{array}{ccc}
O & O & O \\
O & I_{m_{i}} & O \\
O & O & O
\end{array}\right)^{\top}=P^{-1} E_{i} P
$$

Hence,

$$
{\overline{E_{i}}}^{\top}=E_{i} .
$$

$E_{0}^{\top}, \ldots, E_{D}^{\top}$ are nonzero matrices satisfying

$$
\begin{gathered}
E_{i}^{\top} E_{j}^{\top}=\delta_{i j} E_{i}^{\top} \\
E_{0}^{\top}+E_{1}^{\top}+\cdots+E_{D}^{\top}=I .
\end{gathered}
$$

Each E_{i}^{\top} is a linear combination of E_{0}, \ldots, E_{D} with coefficientss that are 0 or 1 , and for no two E_{i} 's are coefficients of any E_{j} both 1 's.
So, $E_{0}^{\top}, \ldots, E_{D}^{\top}$ is a permutation of E_{0}, \ldots, E_{D}.
Observe $J=A_{0}+\cdots+A_{D} \in M$.
The matrix $|X|^{-1} J$ is an idempotent of rank 1.
So, without loss of generality we may assume that

$$
E_{0}=\frac{1}{|X|} J
$$

We have the assertions.

Define entry-wise product \circ on $\operatorname{Mat}_{X}(\mathbb{C})$.

$$
A_{i} \circ A_{j}=\delta_{i j} A_{i}
$$

So, M is closed under ${ }^{\circ}$.

$$
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{h}
$$

The numbers $q_{i j}^{h}$ is called Krein parameters of Y.
Claim. $q_{i j}^{h} \in \mathbb{R}$.
$P f$.

$$
\begin{align*}
\frac{1}{|X|} \sum_{h=0}^{D} \overline{q_{i j}^{h}} E_{h} & =\frac{1}{|X|} \sum_{h=0}^{D}{\overline{q_{i j}^{h}}}_{\bar{E}_{h}}{ }^{\top} \tag{19.5}\\
& =\left(\overline{E_{i} \circ E_{j}}\right)^{\top} \tag{19.6}\\
& =E_{i} \circ E_{j} \tag{19.7}\\
& =\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \tag{19.8}
\end{align*}
$$

Hence, $q_{i j}^{h}=\overline{q_{i j}^{h}}$.

Observe $A_{0}, \ldots, A_{D}, E_{0}, \ldots, E_{D}$ are bases for M. Hence, there exist $p_{i}(j), q_{i}(j) \in$ \mathbb{C} such that

$$
\begin{align*}
A_{i} & =\sum_{j=0}^{D} p_{i}(j) E_{j} \tag{19.9}\\
E_{i} & =\frac{1}{|X|} \sum_{j=0}^{D} q_{i}(j) A_{j} \tag{19.10}
\end{align*}
$$

Taking transpose and conjugate we find,

$$
\begin{array}{ll}
\overline{p_{i}(j)}=p_{i}(j)=p_{i^{\prime}}(\hat{j}) & \\
\overline{q_{i}(j)}=q_{i}(j)=q_{\hat{i}}\left(j^{\prime}\right) & \tag{19.12}\\
(0 \leq i, j \leq D) \\
\hline, j \leq D)
\end{array}
$$

Fix a vertex $x \in X$. Define

$$
E_{i}^{*} \equiv E_{i}^{*}(x) \in \operatorname{Mat}_{X}(\mathbb{C})
$$

to be a diagonal matrix such that

$$
\left(E_{i}^{*}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if }(x, y) \in R_{i} \\
0 & \text { if }(x, y) \notin R_{i}
\end{array} \quad(0 \leq i \leq D, y \in X .)\right.
$$

Then,

$$
\begin{gathered}
E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*} \\
E_{0}^{*}+\cdots+E_{D}^{*}=I \\
\left(E_{i}^{*}\right)^{\top}=\overline{E_{i}^{*}}=E_{i}^{*}
\end{gathered}
$$

Definition 19.1. Dual Bose-Mesner algebra : $M^{*} \equiv M^{*}(x)$ with respect to x is

$$
\operatorname{Span}\left(E_{0}^{*}, \ldots, E_{D}^{*}\right)
$$

Define dual associate matrices $A_{0}^{*}, \ldots, A_{D}^{*}$. Indeed $A_{i}^{*} \equiv A_{i}^{*}(x) \in \operatorname{Mat}_{X}(\mathbb{C})$ is a diagonal matrix with

$$
\left(A_{i}^{*}\right)_{y y}=|X|\left(E_{i}\right)_{x y} \quad(y \in X)
$$

A_{i}^{*} is a diagonal matrix having the row x of E_{i}^{*} on the diagonal.
Observe

$$
\begin{align*}
& A_{i}^{*}=\sum_{j=0}^{D} q_{i}(j) E_{j}^{*} \quad\left(E_{i}=\frac{1}{|X|} \sum_{j=0}^{D} q_{i}(j) A_{j}\right) \tag{19.13}\\
& E_{i}^{*}=\frac{1}{|X|} \sum_{j=0}^{D} p_{i}(j) A_{j}^{*} \quad\left(A_{i}=\sum_{j=0}^{D} p_{i}(j) E_{j}\right) \tag{19.14}
\end{align*}
$$

So, $A_{0}^{*}, \ldots, A_{D}^{*}$ form a basis for M^{*}.
Also,

$$
\begin{gathered}
A_{i}^{*} E_{j}^{*}=q_{i}(j) E_{j}^{*} \\
\left(A_{i}^{*} E_{j}^{*}=\sum_{h=0}^{D} q_{i}(h) E_{h}^{*} E_{j}^{*}=q_{i}(j) E_{j}^{*} .\right)
\end{gathered}
$$

So, $q_{i}(j)$ are dual eigenvalues of A_{i}^{*}.
Observe,

$$
\begin{gathered}
A_{0}^{*}=I, \quad A_{0}^{*}+\cdots+A_{D}^{*}=|X| E_{0}^{*}, \quad \overline{A_{i}^{*}}=A_{\hat{i}}^{*} \\
A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{D} q_{i j}^{h} A_{h}^{*} \quad(0 \leq i, j \leq D)
\end{gathered}
$$

HS MEMO

Proof.

$$
\begin{gathered}
\left(A_{0}^{*}\right)_{y y}=|X|\left(E_{0}\right)_{x y}=(J)_{x y}=1 \\
A_{0}^{*}+\cdots+A_{D}^{*}=\sum_{i=0}^{D} \sum_{j=0}^{D} q_{i}(j) E_{j}^{*}=|X| E_{0}^{*}
\end{gathered}
$$

Note that

$$
\begin{gather*}
I=E_{0}+\cdots+E_{D}=\frac{1}{|X|} \sum_{i=0}^{D} \sum_{j=0}^{D} q_{i}(j) A_{j} \\
\sum_{i=0}^{D} q_{i}(j)=\delta_{j 0}|X| \\
\overline{A_{i}^{*}}=\sum_{j=0}^{D} \overline{q_{i}(j)} E_{j}^{*}=\sum_{j=0}^{D} q_{i}(j) E_{j}^{*}=A_{\hat{i}}^{*} \\
\left(A_{i}^{*} A_{j}^{*}\right)_{y y}=|X|^{2}\left(E_{i}\right)_{x y}\left(E_{j}\right)_{x y} \tag{19.15}\\
=|X|^{2}\left(E_{i} \circ E_{j}\right)_{x y} \tag{19.16}\\
=|X| \sum_{h=0}^{D} q_{i j}^{h}\left(E_{h}\right)_{x y} \tag{19.17}\\
=\sum_{h=0}^{D} q_{i j}^{h}\left(A_{h}^{*}\right)_{y y} \tag{19.18}
\end{gather*}
$$

The following statements will be proved after a couple of lemmas in the next lecture.
Lemma. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme. Fix a vertex $x \in X$, and set $E^{*} \equiv E_{i}^{*}(x)$ and $\bar{A}_{i}^{*} \equiv A^{*}(x)$. Then the following hold.
(i) $E_{i}^{*} A_{j} E_{k}^{*}=O$ if and only if $p_{i j}^{k}=0$ for $0 \leq i, j, k \leq D$.
(ii) $E_{i} A_{j}^{*} E_{k}=O$ if and only if $q_{i j}^{k}=0$ for $0 \leq i, j, k \leq D$.

Chapter 20

Vanishing Conditions

Monday, March 15, 1993 (Monday after Spring break)
Lemma 20.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme.
(i) $p_{0}(i)=1$.
(ii) $p_{i}(0)=k_{i}$, where

$$
k_{i}=p_{i i^{\prime}}^{0}=\left|\left\{y \in X \mid(x, y) \in R_{i}\right\}\right| \quad(x \in X)
$$

(iii) $q_{0}(i)=1$.
(iv) $q_{i}(0)=m_{i}$, where

$$
m_{i}=\operatorname{rank} E_{i}
$$

Proof.
(i) Since $A_{0}=I$ and

$$
\begin{align*}
A_{0} & =p_{0}(0) E_{0}+p_{0}(1) E_{1}+\cdots+p_{0}(D) E_{D} \tag{20.1}\\
I & =E_{0}+E_{1}+\cdots+E_{D} \tag{20.2}
\end{align*}
$$

$p_{0}(i)=1$ for all i.
(ii) Since

$$
A_{i}=p_{i}(0) E_{0}+p_{i}(1) E_{1}+\cdots+p_{i}(D) E_{D}
$$

$A_{i} E_{0}=p_{i}(0) E_{0}$, and

$$
k_{i} J=A_{i} J=p_{i}(0) J
$$

as there are $k_{i} 1$'s in each row of A_{i}, we have $k_{i}=p_{i}(0)$.
(iii) Since $E_{0}=|X|^{-1} J$ and

$$
\begin{align*}
E_{0} & =|X|^{-1}\left(q_{0}(0) A_{0}+q_{0}(1) A_{1}+\cdots+q_{0}(D) A_{D}\right) \tag{20.3}\\
|X|^{-1} J & =|X|^{-1}\left(A_{0}+A_{1}+\cdots+A_{D}\right) \tag{20.4}
\end{align*}
$$

$q_{0}(i)=1$ for all i.
(iv) $E_{i}=|X|^{-1}\left(q_{i}(0) A_{0}+q_{i}(1) A_{1}+\cdots+q_{i}(D) A_{D}\right), E_{i}^{2}=E_{i}$, and E_{i} is similar to a matrix

$$
\left(\begin{array}{cc}
I_{m_{i}} & O \\
O & O
\end{array}\right)
$$

So,

$$
m_{i}=\operatorname{rank} E_{i}=\operatorname{trace} E_{i}=\sum_{x \in X}\left(E_{i}\right)_{x x}=|X \| X|^{-1} q_{i}(0)=q_{i}(0)
$$

Note that as

$$
E_{i}=\frac{1}{|X|} \sum_{j=0}^{D} q_{i}(j) A_{j} \rightarrow\left(E_{i}\right)_{x x}=\frac{1}{|X|} q_{i}(0)\left(A_{0}\right)_{x x}
$$

Hence, we have all formulas.

Lemma 20.2. With the above notation
(i) $p_{i j}^{h}=p_{j^{\prime} i^{\prime}}^{h^{\prime}}$.
(ii) $k_{h} p_{i j}^{h}=k_{j} p_{i^{\prime} h}^{j}=k_{i} p_{h j^{\prime}}^{i}$.
(iii) $q_{i j}^{h}=q_{\tilde{\mathrm{f}} \hat{i}}^{\hat{h}}$.
(iv) $m_{h} q_{i j}^{h}=m_{j} q_{\hat{i} h}^{j}=m_{i} q_{h \hat{j}}^{i}$.

Proof.
(i) We have

$$
\begin{align*}
\sum_{h=0}^{D} p_{i j}^{h} A_{h^{\prime}} & =\left(\sum_{h=0}^{D} p_{i j}^{h} A_{h}\right)^{\top} \tag{20.5}\\
& =\left(A_{i} A_{j}\right)^{\top} \tag{20.6}\\
& =A_{j}^{\top} A_{i}^{\top} \tag{20.7}\\
& =A_{j^{\prime}} A_{i^{\prime}} \tag{20.8}\\
& =\sum_{h=0}^{D} p_{j^{\prime} i^{\prime}}^{h^{\prime}} A_{h}^{\prime} \tag{20.9}
\end{align*}
$$

(ii) Count the following number,

$$
\begin{align*}
& \left|\left\{x y z \in X^{3} \mid(x, y) \in R_{h},(x, z) \in R_{i},(z, y) \in R_{j}\right\}\right| \tag{20.10}\\
& \quad=|X| k_{h} p_{i j}^{h}=|X| k_{j} p_{i^{\prime} h}^{j}=|X| k_{h j^{\prime}}^{i} \tag{20.11}
\end{align*}
$$

(iii)

$$
\begin{align*}
\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{\hat{h}} & =\left(\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{h}\right)^{\top} \tag{20.12}\\
& =\left(E_{i} \circ E_{j}\right)^{\top} \tag{20.13}\\
& =E_{j}^{\top} \circ E_{i}^{\top} \tag{20.14}\\
& =E_{\hat{j}} E_{\hat{i}} \tag{20.15}\\
& =\frac{1}{|X|} \sum_{h=0}^{D} q_{\hat{j} \hat{i}}^{\hat{h}} E_{\hat{h}} \tag{20.16}
\end{align*}
$$

(iv) Let $\tau(B)$ denote the sum of the entries in the matrix B.

Observe: $\tau(B \circ C)=\operatorname{trace}\left(B C^{\top}\right)$.
Observe

$$
\tau\left(E_{i} \circ E_{j} \circ E_{\hat{k}}\right)=\tau\left(\left(E_{i} \circ E_{j} \circ E_{\hat{k}}\right)^{\top}\right)=\tau\left(E_{\hat{i}} \circ E_{k} \circ E_{\hat{j}}\right)=\tau\left(E_{k} \circ E_{\hat{j}} \circ E_{\hat{i}}\right)
$$

Compute each one.

$$
\begin{align*}
\tau\left(E_{i} \circ E_{j} \circ E_{\hat{k}}\right) & =\operatorname{trace}\left(\left(E_{i} \circ E_{j}\right) E_{k}\right)=\operatorname{trace}\left(\left(\frac{1}{|X|} \sum_{h} q_{i j}^{h} E_{h}\right) E_{k}\right) \tag{20.17}\\
& =\operatorname{trace}\left(\frac{1}{|X|} q_{i j}^{k} E_{k}\right)=\frac{1}{|X|} m_{k} q_{i j}^{k} \tag{20.18}\\
\tau\left(E_{\hat{i}} \circ E_{k} \circ E_{\hat{j}}\right) & =\operatorname{trace}\left(\left(E_{\hat{i}} \circ E_{k}\right) E_{\hat{j}}\right)=\operatorname{trace}\left(\left(\frac{1}{|X|} \sum_{h} q_{\hat{i} k}^{h} E_{h}\right) E_{\hat{j}}\right) \tag{20.19}\\
& =\operatorname{trace}\left(\frac{1}{|X|} q_{\hat{i} k}^{j} E_{k}\right)=\frac{1}{|X|} m_{j} q_{\hat{i} k}^{j} \tag{20.20}\\
\tau\left(E_{k} \circ E_{\hat{j}} \circ E_{\hat{i}}\right) & =\operatorname{trace}\left(\left(E_{k} \circ E_{\hat{j}}\right) E_{i}\right)=\operatorname{trace}\left(\left(\frac{1}{|X|} \sum_{h} q_{k \hat{j}}^{h} E_{h}\right) E_{i}\right) \tag{20.21}\\
& =\operatorname{trace}\left(\frac{1}{|X|} q_{k \hat{j}}^{i} E_{i}\right)=\frac{1}{|X|} m_{i} q_{k \hat{j}}^{i} \tag{20.22}
\end{align*}
$$

Hence, we have (iv).

Lemma 20.3. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme. Fix a vertex $x \in X$, and set $E_{i}^{*} \equiv E_{i}^{*}(x)$ and $A_{i}^{*} \equiv A^{*}(x)$. Then the following hold.
(i) $E_{i}^{*} A_{j} E_{k}^{*}=O$ if and only if $p_{i j}^{k}=0$ for $0 \leq i, j, k \leq D$.
(ii) $E_{i} A_{j}^{*} E_{k}=O$ if and only if $q_{i j}^{k}=0$ for $0 \leq i, j, k \leq D$.

Proof.
(i) Partition rows and columns by $R_{0}(x), R_{1}(x), \ldots, R_{D}(x)$. Then,

$$
E_{i}^{*}(x) A_{j} E_{h}^{*}(x)
$$

is the (i, h) block of A_{j}.
Hence this submatrix is zero if and only if there exists no $y, z \in X$ such that $(x, y) \in R_{i},(x, z) \in R_{h}$ and $(y, z) \in R_{j}$. This is exactly when $p_{i j}^{h}=0$.
(ii) The sum of the squares of norms of entries in $E_{i} A_{j}^{*} E_{k}$

$$
\begin{align*}
& =\tau\left(\left(E_{i} A_{j}^{*} E_{k}\right) \circ\left(\overline{E_{j} A_{j}^{*} E_{k}}\right)\right) \tag{20.23}\\
& =\operatorname{trace}\left(E_{i} A_{j}^{*} E_{k}\left(\overline{E_{j} A_{j}^{*} E_{k}}\right)^{\top}\right) \tag{20.24}\\
& =\operatorname{trace}\left(E_{i} A_{j}^{*} E_{k} A_{\hat{j}}^{*} E_{i}\right) \tag{20.25}\\
& =\operatorname{trace}\left(E_{i} A_{j}^{*} E_{k} A_{\hat{j}}^{*}\right) \tag{20.26}\\
& =\sum_{y \in X}\left(E_{i} A_{j}^{*} E_{k} A_{\hat{j}}^{*}\right)_{y y} \tag{20.27}\\
& =\sum_{y \in X}\left(\sum_{z \in X}\left(E_{i}\right)_{y z}\left(A_{j}^{*}\right)_{z z}\left(E_{k}\right)_{z y}\left(A_{\hat{j}}^{*}\right)_{y y}\right) \tag{20.28}\\
& =\sum_{y \in X}\left(\sum_{z \in X}\left(E_{\hat{i}}\right)_{z y}\left(|X|\left(E_{j}\right)_{x z}\right)\left(E_{k}\right)_{z y}\left(|X|\left(E_{j}\right)_{y x}\right)\right) \tag{20.29}\\
& \left.=|X|^{2}\left(E_{j}\left(E_{\hat{i}} \circ E_{k}\right)\right) E_{j}\right)_{x x} \tag{20.30}\\
& =|X| q_{i k}^{j}\left(E_{j}\right)_{x x} \tag{20.31}\\
& =q_{\hat{i} k}^{j} m_{j} \tag{20.32}\\
& =m_{k} q_{i j}^{k} . \tag{20.33}
\end{align*}
$$

as $\operatorname{trace}(X Y)=\operatorname{trace}(Y X)$

Note that since $|X| E_{j}=q_{j}(0) A_{0}+q_{j}(1) A_{1}+\cdots q_{j}(D) A_{D}$,

$$
\left(E_{j}\right)_{x x}=\frac{1}{|X|} q_{j}(0)=\frac{m_{j}}{|X|}
$$

Thus, we have (ii).

Corollary 20.1 (Krein Condition). For any commutative scheme $Y=$ $\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right), q_{i j}^{h}$ is a non-negative real number for $0 \leq h, i, j \leq D$.

Proof. Since $q_{i j}^{h} m_{h}$ is a non-negative real by the proof of Lemma 20.3 (ii).
Note that m_{h} is a positive integer.
An interpretation of the Krein parameters.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme with standard module V.
Pick a vector $v \in V$ with

$$
v=\sum_{x \in X} \alpha_{x} \hat{x}
$$

View v as a function

$$
v: X \longrightarrow \mathbb{C} \quad\left(x \mapsto \alpha_{x}\right)
$$

View V as the set of all functions $V \longrightarrow \mathbb{C}$. Then the vector space V together with product of functions is a \mathbb{C}-algebra.

For

$$
v=\sum_{x \in X} \alpha_{x} \hat{x}, \quad w=\sum_{x \in X} \beta_{x} \hat{x} \in V
$$

write

$$
v \circ w=\sum_{x \in X} \alpha_{x} \beta_{x} \hat{x}
$$

to represent the product of v and w viewed as functions.
Lemma 20.4. With the above notation,
(i) $A_{j}^{*}(x) v=|X|\left(E_{\hat{j}} \hat{x} \circ v\right)$ for all $v \in V$ and for all $x \in X$.
(ii) $E_{i} V \circ E_{j} V \subseteq \sum_{h: q_{i j}^{h} \neq 0} E_{h} V$ for all $0 \leq i, j \leq D$.
(iii) $E_{h}\left(E_{i} \circ E_{j} V\right)=E_{h} V$ if $q_{i j}^{h} \neq 0$ for all $0 \leq h, i, j \leq D$.

Chapter 21

Norton Algebras

Wednesday, March 17, 1993
Proof of Lemma 20.4.
(i) Suppose

$$
v=\sum_{x \in X} \alpha_{x} \hat{x}
$$

Pick a vertex $z \in X$ and compare z-coordinate of each side in (i).

$$
\begin{align*}
\left(A_{j}^{*}(x) v\right)_{z} & =\left(A_{j}^{*}(x)\right)_{z z} v_{z}=|X|\left(E_{j}\right)_{x z} \alpha_{z} . \tag{21.1}\\
|X|\left(E_{\hat{j}} \hat{x} \circ v\right)_{z} & =|X|\left(E_{\hat{j}} \hat{x}\right)_{z} \cdot \alpha_{z}=|X|\left(E_{j}\right)_{x z} \alpha_{z} . \tag{21.2}
\end{align*}
$$

Note that $E_{\hat{j}} \hat{x}$ is the column x of $E_{\hat{j}}$, which is the row x of E_{j}.
(ii) Fix i, j, h such that $q_{i j}^{h}=0$.

Claim. $E_{h}\left(E_{i} V \circ E_{j} V\right)=0$.

$$
\begin{align*}
E_{h}\left(E_{i} V \circ E_{j} V\right) & =E_{h}\left(\operatorname{Span}\left(v \circ w \mid v \in E_{i} V, w \in E_{j} V\right)\right) \tag{21.3}\\
& =E_{h}\left(\operatorname{Span}\left(E_{i} \hat{y} \circ E_{j} \hat{z} \mid y, z \in X\right)\right) \tag{21.4}\\
& =\operatorname{Span}\left(E_{h}\left(E_{j} \hat{z} \circ E_{i} \hat{y} \mid y, z \in X\right)\right. \tag{21.5}\\
& =\operatorname{Span}\left(\left(E_{h} A_{\hat{j}}^{*}(z) E_{i}\right) \hat{y} \mid y, z \in X\right) \quad \text { by }(i) \tag{21.6}
\end{align*}
$$

But $q_{i j}^{h}=0$ implies $q_{\hat{j} \hat{i}}^{\hat{h}}=0$.
So, by Lemma 20.3 (ii),

$$
0=\left(E_{\hat{i}} A_{\hat{j}}^{*} E_{\hat{h}}\right)^{\top}=E_{h} A_{\hat{j}}^{*} E_{i}
$$

Hence, $E_{h}\left(E_{i} V \circ E_{j} V\right)=0$.
(iii) Fix i, j, h such that $q_{i j}^{h} \neq 0$. Then,

$$
E_{h}\left(E_{i} V \circ E_{j} V\right) \subseteq E_{h} V
$$

is clear. We show the other inclusion. Since

$$
\begin{align*}
E_{i} \hat{y} \circ E_{j} \hat{y} & =\left(\text { column } y \text { of } E_{i} \circ \text { column } y \text { of } E_{j}\right) \tag{21.7}\\
& =\text { column } y \text { of } E_{i} \circ E_{j} \tag{21.8}\\
& =\left(E_{i} \circ E_{j}\right) \hat{y} \tag{21.9}\\
& =\left(\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{h}\right) \hat{y} \tag{21.10}
\end{align*}
$$

we have,

$$
\begin{array}{rlr}
E_{h}\left(E_{i} V \circ E_{j} V\right) & =E_{h} \operatorname{Span}\left(E_{i} \hat{y} \circ E_{j} \hat{z} \mid y, z \in X\right) \\
& \supseteq E_{h} \operatorname{Span}\left(E_{i} \hat{y} \circ E_{j} \hat{y} \mid y \in X\right) \\
& =\operatorname{Span}\left(q_{i j}^{h} E_{h} \hat{y} \mid y \in X\right) \\
& =\operatorname{Span}\left(E_{h} \hat{y} \mid y \in X\right) & \\
& =E_{h} V & \text { since } q_{i j}^{h} \neq 0 \tag{21.15}
\end{array}
$$

This proves the assertion.

Lemma 21.1. Given a commutative scheme $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$, fix $j(0 \leq$ $j \leq D)$. Define a binary multiplication:

$$
E_{j} V \times E_{j} V \longrightarrow E_{j} V \quad\left((v, w) \mapsto v * w=E_{j}(v \circ w)\right)
$$

Then,
(i) $v * w=w * v$, for all $v, w \in E_{j} V$,
(ii) $v *\left(w+w^{\prime}\right)=v * w+v * w^{\prime}$ for all $v, w, w^{\prime} \in E_{j} V$, and
(iii) $(\alpha v) * w=\alpha(v * w)$ for all $\alpha \in \mathbb{C}$.

In particular, the vector space $E_{j} V$ together with $*$ is a commutative \mathbb{C}-algebra, (not associative in general).
$\left(N_{j}:\left(E_{j} V, *\right)\right.$ is called the Norton algebra on $\left.E_{j} V.\right)$
(iv) $v * w=0$ for all $v, w \in E_{j} V$ if and only if $q_{j j}^{j}=0$.

Proof.
(i) - (iii) Immediate.
(iv) Immediate from Lemma 20.4 (ii), (iii).

Let Y, j, N_{j} be as in Lemma 21.1, and M Bose-Mesner algebra of Y. Let

$$
\begin{equation*}
\operatorname{Aut} Y=\left\{\sigma \in \operatorname{Mat}_{X}(\mathbb{C}) \mid \sigma: \text { permutation matrix }, \sigma \cdot m=m \cdot \sigma \text { for all } m \in M\right\} \tag{21.16}
\end{equation*}
$$

$$
\begin{equation*}
=\left\{\sigma \in \operatorname{Mat}_{X}(\mathbb{C}) \mid \sigma:\right. \text { permutation matrix } \tag{21.17}
\end{equation*}
$$

$$
\begin{equation*}
\left.(x, y) \in R_{i} \rightarrow(\sigma x, \sigma y) \in R_{i}, \text { for all } i, \text { and for all } x, y \in X\right\} \tag{21.18}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Aut}\left(N_{j}\right)=\left\{\sigma: E_{j} V \rightarrow E_{j} V \mid \sigma \text { is a } \mathbb{C}\right. \text {-algebra isomorphim, i.e., } \tag{21.19}
\end{equation*}
$$

$$
\begin{equation*}
\left.\sigma(v * w)=\sigma(v) * \sigma(w) \text { for all } v, w \in E_{j} V\right\} \tag{21.20}
\end{equation*}
$$

Lemma 21.2. Let $Y, j, *$ be as in Lemma 21.1.
(i) $E_{j} V$ is a module for $\operatorname{Aut}(Y)$.
(ii) $\left.\sigma\right|_{E_{j} V} \in \operatorname{Aut}\left(N_{j}\right)$ for all $\sigma \in \operatorname{Aut}(Y)$.
(iii) $\operatorname{Aut} Y \longrightarrow \operatorname{Aut}\left(N_{j}\right),\left(\left.\sigma \mapsto \sigma\right|_{E_{j}}\right)$ is a homomorphism of groups,
(i.e., a representation of $\operatorname{Aut}(Y)$).
(iv) Suppose R_{0}, \ldots, R_{D} are orbits of $\operatorname{Aut}(Y)$ acting on $X \times X$, (so, we are in Example 17.2) then above representation is irreducible.

Proof.
(i) Pick $\sigma \in \operatorname{Aut} Y$ and $v \in V$. Then,

$$
\sigma E_{j} v=E_{j} \sigma v
$$

since σ commutes with each element of M.
(ii) $\left.\sigma\right|_{E_{j} V}: E_{j} V \rightarrow E_{j} V$ is an isomorphism of a vector space. Since σ is invertible,for all $v, w \in E_{j} V$,
$\sigma(v * w)=\sigma\left(E_{j}\left(E_{j} v \circ E_{j} w\right)\right)=E_{j} \sigma\left(E_{j} v \circ E_{j} w\right)=E_{j}\left(E_{j} \sigma v \circ E_{j} \sigma w\right)=\sigma(v) * \sigma(w)$.
(iii) Immediate from (i) and (ii).
(iv) Here, Bose-Mesner algebra M is the full commuting algebra, i.e.,

$$
M=\left\{m \in \operatorname{Mat}_{X}(\mathbb{C}) \mid \sigma \cdot m=m \cdot \sigma, \text { for all } \sigma \in \operatorname{Aut}(Y)\right\}
$$

Suppose there sia a nonzero proper subspace $0 \neq W \subsetneq E_{j} V$ that is $\operatorname{Aut}(Y)$ invariant.

Set

$$
W^{\perp}=\left\{v \in E_{j} V \mid\langle w, v\rangle=0, \text { for all } w \in W\right\}
$$

Then, W^{\perp} is a module for $\operatorname{Aut}(Y)$, since $\operatorname{Aut}(Y)$ is closed under transpose conjugate.
Let $e: V \rightarrow W$ and $f: V \rightarrow W^{\perp}$ be the orthogonal projection such that $e+f=E_{j}$,

$$
e^{2}=e, f^{2}=f, e f=f e=0, e E_{h}=0, \text { if } h \neq j
$$

Since e commutes with all $\sigma \in \operatorname{Aut}(Y), e \in M$ and

$$
e=\sum_{i=0}^{D} \alpha_{i} E_{i}
$$

If $h \neq j$, then $0=e E_{h}$ and $\alpha_{h}=0$. Thus, $e=\alpha_{j} E_{j}$, i.e., $e=0$ or $f=0$.
A contradiction.

Norton algebras were used in original construction of Monster, a finite simple group G.
Compute character table of G,
$\rightarrow p_{i j}^{h}, q_{i j}^{h}$ of group scheme on G,
\rightarrow find j where $m_{j}=\operatorname{dim} E_{j} V$ is small and $q_{j j}^{j} \neq 0$,
\rightarrow guess abstract structure of N_{j} using the knowlege of $p_{i j}^{h}$'s and $q_{i j}^{h}$'s,
\rightarrow compute $\operatorname{Aut}\left(N_{j}\right)$,
$\rightarrow G$.

Chapter 22

Q-Polynomial Schemes

Friday, March 19, 1993
Lemma 22.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme.
(i) $p_{0 j}^{h}=p_{j 0}^{h}=\delta_{j h}$..
(ii) $p_{i j}^{0}=\delta_{i j^{\prime}} k_{i}$.
(iii) $q_{0 j}^{h}=q_{j 0}^{h}=\delta_{j h}$.
(iv) $q_{i j}^{0}=\delta_{i \hat{j}} m_{i}$.
(v) $\sum_{j=0}^{D} p_{i j}^{h}=k_{i}$.
(vi) $\sum_{j=0}^{D} q_{i j}^{h}=m_{i}$.

Proof.
(i), (ii) These are trivial.
(iii) We have

$$
|X|^{-1} \sum_{\ell=0}^{D} q_{0 j}^{\ell} E_{\ell}=E_{0} \circ E_{j}=|X|^{-1} J \circ E_{j}=|X|^{-1} E_{j}
$$

(iv) Recall from Lemma 20.2

$$
|X|^{-1} m_{h} q_{i j}^{h}=\tau\left(E_{i} \circ E_{j} \circ E_{\hat{h}}\right),
$$

(where $\tau(B)$ is the sum of entries in matrix B.)

$$
\begin{align*}
|X|^{-1} m_{0} q_{i j}^{0} & =\tau\left(E_{i} \circ E_{j} \circ E_{0}\right) \tag{22.1}\\
& =|X|^{-1} \tau\left(E_{i} \circ E_{j}\right) \quad\left(E_{0}=|X|^{-1} J\right) \tag{22.2}\\
& =|X|^{-1} \operatorname{trace}\left(E_{i} E_{\hat{j}}\right) \tag{22.3}\\
& =|X|^{-1} \delta_{i \hat{j}} \operatorname{trace} E_{i} \tag{22.4}\\
& =|X|^{-1} \delta_{i \hat{j}} m_{i} . \tag{22.5}
\end{align*}
$$

(v) Pick $x, y \in X$ with $(x, y) \in R_{h}$. Then,

$$
\begin{align*}
\sum_{j=0}^{D} p_{i j}^{h} & =\mid\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j} \text { for some } j\right\} \mid \tag{22.6}\\
& =\left|\left\{z \in X \mid(x, z) \in R_{i}\right\}\right| \tag{22.7}\\
& =k_{i} \tag{22.8}
\end{align*}
$$

(vi)

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} .
$$

So,

$$
\begin{align*}
\sum_{j=0}^{D} E_{i} \circ E_{j} & =|X|^{-1} \sum_{h=0}^{D}\left(\sum_{j=0}^{D} q_{i j}^{h}\right) E_{h} \tag{22.9}\\
& =E_{i} \circ \sum_{j=0}^{D} E_{j} \tag{22.10}\\
& =E_{i} \circ I \tag{22.11}\\
& =|X|^{-1}\left(q_{i}(0) A_{0}+q_{i}(1) A_{1}+\cdots+q_{i}(0) A_{D}\right) \circ I \tag{22.12}\\
& =|X|^{-1} q_{i}(0) I \tag{22.13}\\
& =|X|^{-1} m_{i}\left(E_{0}+E_{1}+\cdots+E_{D}\right) \tag{22.14}
\end{align*}
$$

This proves the assertions.

Definition 22.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme.
Y is Q-polynomial with respect to ordering $E_{0}, E_{1}, \ldots, E_{D}$ of primitive idempotents, if

$$
q_{i j}^{h} \begin{cases}=0 & \text { if one of } h, i, j \text { is greater than the sum of the other two, } \\ \neq 0 & \text { if one of } h, i, j \text { is equal to the sum of the other two. }\end{cases}
$$

In this case, set

$$
c_{i}^{*}=q_{1, i-1}^{i}, a_{i}^{*}=q_{1, i}^{i}, b_{i}^{*}=q_{1, i+1}^{i} \quad(0 \leq i \leq D),\left(c_{0}^{*}=b_{D}^{*}=0\right)
$$

Observe: Q-polynomial $\rightarrow Y$ is symmetric.
Suppose $i \neq \hat{i}$ for some i. Then, by the condition in Definition 22.1,

$$
0=q_{i \hat{i}}^{0}=m_{i}(\neq 0)
$$

by Lemma 22.1 (iv). This is a contradiction.
Hence, $E_{i}^{\top}=E_{\hat{i}}=E_{i}$ for all i.
Therefore, M is symmetric and Y is symmetric.
Observe: If Y is Q-polynomial,

$$
c_{i}^{*}+a_{i}^{*}+b_{i}^{*}=m_{1} \quad(0 \leq i \leq D)
$$

(just as $c_{i}+a_{i}+b_{i}=k$ for P-polynomial.)
By Lemma 22.1 (iv),

$$
m_{1}=q_{10}^{i}+q_{11}^{i}+\cdots+q_{1, i-1}^{i}+q_{1 i}^{i}+q_{1, i+1}^{i}+\cdots
$$

and $q_{10}^{i}=q_{11}^{i}=0, q_{1, i-1}^{i}=c_{i}^{*}, q_{1 i}^{i}=a_{i}^{*}$, and $q_{1, i+1}^{i}=b_{i}^{*}$.
Lemma 22.2. Assume $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ is a symmetric scheme. Pick $x \in X$, and set $E_{i}^{*} \equiv E_{i}^{*}(x), A^{*} \equiv A^{*}(x)$. Then the following are equivalent.
(i) Γ is Q-polynomial with respect to E_{0}, \ldots, E_{D}.
(ii) The condition

$$
q_{1 j}^{h}\left\{\begin{array}{ll}
=0 & \text { if }|h-j|>0 \\
\neq 0 & \text { if }|h-j|=1
\end{array} \quad(0 \leq h, j \leq D)\right.
$$

(iii) There exists $f_{i}^{*} \in \mathbb{C}[\lambda], \operatorname{deg} f_{i}^{*}=i$, and

$$
A_{i}^{*}=f_{i}^{*}\left(A_{1}^{*}\right) \quad(0 \leq i \leq D)
$$

(iv) $E_{0}^{*} V, \ldots, E_{D}^{*} V$ are maximal eigenspaces of A_{1}^{*}, and

$$
E_{i} A_{1}^{*} E_{j}=O \quad \text { if }|i-j|>0, \quad(0 \leq i, j \leq D)
$$

(Compare (iv) with the definition of Q-polynomial in Definition 6.2.)

Proof.

$(i) \rightarrow(i i)$ Clear.
$($ ii $) \rightarrow(i i i) A_{0}^{*}=I$,

$$
\begin{align*}
& A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{D} q_{i j}^{h} A_{h}^{*} \tag{22.15}\\
& A_{1}^{*} A_{j}^{*}=q_{1 j}^{j-1} A_{j-1}^{*}+q_{1 j}^{j} A_{j}^{*}+q_{1 j}^{j+1} A_{j+1}^{*} \quad\left(q_{1 j}^{j+1} \neq 0,1 \leq j \leq D-1\right) \tag{22.16}
\end{align*}
$$

Hence A_{j}^{*} is a polynomial of degree exactly j in A_{1}^{*} by induction on j.

$$
\lambda f_{j}^{*}(\lambda)=b_{j-1}^{*} f_{j-1}^{*}(\lambda)+a_{j}^{*} f_{j}^{*}(\lambda)+c_{j+1}^{*} f_{j+1}^{*}(\lambda) \quad \text { with } c_{j+1}^{*} \neq 0
$$

and $f_{-1}^{*}=0, f_{0}^{*}(\lambda)=1$.
$(i i i) \rightarrow(i)$ Pick i, j, h with $0 \leq i, j, h \leq D$ and $h \geq i+j$. Since

$$
m_{h} q_{i j}^{h}=m_{j} q_{i h}^{j}=m_{i} q_{h j}^{i}
$$

by Lemma 20.2, it suffices to show that

$$
\begin{gather*}
q_{i j}^{h} \begin{cases}=0 & \text { if } h>i+j \\
\neq 0 & \text { if } h=i+j\end{cases} \\
A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{D} q_{i j}^{h} A_{h}^{*} \tag{22.17}\\
f_{i}^{*}\left(A_{1}\right) f_{j}^{*}\left(A_{1}\right)=\sum_{h=0}^{D} q_{i j}^{h} f_{h}^{*}\left(A_{1}^{*}\right) . \tag{22.18}
\end{gather*}
$$

Hence,

$$
f_{i}^{*}(\lambda) f_{j}^{*}(\lambda)=\sum_{h=0}^{D} q_{i j}^{h} f_{h}^{*}(\lambda)
$$

Note that since $A_{0}^{*}, A_{1}^{*}, \ldots, A_{D}^{*}$ are linearly independent, $f\left(A_{1}^{*}\right)=0$ implies $\operatorname{deg} f>D$.

$$
\operatorname{deg} \text { LHS }=i+j \rightarrow q_{i j}^{i+j} \neq 0, q_{i j}^{h}=0, \text { if } h>i+j
$$

$(i i i) \rightarrow(i v)$ Recall

$$
A_{1}^{*}=q_{1}(0) E_{0}^{*}+q_{1}(1) E_{1}^{*}+\cdots
$$

Each A_{i}^{*} is a polynomial in A_{1}^{*}. Then A_{1}^{*} generates the dual Bose-Mesner algebra. So, $q_{1}(0), q_{1}(1), \ldots, q_{1}(D)$ are distinct.

So, $E_{0}^{*} V, \ldots, E_{D}^{*} V$ are maximal eigenspaces.
Also, $|i-j|>1$ implies $q_{11}^{j}=0$.
Thus, $E_{i} A_{1}^{*} E_{j}=0$ by Lemma 20.3 (ii).
$(i v) \rightarrow(i i) q_{1 j}^{i}=0$ if $|i-j|>1$, since in this case,
$E_{i} A_{1}^{*} E_{j}=O$ implies $q_{1 j}^{i}=0$ by Lemma 20.3 (ii).
Suppose $q_{1 j}^{j+1}=0$ for some $j(0 \leq j \leq D-1)$.
Without loss of generalith, choose j minimum. Then A_{h}^{*} is a polynomial of degree h in $A_{1}^{*}(0 \leq h \leq j)$, and

$$
A_{1}^{*} A_{j}^{*}-q_{1 j}^{j-1} A_{j-1}^{*}-q_{1 j}^{j} A_{j}^{*}=O
$$

the left hand side is a polynomial in A_{1}^{*} of degree $j+1$.
Hence, the minimal polynomial of A_{1}^{*} has degree less than or equal to $j+1 \leq D$. But A_{1}^{*} has $D+1$ distince eigenvalues.

This is a contradiction.

Chapter 23

Representation of a Scheme

Monday, March 22, 1993

Theorem 23.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a symmetric scheme. (View the standard module V as an algebra of functions from X to \mathbb{C}.) Then the following are equivalent.
(i) Y is Q-polynomial with respect to ordering $E_{0}, E_{1}, \ldots, E_{D}$ of primitive idempotents.
(ii) For all $i(0 \leq i \leq D)$,

$$
E_{0} V+E_{1} V+\left(E_{1} V\right)^{2}+\cdots+\left(E_{1} V\right)^{i}=E_{0} V+E_{1} V+\cdots+E_{i} V
$$

Proof.
By Lemma 20.4 (ii), (iii).

$$
E_{h}\left(E_{i} V \circ E_{j} V\right)=0 \text { if and only if } q_{i j}^{h}=0 \quad(0 \leq i, j, h \leq D)
$$

$(i) \rightarrow(i i)$ By our assumption,

$$
q_{1 j}^{h}=0 \text { if }|h-j|>1, \text { and } q_{1 j}^{j+1} \neq 0
$$

So,

$$
\begin{gather*}
E_{1} V \circ E_{j} V \subseteq E_{j-1} V+E_{j} V+E_{j+1} V \quad(0 \leq j \leq D) \tag{23.1}\\
E_{j+1}\left(E_{1} V \circ E_{j} V\right)=E_{j+1} V \quad(0 \leq j \leq D-1) \tag{23.2}
\end{gather*}
$$

by Lemma 20.4.
Also $E_{0} V \subseteq \operatorname{Span}(\delta)$, where δ is all 1's vector, i.e., 1 as a function $X \rightarrow \mathbb{C}$. So,

$$
\begin{equation*}
E_{0} V \circ E_{j} V=E_{j} V \quad(0 \leq j \leq D) \tag{23.3}
\end{equation*}
$$

Show (ii) by induction on i.
The cases $i=0,1$ are trivial.
$i>1: \subseteq$.

$$
\begin{align*}
& E_{0} V+E_{1} V+\left(E_{1} V\right)^{2}+\cdots+\left(E_{1} V\right)^{i} \tag{23.4}\\
& \quad=E_{0} V+E_{1} V \circ\left(E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i-1}\right) \tag{23.5}\\
& \quad=E_{0} V+E_{1} V \circ\left(E_{0} V+E_{1} V+\cdots+E_{i-1} V\right) \tag{23.6}\\
& \quad \subseteq E_{0} V+E_{1} V+\cdots+E_{i} V \tag{23.7}
\end{align*}
$$

by (23.1).
\supseteq.
Claim. $E_{i} V \subseteq E_{1} V \circ E_{i-1} V+E_{i-1} V+E_{i-2} V \quad(2 \leq i \leq D)$.
Proof of Claim. By (23.2),

$$
E_{i}\left(E_{1} V \circ E_{i-1} V\right)=E_{i} V
$$

For all $v \in E_{i} V$, there exists $u \in E_{1} V \circ E_{i-1} V$ such that $E_{i} u=v$.
On the other hand, by (23.1),

$$
E_{1} V \circ E_{i-1} V \subseteq E_{i-2} V+E_{i-1} V+E_{i-2} V
$$

So, $u=w+v$, where $w \in E_{i-2} V+E_{i-1} V$. We have,

$$
w=u-v \in E_{1} V \circ E_{i-1} V+E_{i-1} V+E_{i-2} V
$$

as desired.

HS MEMO

$$
E_{i} V \circ E_{j} V=\operatorname{Span}\left(u \circ v \mid u \in E_{i} V, v \in E_{j} V\right)
$$

By claim,

$$
\begin{align*}
& E_{0} V+E_{1} V+\cdots+E_{i} V \tag{23.8}\\
& \quad \subseteq E_{0} V+E_{1} V+\cdots+E_{i-1} V+E_{1} V \circ E_{i-1} V \tag{23.9}\\
& \quad \subseteq E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i-1}+E_{1} V\left(E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i-1}\right) \tag{23.10}\\
& \tag{23.11}\\
& \quad \subseteq E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i-1}+\left(E_{1} V\right)^{i}
\end{align*}
$$

$($ ii) $\rightarrow(i)$
Claim 1. Pick $i, j(0 \leq i, j \leq D)$ with $j>i+1$. Then $q_{1 i}^{j}=0$.

Proof of Claim 1.

$$
\begin{align*}
E_{j}\left(E_{1} \circ E_{j} V\right) & \subseteq E_{j}\left(E_{1} V \circ\left(E_{0} V+E_{1} V+\left(E_{1} V\right)^{2}+\cdots+\left(E_{1} V\right)^{i}\right)\right) \tag{23.12}\\
& \subseteq E_{j}\left(E_{0} V+E_{1} V+\left(E_{1} V\right)^{2}+\cdots+\left(E_{1} V\right)^{i+1}\right) \tag{23.13}\\
& =E_{j}\left(E_{0} V+E_{1} V+\cdots+E_{i+1} V\right) \tag{23.14}\\
& =0 \tag{23.15}
\end{align*}
$$

So $q_{1 i}^{j}=0$ by Lemma 20.4.
Claim 2. $q_{1 i}^{i+1} \neq 0(0 \leq i<D)$.
Proof of Claim 2.

$$
\begin{align*}
& E_{0} V+E_{1} V+\cdots+E_{i+1} V \tag{23.16}\\
& \quad=E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i+1} \tag{23.17}\\
& \quad=E_{0} V+E_{1} V \circ\left(E_{0} V+E_{1} V+\cdots+\left(E_{1} V\right)^{i}\right) \tag{23.18}\\
& \quad=E_{0} V+E_{1} V \circ\left(E_{0} V+E_{1} V+\cdots+E_{i} V\right) \tag{23.19}\\
& \quad=E_{0} V+E_{1} V \circ\left(E_{0} V+\cdots+E_{i} V\right) \tag{23.20}
\end{align*}
$$

So,

$$
\begin{align*}
E_{i+1} V & =E_{i+1}\left(E_{1} V \circ\left(E_{0} V+\cdots+E_{i} V\right)\right) \tag{23.21}\\
& =E_{i+1}\left(E_{1} V \circ E_{i} V\right) \tag{23.22}
\end{align*}
$$

by Claim 1 and Lemma 20.4.
Hence, $q_{1 i}^{i+1} \neq 0$ by Lemma 20.4.

Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme with standard module V.
Definition 23.1. A representation of Y is a pair (ρ, H), where H is a non-zero Hermitean space (with inner product \langle,$\rangle) and \rho: X \rightarrow H$ is a map satisfying the following.
R1. $H=\operatorname{Span}(\rho(x) \mid x \in X)$.
R2. $\langle\rho(x), \rho(y)\rangle$ depends only on i for which $(x, y) \in R_{i}(x, y \in X)$.
R3. For every $x \in X$ and for all $i(0 \leq i \leq D)$,

$$
\sum_{y \in X,(y, x) \in R_{i}} \rho(y) \in \operatorname{Span}(\rho(x))
$$

Above representation is nondegenerate if $\{\rho(x) \mid x \in X\}$ are distinct.

Example 23.1. $Y=H(D, 2), X=\left\{a_{1} \cdots a_{D} \mid a_{i} \in\{1,-1\}, 1 \leq i \leq D\right\}$. Let $H=\mathbb{C}^{D}$ and \langle,$\rangle usual Hermitean dot product.$

For a vertex $x=a_{1} \cdots a_{D} \in X$, define

$$
\rho(x)=a_{1} \cdots a_{D} \in H
$$

Then, R1 - R3 hold.

HS MEMO

R1, R2 are obvious. For R3, we may assume that $x=1 \cdots 1$. Restrict

$$
\sum_{y \in X,(y, x) \in R_{i}} \rho(y)
$$

on the first coordinate. Then,

$$
\begin{array}{r}
-1 \quad \text { appears }\binom{D-1}{i-1} \text { times } \\
1 \quad \text { appears }\binom{D-1}{i} \text { times. } \tag{23.24}
\end{array}
$$

Hence,

$$
\sum_{y \in X,(y, x) \in R_{i}} \rho(y)=\left(\binom{D-1}{i}-\binom{D-1}{i-1}\right) \rho(x)
$$

Let (ρ, H) be a representation of arbitrary commutative scheme Y. Set

$$
E=(\langle\rho(x), \rho(y)\rangle)_{x, y \in X}
$$

Gram matrix of the representation.
Definition 23.2. Representations $(\rho, H),\left(\rho^{\prime}, H^{\prime}\right)$ of Y are equivalent, whenever, Gram matrices are related by

$$
E^{\prime} \in \operatorname{Span} E
$$

We do not distinguish between equivalent representations.
Note. Suppose (ρ, H) is a representation of a symmetric scheme Y. Pick $x, y \in X$ with $(x, y) \in R_{j}$.
Then $(y, x) \in R_{j}$. So, by R2,

$$
\langle\rho(x), \rho(y)\rangle=\langle\rho(y), \rho(x)\rangle=\overline{\langle\rho(x), \rho(y)\rangle}
$$

since \langle,$\rangle is Hermitean.$
Hence, the Gram matrix E of ρ is real symmetirc. Without loss of generality, we can view H as a real Euclidean space in this case.

Lemma 23.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme and V a standard module.

Let E_{j} be any primitive idempotent of Y.
(i) (ρ, H) is a representation of Y, where $H=E_{j} V$ (with inner product inherited from $Y)$.

$$
\rho: X \rightarrow H \quad\left(x \mapsto E_{j} \hat{x}\right)
$$

(i.e., $\rho(x)$ is the $x-$ th column of E_{j}.)
(ii) $\langle\rho(x), \rho(y)\rangle=|X|^{-1} q_{j}(i)$, if $(x, y) \in R_{i},(x, y \in X)$.
(iii) For $0 \leq i \leq D$ and $x, y \in X$,

$$
\sum_{y \in X,(y, x) \in R_{i}} \rho(y)=p_{i}(j) \rho(x) .
$$

(iv) (ρ, H) is nondegenerate if and only if $q_{j}(i) \neq q_{j}(0)$ for all $i,(0 \leq i \leq D)$.
(v) Every representation of Y is equivalent to a representation of the above type for some $j(0 \leq j \leq D)$, and j is unique.

Proof.
(i) - (iii).

R1: $\operatorname{Span}(\rho X)$ is the column space of E_{j} which is equal to H.
R2:

$$
\begin{align*}
\langle\rho(x), \rho(y)\rangle & =\left\langle E_{j} \hat{x}, E_{j} \hat{y}\right\rangle \tag{23.25}\\
& =\left(\overline{E_{j} \hat{x}}\right)^{\top} E_{j} \hat{y} \tag{23.26}\\
& =\hat{x}^{\top}{\overline{E_{j}}}^{\top} E_{j} \hat{y} \tag{23.27}\\
& =\hat{x}^{\top} E_{j} \hat{y} \tag{23.28}\\
& =\left(E_{j}\right)_{x y} . \tag{23.29}
\end{align*}
$$

Note that $\bar{E}_{j}{ }^{\top}=E_{j}$ by Lemma 19.1.
Recall

$$
E_{j}=|X|^{-1}\left(q_{j}(0) A_{0}+\cdots+q_{j}(D) A_{D}\right)
$$

So,

$$
\left(E_{j}\right)_{x y}=|X|^{-1} q_{j}(i), \quad \text { where } \quad(x, y) \in R_{i}
$$

R3: Recall

$$
A_{i}=p_{i}(0) E_{0}+\cdots+p_{i}(D) E_{D}
$$

So, $E_{j} A_{i}=p_{i}(j) E_{j}$, and

$$
p_{i}(j) \rho(x)=p_{i}(j) E_{j} \hat{x}=E_{j} A_{i} \hat{x}=E_{j} \sum_{y \in X,(y, x) \in R_{i}} \hat{y}=\sum_{y \in X,(y, x) \in R_{i}} \rho(y) .
$$

Note.

$$
A_{i} \hat{x}=\sum_{y \in X,(x, y) \in R_{i^{\prime}}} \hat{y}
$$

Pf.

$$
\begin{align*}
z \text { entry of LHS } & =\left(A_{i} \hat{x}\right)_{z} \tag{23.30}\\
& =\sum_{w \in X}\left(A_{i}\right)_{z w} \hat{x}_{w} \tag{23.31}\\
& =\left(A_{i}\right)_{z x} \tag{23.32}\\
& = \begin{cases}1 & \text { if }(x, z) \in R_{i^{\prime}} \\
0 & \text { else. }\end{cases} \tag{23.33}\\
z \text { entry of RHS } & =\sum_{y \in X,(x, y) \in R_{i^{\prime}}, z=y} 1 \tag{23.34}\\
& = \begin{cases}1 & \text { f }(x, z) \in R_{i^{\prime}} \\
0 & \text { else. }\end{cases} \tag{23.35}
\end{align*}
$$

(iv) By (ii),

$$
\begin{align*}
\|\rho(x)\|^{2} & =\langle\rho(x), \rho(y)\rangle \tag{23.36}\\
& =|X|^{-1} q_{j}(0) \tag{23.37}\\
& =|X|^{-1} m_{j}, \tag{23.38}
\end{align*}
$$

as $m_{j}=\operatorname{dim} E_{j} V$, and is independent of $x \in X$.
Pick distinct $x, y \in X$ such that $(x, y) \in R_{i}$ with $i \neq 0$.
Then,

$$
\begin{align*}
\rho(x)=\rho(y) & \Leftrightarrow\langle\rho(x), \rho(y)\rangle=\|\rho(x)\|^{2}=|X|^{-1} q_{j}(0) \tag{23.39}\\
& \Leftrightarrow|X|^{-1} q_{j}(i)=|X|^{-1} q_{j}(0) \tag{23.40}\\
& \Leftrightarrow q_{j}(i)=q_{j}(0) . \tag{23.41}
\end{align*}
$$

Hence, we have (iv). To be continued.

Chapter 24

Balanced Conditions, I

Wednesday, March 23, 1993

No Class on Friday (another conference).
Proof of Lemma 23.1 continued. Let E_{j} be a primitive idempotent, $H=E_{j} V$ and

$$
\rho: X \rightarrow H \quad\left(x \mapsto E_{j} \hat{x}\right) .
$$

(v) Every representation (ρ, H) of Y is equivalent to a representation of above type, for some $j(0 \leq j \leq D)$ and j is unique.

Let $E:=\left(\langle\rho(x), \rho(y))_{x, y \in X}\right.$.
By R2,

$$
E=\sum_{i=0}^{D} \sigma_{i} A_{i}, \quad \text { some } \sigma_{0}, \sigma_{1}, \ldots, \sigma_{D} \in \mathbb{C}
$$

Hence, E belongs to the Bose-Mesner algebra M of Y.
We want to show that E is a scalar multiple of a primitive idempotent.
Fix $x \in X$ and fix $i(0 \leq i \leq D)$.
By R3,

$$
\begin{equation*}
\sum_{y \in X,(y, x) \in R_{i}} \rho(y)=\alpha \rho(x), \quad \text { some } \alpha \in \mathbb{C} . \tag{24.1}
\end{equation*}
$$

So,

$$
k_{i} \overline{\sigma_{i}}=\left\langle\sum_{y \in X,(y, x) \in R_{i}} \rho(y), \rho(x)\right\rangle=\bar{\alpha}\langle\rho(x), \rho(x)\rangle=\bar{\alpha} \sigma_{0} .
$$

Hence, α is independent of x. In maatrix form (24.1) becomes

$$
E A_{i} \hat{x}=\alpha E \hat{x}
$$

HS MEMO

$$
\begin{align*}
& E u=E v \Leftrightarrow\langle z, E u\rangle=\langle z, E v\rangle \text { for all } z \in X \Leftrightarrow(E u)_{z}=(E v)_{z} \text { for all } z \in X . \\
& \qquad \begin{aligned}
\left(E A_{i} \hat{x}\right)_{z} & =\left\langle\rho(z), \sum_{y \in X,(y, x) \in R_{i}} \rho(y)\right\rangle \\
& =\alpha\langle\rho(z), \rho(x)\rangle \\
& =(\alpha E \hat{x})_{z} .
\end{aligned} \tag{24.2}
\end{align*}
$$

Hence,

$$
E A_{i} \hat{x}=\alpha E \hat{x}
$$

Since x is arbitrary,

$$
E A_{i}=\alpha E
$$

So,

$$
E A_{i} \in \operatorname{Span} E \text { and } E M=\operatorname{Span} E
$$

We have $E \in \mathrm{E}_{\mathrm{j}}$ for unique $j(0 \leq j \leq D)$.

HS MEMO

$$
E=\tau_{0} E_{0}+\cdots+\tau_{D} E_{D}, \tau_{j} \in \mathbb{C} \quad(0 \leq j \leq D)
$$

And, at least one of τ_{j} is nonzero, and

$$
\tau_{j} E_{j}=E E_{j} \in \operatorname{Span} E
$$

So,

$$
\tau_{j} E_{j}=E
$$

as E_{0}, \ldots, E_{D} are linearly independent.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a symmetric scheme, and let E be a primitive idempotent.
Definition 24.1. Y is Q-polynomial with respect to E, if and only if Y is Q-polynomial with respect to some ordering $E_{0}, E_{1}, \ldots, E_{D}$ of primitive idempotents, where $E_{0}=|X|^{-1} J$, and $E_{1}=E$.
Theorem 24.1. Assume $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ is P-polynomial (i.e., $\left(X, R_{1}\right)$ is distance-regular). Let E be any primitive idempotent of Y. Let (ρ, H) be the corresponding representation.
(i) The following are equivalent.
(ia) Y is Q-polyonimial with respect to E.
(ib) (ρ, H) is nondegenerate and for all $x, y \in X$, and for all $i, j(0 \leq i, j \leq D)$,

$$
\sum_{z \in X,(x, z) \in R_{i},(y, z) \in R_{j}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{j},\left(y, z^{\prime}\right) \in R_{i}} \rho\left(z^{\prime}\right) \in \operatorname{Span}(\rho(x)-\rho(y))
$$

(ic) (ρ, H) is nondegenerate and for all $x, y \in X$,

$$
\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right) \in \operatorname{Span}(\rho(x)-\rho(y)) .
$$

(ii) Write

$$
E=|X|^{-1} \sum_{j=0}^{D} \theta_{j}^{*} A_{j}
$$

and suppose (ia) - (ic) hold. Then the coefficient in (ib) is

$$
p_{i j}^{h} \frac{\theta_{i}^{*}-\theta_{j}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}} \quad(1 \leq h \leq D, 0 \leq i, j \leq D)
$$

Proof.
$(i a) \rightarrow(i b)$ Without loss of generality, assume $E \equiv E_{1}$, and Y is Q-polynomial with respect to E.

Then by Lemma $22.2, \theta_{0}^{*}, \ldots, \theta_{D}^{*}$ are distinct. So $\theta_{h}^{*} \neq \theta_{0}^{*}$ for all $h \in\{1,2 \ldots, D\}$, and (ρ, H) is nondegenerate.
Fix $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x), A_{i}^{*} \equiv A_{i}^{*}(x), A^{*} \equiv A_{1}^{*}$.
Let M be the Bose-Mesner algebra. Set

$$
L=\left\{m A^{*} n-n A^{*} m \mid m, n \in M\right\}
$$

Claim 1. $\operatorname{dim} L \leq D$.
Proof of Claim 1.

$$
\begin{align*}
L & =\operatorname{Span}\left(E_{i} A^{*} E_{j}-E_{j} A^{*} E_{i} \mid 0 \leq i<j \leq D\right) \tag{24.5}\\
& =\operatorname{Span}\left(E_{i} A^{*} E_{i+1}-E_{i+1} A^{*} E_{i} \mid 0 \leq i \leq D-1\right) \tag{24.6}
\end{align*}
$$

Since $E_{i} A^{*} E_{j}=0$ if $q_{i j}^{1}=0$ by Lemma 20.2 and Lemma 20.3, and this occurs if $|i-j|>1$ by Q-polynomial property.
Hence, $\operatorname{dim} L \leq D$.

Claim 2. (i) $\left\{A^{*} A_{h}-A_{h} A^{*} \mid 1 \leq h \leq D\right\}$ is a basis for L. In particular,
(ii) there exist $r_{i j}^{h} \in \mathbb{C}(1 \leq h \leq D, 0 \leq i, j \leq D)$ such that

$$
A_{i} A^{*} A_{j}-A_{j} A^{*} A_{i}=\sum_{h=1}^{D} r_{i j}^{h}\left(A^{*} A_{h}-A_{h} A^{*}\right)
$$

Proof of Claim 2.

(i) The column x of $A^{*} A_{h}-A_{h} A^{*}$ is a nonzero scalar $\theta_{h}^{*}-\theta_{0}^{*}$ times the column x of A_{h}.

HS MEMO

$$
\left(\left(A^{*} A_{h}-A_{h} A^{*}\right) \hat{x}\right)_{y}=E_{x y}\left(A_{h}\right)_{y x}-\left(A_{h}\right)_{y x} E_{x x}=\left(\theta_{h}^{*}-\theta_{0}^{*}\right)\left(A_{h}\right)_{y z}
$$

Also the column x of $A_{0}, A_{1}, \ldots, A_{D}$ are linearly independent.
Hence, the matrices given are linearly independent.
They are in L by construction, so they form a basis for L by Claim 1 .
(ii) This is immediate since

$$
A_{i} A^{*} A_{j}-A_{j} A^{*} A_{i} \in L, \quad \text { for all } i, j
$$

Claim 3.

$$
r_{i j}^{\ell}=p_{i j}^{\ell}\left(\frac{\theta_{i}^{*}-\theta_{j}^{*}}{\theta_{0}^{*}-\theta_{\ell}^{*}}\right) \quad(1 \leq \ell \leq D, 0 \leq i, j \leq D)
$$

Proof of Claim 3. Fix i, j,

$$
A_{i} A^{*} A_{j}-A_{j} A^{*} A_{i}-\sum_{h=1}^{D} r_{i j}^{h}\left(A^{*} A_{h}-A_{h} A^{*}\right)=0
$$

Pick $\ell(1 \leq \ell \leq D)$. Pick $y \in X$ such that $(x, y) \in R_{\ell}$.

$$
\begin{align*}
\left(A_{i} A^{*} A_{j}\right)_{x y} & =\sum_{z \in X}\left(A_{i}\right)_{x z}\left(A^{*}\right)_{z z}\left(A_{j}\right)_{z y} \tag{24.7}\\
& =\sum_{z \in X,(x, z) \in R_{i},(y, z) \in R_{j}}\left(A^{*}\right)_{z z} \tag{24.8}\\
& =|X|^{-1} p_{i j}^{\ell} \theta_{i}^{*} \tag{24.9}
\end{align*}
$$

Similarly,

$$
\left(A_{j} A^{*} A_{i}\right)_{x y}=|X|^{-1} p_{i j}^{\ell} \theta_{j}^{*}
$$

$$
\begin{align*}
\left(A^{*} A_{h}-A_{h} A^{*}\right)_{x y} & =\left(A_{0} A^{*} A_{h}-A_{h} A^{*} A_{0}\right)_{x y} \tag{24.10}\\
& =|X|^{-1} p_{0 h}^{\ell}\left(\theta_{0}^{*}-\theta_{h}^{*}\right) \tag{24.11}\\
& = \begin{cases}0 & \text { if } \ell \neq h \\
|X|^{-1}\left(\theta_{0}^{*}-\theta_{h}^{*}\right) & \text { if } \ell=h\end{cases} \tag{24.12}
\end{align*}
$$

Hence,

$$
\sum_{h=1}^{D} r_{i j}^{h}\left(A^{*} A_{h}-A_{h} A^{*}\right)_{x y}=|X|^{-1} r_{i j}^{\ell}\left(\theta_{0}^{*}-\theta_{\ell}^{*}\right)
$$

Comparing terms, we have

$$
p_{i j}^{\ell}\left(\theta_{i}^{*}-\theta_{j}^{*}\right)-r_{i j}^{\ell}\left(\theta_{0}^{*}-\theta_{\ell}^{*}\right)=0
$$

Claim 4. For all $h(1 \leq h \leq D)$, for all $i, j(0 \leq i, j \leq D)$, for all $w, y \in X$, $(w, y) \in R_{h}$,

$$
\begin{equation*}
\sum_{z \in X,(w, z) \in R_{i},(y, z) \in R_{j}} \rho(z)-\sum_{z^{\prime} \in X,\left(w, z^{\prime}\right) \in R_{j},(y, z) \in R_{i}} \rho\left(z^{\prime}\right)-r_{i j}^{h}(\rho(w)-\rho(y))=0 . \tag{24.13}
\end{equation*}
$$

Proof of Claim 4. Set $L=\langle$ LHS of (24.13), $\rho(x)\rangle$ It suffices to show that $L=0$. Note that since x is arbitrary, if LHS of (24.13) is zero.

$$
\begin{align*}
L= & \sum_{z \in X,(w, z) \in R_{i},(y, z) \in R_{j}}\langle\rho(z), \rho(x)\rangle-\sum_{z^{\prime} \in X,\left(w, z^{\prime}\right) \in R_{j},(y, z) \in R_{i}}\left\langle\rho\left(z^{\prime}\right), \rho(x)\right\rangle \tag{24.14}\\
& -r_{i j}^{h}\langle\rho(w)-\rho(y), \rho(x)\rangle \tag{24.15}\\
= & |X|^{-1}\left(A_{i} A^{*} A_{j}\right)_{w y}-|X|^{-1}\left(A_{j} A^{*} A_{i}\right)_{w y}-|X|^{-1} \sum_{\ell=1}^{D} r_{i j}^{\ell}\left(A^{*} A_{\ell}-A_{\ell} A^{*}\right)_{w y} \tag{24.16}
\end{align*}
$$

$$
\begin{align*}
& =|X|^{-1} \text { times } w y \text { entry of a matrix known to be zero by Claim } 2 \tag{24.17}\\
& =0 \tag{24.18}
\end{align*}
$$

Thus we have the claim.

HS MEMO

$$
\begin{align*}
|X|^{-1} \sum_{\ell=1}^{D} r_{i j}^{\ell}\left(A^{*} A_{\ell}-A_{\ell} A^{*}\right)_{w y} & =|X|^{-1} r_{i j}^{h}\left(A^{*} A_{h}-A_{h} A^{*}\right)_{w y} \tag{24.19}\\
& =r_{i j}^{h}(\langle\rho(x), \rho(w)\rangle-\langle\rho(x), \rho(y)\rangle) \tag{24.20}
\end{align*}
$$

Chapter 25

Balanced Conditions, II

Monday, March 29, 1993

Proof of Theorem 24.1 continued.
$(i b) \rightarrow(i c)$ Obvious.
$(i c) \rightarrow(i a)$ Without loss of generality, we may assume $D \geq 3$, else trivial.

HS MEMO

The case $D=2$ should be treated somewhere, but the assumption $D \geq 3$ is not used.

Fix $w \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(w), A_{i}^{*} \equiv A_{i}^{*}(w), A^{*} \equiv A_{1}^{*}$, and A_{i}, i-th distance matrix. Set

$$
E \equiv E_{1}=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}
$$

Since (ρ, H) is nondegenerate,

$$
\theta_{0}^{*} \neq \theta_{h}^{*} \text { for all } h \in\{1,2, \ldots, D\}
$$

See Lemma 23.1 (iv).
Claim 1. Pick $h(1 \leq h \leq D)$, and x, y with $(x, y) \in R_{h}$. Then

$$
\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right)=r_{12}^{h}(\rho(x)-\rho(y)),
$$

where

$$
r_{12}^{h}=p_{12}^{h} \frac{\theta_{1}^{*}-\theta_{2}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}}
$$

Proof of Claim 1. By our assumption,

$$
\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right)=\alpha(\rho(x)-\rho(y)) .
$$

Hence,

$$
\begin{align*}
|X|^{-1} p_{12}^{h}\left(\theta_{1}^{*}-\theta_{2}^{*}\right) & =\left\langle\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right), \rho(x)\right\rangle \tag{25.1}\\
& =\alpha\langle\rho(x)-\rho(y), \rho(x)\rangle \tag{25.2}\\
& =\alpha|X|^{-1}\left(\theta_{0}^{*}-\theta_{h}^{*}\right) \tag{25.3}
\end{align*}
$$

We have

$$
\alpha=p_{12}^{h} \frac{\theta_{1}^{*}-\theta_{2}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}}
$$

Claim 2. $A_{1} A^{*} A_{2}-A_{2} A^{*} A_{1}=\sum_{h=1}^{D} r_{12}^{h}\left(A^{*} A_{h}-A_{h} A^{*}\right)$.
Proof of Claim 2. The $x y$ entry of the LHS - RHS is
$|X|\left\langle\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right)-r_{12}^{h}(\rho(x)-\rho(y)), \rho(w)\right\rangle$,
where $(x, y) \in R_{h}, h=1,2, \ldots, D$, and the $x y$ entry of the LHS - RHS is 0 if $x=y$.

But the vector on the left in the above inner product is 0 by Claim 1 , so the inner product is 0 .

Thus, the $x y$ entry of the LHS - RHS is always 0, and we have Claim 2.
Claim 3. $A^{*} A_{3}-A_{3} A^{*} \in \operatorname{Span}\left(A A^{*} A_{2}-A_{2} A^{*} A, A^{*} A_{2}-A_{2} A^{*}, A^{*} A-A A^{*}\right)$.
Proof of Claim 3. Since $p_{12}^{h}=0$, if $h>3$, and $p_{12}^{h} \neq 0$, if $h=3$, we have $r_{12}^{h}=0$ if $h>0$, and $r_{12}^{h} \neq 0$, if $h=3$. Note that $\theta_{1}^{*} \neq \theta_{2}^{*}$.
Now we are done by Claim 2 .
Claim 4. There exist $\beta, \gamma, \delta \in \mathbb{R}$ such that

$$
\begin{align*}
0 & =\left[A, A^{2} A^{*}-\beta A A^{*} A+A^{*} A^{2}-\gamma\left(A A^{*}+A^{*} A\right)-\delta A^{*}\right] \\
& =A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right) \tag{25.5}
\end{align*}
$$

Proof of Claim 4. There exists $f_{i} \in \mathbb{R}[\lambda], \operatorname{deg} f_{i}=i$ such that $A_{i}=f_{i}\left(A_{1}\right)$.

Writing A_{2}, A_{3} as polynomials in A in Claim 3 and simplifying, we find

$$
A^{3} A^{*}-A^{*} A^{3} \in \operatorname{Span}\left(A^{2} A^{*} A-A A^{*} A^{2}, A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A^{*} A\right)
$$

HS MEMO

Let $A_{3}=\beta_{3} A^{3}+\beta_{2} A^{2}+\beta_{1} A+\beta_{0} I$ with $\beta_{3} \neq 0$, and $A_{2}=\gamma_{2} A^{2}+\gamma_{1} A+\gamma_{0} I$, with $\gamma_{2} \neq 0$. Then

$$
\begin{align*}
A^{*} A_{3}-A_{3} A^{*} & =A^{*}\left(\beta_{3} A^{3}+\beta_{2} A^{2}+\beta_{1} A+\beta_{0} I\right)-\left(\beta_{3} A^{3}+\beta_{2} A^{2}+\beta_{1} A+\beta_{0} I\right) A^{*} \tag{25.6}\\
A^{3} A^{*}-A^{*} A^{3} & \in \operatorname{Span}\left(A^{*} A_{3}-A_{3} A^{*}, A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A^{*} A\right) \tag{25.7}\\
& \subseteq \operatorname{Span}\left(A A^{*} A_{2}-A_{2} A^{*} A, A^{*} A_{2}-A_{2} A^{*}, A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A^{*} A\right) \tag{25.8}
\end{align*}
$$

$$
\begin{equation*}
A^{*} A_{2}-A_{2} A^{*}=A^{*}\left(\gamma_{2} A^{2}+\gamma_{1} A+\gamma_{0} I\right)-\left(\gamma_{2} A^{2}+\gamma_{1} A+\gamma_{0} I\right) A^{*} \tag{25.9}
\end{equation*}
$$

$A A^{*} A_{2}-A_{2} A^{*} A=A A^{*}\left(\gamma_{2} A^{2}+\gamma_{1} A+\gamma_{0} I\right)-\left(\gamma_{2} A^{2}+\gamma_{1} A+\gamma_{0} I\right) A^{*} A$

$$
\begin{equation*}
A^{*} A_{2}-A_{2} A^{*} \in \operatorname{Span}\left(A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A A^{*}\right) \tag{25.10}
\end{equation*}
$$

$A A^{*} A_{2}-A_{2} A^{*} A \in \operatorname{Span}\left(A^{2} A^{*} A-A A^{*} A^{2}, A A^{*}-A A^{*}\right)$

$$
\begin{equation*}
A^{3} A^{*}-A^{*} A^{3} \in \operatorname{Span}\left(A^{2} A^{*} A-A A^{*} A^{2}, A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A^{*} A\right) \tag{25.12}
\end{equation*}
$$

Hence, we can find δ, γ, δ satisfying
$0=A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right)$.
On the other hand,

$$
\begin{align*}
& {\left[A, A^{2} A^{*}-\beta A A^{*} A+A^{*} A^{2}-\gamma\left(A A^{*}+A^{*} A\right)-\delta A^{*}\right]} \tag{25.14}\\
& \quad=A^{3} A^{*}-A^{2} A^{*} A-\beta A^{2} A^{*} A+\beta A A^{*} A^{2}+A A^{*} A^{2}-A^{*} A^{3} \tag{25.15}\\
& \quad-\gamma A^{2} A^{*}-\gamma A A^{*} A+\gamma A A^{*} A+\gamma A^{*} A^{2}-\delta A A^{*}+\delta A^{*} A \tag{25.16}\\
& \quad=A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right) \tag{25.17}
\end{align*}
$$

Thus we have (i) and (ii).
Define a diagram D_{E} on nodes $0,1, \ldots, D$.
Connect distinct nodes, by undirected arc if $q_{i j}^{1} \neq 0$. (Note $\left.q_{i j}^{1}=q_{j i}^{1}\right)$.
Since $q_{0 j}^{1}=\delta_{1 j}$, the 0-node is adjacent to the 1-node and no other node.
Y is Q-polynomial with respect to E if and only if D_{E} is a path.
Claim 5. D_{E} is connected.
Proof of Claim 5. Suppose there exists $\Delta \subseteq\{0,1, \ldots, D\}$ such that i, j not connected for every $i \in \Delta$ and $j \in\{0,1, \ldots, D\} \quad \Delta$.

Set

$$
f=\sum_{i \in \Delta} E_{i}
$$

Observe

$$
\begin{align*}
f A^{*} & =\sum_{i \in \Delta} E_{i} A^{*}\left(\sum_{j=0}^{D} E_{j}\right) \tag{25.18}\\
& =\sum_{i \in \Delta, j \in \Delta} E_{i} A^{*} E_{j} \quad\left(\text { since } E_{i} A^{*} E_{j}=O \text { if } q_{i j}^{1}=0\right) \tag{25.19}\\
& =f A^{*} f \tag{25.20}
\end{align*}
$$

Also, $A^{*} f=f A^{*} f$.
Hence, f commutes with A^{*}.
But f is an element of the Bose-Mesner algebra

$$
f=\sum_{i=0}^{D} \alpha_{i} A_{i} \quad \text { for some } \alpha_{0}, \ldots, \alpha_{D} \in \mathbb{C}
$$

We have

$$
0=f A^{*}-A^{*} f=\sum_{i=1}^{D} \alpha_{i}\left(A_{i} A^{*}-A^{*} A_{i}\right)
$$

But $\left\{A_{h} A^{*}-A^{*} A_{h} \mid 1 \leq h \leq D\right\}$ are linearly independent. (The column w of $A_{h} A^{*}-A^{*} A_{h}$ is $\theta_{h}^{*}-\theta_{0}^{*}$ times the column w of A_{h}.)
Hence, $\alpha_{1}=\cdots=\alpha_{D}=0$, and $f=\alpha_{0} I$. Since $f^{2}=f, \alpha_{0}$ or 1 .
If $\alpha_{0}=0, f=O$ and $\Delta=\emptyset$.
If $\alpha_{0}=1, f=I$ and $\Delta=\{0,1, \ldots, D\}$.
This proves Claim 5.

HS MEMO

Claim 5 proves the following in general.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a symmetric association scheme. Fix a vertex $x \in X$, and let

$$
E=\frac{1}{|X|} \sum_{j=0}^{D} \theta_{j}^{*} A_{j} \quad\left(\theta_{j}^{*}=q_{1}(j) \text { if } E=E_{1}\right)
$$

be a primitive idempotent and $E_{j}^{*} \equiv E_{j}^{*}(x)$.

$$
A^{*}=\sum_{j=0}^{D} \theta_{j}^{*} E_{j}^{*}
$$

If $\theta_{0}=\theta_{h}^{*}, h=1, \ldots, D$, then the following hold.
(i) $\left\{A_{h} A^{*}-A^{*} A_{h} \mid 1 \leq h \leq D\right\}$ are linearly independent.
(ii) The diagram D_{E} on nodes $0,1, \ldots, D$ defined by

$$
i \sim j \Leftrightarrow E\left(E_{i} \circ E_{j}\right) \neq O
$$

is connected.
(iii) $C_{M}\left(A^{*}\right)=\left\{L \in M \mid L A^{*}=A^{*} L\right\}=\operatorname{Span}(I)$.

Proof.
(i) The column x of $A_{h} A^{*}-A^{*}\left(A_{h}\right)$ is $\theta_{0}^{*}-\theta_{h}^{*}$ times the column x of A_{h}.
(iii) $0=\left[\sum_{h=0}^{D} \alpha_{h} A_{h}, A^{*}\right]=\sum_{h=1}^{D} \alpha_{h}\left(A_{h} A^{*}-A^{*} A_{h}\right)$. Hence, $\alpha_{0}=\cdots=\alpha_{D}=0$.
(ii) Δ is a connected component. Let $f=\sum_{i \in \Delta} E_{i}$, then $f \in C_{M}\left(A^{*}\right)$.

Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq 2}\right)$ be a symmetric association scheme with $D=2$. Let

$$
E=\frac{1}{|X|} \sum_{j=0}^{2} \theta_{j}^{*} A_{j}
$$

be a primitive idempotent.
Suppose $\theta_{0}^{*} \neq \theta_{1}^{*}, \theta_{2}^{*}$. Then Y is Q-polynomial with respect to E.
Proof. By the previous lemma, D_{E} is connected.
Note. It seems $\theta_{1}^{*} \neq \theta_{2}^{*}$ is necessary. Clarify the condition $\theta_{1}^{*}=\theta_{2}^{*}$.
Terwilliger claims that $\theta_{1}^{*}=\theta_{2}^{*}$ does not occur under the assumption (ic). (March 7, 1995)

Chapter 26

Representation Diagrams

Wednesday, March 31, 1993

Proof of Theorem 24.1 continued. Assume $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ is P polynomial. Let E be a primitive idempotent of Y such that the corresponding representation (ρ, H) is nondegenerate.

Show for all $x, y \in X$,

$$
\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right) \in \operatorname{Span}(\rho(x)-\rho(y))
$$

implies that Y is Q-polynomial with respect to E.
Define a diagram D_{E} on nodes $0,1, \ldots, D$, for $i \neq j$,

$$
i \frown j \leftrightarrow q_{i j}^{1} \neq 0
$$

by setting $E=E_{1}$.
We showed that $0 \frown j \leftrightarrow j=1(1 \leq j \leq D)$ and D_{E} is connected.
Now it is sufficient to show the following.
Claim 6. Let i be a node in D_{E}. Then i is adjacent to at most 2 arcs.
Proof of Claim 6. Suppose the node j is adjacent to i in D_{E}. By Claim 4,
$0=E_{i}\left(A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A\right)-\delta\left(A A^{*}-A^{*} A\right)\right) E_{j}$

$$
\begin{align*}
& =E_{i} A^{*} E_{j}\left(\theta_{i}^{3}-\theta_{j}^{3}-(\beta+1)\left(\theta^{2} \theta_{j}-\theta_{i} \theta_{j}^{2}\right)-\gamma\left(\theta_{i}^{2}-\theta_{j}^{2}\right)-\delta\left(\theta_{i}-\theta_{j}\right)\right) \tag{26.2}\\
& =E_{i} A^{*} A_{j}\left(\theta_{i}-\theta_{j}\right) p\left(\theta_{i}, \theta_{j}\right)
\end{align*}
$$

where

$$
p(s, t)=s^{2}-\beta s t+t^{2}-\gamma(s+t)-\delta
$$

HS MEMO

$$
\begin{align*}
& \left(\theta_{i}-\theta_{j}\right)\left(\theta_{i}^{2}-\beta \theta_{i} \theta_{j}+\theta_{j}^{2}-\gamma\left(\theta_{i}+\theta_{j}\right)-\delta\right) \tag{26.4}\\
& =\theta_{i}^{3}-\theta_{j}^{3}-(\beta+1)\left(\theta^{2} \theta_{j}-\theta_{i} \theta_{j}^{2}\right)-\gamma\left(\theta_{i}^{2}-\theta_{j}^{2}\right)-\delta\left(\theta_{i}-\theta_{j}\right) \tag{26.5}
\end{align*}
$$

Since i is adjacent to $j, q_{i j}^{1} \neq 0$ and

$$
E_{i} A^{*} E_{j} \neq O
$$

by Lemma 20.3 (ii). Since Y is P-polynomial,

$$
\theta_{i} \neq \theta_{j} \quad \text { if } i \neq j .
$$

Hence $p\left(\theta_{i}, \theta_{j}\right)=0$. But p is quadratic in t. So $p\left(\theta_{i}, t\right)=0$ has at most two solutions for θ_{j}.
Now D_{E} is a pth, and Γ is Q-polynomial with respect to E.
This proves Theorem 24.1.
Corollary 26.1. Assume $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ is P-polynomial, and Q polynomial with respect to a primitive idempotent

$$
E=\frac{1}{|X|} \sum_{i=0}^{D} \theta_{i}^{*} A_{i} .
$$

Then,

$$
\beta=\frac{\theta_{i}^{*}-\theta_{i+1}^{*}+\theta_{i+2}^{*}-\theta_{i+3}^{*}}{\theta_{i+1}^{*}-\theta_{i+2}^{*}}
$$

is independent of $i(0 \leq i \leq D-3)$.
Proof. Fix i. Without loss of generality, $D \geq 3$, else vacuous.
Pick $x, y \in X$ with $(x, y) \in R_{3}$.
Let (ρ, H) be the representation for E.
$\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right)=\frac{p_{12}^{3}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)}{\theta_{0}^{*}-\theta_{3}^{*}}(\rho(x)-\rho(y))$,
and $p_{12}^{3}=c_{3}$.
Since $p_{i, i+3}^{3} \neq 0$, there exists $w \in X$ such that $(x, w) \in R_{i+3},(y, w) \in R_{i}$.
Take inner product of (26.6) with $\rho(w)$. We have

$$
\begin{align*}
& P_{12}^{3}(x, y) \subseteq P_{1, i+2}^{i+3}(x, w) \cap P_{2, i+2}^{i}(y, w) \tag{26.7}\\
& P_{21}^{3}(x, y) \subseteq P_{2, i+1}^{i+3}(x, w) \cap P_{2, i+1}^{i}(y, w) . \tag{26.8}
\end{align*}
$$

Hence,

$$
\begin{gathered}
\left\langle\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} \rho(z)-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} \rho\left(z^{\prime}\right), \rho(w)\right\rangle=|X|^{-1} c_{3}\left(\theta_{i+2}^{*}-\theta_{i+1}^{*}\right), \\
\left\langle\frac{c_{3}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)}{\theta_{0}^{*}-\theta_{3}^{*}}(\rho(x)-\rho(y)), \rho(w)\right\rangle=\frac{c_{3}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)}{\theta_{0}^{*}-\theta_{3}^{*}}|X|^{-1}\left(\theta_{i+3}^{*}-\theta_{i+1}^{*}\right) .
\end{gathered}
$$

We have,

$$
\sigma=\frac{\theta_{i+1}^{*}-\theta_{i+2}^{*}}{\theta_{i}^{*}-\theta_{i+3}^{*}}=\frac{\theta_{1}^{*}-\theta_{2}^{*}}{\theta_{0}^{*}-\theta_{3}^{*}}
$$

HS MEMO

Note that since Y is P and Q with respect to A_{1} and $E_{1}, \theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$, $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are all distinct.
So

$$
\beta=\frac{1}{\sigma}-1=\frac{\theta_{i}^{*}-\theta_{i+1}^{*}+\theta_{i+2}^{*}-\theta_{i+3}^{*}}{\theta_{i+1}^{*}-\theta_{i+2}^{*}}=\frac{\theta_{0}^{*}-\theta_{1}^{*}+\theta_{2}^{*}-\theta_{3}^{*}}{\theta_{1}^{*}-\theta_{2}^{*}}
$$

We have the assertion.

Given the intersection number of a distance-regular graph Γ. The following two lemmas give an efficient method to determine if Γ is Q-polynomial with respect to some primitive idempotent.

Lemma 26.1. Let Γ be a distance-regular graph of diameter $D \geq 1$. Pick $\theta, \theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*} \in \mathbb{R}$ such that $\theta_{0}^{*} \neq 0$, and set

$$
E=\frac{1}{|X|} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}
$$

(i) The following are equivalent.
(ia) θ is an eigenvalue of Γ, and E is a corresponding primitive idempotent.
(ib)

$$
\left(\begin{array}{cccccc}
a_{0} & b_{0} & 0 & \cdots & \cdots & 0 \\
c_{1} & a_{1} & b_{1} & 0 & \cdots & 0 \\
0 & c_{2} & a_{2} & b_{2} & \ddots & \vdots \\
\cdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & c_{D-1} & a_{D-1} & b_{D-1} \\
0 & \cdots & \cdots & 0 & c_{D} & a_{D}
\end{array}\right)\left(\begin{array}{c}
\theta_{0}^{*} \\
\theta_{1}^{*} \\
\vdots \\
\vdots \\
\vdots \\
\theta_{D}^{*}
\end{array}\right)=\theta \cdot\left(\begin{array}{c}
\theta_{0}^{*} \\
\theta_{1}^{*} \\
\vdots \\
\vdots \\
\vdots \\
\theta_{D}^{*}
\end{array}\right)
$$

and $\theta_{0}^{*}=\operatorname{rank} E$.
(ii) Suppose (ia), (ib) hold. Then,

$$
\frac{\theta_{1}^{*}}{\theta_{0}^{*}}, \ldots, \frac{\theta_{D}^{*}}{\theta_{0}^{*}}
$$

can be computed from θ using

$$
\frac{\theta_{i}^{*}}{\theta_{0}^{*}}=\frac{p_{i}(\theta)}{k b_{1} \cdots b_{i-1}} \quad(1 \leq i \leq D)
$$

where $p_{0}=1, p_{1}(\lambda)=\lambda$, and

$$
\lambda p_{i}(\lambda)=p_{i+1}(\lambda)+a_{i} p_{i}(\lambda)+b_{i-1} c_{i} p_{i-1}(\lambda) \quad(0 \leq i \leq D)
$$

Proof.
(i) We have

$$
\begin{align*}
& (i a) \leftrightarrow(A-\theta I) E=0 \text { and } E^{2}=E \tag{26.9}\\
& \qquad \begin{aligned}
& \leftrightarrow=\sum_{i=0}^{D}(A-\theta I) \theta_{i}^{*} A_{i} \text { and } \operatorname{rank} E=\operatorname{trace} E=\theta_{0}^{*} \\
&=\sum_{i=0}^{D} \theta_{i}^{*}\left(c_{i+1} A_{i+1}+a_{i} A_{i}+b_{i-1} A_{i-1}-\theta A_{i}\right) \\
& \quad=\sum_{j=0}^{D} A_{j}\left(c_{j} \theta_{j-1}^{*}+a_{j} \theta_{j}^{*}+b_{j} \theta_{j+1}^{*}-\theta \theta_{j}^{*}\right) \\
& \leftrightarrow c_{j} \theta_{j-1}^{*}+a_{j} \theta_{j}^{*}+b_{j} \theta_{j+1}^{*}=\theta \theta_{j}^{*}(0 \leq j \leq D) \text { and } \operatorname{rank} E=\theta_{0}^{*} \\
& \leftrightarrow(i b)
\end{aligned} \tag{26.10}
\end{align*}
$$

HS MEMO

The first $\leftrightarrow . \rightarrow$ is clear.
\leftarrow : By the first condition, $A E=\theta E$. So E is a scalar multiple of the primitive idempotent corresponding to θ. Hence, $\operatorname{rank} E=\operatorname{trace} E$ implies E is the primitive idempotent.
(ii) We prove by induction on i.
$i=0$ is trivial.
$i=1$: Set $j=0$ above $c_{0}=0, a_{0}=0, b_{0}=k$. We have

$$
k \theta_{1}^{*}=\theta \theta_{0}^{*}
$$

So

$$
\frac{\theta_{1}^{*}}{\theta_{0}^{*}}=\frac{\theta}{k}=\frac{p_{1}(\theta)}{k}
$$

$i \geq 2$: Set $j=i-1$ above. We have

$$
c_{i-2} \theta_{i-2}^{*}+a_{i-1} \theta_{i-1}^{*}+b_{i-1} \theta_{i}^{*}=\theta \theta_{i-1}^{*}
$$

So,

$$
\begin{align*}
\frac{\theta_{i}^{*}}{\theta_{0}^{*}} & =\frac{\theta \theta_{i-1}^{*}-a_{i-1} \theta_{i-1}^{*}-c_{i-1} \theta_{i-2}^{*}}{b_{i-1} \theta_{0}^{*}} \tag{26.15}\\
& =\left(\left(\theta-a_{i-1}\right) \frac{\theta_{i-1}^{*}}{\theta_{0}^{*}}-c_{i-1} \frac{\theta_{i-2}^{*}}{\theta_{0}^{*}}\right) \frac{1}{b_{i-1}} \tag{26.16}\\
& =\left(\left(\theta-a_{i-1}\right) \frac{p_{i-1}(\theta)}{k b_{1} \cdots b_{i-2}}-c_{i-1} \frac{p_{i-2}(\theta)}{k b_{1} \cdots b_{i-3}}\right) \frac{1}{b_{i-1}} \tag{26.17}\\
& =\frac{p_{i}(\theta)}{k b_{1} \cdots b_{i-2} b_{i-1}} \tag{26.18}
\end{align*}
$$

as desired.

Chapter 27

P-and Q-Polynomial Schemes

Friday, April 2, 1993
Theorem 27.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $D \geq 3$. Let θ denote an eigenvalue of Γ with associated primitive idempotent

$$
E=\frac{1}{|X|} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}
$$

Then the following are equivalent.
(i) Γ is Q-polynomial with respect to E.
(ii) $\theta_{0}^{*} \neq \theta_{h}^{*}$ for all $h \in\{1,2, \ldots, D\}$ and for $i \in\{3, \ldots, D\}$,

$$
\begin{align*}
& c_{i}\left(\theta_{2}^{*}-\theta_{i}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{i-1}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i}^{*}}\right)+b_{i-1}\left(\theta_{2}^{*}-\theta_{i-1}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{i}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i-1}^{*}}\right) \tag{27.1}\\
& =(k-\theta)\left(\theta_{1}^{*}+\theta_{2}^{*}-\theta_{i-1}^{*}-\theta_{i}^{*}\right)-(\theta+1)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \tag{27.2}
\end{align*}
$$

(iii) $\theta_{0}^{*} \neq \theta_{h}^{*}$ for all $h \in\{1,2, \ldots, D\}$ and (27.2) holds for $i=3$.

HS MEMO

Note (27.2) is trivial for $i=1,2$.
$i=1:$

$$
\begin{align*}
\operatorname{LHS} & =\left(\theta_{2}^{*}-\theta_{1}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{0}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{1}^{*}}\right)+k\left(\theta_{2}^{*}-\theta_{0}^{*}\right) \tag{27.3}\\
& =\theta_{2}^{*}-\theta_{1}^{*}-\theta_{0}^{*}+\theta_{1}^{*}+k\left(\theta_{2}^{*}-\theta_{0}^{*}\right) \tag{27.4}\\
& =(k+1)\left(\theta_{2}^{*}-\theta_{0}^{*}\right) \tag{27.5}\\
\operatorname{RHS} & =(k-\theta)\left(\theta_{1}^{*}+\theta_{2}^{*}-\theta_{0}^{*}-\theta_{1}^{*}\right)-(\theta+1)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \tag{27.6}\\
& =(k+1)\left(\theta_{2}^{*}-\theta_{0}^{*}\right) . \tag{27.7}
\end{align*}
$$

$i=2$:

$$
\begin{align*}
\mathrm{LHS} & =b_{1}\left(\theta_{2}^{*}-\theta_{1}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{0}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{1}^{*}}\right) \tag{27.8}\\
& =b_{1} \frac{\left(\theta_{2}^{*}-\theta_{1}^{*}\right)\left(\theta_{0}^{*}-\theta_{1}^{*}-\theta_{2}^{*}+\theta_{1}^{*}\right)}{\theta_{0}^{*}-\theta_{1}^{*}} \tag{27.9}\\
& =b_{1} \frac{\left(\theta_{2}^{*}-\theta_{1}^{*}\right)\left(\theta_{0}^{*}-\theta_{2}^{*}\right)}{\theta_{0}^{*}-\theta_{1}^{*}} \tag{27.10}\\
\text { RHS } & =-(\theta+1)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \tag{27.11}
\end{align*}
$$

Hence,

$$
\begin{align*}
\mathrm{LHS}=\mathrm{RHS} & \leftrightarrow b_{1} \frac{\theta_{2}^{*}-\theta_{1}^{*}}{\theta_{0}^{*}-\theta_{1}^{*}}+(\theta+1)=0 \tag{27.12}\\
& \leftrightarrow b_{1}\left(\theta_{2}^{*}-\theta_{1}^{*}\right)+(\theta+1)\left(\theta_{0}^{*}-\theta_{1}^{*}\right)=0 \tag{27.13}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& b_{1} \theta_{2}^{*}+a_{1} \theta_{1}^{*}+c_{1} \theta_{0}^{*}=\theta \theta_{1}^{*} \tag{27.14}\\
& b_{1} \theta_{1}^{*}+a_{1} \theta_{1}^{*}+c_{1} \theta_{1}^{*}=k \theta_{1}^{*} \tag{27.15}
\end{align*}
$$

as $\theta \theta_{0}^{*}=k \theta_{1}^{*}$. We have

$$
b_{1}\left(\theta_{2}^{*}-\theta_{1}^{*}\right)+\left(\theta_{0}^{*}-\theta_{1}^{*}\right)=\theta\left(\theta_{1}^{*}-\theta_{0}^{*}\right)
$$

Proof. Immediate from the proof of Theorem 2.1 in 'A new inequality for distance-regular graphs' (Terwilliger, 1995) and Theorem 24.1.

Note. Suppose $(i)-(i i i)$ hold. In particular, $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$ are distinct. Then,

$$
\begin{gathered}
c_{i}+a_{i}+b_{i}=k \quad(0 \leq i \leq D) \\
c_{i} \theta_{i-1}^{*}+a_{i} \theta_{i}^{*}+b_{i} \theta_{i+1}^{*}=\theta \theta_{j}^{*} \quad(0 \leq i \leq D) \\
\frac{\theta_{i}^{*}-\theta_{i+1}^{*}+\theta_{i+2}^{*}-\theta_{i-3}^{*}}{\theta_{i+1}^{*}-\theta_{i+2}^{*}} \text { is independent of } i \quad(0 \leq i \leq D-3) .
\end{gathered}
$$

$$
\begin{align*}
& c_{i}\left(\theta_{2}^{*}-\theta_{i}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{i-1}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i}^{*}}\right)+b_{i-1}\left(\theta_{2}^{*}-\theta_{i-1}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{i}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i-1}^{*}}\right) \tag{27.16}\\
& =(k-\theta)\left(\theta_{1}^{*}+\theta_{2}^{*}-\theta_{i-1}^{*}-\theta_{i}^{*}\right)-(\theta+1)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \tag{27.17}
\end{align*}
$$

Furthermore, we can solve for $c_{1}, \ldots, c_{D}, a_{1}, \ldots, a_{D}, b_{0}, b_{1}, \ldots, b_{D-1}$ in terms of five free parameters.
In general, we can take the five parameters to be

$$
D, q, s^{*}, r_{1}, r_{2}
$$

and get

$$
\begin{align*}
& b_{i}=\frac{h\left(1-q^{i-D}\right)\left(1-s^{*} q^{i+1}\right)\left(1-r_{1} q^{i+1}\right)\left(1-r_{2} q^{i+1}\right)}{\left(1-s^{*} q^{2 i+1}\right)\left(1-s^{*} q^{2 i+2}\right)} \quad(0 \leq i \leq D) \tag{27.18}\\
& c_{i}=\frac{h\left(1-q^{i}\right)\left(1-s^{*} q^{D+i+1}\right)\left(r_{1}-s^{*} q^{i}\right)\left(r_{2}-s^{*} q^{i}\right)}{s^{*} q^{D}\left(1-s^{*} q^{2 i}\right)\left(1-s^{*} q^{2 i+1}\right)} \quad(0 \leq i \leq D) \tag{27.19}\\
& a_{i}=b_{0}-c_{i}-b_{i} \quad(0 \leq i \leq D) \tag{27.20}
\end{align*}
$$

where h variable is chosen so that $c_{1}=1$.
(We must also consider limiting cases $h \rightarrow 0, s^{*} \rightarrow 0, q^{*} \rightarrow \pm 1$.)
See Theorem 2.1 in "The subconstituent algebra of an association scheme, I, II, III, (Terwilliger, 1992), (Terwilliger, 1993a), (Terwilliger, 1993b).
Definition 27.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $D \geq 3$. Choose $q \in \mathbb{R}\{0,-1\}$, set

$$
\left[\begin{array}{l}
i \\
1
\end{array}\right]=1+q+\cdots+q^{i-1}= \begin{cases}\frac{q^{i}-1}{q-1} & q \neq 1 \\
i & q=1\end{cases}
$$

Definition 27.2. Γ has classical parameters if

$$
\begin{align*}
c_{i} & =\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \tag{27.21}\\
b_{i} & =\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \tag{27.22}
\end{align*}
$$

for some $\sigma, \alpha \in \mathbb{R}$.
(This happens for essentially all known families of distance-regular graphs with unbounded diameter, and is essentially equivalent to $s^{*}=0$.)
Lemma 27.1. With above notation, suppose (27.21), (27.22) hold. Then,
(i) $\theta=\frac{b_{1}}{q}-1$ is an eigenvalue of Γ with $\theta \neq k$.
(ii) Let $E=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}$ be associated primitive idempotent. Then

$$
\frac{\theta_{i}^{*}}{\theta_{0}^{*}}=1+\left(\frac{\theta}{k}-1\right)\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i} \quad(0 \leq i \leq D)
$$

In particular, $\theta_{i}^{*} \neq \theta_{0}^{*}$ for all $i \in\{1,2 \ldots, D\}$.
(iii) Γ is Q-polynomial with respect to E.

Proof.
(i), (ii). Need to check

$$
c_{i} \theta_{i-1}^{*}+a_{i} \theta_{i}^{*}+b_{i} \theta_{i+1}^{*}=\theta \theta_{i}^{*} \quad(0 \leq i \leq D)
$$

where $a_{i}=k-c_{i}-b_{i} \quad(0 \leq i \leq D)$.
(equivalently: check

$$
\begin{equation*}
c_{i}\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right)+b_{i}\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)=(\theta-k) \theta_{i}^{*} \quad(0 \leq i \leq D) \tag{27.23}
\end{equation*}
$$

where $c_{i}, b_{i}, \theta_{i}^{*}, \theta$ are as given.)

HS MEMO

$$
\theta=\frac{b_{1}}{q}-1, \frac{\theta_{i}^{*}}{\theta_{0}^{*}}=1+\left(\frac{\theta}{k}-1\right)\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}, b_{0}=\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma .
$$

$i=0$.

$$
\begin{gathered}
\frac{\theta_{i}^{*}}{\theta_{0}^{*}}=\frac{\theta}{k}, \quad-k\left(1-\frac{\theta_{1}^{*}}{\theta_{0}^{*}}\right)=-k\left(1-\frac{\theta}{k}\right)=\theta-k . \\
\frac{\theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{0}^{*}}=\left(\frac{\theta}{k}-1\right)\left(\left[\begin{array}{c}
i-1 \\
1
\end{array}\right] q^{2-i}-\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right)=-\left(\frac{\theta}{k}-1\right) q^{1-i} \\
\theta-k=\left(\left[\begin{array}{c}
D \\
1
\end{array}\right]-1\right)(\sigma-\alpha) / q-1-\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma=\left[\begin{array}{c}
D-1 \\
1
\end{array}\right](\sigma-\alpha)-1-\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma .
\end{gathered}
$$

$$
\begin{align*}
& \left(c_{i}\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right)+b_{i}\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)-(\theta-k) \theta_{i}^{*}\right) / \theta_{0}^{*} \tag{27.24}\\
& =-\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)\left(\frac{\theta}{k}-1\right) q^{1-i}+\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\frac{\theta}{k}-1\right) q^{-i} \tag{27.25}\\
& -(\theta-k)\left(1+\left(\frac{\theta}{k}-1\right)\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right) \tag{27.26}\\
& =\left(\frac{\theta}{k}-1\right)\left(-\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) q^{1-i}+\left[\begin{array}{c}
D-i \\
1
\end{array}\right]\left(\sigma-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\right. \tag{27.27}\\
& \left.-\left(\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma+\left(\left[\begin{array}{c}
D-1 \\
1
\end{array}\right](\sigma-\alpha)-1-\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma\right)\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right)\right) \tag{27.28}\\
& =\left(\frac{\theta}{k}-1\right)\left(-\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}-\alpha\left(\left[\begin{array}{c}
i \\
1
\end{array}\right]\left[\begin{array}{c}
i-1 \\
1
\end{array}\right] q^{1-i}+\left[\begin{array}{c}
D-i \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]-\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right)\right. \\
& \left.+\sigma\left(\left[\begin{array}{c}
D-i \\
1
\end{array}\right]-\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}+\left[\begin{array}{l}
D \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right)+\left[\begin{array}{l}
i \\
1
\end{array}\right] q^{1-i}\right) \tag{27.30}
\end{align*}
$$

Check $\theta \neq k$. Suppose $\theta=k$. Then

$$
\frac{b_{1}}{q}-1=k, \quad \text { and } q>0
$$

By (27.21), (27.22),

$$
\begin{align*}
q c_{i}-b_{i}-q\left(q c_{i-1}-b_{i-1}\right) & =(k-\theta) q \quad(1 \leq i \leq D) \tag{27.31}\\
& =0 \tag{27.32}
\end{align*}
$$

With the notation of Lemma 27.1, we have the above equality in general.

$$
\begin{align*}
& q c_{i}-b_{i}-q\left(q c_{i-1}-b_{i-1}\right) \tag{27.33}\\
& =q\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)-\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \tag{27.34}\\
& -q\left(q\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-2 \\
1
\end{array}\right]\right)-\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)\right) \tag{27.35}\\
& =\left(q\left[\begin{array}{l}
i \\
1
\end{array}\right]-q^{2}\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \tag{27.36}\\
& +\alpha\left(q\left[\begin{array}{l}
i \\
1
\end{array}\right]\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
D \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]\right. \tag{27.37}\\
& \left.-q^{2}\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\left[\begin{array}{c}
i-2 \\
1
\end{array}\right]-q\left[\begin{array}{c}
D \\
1
\end{array}\right]\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]+q\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \tag{27.38}\\
& +\sigma\left(-\left[\begin{array}{l}
D \\
1
\end{array}\right]+\left[\begin{array}{l}
i \\
1
\end{array}\right]+q\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \tag{27.39}\\
& =q+\alpha\left(-\left[\begin{array}{l}
i \\
1
\end{array}\right]+\left[\begin{array}{c}
D \\
1
\end{array}\right]+q\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)+\sigma\left(q^{D}-1+1\right) \tag{27.40}\\
& =q\left(1+\left[\begin{array}{c}
D-1 \\
1
\end{array}\right] \alpha+q^{D-1} \sigma\right) \tag{27.41}\\
& =q\left(\left[\begin{array}{c}
D \\
1
\end{array}\right] \sigma-\left[\begin{array}{c}
D-1 \\
1
\end{array}\right] \sigma+\left[\begin{array}{c}
D-1 \\
1
\end{array}\right] \alpha+1\right) \tag{27.42}\\
& =q\left(k-\frac{\left[\begin{array}{c}
D \\
1
\end{array}\right]-1}{q}(\sigma-\alpha)+1\right) \tag{27.43}\\
& =q(k-\theta) \text {. } \tag{27.44}
\end{align*}
$$

Hence,

$$
\begin{align*}
q c_{i}-b_{i} & =q\left(q c_{i-1}-b_{i-1}\right) \quad(1 \leq i \leq D) \tag{27.45}\\
& =q^{i}\left(q c_{0}-b_{0}\right) \tag{27.46}\\
& =-q^{i} k \tag{27.47}
\end{align*}
$$

If $i=D, q c_{D}=-q^{D} k, c_{D}=-q^{D-1} k<0$, a contradiction.
(iii) Check the equation (ii) of Theorem 27.1 holds for $i=3$.

HS MEMO

$\theta_{0}^{*} \neq \theta_{h}^{*}$ for all $h \in\{1,2, \ldots, D\}$ and
$c_{3}\left(\theta_{2}^{*}-\theta_{3}^{*}-\frac{\left(\theta_{1}^{*}-\theta_{2}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{3}^{*}}\right)-b_{2} \frac{\left(\theta_{1}^{*}-\theta_{3}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{2}^{*}}=(k-\theta)\left(\theta_{1}^{*}-\theta_{3}^{*}\right)-(\theta+1)\left(\theta_{0}^{*}-\theta_{2}^{*}\right)$.
Pf.

$$
\begin{align*}
\frac{\text { LHS }}{\theta_{0}^{*}}= & {\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(1-\frac{\theta}{k}\right)\left(q^{-2}-\frac{q^{-2}}{\left[\begin{array}{l}
3 \\
1
\end{array}\right] q^{-2}}\right) } \tag{27.48}\\
& -\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(1-\frac{\theta}{k}\right) \frac{\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right] q^{1-3}-1\right)^{2}}{\left[\begin{array}{l}
2 \\
1
\end{array}\right] q^{-1}} \tag{27.49}\\
= & \left(1-\frac{\theta}{k}\right)\left(\left(1+\alpha\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) q^{-2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(\sigma-\alpha\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left[\begin{array}{l}
2 \\
1
\end{array}\right] q^{-3}\right) \tag{27.50}
\end{align*}
$$

$$
=\left(1-\frac{\theta}{k}\right)\left(q^{-2}\left[\begin{array}{l}
2 \tag{27.51}\\
1
\end{array}\right]+\alpha\left(q^{-2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]+q^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
D-2 \\
1
\end{array}\right]\right)\right.
$$

$$
\left.-q^{-1}\left[\begin{array}{l}
2 \tag{27.52}\\
1
\end{array}\right]\left[\begin{array}{c}
D-2 \\
1
\end{array}\right] \sigma\right)
$$

$$
\frac{\mathrm{RHS}}{\theta_{0}^{*}}=\left(\left[\begin{array}{c}
D \tag{27.53}\\
1
\end{array}\right] \sigma-\left[\begin{array}{c}
D-1 \\
1
\end{array}\right](\sigma-\alpha)+1\right)\left(1-\frac{\theta}{k}\right)\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right] q^{-2}-1\right)
$$

$$
-\left[\begin{array}{c}
D-1 \tag{27.54}\\
1
\end{array}\right](\sigma-\alpha)\left(1-\frac{\theta}{k}\right)\left[\begin{array}{l}
2 \\
1
\end{array}\right] q^{-1}
$$

$$
=\left(1-\frac{\theta}{k}\right)\left(q^{-2}\left[\begin{array}{l}
2 \tag{27.55}\\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right] q^{-1} \sigma\left(q^{D-2}-\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]\right)\right.
$$

$$
\left.+\left[\begin{array}{l}
2 \tag{27.56}\\
1
\end{array}\right] q^{-2} \alpha\left(\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]+q\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]\right)\right)
$$

$$
=\left(1-\frac{\theta}{k}\right)\left(q^{-2}\left[\begin{array}{l}
2 \tag{27.57}\\
1
\end{array}\right]-\sigma q^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
D-2 \\
1
\end{array}\right]+\alpha q^{-2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
D-1 \\
1
\end{array}\right]\right)
$$

Example 27.1. Q-polynomial distance-regular graphs with classical parameters.
D-cube: $c_{i}=i, b_{i}=D-i$
has classical parameters: $(q, \alpha, \sigma)=(1,0,1)$.
Johnson graph $J(D, N)(N \geq 2 D)$:
$c_{i}=i^{2}, b_{i}=(D-i)(N-D-i)$ has classical parameters $(q, \alpha, \sigma)=(1,1, N-D)$.
q-analogue of Johnson graph $J_{q}(D, N)(D \geq 2 D)$:

$$
c_{i}=\left(\frac{q^{i}-1}{q-1}\right)^{2}=\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2}, \quad b_{i}=\frac{q\left(q^{D}-q^{i}\right)\left(q^{N-D}-q^{i}\right)}{(q-1)^{2}}
$$

has classical parameters

$$
(q, \alpha, \sigma)=\left(q, q,\left(\frac{q^{N-D+1}-1}{q-1}\right)-1\right)=\left(q, q,\left[\begin{array}{c}
N-D+1 \\
1
\end{array}\right]-1\right)
$$

HS MEMO

$$
\begin{align*}
b_{i} & =\left(\left[\begin{array}{c}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\left[\begin{array}{c}
N-D+1 \\
1
\end{array}\right]-1-q\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \tag{27.58}\\
& =\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\left[\begin{array}{c}
N-D+1 \\
1
\end{array}\right]-\left[\begin{array}{c}
i+1 \\
1
\end{array}\right]\right) \tag{27.59}\\
& =\frac{q\left(q^{D}-q^{i}\right)\left(q^{N-D}-q^{i}\right)}{(q-1)^{2}} \tag{27.60}
\end{align*}
$$

Chapter 28

The First Eigenspace of a Q-DRG

Monday, April 5, 1993
Lemma 28.1. Let $\Gamma=(X, E)$ be distance-regular of diameter $D \geq 3$ with standard module V. Suppose Γ is Q-polynomial with respect to a primitive idempotent E_{1}. Pick a vertex $x \in X$. Then

$$
E_{1} V=\operatorname{Span}\left\{E_{1} \hat{y} \mid \partial(x, y) \leq 2\right\}
$$

In particular,

$$
\operatorname{dim} E_{1} V \leq 1+k_{1}+k_{2}
$$

Proof. Let $\Delta=\left\{E_{1} \hat{y} \mid \partial(x, y) \leq 2\right\}$.
$E_{1} V \supseteq \operatorname{Span} \Delta:$ clear.
$E_{1} V \subseteq \operatorname{Span} \Delta:$ Pick a vertex $y \in X$. Show that $E_{1} \hat{y} \in \operatorname{Span} \Delta$.
Induction on $h=\partial(x, y)$.
Case $h \leq 2$.
$E_{1} \hat{y} \in \operatorname{Span} \Delta$ follows from construction.
Case $h \geq 3$.
Pick a vertex $x^{\prime} \in X$ such that

$$
\partial\left(x, x^{\prime}\right)=h-3, \quad \partial\left(x^{\prime}, y\right)=3
$$

By Theorem 24.1.

$$
\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} E_{1} \hat{z}-\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} E_{1} \hat{z^{\prime}}=r_{12}^{3}\left(E_{1} \hat{x^{\prime}}-E_{1} \hat{y}\right)
$$

$$
r_{12}^{3}=\frac{c_{3}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)}{\theta_{0}^{*}-\theta_{3}^{*}} \neq 0
$$

So, $E_{1} \hat{y} \in \operatorname{Span}\left\{f, g, E_{1} \hat{x^{\prime}}\right\}$, where

$$
f=\sum_{z \in X,(x, z) \in R_{1},(y, z) \in R_{2}} E_{1} \hat{z}, \quad g=\sum_{z^{\prime} \in X,\left(x, z^{\prime}\right) \in R_{2},\left(y, z^{\prime}\right) \in R_{1}} E_{1} \hat{z^{\prime}}
$$

Observe that each z in the f-sum satisfies $\partial(x, z)=h-2$.
So, by induction hypothesis

$$
E_{1} \hat{z} \in \operatorname{Span} \Delta, \quad \text { or } f \in \operatorname{Span} \Delta
$$

Observe that each z^{\prime} in the g-sum satisfies $\partial\left(x, z^{\prime}\right)=h-1$.
So by induction hypothesis

$$
E_{1} \hat{z^{\prime}} \in \operatorname{Span} \Delta, \quad \text { or } g \in \operatorname{Span} \Delta
$$

Also $\partial\left(x, x^{\prime}\right)=h-3$ implies $E_{1} \hat{x^{\prime}} \in \operatorname{Span} \Delta$.
Therefore $E_{1} \hat{y} \in \operatorname{Span} \Delta$.
Note. Let Γ, E_{1}, x be as in Lemma 28.1.
Assume $D \geq 4$.
Observe that there are many linear dependences among

$$
\{E \hat{y} \mid y \in \Delta\}
$$

where $\Delta=\{y \in X \mid \partial(x, y) \leq 2\}$.
Take any $y \in X$ such that $\partial(x, y) \geq 4$.
More than one choice for x^{\prime} in the proof of Lemma 28.1 implies
"more than one way to put $E_{1} \hat{y} \in \operatorname{Span} E_{1} \Delta$."

Open Problem:

(i) Give a precise description of the linear dependences among

$$
\left\{E_{1} \hat{y} \mid y \in \Delta\right\}
$$

(ii) Find a subset $\Delta^{\prime} \subseteq \Delta$ such that

$$
\left\{E_{1} \hat{y} \mid y \in \Delta^{\prime}\right\}
$$

is a basis for $E_{1} V$, (or find some other 'nice' basis for $E_{1} V$).

Conjecture 28.1. Let Γ, E_{1}, x be as in Lemma 28.1. Set

$$
\begin{align*}
\widetilde{X} & =\{y \in X \mid \partial(x, y) \leq 2\} \tag{28.1}\\
\tilde{\partial} & =\text { the restriction of the distance function } \partial \text { to } \widetilde{X} \tag{28.2}
\end{align*}
$$

Then Γ is determined by \widetilde{X} and $\tilde{\partial}$.
(There should be some canonical way to reconstruct Γ from \widetilde{X} and $\tilde{\partial}$.)

Chapter 29

Tridiagonal Pair A, A^{*}

Wednesday, April 7, 1993

Introduction to Theorem 29.1

Let $\Gamma=(X, E)$ be distance-regular with diameter $D \geq 3$.
Assume Γ is Q-polynomial with respect to E_{1}.
Fix a vertex $x \in X$. Write $E_{i}^{*} \equiv E_{i}^{*}(x), A_{i}^{*} \equiv A_{i}^{*}(x), A^{*}=A_{1}^{*}$.
We know for $h, i, j(0 \leq h, i, j \leq D)$,

$$
\begin{align*}
E_{i}^{*} A_{h} E_{j}^{*} & =O \leftrightarrow p_{i j}^{h}=0 \tag{29.1}\\
E_{i} A_{h}^{*} E_{j} & =O \leftrightarrow q_{i j}^{h}=0 . \tag{29.2}
\end{align*}
$$

Also, for $h, i, j(0 \leq h, i, j \leq D)$,

$$
\begin{align*}
& h<|i-j| \rightarrow p_{i j}^{h}=0, q_{i j}^{h}=0 \tag{29.3}\\
& h=|i-j| \rightarrow p_{i j}^{h} \neq 0, q_{i j}^{h} \neq 0 . \tag{29.4}
\end{align*}
$$

Some A_{h} (resp. A_{h}^{*}) is a polynomial of degree exactly h in A (resp. A^{*}), it follows, for $h, i, j(0 \leq h, i, j \leq D)$,

$$
E_{i}^{*} A^{h} E_{j}^{*}, E_{i} A^{* h} E_{j} \quad \begin{cases}=0 & \text { if } h<|i-j|, \\ \neq 0 & \text { if } h=|i-j|\end{cases}
$$

We saw that there exist $\beta, \gamma, \delta \in \mathbb{R}$ such that

$$
0=\left[A, A^{2} A^{*}-\beta A A^{*} A+A^{*} A^{2}-\gamma\left(A A^{*}+A^{*} A\right)-\delta A^{*}\right] .
$$

In fact, there exist $\beta, \gamma^{*}, \delta^{*} \in \mathbb{R}$ such that

$$
0=\left[A^{*}, A^{*^{2}} A-\beta A^{*} A A^{*}+A A^{*^{2}}-\gamma^{*}\left(A^{*} A+A A^{*}\right)-\delta^{*} A\right]
$$

as well as we will now show.
Let K denote any field. Let V denote any vector space over K of finite positive dimension. Let $\operatorname{End}_{K}(V)$ denote the K-algebra of all K-linear transformations $V \rightarrow V$.
Theorem 29.1. Given semi-simple elements $A, A^{*} \in \operatorname{End}_{K}(V)$, suppose

$$
\begin{gather*}
E_{i}\left(A^{*}\right)^{h} E_{j}\left\{\begin{array}{ll}
=0 & \text { if } h<|i-j|, \\
\neq 0 & \text { if } h=|i-j| .
\end{array} \quad(0 \leq h, i, j \leq D)\right. \tag{29.5}\\
E_{i}^{*} A^{h} E_{j}^{*}\left\{\begin{array}{ll}
=0 & \text { if } h<|i-j|, \\
\neq 0 & \text { if } h=|i-j| .
\end{array} \quad(0 \leq h, i, j \leq R)\right. \tag{29.6}
\end{gather*}
$$

for some ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents for A, and some ordering $E_{0}^{*}, E_{1}^{*}, \ldots, E_{R}^{*}$ of primitive idempotents for A^{*}. Then
(i) $R=D$.
(ii) There exist $\beta, \gamma, \gamma^{*}, \delta, \delta^{*} \in \mathbb{K}$ such that

$$
\begin{align*}
0= & {\left[A, A^{2} A^{*}-\beta A A^{*} A+A^{*} A^{2}-\gamma\left(A A^{*}+A^{*} A\right)-\delta A^{*}\right] } \tag{29.7}\\
= & A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right) \tag{29.8}\\
& -\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right) \tag{29.9}\\
0= & {\left[A^{*}, A^{*^{2}} A-\beta A^{*} A A^{*}+A A^{*^{2}}-\gamma^{*}\left(A^{*} A+A A^{*}\right)-\delta^{*} A\right] } \tag{29.10}\\
= & A^{* 3} A-A A^{*^{3}}-(\beta+1)\left(A^{*^{2}} A A^{*}-A^{*} A A^{* 2}\right) \tag{29.11}\\
& -\gamma^{*}\left(A^{* 2} A-A A^{* 2}\right)-\delta^{*}\left(A^{*} A-A A^{*}\right) \tag{29.12}
\end{align*}
$$

(iii) Let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with E_{i} (resp. E ${ }_{i}^{*}$). Then,

$$
\begin{align*}
\beta & =\frac{\theta_{i}-\theta_{i+1}+\theta_{i+2}-\theta_{i+3}}{\theta_{i+1}-\theta_{i+2}} \quad(0 \leq i \leq D-3) \tag{29.13}\\
& =\frac{\theta_{i}^{*}-\theta_{i+1}^{*}+\theta_{i+2}^{*}-\theta_{i+3}^{*}}{\theta_{i+1}^{*}-\theta_{i+2}^{*}} \quad(0 \leq i \leq D-3) \tag{29.14}\\
\gamma & =\theta_{i}-\beta \theta_{i+1}+\theta_{i+2} \quad(0 \leq i \leq D-2) \tag{29.15}\\
\gamma^{*} & =\theta_{i}^{*}-\beta \theta_{i+1}^{*}+\theta_{i+2}^{*} \quad(0 \leq i \leq D-2) \tag{29.16}\\
\delta & =\theta_{i}^{2}-\beta \theta_{i} \theta_{i+1}+\theta_{i+1}^{2}-\gamma\left(\theta_{i}+\theta_{i+1}\right) \quad(0 \leq i \leq D-1) \tag{29.17}\\
\delta^{*} & =\theta^{*}{ }_{i}^{2}-\beta \theta^{*}{ }_{i} \theta^{*}{ }_{i+1}+\theta^{*}{ }_{i+1}^{2}-\gamma^{*}\left(\theta^{*}{ }_{i}+\theta^{*}{ }_{i+1}\right) \quad(0 \leq i \leq D-1) \tag{29.18}
\end{align*}
$$

In particular, $\beta, \gamma, \gamma^{*}, \delta, \delta^{*}$ are uniquely determined by A, A^{*} and the above ordering of their primitive idempotents, whenever $D \geq 3$.

Proof.
(i) By symmetry, it suffices to show $D \geq R$. Suppose $R>D$.

Since A is semisimple with exactly $D+1$ distinct eigenvalues, the minimal polynomial of A has degree $D+1$.

Since $R \geq D+1$,

$$
A^{R} \in \operatorname{Span}\left\{A^{j} \mid 0 \leq j \leq D\right\}
$$

Multiplying each term on the left by E_{R}^{*} and on the right by E_{0}^{*}, we find

$$
\begin{equation*}
E_{R}^{*} A^{R} E_{0}^{*} \in \operatorname{Span}\left\{E_{R}^{*} A^{j} E_{0}^{*} \mid 0 \leq j \leq D\right\} \tag{29.19}
\end{equation*}
$$

But by (29.6), the left side of (29.19) is nonzero and the right side of (29.19) is 0 , a contradiction.
Hence $D \geq R$.
(ii), (iii)

Recalling the definitions, we have

$$
\begin{align*}
A & =\sum_{i=0}^{D} \theta_{i} E_{i} \tag{29.20}\\
A^{*} & =\sum_{i=0}^{D} \theta_{i}^{*} E_{i}^{*} \tag{29.21}\\
A E_{i} & =E_{i} A=\theta_{i} E_{i} \quad(0 \leq i \leq D) \tag{29.22}\\
A^{*} E_{i}^{*} & =E_{i}^{*} A^{*}=\theta_{i}^{*} E_{i}^{*} \quad(0 \leq i \leq D) \tag{29.23}
\end{align*}
$$

Claim 1. For all integers $i, j, k, \ell(0 \leq i, j, k, \ell \leq D)$ such that $j+k \leq i-\ell$,

$$
E_{i}^{*} A^{j} A^{*} A^{k} E_{\ell}^{*}= \begin{cases}\theta_{\ell+k}^{*} E_{i}^{*} A^{j+k} E_{\ell}^{*} & \text { if } j+k=i-l \tag{29.24}\\ O & \text { if } j+k<i-\ell\end{cases}
$$

Proof of Claim 1. The product (29.24) eqia;s

$$
E_{i}^{*} A^{j}\left(\sum_{h=0}^{D} \theta_{h}^{*} E_{h}^{*}\right) A^{k} E_{\ell}^{*}=\sum_{h=0}^{D} \theta_{h}^{*} E_{i}^{*} A^{j} E_{h}^{*} A^{k} E_{\ell}^{*}
$$

Now pick any $h(0 \leq h \leq D)$, where

$$
E_{i}^{*} A^{j} E_{h}^{*} A^{k} E_{\ell}^{*} \neq O
$$

Then by (29.6), $j \geq|i-h|$, otherwise

$$
E_{i}^{*} A^{j} E_{h}^{*}=O
$$

and by (29.5), $k \geq|h-\ell|$ otherwise

$$
E_{h}^{*} A^{k} E_{\ell}^{*}=O
$$

Hence,

$$
j+k \geq|i-h|+|h-\ell| \geq|i-\ell| \geq i-\ell
$$

Now if $j+k<i-\ell$, we see there is no such h, so (29.24) holds.
(Pf. Suppose $i=j+k+\ell$ with $0 \leq i, j, k, \ell, h \leq D$.
Then $i \geq j, k, \ell$. Since $k=|h-\ell|$, if $h \neq \ell+k, h=\ell-k$ and $j-i-h$, $\ell-h+i-h=i-\ell$ implies $h=\ell, k=0$ and $h=\ell+k$.)

This proves Claim 1.
Let M denote the subalgebra of $\operatorname{End}_{K}(V)$ generated by A. Observe that M has a basis E_{0}, \ldots, E_{D} as a vector space over K. Set

$$
L:=\operatorname{Span}\left\{m A^{*} m-n A^{*} m \mid m, n \in M\right\}
$$

Claim 2. $\operatorname{dim} L \leq D$.
Proof of Claim 2. Since E_{0}, \ldots, E_{D} span M,

$$
\begin{align*}
L & =\operatorname{Span}\left\{E_{i} A^{*} E_{j}-E_{j} A^{*} E_{i} \mid 0 \leq i<j \leq D\right\} \tag{29.25}\\
& =\operatorname{Span}\left\{E_{j-1} A^{*} E_{j}-E_{j} A^{*} E_{j-1} \mid 1 \leq j \leq D\right\} \tag{29.26}
\end{align*}
$$

by (29.5).
In particular, L has a spanning set of order D.
So, Claim 2 holds.
Claim 3. $\left\{A^{i} A^{*}-A^{*} A^{i} \mid 1 \leq i \leq D\right\}$ is a basis for L.
Proof of Claim 3. Since

$$
A^{i} A^{*}-A^{*} A^{i}=A^{i} A^{*} I-I A^{*} A^{i}
$$

is contained in $L(1 \leq i \leq D)$, and since $\operatorname{dim} L \leq D$, it suffices to show the given elements are linearly independent.
Suppose they are dependent. Then there exists an integer $i(1 \leq i \leq D)$ such that

$$
\begin{equation*}
A^{i} A^{*}-A^{*} A^{i} \in \operatorname{Span}\left(A^{j} A^{*}-A^{*} A^{j} \mid 1 \leq j<i\right) \tag{29.27}
\end{equation*}
$$

Multiplying each term in (29.27) on the left by E_{i}^{*}, and on the left by E_{0}^{*}, and simplifying using

$$
E_{i}^{*}\left(A^{\ell} A^{*}-A^{*} A^{\ell}\right) E_{0}^{*}=\left(\theta_{0}^{*}-\theta_{i}^{*}\right) E_{i}^{*} A^{\ell} E_{0}^{*}
$$

we find

$$
\begin{equation*}
E_{i}^{*} A^{\ell} E_{0}^{*} \in \operatorname{Span}\left(E_{i}^{*} A^{j} E_{0}^{*} \mid 1 \leq j<i\right) \tag{29.28}
\end{equation*}
$$

But the left side of (29.28) is nonzero.
A contradiction.
Since $A^{2} A^{*} A-A A^{*} A^{2}$ is contained in L, we find by Claim 2 ,

$$
\begin{equation*}
A^{2} A^{*} A-A A^{*} A^{2}=\sum_{i=1}^{D} \alpha_{i}\left(A^{i} A^{*}-A^{*} A^{i}\right) \tag{29.29}
\end{equation*}
$$

for some $\alpha_{0}, \ldots, \alpha_{D} \in K$.
Claim 4. $\alpha_{i}=0 \quad(3<i \leq D)$.
Proof of Claim 4. Suppose not, and set

$$
t=\max \left\{i \mid 3<i \leq D, \alpha_{i} \neq 0\right\}
$$

Then by (29.29), and Claim 1,

$$
\begin{align*}
0 & =E_{t}^{*}\left(A^{2} A^{*} A-A A^{*} A^{2}-\sum_{i=1}^{D} \alpha_{i}\left(A^{i} A^{*}-A^{*} A^{i}\right)\right) E_{0}^{*} \tag{29.30}\\
& =\alpha_{t}\left(\theta_{t}^{*}-\theta_{0}^{*}\right) E_{t}^{*} A^{t} E_{0}^{*} \tag{29.31}\\
& \neq O \tag{29.32}
\end{align*}
$$

(Since $\alpha_{i}=0$ if $i>t$,

$$
\begin{align*}
E_{t}^{*} A^{2} A^{*} A E_{0}^{*} & =E_{t}^{*} A A^{*} A^{2} E_{0}^{*}=O \quad(\text { as } 2+1<t-0) \tag{29.33}\\
E_{t}^{*} A^{i} A^{*} E_{0}^{*} & =E_{t}^{*} A^{*} A^{i} E_{0}^{*}=O \tag{29.34}\\
E_{t}^{*} A^{t} A^{*} E_{0}^{*} & =\theta_{0}^{*} E_{t}^{*} A^{t} E_{0}^{*} \tag{29.35}\\
E_{t}^{*} A^{*} A^{t} E_{0}^{*} & \left.=\theta_{t}^{*} E_{t}^{*} A^{*} A^{t} E_{0}^{*} .\right) \tag{29.36}
\end{align*}
$$

A contradiction. This proves Claim 4.
Claim 5. Suppose $D \geq 3$. Then

$$
\begin{equation*}
\alpha_{3}=\frac{\theta_{i+1}^{*}-\theta_{i+2}^{*}}{\theta_{i}^{*}-\theta_{i+3}^{*}} \quad \text { for all } i,(0 \leq i \leq D-3) \tag{29.38}
\end{equation*}
$$

In particular, $\alpha \neq 0$.
Proof of Claim 5. Fix and integer $i(0 \leq i \leq D-3)$. Then by (29.24) and (29.29),

$$
\begin{align*}
O & =E_{i+3}^{*}\left(A^{2} A^{*} A-A A^{*} A^{2}-\sum_{j=1}^{3} \alpha_{j}\left(A^{i} A^{*}-A^{*} A^{i}\right)\right) E_{i}^{*} \tag{29.39}\\
& =\left(\theta_{i+1}^{*}-\theta_{i+2}^{*}-\alpha_{3}\left(\theta_{i}^{*}-\theta_{i+3}^{*}\right)\right) E_{i+3}^{*} A^{3} E_{i}^{*} \tag{29.40}
\end{align*}
$$

But $E_{i+3}^{*} A^{3} E_{i}^{*} \neq O$ by (29.6), so (29.38) holds.
This proves Claim 5.
Claim 6. Lines (29.7), (29.9), (29.14) hold.
Proof of Claim 6. First suppose $D \geq 3$. Then by (29.29), Claims 4, and 5,

$$
\begin{equation*}
A^{2} A^{*} A-A A^{*} A^{2}=\alpha_{3}\left(A^{3} A^{*}-A^{*} A^{3}\right)+\alpha_{2}\left(A^{2} A^{*}-A^{*} A^{2}\right)+\alpha_{1}\left(A A^{*}-A^{*} A\right) \tag{29.41}
\end{equation*}
$$

where $\alpha_{3} \neq 0$. Hence

$$
A^{3} A^{*}-A^{*} A^{3}-\frac{1}{\alpha_{3}}\left(A^{2} A^{*} A-A A^{*} A^{2}\right)+\frac{\alpha_{2}}{\alpha_{3}}\left(A^{2} A^{*}-A^{*} A^{2}\right)+\frac{\alpha_{1}}{\alpha_{3}}\left(A A^{*}-A^{*} A\right)=O .
$$

Now (29.9) is immediate, where

$$
\begin{align*}
& \beta=\frac{1}{\alpha_{3}}-1 \tag{29.42}\\
& \gamma=-\frac{\alpha_{2}}{\alpha_{3}} \tag{29.43}\\
& \delta=-\frac{\alpha_{1}}{\alpha_{3}} \tag{29.44}
\end{align*}
$$

The line (29.7) follows from the definition of [,].
The line (29.14) is immediate from (29.38) and (29.42).
Now suppose $D<3$. Then the line (29.14) is vacuously true, so consider (29.9).
Let α_{3} denote any nonzoro element of K.
Then $A^{2} A^{*}-A^{*} A^{2}, A A^{*}-A^{*} A$ certainly span L by Claim 3 .
So, (29.41) holds for appropriate α_{1} and $\alpha_{2} \in K$.
Now, (29.9) holds, where β, γ, δ are given by (29.42), (29.43), (29.44).
Claim 7. Lines (29.13), (29.15), (29.17) hold.
Proof of Claim 7. Pick an integer $i(0 \leq i \leq D-1)$.
By (29.9), we have

$$
\begin{align*}
O & =E_{i}\left(A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right)\right) E_{i+1} \tag{29.45}\\
& =E_{i} A^{*} E_{i+1}\left(\theta_{i}^{3}-\theta_{i+1}^{3}-(\beta+1)\left(\theta_{i}^{*} \theta_{i+1}-\theta_{i} \theta_{i+1}^{2}\right)-\gamma\left(\theta_{i}^{2}-\theta_{i+1}^{2}\right)-\delta\left(\theta_{i}-\theta_{i+1}\right)\right) \tag{29.46}\\
& =E_{i} A^{*} E_{i+1}\left(\theta_{i}-\theta_{i+1}\right)\left(\theta_{i}^{2}+\theta_{i} \theta_{i+1}+\theta_{i+1}^{2}-(\beta+1) \theta_{i} \theta_{i+1}-\gamma\left(\theta_{i}+\theta_{i+1}\right)-\delta\right) \tag{29.47}\\
& =E_{i} A^{*} E_{i+1}\left(\theta_{i}-\theta_{i+1}\right)\left(\theta_{i}^{2}-\beta \theta_{i} \theta_{i+1}+\theta_{i+1}^{2}-\gamma\left(\theta_{i}+\theta_{i+1}\right)-\delta\right) . \tag{29.48}
\end{align*}
$$

But $E_{i} A^{*} E_{i+1} \neq O$ by (29.5), and of course, $\theta_{i} \neq \theta_{i+1}$, so

$$
0=\theta_{i}^{2}-\beta \theta_{i} \theta_{i+1}+\theta_{i+1}^{2}-\gamma\left(\theta_{i}+\theta_{i+1}\right)-\delta .
$$

This proves (29.17).
To obtain (29.15), pick any integer $i(0 \leq i \leq D-2)$. Then by (29.17),

$$
\begin{align*}
0= & \theta_{i}^{2}-\beta \theta_{i} \theta_{i+1}+\theta_{i+1}^{2}-\gamma\left(\theta_{i}+\theta_{i+1}\right)-\delta \tag{29.49}\\
& \quad-\left(\theta_{i+1}^{2}-\beta \theta_{i+1} \theta_{i+2}+\theta_{i+2}^{2}-\gamma\left(\theta_{i+1}+\theta_{i+2}\right)-\delta\right) \tag{29.50}\\
= & \theta_{i}^{2}-\beta \theta_{i} \theta_{i+1}-\gamma \theta_{i}+\beta \theta_{i+1} \theta_{i+2}-\theta_{i+2}{ }^{2}+\gamma \theta_{i+2} \tag{29.51}\\
= & \left(\theta_{i}-\theta_{i+2}\right)\left(\theta_{i}-\beta \theta_{i+1}+\theta_{i+2}-\gamma\right) . \tag{29.52}
\end{align*}
$$

So $0=\theta_{i}-\beta \theta_{i+1}+\theta_{i+2}-\gamma$.
This gives (29.15).
To see (29.13), pick an integer $i(0 \leq i \leq D-3)$.
Then by (29.15),

$$
\begin{align*}
0 & =\left(\theta_{i}-\beta \theta_{i+1}+\theta_{i+2}-\gamma\right)-\left(\theta_{i+1}-\beta \theta_{i+2}+\theta_{i+3}-\gamma\right) \tag{29.53}\\
& =\theta_{i}-(\beta+1) \theta_{i+1}+(\beta+1) \theta_{i+2}-\theta_{i+3} . \tag{29.54}
\end{align*}
$$

We have

$$
\beta=\frac{\theta_{i}-\theta_{i+3}}{\theta_{i+1}-\theta_{i+2}}-1=\frac{\theta_{i}-\theta_{i+1}+\theta_{i+2}-\theta_{i+3}}{\theta_{i+1}-\theta_{i+2}},
$$

as desired.
This proves Claim 7.
We have now proved (29.7), (29.9), (29.13), (29.14), (29.15), (29.17).
Interchanging the roles of A and A^{*}, we obtain (29.10), (29.12), (29.16), (29.18).

Chapter 30

R, F, L Matrices

Monday, April 12, 1993

Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3$ with standard module V.
Assume Γ is Q-polynomial with respect to the ordering

$$
E_{0}, E_{1}, \ldots, E_{D}
$$

of primitive idempotents. Let A_{i} be an i-th adjacency matrix, and $A=A_{1}$.

$$
A=\sum_{i=0}^{D} \theta_{i} A_{i}, \quad E_{i}=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}
$$

Fix a vertex $x \in X$, write

$$
E_{i}^{*} \equiv E_{i}^{*}(x), \quad A_{i}^{*} \equiv A_{i}^{*}(x), \quad A^{*} \equiv A_{1}^{*}, \quad T \equiv T(x)
$$

Then

$$
A^{*}=\sum_{i=0}^{D} \theta_{i}^{*} E_{i}^{*}
$$

By Theorem 29.1, there exist $\beta, \gamma, \gamma^{*}, \delta, \delta^{*} \in \mathbb{R}$ such that

$$
\begin{align*}
& 0=\left[A, A^{2} A^{*}-\beta A A^{*} A+A^{*} A^{2}-\gamma\left(A A^{*}+A^{*} A\right)-\delta A^{*}\right] \tag{30.1}\\
& 0=\left[A^{*}, A^{*^{2}} A-\beta^{*} A^{*} A A^{*}+A A^{*^{2}}-\gamma^{*}\left(A^{*} A+A A^{*}\right)-\delta^{*} A\right] \tag{30.2}
\end{align*}
$$

Recall raising matrix

$$
R=\sum_{i=0}^{D} E_{i+1}^{*} A E_{i}^{*}
$$

satisfies

$$
R\left(E_{i}^{*} V\right) \subseteq E_{i+1}^{*} V \quad(0 \leq i \leq D), \quad E_{D+1}^{*} V=0
$$

lowering matrix

$$
L=\sum_{i=0}^{D} E_{i-1}^{*} A E_{i}^{*}
$$

satisfies

$$
L\left(E_{i}^{*} V\right) \subseteq E_{i-1}^{*} V \quad(0 \leq i \leq D), \quad E_{-1}^{*} V=0
$$

and flat matrix

$$
F=\sum_{i=0}^{D} E_{i}^{*} A E_{i}^{*}
$$

satisfies

$$
F\left(E_{i}^{*} V\right) \subseteq E_{i}^{*} V \quad(0 \leq i \leq D)
$$

Also,

$$
A=R+F+L
$$

Theorem 30.1. With the above notation and assumptions,
(i) For all $i(2 \leq i \leq D)$,

$$
\left.g_{i}^{-} F L^{2}+L F L+g_{i}^{+} L^{2} F-\gamma L^{2}\right) E_{i}^{*}=O
$$

where

$$
\begin{align*}
& g_{i}^{+}=\frac{\theta_{i-2}^{*}-(\beta+1) \theta_{i-1}^{*}+\beta \theta_{i}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}} \tag{30.3}\\
& g_{i}^{-}=\frac{\theta_{i-2}^{*}+(\beta+1) \theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}} \tag{30.4}
\end{align*}
$$

(ii) For all $i(0 \leq i \leq D)$,

$$
\left[F, L R-h_{i} R L\right] E_{i}^{*}=O
$$

where

$$
\begin{equation*}
h_{i}=\frac{\theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{i}^{*}-\theta_{i+1}^{*}} \quad(1 \leq i \leq D-1) \tag{30.5}
\end{equation*}
$$

and h_{0}, h_{D} are indeterminants.
(iii) For all $i(1 \leq i \leq D)$,
$\left(e_{i}^{-} R L^{2}+(\beta+2) L R L+e_{i}^{+} L^{2} R+L F^{2}-\beta F L F+F^{2} L-\gamma(L F+F L)-\delta L\right) E_{i}^{*}=O$,
where

$$
\begin{align*}
& e_{i}^{+}=\frac{\theta_{i-1}^{*}-(\beta+2) \theta_{i}^{*}+(\beta+1) \theta_{i+1}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}} \quad(1 \leq i \leq D) \tag{30.6}\\
& e_{i}^{-}=\frac{-(\beta+1) \theta_{i-2}^{*}+(\beta+2) \theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}} \quad(2 \leq i \leq D) \tag{30.7}
\end{align*}
$$

and e_{0}^{+}, e_{1}^{-}are indeterminants.

Proof. We have
$O=A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right)$.
(i) Fix $i(2 \leq i \leq D)$, and multply above on the left by E_{i-2}^{*}, and on the right by E_{i}^{*}. Now reduce.

For example,

$$
E_{i-2}^{*} A^{3} A^{*} E_{i}^{*}=\theta_{i}^{*} E_{i-2}^{*} A^{3} E_{i}^{*}
$$

where

$$
\begin{align*}
E_{i-2}^{*} A^{3} E_{i}^{*} & =E_{i-2}^{*} A\left(\sum_{r=0}^{D} E_{r}^{*}\right) A\left(\sum_{s=0}^{D} E_{s}^{*}\right) A E_{i}^{*} \tag{30.8}\\
& =\sum_{r, s} E_{i-2}^{*} A E_{r}^{*} A E_{s}^{*} A E_{i}^{*} \tag{30.9}\\
& =\sum_{r, s,|i-2-r| \leq 1,|r-s| \leq 1,|s-i| \leq 1} E_{i-2}^{*} A E_{r}^{*} A E_{s}^{*} A E_{i}^{*} \tag{30.10}\\
& =E_{i-2}^{*} A E_{i-2}^{*} A E_{i-1}^{*} A E_{i}^{*}+E_{i-2}^{*} A E_{i-1}^{*} A E_{i-1}^{*} A E_{i}^{*}+E_{i-2}^{*} A E_{i-1}^{*} A E_{i}^{*} A E_{i}^{*} \\
& =\left(F L^{2}+L F L+L^{2} F\right) E_{i}^{*} . \tag{30.11}
\end{align*}
$$

Reducing the other terms in a similar manner, and simplifying, we obtain (i).

HS MEMO

$$
\begin{align*}
E_{i-2}^{*} A^{*} A^{3} E_{i}^{*} & =\theta_{i-2}^{*} E_{i-2}^{*} A^{3} E_{i}^{*} \tag{30.13}\\
& =\theta_{i-2}^{*}\left(F L^{2}+L F L+L^{2} F\right) E_{i}^{*} \tag{30.14}\\
E_{i-2}^{*} A^{2} A^{*} A E_{i}^{*} & =\left(\theta_{i-1}^{*}\left(F L^{2}+L F L\right)+\theta_{i}^{*} L^{2} F\right) E_{i}^{*} \tag{30.15}\\
E_{i-2}^{*} A A^{*} A^{2} E_{i}^{*} & =\left(\theta_{i-2}^{*} F L^{2}+\theta_{i-1}^{*}\left(L F L+L^{2} F\right)\right) E_{i}^{*} \tag{30.16}\\
E_{i-2}^{*}\left(A^{2} A^{*}-A^{*} A^{2}\right) E_{i}^{*} & =\left(\theta_{i}^{*}-\theta_{i-2}^{*}\right) L^{2} E_{i}^{*} \tag{30.17}\\
E_{i-2}^{*}\left(A A^{*}-A^{*} A\right) E_{i}^{*} & =O \tag{30.18}
\end{align*}
$$

Then we have

$$
\begin{align*}
O= & \left(\left(\theta_{i}^{*}-\theta_{i-2}^{*}\right)\left(F L^{2}+L F L+L^{2} F\right)\right. \tag{30.19}\\
& -(\beta+1)\left(\theta_{i-1}^{*}\left(F L^{2}+L F L\right)+\theta_{i}^{*} L^{2} F-\theta_{i-2}^{*} F L^{2}-\theta_{i-1}^{*}\left(L F L+L^{2} F\right)\right) \tag{30.20}\\
& \left.-\gamma\left(\theta_{i}^{*}-\theta_{i-2}^{*}\right) L^{2}\right) E_{i}^{*} \tag{30.21}\\
= & \left(\left(\theta_{i}^{*}-\theta_{i-2}^{*}-(\beta+1)\left(\theta_{i-1}^{*}-\theta_{i-2}^{*}\right)\right) F L^{2}+\left(\theta_{i}^{*}-\theta_{i-2}^{*}\right) L F L\right. \tag{30.22}\\
& \left.+\left(\theta_{i}^{*}-\theta_{i-2}^{*}-(\beta+1)\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)\right) L^{2} F-\gamma\left(\theta_{i}^{*}-\theta_{i-2}^{*}\right) L^{2}\right) E_{1}^{*} \tag{30.23}\\
= & -\left(\theta_{i-2}^{*}-\theta_{i}^{*}\right)\left(\left(\frac{-\beta \theta_{i-2}^{*}+(\beta+1) \theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}}\right) F L^{2}+L F L\right. \tag{30.24}\\
& \left.+\left(\frac{\theta_{i-2}^{*}-(\beta+1) \theta_{i-1}^{*}+\beta \theta_{i}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}}\right) L^{2} F-\gamma L^{2}\right) E_{i}^{*} \tag{30.25}\\
= & \left(\theta_{i}^{*}-\theta_{i-2}^{*}\right)\left(g_{i}^{-} F L^{2}+L F L+g_{i}^{+} L^{2} F-\gamma L^{2}\right) E_{i}^{*} . \tag{30.26}
\end{align*}
$$

(ii), (iii) are obtained in a similar manner replacing $i-2$ by i (resp. $i-1$).

HS MEMO

(ii) We have
$O=E_{i}^{*}\left(A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} E\right)\right) E_{i}^{*}$.
Since $\beta+1 \neq 0$, by (29.42) if $D \geq 3$,

$$
\begin{align*}
O & =E_{i}^{*}\left(A^{2} A^{*} A-A A^{*} A^{2}\right) E_{i}^{*} \tag{30.27}\\
& \left.=\left(\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) R L F+\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) L R F\right)+\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right) F R L+\left(\theta_{i+1}^{*}-\theta_{i}^{*}\right) F L R\right)(30.28) E_{i}^{*} \tag{30.28}\\
& =\left[F,\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right) R L-\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) L R\right] E_{i}^{*} \tag{30.29}\\
& =\left(\theta_{i+1}^{*}-\theta_{i}^{*}\right)\left[F, L R-\frac{\theta_{i-1}^{*}-\theta_{i}^{*}}{\theta_{i}^{*}-\theta_{i+1}^{*}} R L\right] E_{i}^{*} \tag{30.30}\\
& =\left(\theta_{i+1}^{*}-\theta_{i}^{*}\right)\left[F, L R-h_{i} R L\right] E_{i}^{*} . \tag{30.31}
\end{align*}
$$

(iii) We have

$$
\begin{array}{rlr}
O= & E_{i-1}^{*}\left(A^{3} A^{*}-A^{*} A^{3}-(\beta+1)\left(A^{2} A^{*} A-A A^{*} A^{2}\right)-\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)-\delta\left(A A^{*}-A^{*} A\right)\right) E_{i}^{*} \\
= & \left(\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)\left(R L^{2}+L R L+L^{2} R+L F^{2}+F L F+F^{2} L\right)\right) & (30.33) \\
& -(\beta+1)\left(\left(\theta_{i-1}^{*}-\theta_{i-2}^{*}\right) R L^{2}+\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right) L R L+\left(\theta_{i+1}^{*}-\theta_{i}^{*}\right) L^{2} R\right. & (30.34) \\
& +\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) F L F & (30.35) \\
& -\gamma\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)(L F+F L) & (30.36) \\
& \left.-\delta\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) L\right) E_{i}^{*} & (30.37) \\
= & \left(\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)-(\beta+1)\left(\theta_{i-1}^{*}-\theta_{i-2}^{*}\right)\right) R L^{2} & (30.39) \\
& +\left(\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)-(\beta+1)\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right)\right) L R L & (30.40) \\
& +\left(\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)-(\beta+1)\left(\theta_{i+1}^{*}-\theta_{i}^{*}\right)\right) L^{2} R & (30.41) \\
& +\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) L F^{2}+\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) F^{2} L & (30.43) \\
& +\left(\theta_{i}^{*}-\theta_{i-1}^{*}-(\beta+1)\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)\right) F L F & (30.45) \\
& -\gamma\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)(L F+F L) & \\
& \left.-\delta\left(\theta_{i}^{*}-\theta_{i-1}^{*}\right) L\right) E_{i}^{*} & \left(\theta_{i}^{*}-\theta_{i-1}^{*}\right)\left(\frac{\left.-(\beta+1) \theta_{i-2}^{*}+(\beta+2) \theta_{i-2}^{*}-\theta_{i}^{*} R L^{2}+(\beta+2) L R L\right)}{\theta_{i-1}^{*}-\theta_{i}^{*}}\right. \\
& +\frac{\theta_{i-1}^{*}-(\beta+2) \theta_{i}^{*}+(\beta+1) \theta_{i+1}^{*} L^{2} R+L F^{2}-\beta F L F+F^{2} L}{\theta_{i-1}^{*}-\theta_{i}^{*}} & (30.46) \\
= & \left(e_{i}^{-} R L^{2}+(\beta+2) L R L+e_{i}^{+} L^{2} R+L F^{2}-\beta F L F+F^{2} L-\gamma(L F+F L)-\delta L\right) E_{i}^{*} \\
& -\gamma(L F+F L)-\delta L) E_{i}^{*} & (30.48) \\
& & (30.49)
\end{array}
$$

Lemma 30.1. With the notation of Theorem 30.1,

$$
\begin{align*}
& e_{i}^{+}=\frac{\theta_{i}^{*}-\theta_{i+2}^{*}}{\theta_{i}^{*}-\theta_{i-1}^{*}} \quad(1 \leq i \leq D-2) \tag{30.50}\\
& e_{i}^{-}=\frac{\theta_{i-1}^{*}-\theta_{i-3}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}} \quad(3 \leq i \leq D) \tag{30.51}\\
& g_{i}^{+}=\frac{\theta_{i}^{*}-\theta_{i+1}^{*}}{\theta_{i}^{*}-\theta_{i-2}^{*}} \quad(2 \leq i \leq D-1) \tag{30.52}\\
& g_{i}^{-}=\frac{\theta_{i-2}^{*}-\theta_{i-3}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}} \quad(3 \leq i \leq D) \tag{30.53}
\end{align*}
$$

In particular, $e_{i}^{ \pm}, g_{i}^{ \pm}$are non-zero for the range of i given above.
Proof. In each case, equate the above expression with the corresponding expression in Theorem 30.1. The resulting equation is equal to (29.13).

HS MEMO

By Corollary 26.1 and Therem 29.1,

$$
e_{i}^{+}=\frac{\theta_{i-1}^{*}-(\beta+2) \theta_{i}^{*}+(\beta+1) \theta_{i+1}^{*}}{\beta_{i-1}^{*}-\theta_{i}^{*}}
$$

and

$$
\beta+1=\frac{\theta_{j-1}^{*}-\theta_{j}^{*}+\theta_{j+1}^{*}-\theta_{j+2}^{*}}{\theta_{j}^{*}-\theta_{j+1}^{*}}+1=\frac{\theta_{j-1}^{*}-\theta_{j+2}^{*}}{\theta_{j}^{*}-\theta_{j+1}^{*}}
$$

Hence,

$$
\begin{align*}
e_{i}^{+} & =\frac{1}{\theta_{i-1}^{*}-\theta_{i}^{*}}\left(\theta_{i-1}^{*}-\theta_{i}^{*}-(\beta+1)\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)\right) \tag{30.54}\\
& =\frac{1}{\theta_{i-1}^{*}-\theta_{i}^{*}}\left(\theta_{i-1}^{*}-\theta_{i}^{*}-\left(\theta_{i-1}^{*}-\theta_{i+2}^{*}\right)\right) \tag{30.55}\\
& =\frac{\theta_{i}^{*}-\theta_{i+2}^{*}}{\theta_{i}^{*}-\theta_{i-1}^{*}}, \tag{30.56}\\
e_{i}^{-} & =\frac{1}{\theta_{i-1}^{*}-\theta_{i}^{*}}\left(-(\beta+1) \theta_{i-2}^{*}+(\beta+2) \theta_{i-1}^{*}-\theta_{i}^{*}\right) \tag{30.57}\\
& =\frac{1}{\theta_{i-1}^{*}-\theta_{i}^{*}}\left(\theta_{i-1}^{*}-\theta_{i}^{*}-\theta_{i-3}^{*}+\theta_{i}^{*}\right) \tag{30.58}\\
& =\frac{\theta_{i-1}^{*}-\theta_{i-3}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}}, \tag{30.59}\\
g_{i}^{+} & =\frac{1}{\theta_{i-2}^{*}-\theta_{i}^{*}}\left(\theta_{i-2}^{*}-(\beta+1) \theta_{i-1}^{*}+\beta \theta_{i}^{*}\right) \tag{30.60}\\
& =\frac{1}{\theta_{i}^{*}-\theta_{i-2}^{*}}\left(\theta_{i}^{*}-\theta_{i-2}^{*}+\theta_{i-2}^{*}-\theta_{i+1}^{*}\right) \tag{30.61}\\
& =\frac{\theta_{i}^{*}-\theta_{i+1}^{*}}{\theta_{i}^{*}-\theta_{i-2}^{*}}, \tag{30.62}\\
g_{i}^{-} & =\frac{1}{\theta_{i-2}^{*}-\theta_{i}^{*}}\left(-\beta \theta_{i-2}^{*}+(\beta+1) \theta_{i-1}^{*}-\theta_{i}^{*}\right) \tag{30.63}\\
& =\frac{1}{\theta_{i-2}^{*}-\theta_{i}^{*}}\left(\theta_{i-2}^{*}-\theta_{i}^{*}+\theta_{i}^{*}-\theta_{i-3}^{*}\right) \tag{30.64}\\
& =\frac{\theta_{i-2}^{*}-\theta_{i-3}^{*}}{\theta_{i-2}^{*}-\theta_{i}^{*}} . \tag{30.65}
\end{align*}
$$

Corollary 30.1. Let $\Gamma=(X, E)$ be dostance-regular of diameter $D \geq 3$, Q polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, write $E_{i}^{*} \equiv$ $E_{i}^{*}(x), R \equiv R(x), L \equiv L(x), F \equiv F(x)$. Then the following hold.
(i) $F R^{2} E_{j}^{*} \in \operatorname{Span}\left(R F R E_{j}^{*}, R^{2} F E_{j}^{*}, R^{2} E_{j}^{*}\right),(0 \leq j \leq D-3)$.
(ii) $R^{2} F E_{j}^{*} \in \operatorname{Span}\left(R F R E_{j}^{*}, F R^{2} E_{j}^{*}, R^{2} E_{j}^{*}\right),(1 \leq j \leq D-2)$.
(iii) $L R^{2} E_{j}^{*} \in \operatorname{Span}\left(R L R E_{j}^{*}, R^{2} L E_{j}^{*}, F^{2} R E_{j}^{*}, F R F E_{j}^{*}, R F^{2} E_{j}^{*}, R F E_{j}^{*}, F R E_{j}^{*}, R E_{j}^{*}\right)$, $(0 \leq j \leq D-3)$.
(iv) $R^{2} L E_{j}^{*} \in \operatorname{Span}\left(R L R E_{j}^{*}, L R^{2} E_{j}^{*}, F^{2} R E_{j}^{*}, F R F E_{j}^{*}, R F^{2} E_{j}^{*}, R F E_{j}^{*}, F R E_{j}^{*}, R E_{j}^{*}\right)$, $(1 \leq j \leq D)$.

Proof. Immediate from Theorem 30.1, and Lemma 30.1.

HS MEMO

By Theorem 30.1, and Lemma 30.1, we have the following, but similarly we can obtain above.
(i) $F L^{2} E_{j}^{*} \in \operatorname{Span}\left(L F L E_{j}^{*}, L^{2} F E_{j}^{*}, L^{2} E_{j}^{*}\right),(3 \leq j \leq D)$.
(ii) $L^{2} F E_{j}^{*} \in \operatorname{Span}\left(L F L E_{j}^{*}, F L^{2} E_{j}^{*}, L^{2} E_{j}^{*}\right),(2 \leq j \leq D-1)$.
(iii) $R L^{2} E_{j}^{*} \in \operatorname{Span}\left(L R L E_{j}^{*}, L^{2} R E_{j}^{*}, F^{2} L E_{j}^{*}, F L F E_{j}^{*}, L F^{2} E_{j}^{*}, L F E_{j}^{*}, F L E_{j}^{*}, L E_{j}^{*}\right)$, $(3 \leq j \leq D)$.
(iv) $L^{2} R E_{j}^{*} \in \operatorname{Span}\left(L R L E_{j}^{*}, R L^{2} E_{j}^{*}, F^{2} L E_{j}^{*}, F L F E_{j}^{*}, L F^{2} E_{j}^{*}, L F E_{j}^{*}, F L E_{j}^{*}, L E_{j}^{*}\right)$, $(2 \leq j \leq D)$.

Chapter 31

The "Inverse" of R

Wednesday, April 14, 1993

Let $\Gamma=(X, E)$ be any graph of diameter $D \geq 2$. Fix a vertex $x \in X$. Let $E_{i}^{*} \equiv E_{i}^{*}(x)$, and $T \equiv T(x)$.

Recall adjacency matrix

$$
\begin{align*}
A & =R+L+F \tag{31.1}\\
R & =\sum_{i=0}^{D} E_{i+1}^{*} A E_{i}^{*} \tag{31.2}\\
L & =\sum_{i=0}^{D} E_{i-1}^{*} A E_{i}^{*} \tag{31.3}\\
F & =\sum_{i=0}^{D} E_{i}^{*} A E_{i}^{*} . \tag{31.4}
\end{align*}
$$

Observe R is not invertible (indeed $R E_{D}^{*}=O$.) So, R^{-1} does not exist.
Below we find a matrix " $R^{-1} " \in T(x)$ such that $R^{-1} R v=v$ for "almost all" $v \in V$.

Lemma 31.1. Let $\Gamma=(X, E)$ denote any graph, and the standard module V over \mathbb{C}.

Fix a vertex $x \in X$, write

$$
R \equiv R(x), \quad L \equiv L(x), \quad E_{i}^{*} \equiv E_{i}^{*}(x) \quad \text { for all } i
$$

Then,
(i) There exists unique " $R^{-1} " \in \operatorname{Mat}_{X}(\mathbb{C})$ such that;
(ia) $R^{-1} v=0$ if $L v=0$ for $v \in V$.
(ib) $R^{-1} R L v=L v$ for all $v \in V$.
(ii) $R^{-1}\left(E_{i}^{*} V\right) \subseteq E_{i-1}^{*} V(0 \leq i \leq D), E_{-1}^{*} V=0$.
(iii) $R^{-1} \in \operatorname{Mat}_{X}(\mathbb{Q})$.
(iv) $R^{-1} \in T(x)$.

Proof.
(i) Consider the orthogonal direct sum.

$$
V=(\operatorname{Ker} L)+(\operatorname{Ker} L)^{\perp} .
$$

Claim 1. $R L(\operatorname{Ker} L)^{\perp} \subseteq(\operatorname{Ker} L)^{\perp}$.
Proof of Claim 1. Pick $v \in(\operatorname{Ker} L)^{\perp}$, and $w \in \operatorname{Ker} L$. Show

$$
\langle R L v, w\rangle=0 .
$$

But

$$
\bar{R}^{\top}=R^{\top}=\left(\sum_{i=0}^{D} E_{i+1}^{*} A E_{i}^{*}\right)^{\top}=\sum_{i=0}^{D} E_{i}^{*} A E_{i+1}^{*}=L .
$$

So,

$$
\langle R L v, w\rangle=\left\langle L v, \bar{R}^{\top} w\right\rangle=\langle L v, L w\rangle=0
$$

Claim 2. $R L:(\operatorname{Ker} L)^{\perp} \rightarrow(\operatorname{Ker} L)^{\perp}$ is an isomorphism of vector spaces.
Proof of Claim 2. It suffices to show above map is one-to-one.
Suppose there is a vector $v \in(\operatorname{Ker} L)^{\perp}$ such that $R L v=0$.
Then,

$$
0=\langle R L v, v\rangle=\left\langle L v, \bar{R}^{\top} v\right\rangle=\|L v\|^{2} .
$$

So $L v=0$.
Hence $v \in \operatorname{Ker} L \cap(\operatorname{Ker} L)^{\perp}=0$.
This proves Claim 2.
Now " R^{-1} denote the unique matrix in $\operatorname{Mat}(\mathbb{C})$ such that

$$
R^{-1} v= \begin{cases}0 & \text { if } v \in \operatorname{Ker} L \tag{31.5}\\ L(R L)^{-1} v & \text { if } v \in(\operatorname{Ker} L)^{\perp} .\end{cases}
$$

Observe that $(R L)^{-1}:(\operatorname{Ker} L)^{\perp} \rightarrow(\operatorname{Ker} L)^{\perp}$ exists by Claim 2.
Observe R^{-1} satisfies (ia) by (31.5).

Claim 3. R^{-1} satisfies (ib).
Proof of Claim 3. It suffices to check

$$
R^{-1} R L v=L v
$$

for $v \in \operatorname{Ker} L$ and $v \in(\operatorname{Ker} L)^{\perp}$.
The case $v \in \operatorname{Ker} L$ is clear. So assume $v \in(\operatorname{Ker} L)^{\perp}$ by Claim 1. So,

$$
R^{-1}(R L v)=L(R L)^{-1} R L v=L v
$$

as desired.
Uniqueness: Suppose a matrix $\hat{R}^{-1} \in \operatorname{Mat}_{X}(\mathbb{C})$ satisfies $(i a),(i b)$. Then, \hat{R}^{-1} satisfies (31.5) above.
(Pf. The first part is clear. Let $v \in(\operatorname{Ker} L)^{\perp}$. By Claim 2, there exists $w \in$ $(\operatorname{Ker} L)^{\perp}$ such that $v \in R L w$. So $\hat{R}^{-1} v=\hat{R}^{-1} R L w=L w=L(R L)^{-1} v$.)
Therefore, \hat{R}^{-1} agrees with R^{-1} on a basis for V, and $\hat{R}^{-1}=R^{-1}$.
(ii) Pick $v \in E_{i}^{*} V$. Show $R^{-1} v \in E_{i-1}^{*} V$.

Without loss of generality we may assume that $v \in \operatorname{Ker} L$ or $v \in(\operatorname{Ker} L)^{\perp}$.
If $v \in \operatorname{Ker} L$, then $R^{-1} v=0 \in E_{i-1}^{*} V$.
If $v \in(\operatorname{Ker} L)^{\perp}$, then

$$
R^{-1} v=L(R L)^{-1} v \in L E_{i}^{*} V \subseteq E_{i-1}^{*} V .
$$

(iii) Observe $R, L \in \operatorname{Mat}_{X}(\mathbb{Q})$.

So $V, \operatorname{Ker} L$, each has basis consisting of vectors in $\mathbb{Q}^{|X|}$.
Replacing the construction of R^{-1} with the base field replaced by \mathbb{Q}, we find a matrix $\tilde{R}^{-1} \in \operatorname{Mat}_{X}(\mathbb{Q})$ satisfying (ia), (ib).
Now R^{-1} and \tilde{R}^{-1} agree on a basis, and hence $R^{-1}=\tilde{R}^{-1}$.
(iv) $R L=\bar{L}^{\top} L$ is a real symmetric matrix. So it is diagonalizable.

Let θ be any eigenvalue of $R L$. Let V_{θ} denote the corresponding maximal eigenspace in V. Then

$$
V=\sum_{\theta: \text { eigenvalue for } R L} V_{\theta} \text { (orthogonal direct sum). }
$$

Let $E_{\theta}: V \rightarrow V_{\theta}$ denote the orthogonal projection. Then E_{θ} is a complex polynomial in $R L$.
Thus $E_{\theta} \in T(x)$.

HS MEMO

E_{θ} is real. Since $R L$ is an integral matrix, every eigenvalue of $R L$ is an algebraic integer.

Claim 4. We have

$$
\begin{equation*}
R^{-1}=\sum_{\theta: \text { eigenvalue of } R L} \theta^{-1} L E_{\theta} \tag{31.6}
\end{equation*}
$$

In particular, $R^{-1} \in T(x)$.
Proof of Claim 4. Show two sides of (31.6) agree, when applied to arbitrary $v \in V$.

Without loss of generality, we may assume that $v \in V_{\theta}$ for some eigenvalue θ of $R L$.

Let θ^{\prime} denote any eigenvalue of $R L$.

$$
E_{\theta^{\prime}} v= \begin{cases}0 & \text { if } \theta^{\prime} \neq \theta \\ v & \text { if } \theta^{\prime}=\theta\end{cases}
$$

RHS of (31.6) applied to v equals

$$
\begin{cases}0 & \text { if } \theta=0 \\ \theta^{-1} L v & \text { if } \theta \neq 0\end{cases}
$$

Show this equals $R^{-1} v$.
Case $\theta=0$: Since $R L v=0$,

$$
0=\langle v, R L v\rangle=\|L v\|^{2}
$$

Hence $L v=0$, or $v \in \operatorname{Ker} L$. By $(i a), R^{-1} v=0$.
Case $\theta \neq 0$: Since $R L v=\theta v, v=\theta^{-1} R L v$. Hence,

$$
R^{-1} v=\theta^{-1} R^{-1} R L v=\theta^{-1} L v
$$

by (ib).

Chapter 32

Irreducible Modules of Endpoint i

Monday, April 19, 1993

Lemma 32.1. Let $\Gamma=(X, E)$ be any graph. With the notation of Lemma 31.1, the following hold.
(i) Let W denote a thin irreducible T-module with endpoint r, diameter d. Pick $i(0 \leq i \leq d)$, and pick $v \in E_{r+i}^{*} W$. Then,

$$
R^{-1} R v= \begin{cases}v & \text { if } i<d \\ 0 & \text { if } i=d\end{cases}
$$

(ii) Assume Γ is distance regular and thin with respect to x. Pick $t(0 \leq i<D / 2)$, and pick $v \in E_{t}^{*} V$. Then

$$
R^{-1} R^{i} v=R^{i-1} v \quad(1 \leq i \leq D-2 t)
$$

In particular, $R^{-1} R v=v$.
(iii) Assume Γ is distance regular and thin with respect to x. Then

$$
R: E_{i}^{*} V \rightarrow E_{i+1}^{*} V \quad(0 \leq i<D / 2)
$$

is one-to-one.

Proof.
(i) Let $w_{0}, w_{1}, \ldots, w_{d}$ be a basis for W and $w_{i} \in E_{r+i}^{*} W$,

$$
R w_{i}=w_{i+1} \quad(0 \leq i<d), \quad L w_{i}=x_{i}(W) w_{i-1} \quad(1 \leq i \leq d)
$$

So,

$$
R L w_{i}=x_{i}(W) w_{i} \quad(1 \leq i \leq d)
$$

(See Lemma 9.1.)
We want to find $R^{-1} R w_{i}$.
If $i=d, R^{-1} R w_{d}=0$.
If $0 \leq i<d$,

$$
\begin{align*}
R^{-1} R w_{i} & =R^{-1} w_{i+1} \tag{32.1}\\
& =x_{i+1}(W)^{-1} R^{-1} R L w_{i+1} \tag{32.2}\\
& =x_{i+1}(W)^{-1} L w_{i+1} \tag{32.3}\\
& =x_{i+1}(W)^{-1} x_{i+1}(W) w_{i} \tag{32.4}\\
& =w_{i} \tag{32.5}
\end{align*}
$$

Thus, we have (i).

HS MEMO

$$
\begin{align*}
R L w_{i}= & R x_{i}(W) w_{i-1}=x_{i}(W) w_{i} \tag{32.6}\\
L R w_{i}= & L w_{i+1}=x_{i+1}(W) w_{i} \tag{32.7}\\
{[L, R] w_{i}=} & \left(x_{i+1}(W)-x_{i}(W)\right) w_{i}, \quad(0 \leq i \leq d) \tag{32.8}\\
& x_{0}(W)=0, \quad x_{d+1}(W)=0 \tag{32.9}\\
{\left.[L, R]\right|_{W}=} & \left.\sum_{i=0}^{d}\left(x_{i+1}-x_{i}(W)\right) E_{r+i}^{*}\right|_{W} \tag{32.10}
\end{align*}
$$

(ii) Let
$V=\sum W \quad$ orthogonal direct sum of thin irreducible T-modules.
Then,

$$
E_{t}^{*} V=\sum_{r(W) \leq t} E_{t}^{*} W \quad \text { (orthognal direct sum) }
$$

Without loss of generality, we may assume

$$
v \in E_{t}^{*} W
$$

for some thin irreducible T-module with endpoint at most t.

Now if $i \leq D-2 t$, then

$$
\begin{align*}
t+i & \leq D-t \tag{32.11}\\
& \leq D-r(W) \tag{32.12}\\
& \leq r(W)+d(W) \quad(D \leq 2 r+d) \tag{32.13}
\end{align*}
$$

by Lemma 14.1 (iii).
So

$$
t+i-1 \leq r(W)+d(W)-1
$$

Hence,

$$
\begin{align*}
R^{-1} R^{i} v & =R^{-1} R\left(R^{i-1} v\right) \quad\left(R^{i-1} v \in E_{t+i-1}^{*} W\right) \tag{32.14}\\
& =R^{i-1} v \quad \text { by }(i) \tag{32.15}
\end{align*}
$$

(iii) Suppose $R v=0$ for some $v \in E_{i}^{*} V(0 \leq i<D / 2)$. Then

$$
0=R^{-1} R v=v
$$

by (ii) with $t=i$ and $i=1$.

Definition 32.1. Let $\Gamma=(X, E)$ denote any graph with the standard module V. Fix a vertex $x \in X$. Write $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x), L \equiv L(x)$.

1. For every $i(0 \leq i \leq D)$, define subspace $V_{i}:=V_{i}(x) \subseteq V$ by

$$
V_{i}=\sum W
$$

where the sum begin over irreducible T-modules W with endpoint i.
Observe:

$$
V=V_{0}+V_{1}+\cdots+V_{D} \quad \text { (orthogonal direct sum.) }
$$

V_{0} is the trivial T-module.
2. $\left(E_{i}^{*} V\right)_{n e w} \equiv E_{i}^{*} V_{i} \quad(0 \leq i \leq D)$.

In general,

$$
\left(E_{i}^{*} V\right)_{\text {new }} \subseteq \operatorname{Ker} L \cap E_{i}^{*} V \subseteq \operatorname{Ker} L \cap E_{i}^{*} V \subseteq \operatorname{Ker}\left(L E_{i}^{*}\right)
$$

If each irreducible T-module with endpoint strictly less than i is thin,

$$
\left(E_{i}^{*} V\right)_{\text {new }}=\operatorname{Ker} L \cap E_{i}^{*} V \subseteq \operatorname{Ker}\left(L \cdot E_{i}^{*}\right)
$$

We have the assertion.

HS MEMO

$$
E_{i}^{*} V=\sum_{j<i} V_{j}+V_{i} .
$$

For V_{j} part, take $w_{i-j} \in W$ irreducible with endpoint $j<i$. Then,

$$
L w_{i-j}=x_{i-j}(W) w_{i-j-1} \neq 0,
$$

and

$$
\left.L\right|_{\sum_{j<i} E_{i}^{*} V_{j}}: \sum_{j<i} E_{i}^{*} V_{j} \rightarrow V
$$

is one to one.
Lemma 32.2. Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3$. Fix a vertex $x \in X, R \equiv R(x)$. $L \equiv L(x), F \equiv F(x)$. Pick $v \in\left(E_{1}^{*} V\right)_{\text {new }}$. Then,
(i) $R E_{i}^{*} A_{i-1} v=c_{i} E_{i+1}^{*} A_{i} v \quad(1 \leq i \leq D)$.
(ii) $F E_{i}^{*} A_{i-1} v=R E_{i-1}^{*} A_{i} V+\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i}^{*} A_{i-1} v+c_{i} E_{i}^{*} A_{i+1} v(1 \leq i \leq D)$.
(iii) $L E_{i}^{*} A_{i-1} v=F E_{i-1}^{*} A_{i} V+\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i-1}^{*} A_{i} v+b_{i-1} E_{i-1}^{*} A_{i-2} v(2 \leq$ $i \leq D)$.
(iv) $L E_{i}^{*} A_{i+1} v=b_{i} E_{i-1}^{*} A_{i} v \quad(1 \leq i \leq D-1)$.

Proof.
(i) Let

$$
v=\sum_{y \in X, \partial(x, y)=1} \alpha_{y} \hat{y} \text { for some }\left\{\alpha_{g}\right\} \subseteq \mathbb{C} .
$$

Then

$$
L v=\left(\sum_{y \in X, \partial(x, y)=1} \alpha_{y}\right) \hat{x}=0 .
$$

So,

$$
\sum_{y \in X, \partial(x, y)=1} \alpha_{y}=0 .
$$

Thus,

$$
v=\sum_{y \in X, \partial(x, y)=1} \alpha_{y}(\hat{y}-\hat{x}) .
$$

Let

$$
\tilde{A}_{i}=A_{0}+A_{1}+\cdots+A_{i} \quad(0 \leq i \leq D) .
$$

Then

$$
\begin{align*}
\tilde{A}_{i} v & =\sum_{y \in X, \partial(x, y)=1} \alpha_{y} \tilde{A}_{i}(\hat{y}-\hat{x}) \tag{32.16}\\
& =\sum_{y \in X, \partial(x, y)=1} \alpha_{y}\left(\sum_{z \in X, \partial(y, z)=i, \partial(x, z)=i+1} \hat{z}-\sum_{z^{\prime} \in X, \partial\left(y, z^{\prime}\right)=i+1, \partial\left(x, z^{\prime}\right)=i} \tilde{z}^{\prime}\right) \tag{32.17}\\
& =\sum_{y \in X, \partial(x, y)=1} \alpha_{y}\left(E_{i+1}^{*} A_{i} \hat{y}-E_{i}^{*} A_{i+1} \hat{y}\right) \tag{32.18}\\
& =E_{i+1}^{*} A_{i} v-E_{i+1}^{*} A_{i+1} v . \tag{32.19}
\end{align*}
$$

Recall (Claim 1 in the proof of Theorem 16.1.)

$$
A \tilde{A}_{i}=c_{i+1} \tilde{A}_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) \tilde{A}_{i}+b_{i} \tilde{A}_{i-1} \quad(0 \leq i \leq D-1)
$$

(This is valid for $i=0$ as $A \tilde{A}_{0}=A I=c_{1} \tilde{A}-\tilde{A}_{0}=A$ by setting $\tilde{A}_{i-1}=O$.)
Now $(i)-(i v)$ are obtained by applying this to v on the right and multiplied by $E_{j}^{*}(0 \leq j \leq D)$ on the left.

HS MEMO

$A \tilde{A}_{i-1} v=A E_{i}^{*} A_{i-1} v-A E_{i-1}^{*} A_{i} v$. For $1 \leq i \leq D$,

$$
\begin{align*}
& \left(c_{i} \tilde{A}_{i}+\left(a_{i-1}-c_{i}+c_{i-1}\right) \tilde{A}_{i-1}+b_{i-1} \tilde{A}_{i-2}\right) v \tag{32.20}\\
& \quad=c_{i} E_{i+1}^{*} A_{i} v-c_{i} E_{i}^{*} A_{i+1} v \tag{32.21}\\
& \quad+\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i}^{*} A_{i-1} v-\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i-1}^{*} A_{i} v \tag{32.22}\\
& \quad+b_{i-1} E_{i-1}^{*} A_{i-2} v-b_{i-1} E_{i-2}^{*} A_{i-1} v \tag{32.23}
\end{align*}
$$

(i) $R E_{i}^{*} A_{i-1} v=E_{i+1}^{*} A E_{i}^{*} A_{i-1} v=c_{i} E_{i+1}^{*} A_{i} v(1 \leq i \leq D)$.
(ii) For $1 \leq i \leq D$,

$$
\begin{align*}
F E_{i}^{*} A_{i-1} v & =E_{i}^{*} A E_{i}^{*} A_{i-1} v \tag{32.24}\\
& =R E_{i-1}^{*} A_{i} v-c_{i} E_{i}^{*} A_{i+1} v+\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i}^{*} A_{i-1} v \tag{32.25}
\end{align*}
$$

(iii) For $2 \leq i \leq D$,

$$
\begin{align*}
L E_{i}^{*} A_{i-1} v & =E_{i-1}^{*} A E_{i}^{*} A_{i-1} v \tag{32.26}\\
& =F E_{i-1}^{*} A_{i} v-\left(a_{i-1}-c_{i}+c_{i-1}\right) E_{i-1}^{*} A_{i} v+b_{i-1} E_{i-1}^{*} A_{i-2} v . \tag{32.27}
\end{align*}
$$

(Even if $i=1$, this is valid by setting $A_{i-2}=O$.)
(iv) For $1 \leq i \leq D-1, L E_{i}^{*} A_{i+1} v=E_{i-1}^{*} A E_{i}^{*} A_{i+1}=b_{i} E_{i-1}^{*} A_{i} v$.

Lemma 32.3. Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3$. Fix a vertex $x \in X, T \equiv T(x), E_{i}^{*} \equiv E_{i}^{*}(x), R=R(x), F=F(x), L=L(x)$.
For every $v \in\left(E_{1}^{*} V\right)_{\text {new }}$, the following are equivalent.
(i) $E_{i}^{*} A_{i-1} v, E_{i}^{*} A_{i+1} v$ are linearly dependent for every $i(1 \leq i \leq D-1)$.
(ii) There exists a thin irreducible T-module W with endpoint 1 that contains v. If (i), (ii) hold then

$$
W=\operatorname{Span}\left(E_{1}^{*} A_{0} v, E_{2}^{*} A_{1} v, \ldots, E_{D}^{*} A_{i-1} v\right)
$$

Proof. (ii) $\rightarrow(i)$. Clear as

$$
E_{i}^{*} A_{i-1} v, E_{i}^{*} A_{i+1} v \in E_{i}^{*} W=\operatorname{Span}\left(w_{i-1}\right)
$$

$(i) \rightarrow(i i)$ Consider the sequence

$$
E_{1}^{*} A_{0} v, E_{2}^{*} A_{1} v, E_{3}^{*} A_{2} v, \ldots, E_{D+1}^{*} A_{D} v
$$

The first term is nonzero and the last term is 0 . So there exists

$$
n:=\min \left\{i \mid 1 \leq i \leq D, E_{i+1}^{*} A_{i} v=0\right\}
$$

Now

$$
\begin{equation*}
E_{j+1}^{*} A_{j} v=0 \quad(n \leq j \leq D) \tag{32.28}
\end{equation*}
$$

HS MEMO

Use induction and Lemma 32.2 (i),

$$
E_{j+1}^{*} A_{j} v \in \operatorname{Span}\left(R E_{j}^{*} A_{j-1} v\right) \quad(j \geq 1)
$$

By our assumption (i, and the definition of n,

$$
E_{j}^{*} A_{j+1} v \in \operatorname{Span}\left(E_{j}^{*} A_{j-1} v\right) \neq 0 \quad(1 \leq j \leq n)
$$

By Lemma 32.2 (i),

$$
R E_{j}^{*} A_{j-1} v \in \operatorname{Span}\left(E_{j+1}^{*} A_{j} v\right) \quad(1 \leq j \leq n)
$$

By Lemma 32.2 (ii),

$$
\begin{gather*}
F E_{j}^{*} A_{j-1} v \in \operatorname{Span}\left(R E_{j-1}^{*} A_{j} v, E_{j}^{*} A_{j-1} v, E_{j}^{*} A_{j+1} v\right) \tag{32.29}\\
\subseteq \operatorname{Span}\left(R E_{j-1}^{*} A_{j-2} v, E_{j}^{*} A_{j-1} v\right) \tag{32.30}\\
\operatorname{Span}\left(E_{j-1}^{*} A_{j-1} v\right) \quad(1 \leq j \leq n) \tag{32.31}
\end{gather*}
$$

By Lemma 32.2 (iii),

$$
\begin{align*}
F E_{j}^{*} A_{j-1} v & \in \operatorname{Span}\left(F E_{j-1}^{*} A_{j} v, E_{j-1}^{*} A_{j} v, E_{j-1}^{*} A_{j-2} v\right) \tag{32.32}\\
& \subseteq \operatorname{Span}\left(F E_{j-1}^{*} A_{j-2} v, E_{j-1}^{*} A_{j-2} v\right) \tag{32.33}\\
& \subseteq \operatorname{Span}\left(E_{j-1}^{*} A_{j-2} v\right) \quad(2 \leq j \leq n) \tag{32.34}
\end{align*}
$$

Hence,

$$
W=\operatorname{Span}\left(E_{1}^{*} A_{0} v, E_{2}^{*} A_{1} v, \ldots, E_{n}^{*} A_{n-1} v\right)
$$

is R, F, L invariant.
Therefore W is a thin T-module with endpoint 1 that contains v.

Chapter 33

Algebra on First Subconstitutent

Wednesday, April 21, 1993

Lemma 33.1. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be a commutative scheme. Fix a vertex $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x), M^{*} \equiv M^{*}(x), T \equiv T(x)$. Then the following hold.
(i) $E_{0}^{*} M M^{*}=E_{0}^{*} M$
(ii) $E_{0}^{*} T=E_{0}^{*} M$.
(iii) $T E_{0}^{*} T=M E_{0}^{*} M$.
(iv) $E_{0}^{*} E_{0} E_{0}^{*}=|X|^{-1} E_{0}^{*}$.
(v) $E_{0}^{*} E_{0} E_{0}^{*}=|X|^{-1} E_{0}^{*}$.
(vi) Lines (i)-(iv) hold if we interchange $\left(E_{0}, E_{0}^{*}\right),\left(M, M^{*}\right)$.

Moreover, $M E_{0}^{*} M=M^{*} E_{0} M^{*}$.

Proof.
(i) $\supseteq: 1 \in M^{*}$ implies $M \subseteq M M^{*}$.
\subseteq : Pick $\alpha \in E_{0}^{*} M M^{*}$. Show $\alpha \in E_{0}^{*} M$. Since $A_{0}, A_{1}, \ldots, A_{D}$ span M, and since $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ span M^{*}, without loss of generality we may assume that

$$
\alpha=E_{0}^{*} A_{i} E_{j}^{*}
$$

for some $i, j \in\{0, \ldots, D\}$.
Without loss of generality we may assume taht $i=j$, else $\alpha=0$ by Lemma 20.3.

$$
\left(E_{h}^{*} A_{i} E_{j}^{*} \neq O \Leftrightarrow p_{h i}^{j} \neq 0 .\right)
$$

Now

$$
\alpha=E_{0}^{*} A_{i}\left(\sum_{h=0}^{D} E_{h}^{*}\right)=E_{0}^{*} A_{i} \in E_{0}^{*} M
$$

(ii) \supseteq : This is clear.
$\subseteq: E_{0}^{*} T$ is the minimal right ideal of T containing E_{0}^{*}.
So, we just have to show that $E_{0}^{*} M$ is a right ideal of T containing E_{0}^{*}.
It clearly contains E_{0}^{*} since $I \in M$, and is a right ideal of T by (i), and the fact that T is generated by M abd M^{*}.
(iii) By the transpose of (ii),

$$
T E_{0}^{*}=M E_{0}^{*}
$$

so,

$$
T E_{0}^{*} T=\left(T E_{0}^{*}\right)\left(E_{0}^{*} T\right)=M E_{0}^{*} E_{0}^{*} M=M E_{0}^{*} M
$$

(iv) We have

$$
E_{0}^{*} E_{0} E_{0}^{*}=\frac{1}{|X|} E_{0}^{*}\left(\sum_{h=0}^{D} A_{h}\right) E_{0}^{*}=\frac{1}{|X|} E_{0}^{*} A_{0} E_{0}^{*}=|X|^{-1} E_{0}^{*}
$$

(v) The first part is clear by using Lemma 20.3 (ii),

$$
E_{h} A_{i}^{*} E_{j} \neq O \Leftrightarrow q_{h i}^{j} \neq 0
$$

and Lemma 22.1 (iii),

$$
q_{0 i}^{j}=\delta_{i j}
$$

Also,

$$
M E_{0}^{*} M=T E_{0}^{*} T=T E_{0}^{*} E_{0} E_{0}^{*} T \subseteq T E_{0} T=M^{*} E_{0} M^{*}
$$

and

$$
M^{*} E_{0} M^{*} \subseteq M E_{0}^{*} M
$$

by dual argument. So,

$$
M^{*} E_{0} M^{*}=M E_{0}^{*} M
$$

This proves the lemma.

Lemma 33.2. Let $\Gamma=(X, E)$ be distance regular of diameter $D \leq 3$, Q polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Pick a vertex $x \in X$, write $E_{i}^{*} \equiv$ $E_{i}^{*}(x), M^{*} \equiv M^{*}(x), T \equiv T(x)$.
(i) $E_{1}^{*} M M^{*}=E^{*} M+E_{1}^{*} E_{0} M^{*}+E_{1}^{*} E_{1} M^{*}$.
(ii) $E_{1} M^{*} M=E_{1} M^{*}+E_{1} E_{0}^{*} M+E_{1} E_{1}^{*} M$.

Proof.
(i) View E_{-1}^{*}, E_{D+1}^{*} as O.

View $\theta_{-1}^{*}, \theta_{D+1}^{*}$ as indeterminates.
Let Δ denote RHS in (i).
$\supseteq: ~ I \in M^{*}$ implies $M \subseteq M M^{*}$.
$\subseteq:$ Suppose not. Then there exists

$$
\begin{equation*}
\alpha \in E_{1}^{*} M M^{*} \Delta \tag{33.1}
\end{equation*}
$$

Since $A_{0}, A_{1}, \ldots, A_{D}$ span M, since $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ span M^{*}, without loss of generality we may assume that

$$
\alpha=E_{1}^{*} A_{i} E_{j}^{*}
$$

for some $i, j \in\{0, \ldots, D\}$.
Observe $|i-j| \leq 1$, else $\alpha=0$ by Lemma 20.3.
Without loss of generality, assume $i+j$ is minimal subject to the above constraints.

First assume

$$
\begin{equation*}
j=i+1 \tag{33.2}
\end{equation*}
$$

Observe

$$
\begin{align*}
E_{1}^{*} A_{i} & E_{i+1}^{*}+E_{1}^{*} A_{i} E_{i}^{*}+E_{1}^{*} A_{i} E_{i-1}^{*} \tag{33.3}\\
& =E_{1}^{*} A_{i}\left(\sum_{h=0}^{D} E_{h}^{*}\right) \tag{33.4}\\
& =E_{1}^{*} A_{i} \tag{33.5}\\
& \in \Delta \tag{33.6}
\end{align*}
$$

Also, observe

$$
E_{1}^{*} A_{i} E_{i}^{*}, E_{1}^{*} A_{i} E_{i-1}^{*} \in \Delta
$$

by the minimality of $i+j$, so

$$
\alpha=E_{1}^{*} A_{i} E_{i+1}^{*} \in \Delta
$$

by (33.6). Hence, (33.2) cannot occur.
Since $|i-j| \leq 1$,

$$
\begin{equation*}
i \in\{j, j+1\} \tag{33.7}
\end{equation*}
$$

Observe

$$
\begin{align*}
& E_{1}^{*} A_{j+1} E_{j}^{*}+E_{1}^{*} A_{j} E_{j}^{*}+E_{1}^{*} A_{j-1} E_{j}^{*} \tag{33.8}\\
& \quad=E_{1}^{*}\left(\sum_{h=0}^{D} A_{h}\right) E_{j}^{*} \tag{33.9}\\
& \quad=|X| E_{1}^{*} E_{0} E_{j}^{*} \tag{33.10}\\
& \quad \in \Delta \tag{33.11}
\end{align*}
$$

and

$$
\begin{align*}
\theta_{j+1}^{*} & E_{1}^{*} A_{j+1} E_{j}^{*}+\theta_{j}^{*} E_{1}^{*} A_{j} E_{j}^{*}+\theta_{j-1}^{*} E_{1}^{*} A_{j-1} E_{j}^{*} \tag{33.12}\\
& =E_{1}^{*}\left(\sum_{h=0}^{D} \theta_{h}^{*} A_{h}\right) E_{j}^{*} \tag{33.13}\\
& =|X| E_{1}^{*} E_{1} E_{j}^{*} \tag{33.14}\\
& \in \Delta \tag{33.15}
\end{align*}
$$

Since $E_{1}^{*} A_{j-1} E_{j}^{*} \in \Delta$ by the minimality of $i+j$, so

$$
\begin{gathered}
E_{1} A_{j+1} E_{j}^{*}+E_{1}^{*} A_{j} E_{j}^{*} \in \Delta \\
\theta_{j+1}^{*} E_{1}^{*} A_{j+1} E_{j+1}^{*}+\theta_{j}^{*} E_{1}^{*} A_{j} E_{j}^{*} \in \Delta
\end{gathered}
$$

But, $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$ are distinct by Lemma $22.2(i v)$, so

$$
E_{1}^{*} A_{j+1} E_{j}^{*}, E_{1}^{*} A_{j} E_{j}^{*} \in \Delta
$$

But α is one of these two matrices, so

$$
\alpha \in \Delta
$$

Hence, (33.7) cannot occur either, and we have a contradiction.
(ii) Dual argument.

Lemma 33.3. With the above notation, set

$$
\tilde{J}:=E_{1}^{*} J E_{1}^{*}, \quad \tilde{A}:=E_{1}^{*} A E_{1}^{*}
$$

(i) $\tilde{J}^{2}=k \tilde{J} .(k=$ valency of $\Gamma)$
(ii) $\tilde{J} \tilde{A}=\tilde{A} \tilde{J}=a_{1} \tilde{J} .\left(a_{1}=p_{11}^{1}\right.$ for $\left.\Gamma\right)$
(iii) $E_{1}^{*} E_{0} E_{1}^{*}=|X|^{-1} \tilde{J}$.
(iv) $E_{1}^{*} E_{1} E_{1}^{*}=|X|^{-1}\left(E_{1}^{*}\left(\theta_{0}^{*}-\theta_{2}^{*}\right)+\tilde{A}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)+\tilde{J}\left(\theta_{2}^{*}\right)\right)$.

Proof.
(i) The first subconstituent has k vertices.
(ii) The first subconstituent is regular of valency a_{1}.
(iii) Since $E_{0}=|X|^{-1} J$,

$$
E_{1}^{*} E_{0} E_{1}^{*}=|X|^{-1} \tilde{J}
$$

(iv) We have

$$
\begin{align*}
E_{1}^{*} E_{1} E_{1}^{*} & =E_{1}^{*}\left(|X|^{-1} \sum_{h=0}^{D} \theta_{h}^{*} A_{h}\right) E_{1}^{*} \tag{33.16}\\
& =|X|^{-1}\left(\theta_{0}^{*} E_{1}^{*} A_{0} E_{1}^{*}+\theta_{1}^{*} E_{1}^{*} A_{1} E_{1}^{*}+\theta_{2}^{*} E_{1}^{*} A_{2} E_{1}^{*}\right) \tag{33.17}\\
& =|X|^{-1}\left(\theta_{0}^{*} E_{1}^{*}+\theta_{1}^{*} \tilde{A}+\theta_{2}^{*} E_{1}^{*} A_{2} E_{1}^{*}\right) . \tag{33.18}
\end{align*}
$$

Also,

$$
\begin{align*}
\tilde{J} & =E_{1}^{*} J E_{1}^{*} \tag{33.19}\\
& =E_{1}^{*} A_{0} E_{1}^{*}+E_{1}^{*} A_{1} E_{1}^{*}+E_{1}^{*} A_{2} E_{1}^{*} \tag{33.20}\\
& =E_{1}^{*}+\tilde{A}+E_{1}^{*} A_{2} E_{1}^{*} . \tag{33.21}
\end{align*}
$$

Eliminating the $E_{1}^{*} A_{2} E_{1}^{*}$ term in (33.18) using equation (33.21), we get (iv).

Lemma 33.4. With the above notation,
(i) $E_{1}^{*} T=E_{1}^{*} E_{0} M^{*}+E_{1}^{*} M+E_{1}^{*} E_{1} M^{*}+E_{1}^{*} E_{1} E_{1}^{*} M+\cdots$.
(ii) $E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(E_{1}^{*} E_{0} E_{1}^{*}, E_{1}^{*}, E_{1}^{*} E_{1} E_{1}^{*},\left(E_{1}^{*} E_{1} E_{1}^{*}\right)^{2}, \ldots\right)$.
(iii) $E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}, \ldots\right)$.
(iv) $E_{1}^{*} T E_{1}^{*}$ is symmetric (in particular, commutative).

Proof.
(i) \supseteq : Clear.
$\subseteq: E_{1}^{*} T$ is the minimal right ideal of Γ that contains E_{1}^{*}.

RHS contains E_{1}^{*}, so show RHS is a right ideal of T.
Show RHS is closed with respect to multiplication on right by M, M^{*}.
We have

$$
E_{1}^{*} E_{0} M^{*}(M)=E_{1}^{*} E_{0} M^{*}, E_{1}^{*} E_{0} M^{*}\left(M^{*}\right)=E_{1}^{*} E_{0} M^{*}
$$

by dual of Lemma 33.1 (i).
By Lemma 33.2,

$$
\begin{align*}
E_{1}^{*} E_{1} & E_{1}^{*} \cdots E_{1}^{*} M\left(M^{*}\right) \tag{33.22}\\
& =E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1}\left(E_{1}^{*} M M^{*}\right) \tag{33.23}\\
& =E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1}\left(E_{1}^{*} M+E_{1}^{*} E_{0} M^{*}+E_{1}^{*} E_{1} M^{*}\right) \tag{33.24}\\
& \in \text { RHS } \tag{33.25}
\end{align*}
$$

because

$$
E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1} E_{1}^{*} E_{0} M^{*} \subseteq E_{1}^{*} T E_{0} T=E_{1}^{*} M^{*} E_{0} M^{*}=E_{1}^{*} E_{0} M^{*}
$$

By Lemma 33.2,

$$
\begin{align*}
& E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1} M^{*}(M) \tag{33.26}\\
& \quad=E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1}^{*}\left({ }_{1} M^{*} M\right) \tag{33.27}\\
& \quad=E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1}^{*}\left(E_{1} M^{*}+E_{1} E_{0}^{*} M^{*}+E_{1} E_{1}^{*} M\right) \tag{33.28}\\
& \quad \tag{33.29}
\end{align*} \quad \text { RHS }, ~ \$
$$

because by the last part of Lemma 33.1,

$$
E_{1}^{*} E_{1} E_{1}^{*} \cdots E_{1}^{*} E_{1} E_{0}^{*} M \subseteq E_{1}^{*} T E_{0}^{*} T=E_{1}^{*} M E_{0}^{*} M=E_{1}^{*} E_{0} M^{*}
$$

(ii) Multiply (i) on the right by E_{1}^{*}, we have

$$
\begin{align*}
E_{1}^{*} T E_{1}^{*}= & E_{1}^{*} E_{0} M^{*} E_{1}^{*}+E_{1}^{*} M E_{1}^{*}+E_{1}^{*} E_{1} M^{*} E_{1}^{*} \tag{33.30}\\
& +\cdots+E_{1}^{*} E_{1} \cdots E_{1} M^{*} E_{1}^{*}+E_{1}^{*} E_{1} \cdots E_{1}^{*} M E_{1}^{*} \tag{33.31}\\
= & \operatorname{Span}\left(E_{1}^{*} E_{0} E_{1}^{*}, E_{1}^{*}, E_{1}^{*} E_{1} E_{1}^{*},\left(E_{1}^{*} E_{1} E_{1}^{*}\right)^{2}, \ldots\right) . \tag{33.32}
\end{align*}
$$

HS MEMO

Note that by Lemma 29.1,

$$
\begin{align*}
E_{1}^{*} M E_{1}^{*} & =\operatorname{Span}\left(E_{1}^{*} A_{0} E_{1}^{*}, E_{1}^{*} A_{1} E_{1}^{*}, E_{1}^{*} A_{2} E_{1}^{*}\right) \tag{33.33}\\
& =\operatorname{Span}\left(E_{1}^{*}, E_{1}^{*} E_{1} E_{1}^{*}, E_{1}^{*} E_{0} E_{1}^{*}\right) \tag{33.34}
\end{align*}
$$

Moreover,

$$
E_{1}^{*} \cdots E_{1}^{*} E_{0} E_{1}^{*} \subseteq E_{1}^{*} T E_{0} T E_{1}^{*}=E_{1}^{*} M^{*} E_{0} M^{*} E_{1}^{*} \in \operatorname{Span}\left(E_{1}^{*} E_{0} E_{1}^{*}\right)
$$

(iii) By $(i i), E_{1}^{*} T E_{1}^{*}$ is generated by $\tilde{J}=|X| E_{1}^{*} E_{0} E_{1}^{*}$ and $E_{1}^{*} E_{1} E_{1}^{*}$.

By Lemma $33.3(i v), E_{1}^{*} T E_{1}^{*}$ is generated by \tilde{J}, \tilde{A}.
But, $\operatorname{Span} \tilde{J}$ is a 2 -sided ideal by Lemma $33.3(i),(i i)$.
Hence, we have (iii).
(iv) \tilde{A}, \tilde{J} are symmetric commuting matrices, we have the claim.

Chapter 34

Modules of Endpoint One

Friday, April 23, 1993
Let $\Gamma=(X, E)$ be distance-regular of diameter $D \geq 3$.
Assume Γ is Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Write

$$
\tilde{A}_{i}=A_{0}+A_{1}+\cdots+A_{i} \quad i \in\{0,1 \ldots, D\}
$$

Fix a vertex $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x), M^{*} \equiv M^{*}(x), T \equiv T(x)$.
Pick $0 \neq v \in\left(E_{1}^{*} V\right)_{\text {new }}$. Set $v^{*}=|X| E_{1} v$. We will show that

$$
T v=M v+M^{*} v^{*}
$$

We need a preliminary lemma.
Lemma 34.1. With the atove notation, we have the following.
(i) $\tilde{A}_{h} v=E_{h+1}^{*} A_{h} v-E_{h}^{*} A_{h+1} v, h \in\{0,1, \ldots, D\}$.
$\left(E_{D+1}^{*}=A_{D+1}=O\right)$.
(ii) $E_{h}^{*} v^{*}=\left(\theta_{h-1}^{*}-\theta_{h}^{*}\right) E_{h}^{*} A_{h-1} v-\left(\theta_{h}^{*}-\theta_{h+1}^{*}\right) E_{h}^{*} A_{h+1} v, h \in\{0,1, \ldots, D\} .\left(A_{-1}=\right.$ $A_{D+1}=O$).
(iii) $\quad\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) E_{i+1}^{*} A_{i} v=\left(\sum_{h=0}^{i}\left(\theta_{h}^{*}-\theta_{i+1}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i} E_{h}^{*}\right) v^{*}, \quad i \quad \in$ $\{0,1, \ldots, D-1\}$.
(iv) $\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) E_{i}^{*} A_{i+1} v=\left(\sum_{h=0}^{i-1}\left(\theta_{h}^{*}-\theta_{i}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i} E_{h}^{*}\right) v^{*}, i \in\{0,1, \ldots, D-$ $1\}$.
(v) $M v+M^{*} v^{*}=\operatorname{Span}\left\{E_{i}^{*} A_{i-1} v, E_{i-1}^{*} A_{i} v \mid 1 \leq i \leq D\right\}$.

Proof.

(i) It is already done in Lemma 32.2.
(ii)

$$
\begin{align*}
E_{h}^{*} v^{*} & =|X| E_{h}^{*} E_{1} v \tag{34.1}\\
& =E_{h}^{*}\left(\sum_{i=0}^{D} \theta^{*} A_{i}\right) v \tag{34.2}\\
& =E_{h}^{*}\left(\sum_{i=0}^{D} \theta_{i}^{*}\left(\tilde{A}_{i}-\tilde{A}_{i-1}\right)\right) v \tag{34.3}\\
& =E_{h}^{*}\left(\sum_{i=0}^{D-1}\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) \tilde{A}_{i}\right) v+E_{h}^{*} \theta_{D}^{*} \tilde{A}_{D} v \tag{34.4}\\
& =E_{h}^{*}\left(\sum_{i=0}^{D-1}\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)\left(E_{i+1}^{*} A_{i} v-E_{i}^{*} A_{i+1} v\right)\right) \tag{34.5}\\
& =\left(\theta_{h-1}^{*}-\theta_{h}^{*}\right) E_{h}^{*} A_{h-1} v-\left(\theta_{h}^{*}-\theta_{h+1}^{*}\right) E_{h}^{*} A_{h+1} v . \tag{34.6}
\end{align*}
$$

(iii), (iv) Call the equation in (iii), i^{+}and call the equation in (iv) i^{-}. Prove in order,

$$
0^{-}, 0^{+}, 1^{-}, 1^{+}, 2^{-}, 2^{+}, \ldots
$$

0^{-}: Trivial.

HS MEMO

$$
\begin{align*}
\mathrm{LHS} & =\left(\theta_{0}^{*}-\theta_{1}^{*}\right) E_{0}^{*} A_{1} v \tag{34.7}\\
& =\left(\theta_{-1}^{*}-\theta_{1}^{*}\right) E_{0}^{*} A_{-1} v-E_{h}^{*} v^{*} \quad(\text { by }(i i)) \tag{34.8}\\
& =-E_{0}^{*} v^{*} \tag{34.9}\\
& =\text { RHS } \tag{34.10}
\end{align*}
$$

i^{+}: using (i) and i^{-}.

$$
\begin{align*}
\operatorname{LHS} & =\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) E_{i+1}^{*} A_{i} v \tag{34.11}\\
& =\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) E_{i}^{*} A_{i+1} v+\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) \tilde{A}_{i} v \quad(\text { by }(i)) \tag{34.12}\\
& =\left(\sum_{h=0}^{i-1}\left(\theta_{h}^{*}-\theta_{i}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i} E_{h}^{*}\right) v^{*}+\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)\left(\sum_{h=0}^{i} A_{h}\right) v \quad\left(\text { by } i^{-}\right) \tag{34.13}\\
& =\left(\sum_{h=0}^{i}\left(\theta_{h}^{*}-\theta_{i+1}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i} E_{h}^{*}\right) v^{*} . \tag{34.14}
\end{align*}
$$

i^{-}: using $(i i)$ and $(i-1)^{+}$.

$$
\begin{align*}
\text { LHS } & =\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right) E_{i}^{*} A_{i+1} v \tag{34.15}\\
& =\left(\theta_{i-1}^{*}-\theta_{i}^{*}\right) E_{i}^{*} A_{i-1} v-E_{i}^{*} v^{*} \quad(\mathrm{by}(i i)) \tag{34.16}\\
& =\left(\sum_{h=0}^{i-1}\left(\theta_{h}^{*}-\theta_{i}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i-1} E_{h}^{*}\right) v^{*}-E_{i}^{*} v^{*} \tag{34.17}\\
& =\left(\sum_{h=0}^{i-1}\left(\theta_{h}^{*}-\theta_{i}^{*}\right) A_{h}\right) v-\left(\sum_{h=0}^{i} E_{h}^{*}\right) v^{*} . \tag{34.18}
\end{align*}
$$

(v) Immediate from $(i)-(i v)$.

HS MEMO

$$
\begin{align*}
M v+M^{*} v^{*} & \subseteq \operatorname{Span}\left\{\tilde{A}_{h} v, E_{h}^{*} v^{*} \mid 0 \leq h \leq D\right\} \tag{34.19}\\
& \subseteq \operatorname{Span}\left\{E_{h}^{*} A_{h-1} v, E_{h-1}^{*} A_{h} v \mid 1 \leq h \leq D\right\} \tag{34.20}
\end{align*}
$$

by (i) and (ii).
On the other hand,

$$
E^{*} h A_{h-1} v, E_{h-1}^{*} A_{h} v \in M v+M^{*} v^{*} \quad i \in\{1,2, \ldots, D\}
$$

by (iii) and (iv).
Lemma 34.2. With the notation of Lemma 34.1, assume $0 \neq v \in\left(E_{1}^{*} V\right)_{\text {new }}$ is an eigenvector for $\tilde{A}:=E_{1}^{*} A E_{1}^{*}$. Then
(i) $T v=M v+M^{*} v$, where $v^{*}=|X| E_{1} v$.
(ii) $T v=\operatorname{Span}\left\{v_{1}^{+}, v_{2}^{+}, \ldots, v_{D}^{+}, v_{2}^{-}, v_{3}^{-}, \ldots, v_{D-1}^{-}\right\}$, where $v_{i}^{+}=E_{i}^{*} A_{i-1} v, v_{i}^{-}=$ $E_{i}^{*} A_{i+1} v$.
(iii) $\operatorname{dim} E_{1}^{*} T v=1$, $\operatorname{dim} E_{i}^{*} T v \leq 2$ for $i \in\{2, \ldots, D-1\}$, and $\operatorname{dim} E_{D}^{*} T v \leq 1$.
(iv) $T v$ is an irreducible T-module.

Proof.
(i) $\supseteq: v \in T v$. So $M v \subseteq T v$, and

$$
v^{*} \in M v \subseteq T v
$$

Hence, $M^{*} v^{*} \subseteq T v$.
$\subseteq:$ It suffices to show that $M v+M^{*} v^{*}$ is a T-module (since it clearly contains $v)$.

Show:
(a) $M^{*} M v \subseteq M v+M^{*} v^{*}$.
(b) $M M^{*} v \subseteq M v+M^{*} v^{*}$.

Proof of (a). By the transpose of (i) in Lemma 33.2,

$$
M^{*} M E_{1}^{*}=M E_{1}^{*}+M^{*} E_{0} E_{1}^{*}+M^{*} E_{1} E_{1}^{*}
$$

Since $v \in E_{1}^{*} V, E_{1}^{*} v=v$ and

$$
M^{*} M v=M v+M^{*} E_{0} v+M^{*} E_{1} v
$$

But also $E_{0} v=0$ since v is orthogonal to the trivial T-module. Since $E_{1} v=$ $|X|^{-1} v^{*}$,

$$
M^{*} M v=M v+M^{*} v^{*}
$$

as desired.
(b) is obtained from the traspose of (ii) in Lemma 33.2.

HS MEMO

$$
\begin{align*}
M M^{*} v & =M M^{*} E_{1} v^{*} \tag{34.21}\\
& =M^{*} E_{1} v^{*}+M E_{0}^{*} E_{1} v^{*}+M E_{1}^{*} E_{1} v^{*} \tag{34.22}\\
& =M^{*} v^{*}+M E_{0}^{*} v^{*}+M E_{1}^{*} v^{*} \tag{34.23}
\end{align*}
$$

$E_{0}^{*} v^{*} \in T v$ and $E_{0}^{*} T v=0$ as $v \in\left(E_{1}^{*} V\right)_{n e w}$. So, $E_{0}^{*} v^{*}=0$.

$$
\begin{align*}
E_{1}^{*} v^{*} & =|X| E_{1}^{*} E_{1} v \tag{34.24}\\
& =|X| E_{1}^{*} E_{1} E_{1}^{*} v \tag{34.25}\\
& =\left(\left(\theta_{0}^{*}-\theta_{2}^{*}\right) E_{1}^{*}+\left(\theta_{1}^{*}-\theta_{2}^{*}\right) E_{1}^{*} A E_{1}^{*}+\theta_{2}^{*}|X| E_{1}^{*} E_{0} E_{1}^{*}\right) v \tag{34.26}\\
& =\left(\theta_{0}^{*}-\theta_{2}^{*}\right) v+\left(\theta_{1}^{*}-\theta_{2}^{*}\right) E_{1}^{*} A E_{1}^{*} v+\theta_{2}^{*}|X| E_{1}^{*} E_{0} v \tag{34.27}\\
& \in \operatorname{Span}\{v\} \tag{34.28}
\end{align*}
$$

as $E_{0} v=0$, and v is an eigenvector of $E_{1}^{*} A E_{1}^{*}$.
$\star v \in\left(E_{1}^{*} V\right)_{\text {new }}$. If v is an eigenvector of $E_{1}^{*} A E_{1}^{*}$,

$$
E_{1}^{*} v^{*} \in \operatorname{Span}\{v\}
$$

(ii) We have

$$
\begin{align*}
T v & =M v+M^{*} v^{*} \tag{34.29}\\
& =\operatorname{Span}\left\{E_{i}^{*} A_{i-1} v, E_{i-1}^{*} A_{i} v \mid 1 \leq i \leq D\right\} \tag{34.30}\\
& =\operatorname{Span}\left\{v_{i}^{+}, v_{i-1}^{-} \mid 1 \leq i \leq D\right\} \tag{34.31}\\
& =\operatorname{Span}\left\{v_{1}^{+}, v_{2}^{+}, \ldots, v_{D}^{*}, v_{0}^{-}, \ldots, v_{D-1}^{-}\right\} \tag{34.32}
\end{align*}
$$

by Lemma $34.1(v)$.
But $v_{0}^{-}=E_{0}^{*} A_{1} v=0$ since $v \in\left(E_{1}^{*} V\right)_{\text {new }}$, and $v_{1}^{-} \in \operatorname{Span}\left\{v_{1}^{+}\right\}$.
Indeed,

$$
v_{1}^{-}=E_{1}^{*} A_{2} v=\left(-1-a_{0}(T v)\right) v_{1}^{+}
$$

where $a_{0}(T v)$ is the eigenvalue of v associated with \tilde{A}.
To see this, observe

$$
\begin{align*}
0 & =\tilde{J} v \tag{34.33}\\
& =E_{1}^{*}\left(\sum_{i=0}^{D} A_{i}\right) E_{1}^{*} v \tag{34.34}\\
& =E_{1}^{*}\left(\sum_{i=0}^{2} A_{i}\right) E_{1}^{*} v \tag{34.35}\\
& =v+a_{0}(T v) v+v_{1}^{-} . \tag{34.36}
\end{align*}
$$

Therefore,

$$
T v=\operatorname{Span}\left\{v_{1}^{+}, v_{2}^{+}, \ldots, v_{D}^{+}, v_{2}^{-}, \ldots, v_{D-1}^{-}\right\}
$$

(iii) $v_{i}^{+}, v_{i}^{-} \in E_{i}^{*} V$.
(iv) Suppose $T v$ is reducible, i.e., $T v=W_{1}+W_{2}$. (orthogonal direct sum of nonzero T-modules)

$$
E_{1}^{*} T v=E_{1}^{*} W_{1}+E_{1}^{*} W_{2}
$$

has dimension 1 by (iii). Assume $v \in E_{1}^{*} W_{1}$. Then $T v \subseteq W_{1}$, a contradiction.

Lemma 34.3. With the notation of Lemma 34.1, assume $0 \neq v \in\left(E_{1}^{*} V\right)_{\text {new }}$ is an eigenvector for $\tilde{A}:=E_{1}^{*} A E_{1}^{*}$.
(i) $T v$ is thin if and only if $M^{*} v^{*} \subseteq M v$.
(ii) Let W denote any irreducible T-module with endpoint 1. Then

$$
W=T v^{\prime}
$$

for some $0 \neq v^{\prime} \in\left(E_{1}^{*} V\right)_{\text {new }}$ that is an eigenvector of \tilde{A}.
(iii) Denote eigenvalue of \tilde{A} associated to v (resp. v^{\prime}) by $a_{0}(T v)\left(r e s p . a_{0}\left(T v^{\prime}\right)\right)$.

Then $T v, T v^{\prime}$ are isomorphic T-module if and only if $a_{0}(T v)=a_{0}\left(T v^{\prime}\right)$.
(iv) $E_{1}^{*} T E_{1}^{*}$ has basis

$$
\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}, \ldots, \tilde{A}^{\ell-1}
$$

where ℓ is the number of mutually nonisomorphic T-modules with endpoint 1.

Proof.

(i) If $T v$ is thin, then by Lemma 9.1, $T v=M v$. Hence $M^{*} v^{*} \subseteq M v$.

HS MEMO

Originally, the statement was $T v$ is thin if and only if $M^{*} v^{*}=M v$. This is not the case in general. Suppose Γ is thin. Let W be an irreducible T-module of endpoint 1. Then, that $W \cap E_{1}^{*} V \ni v \neq 0$ implies $v^{*} \in W \cap E_{1} V$ gives one to one and $k \leq m$.

However, by 'Distance-Regular Graphs' (A.E. Brouwer, 1989),
$J(v, d): v \geq 2 d$

$$
\begin{align*}
b_{j}=(d-j)(v-d-j), & c_{j}=j^{2} \tag{34.37}\\
\theta_{j}=(d-j)(v-d-j)-j, & m_{j}=\binom{v}{j}-\binom{v}{j-1} . \tag{34.38}
\end{align*}
$$

In particular,

$$
k=b_{0}=d(v-d)>m_{1}=v-1 \quad \text { if } d \geq 2
$$

and $J(v, d)$ is thin.
So $|X| E_{1} v=v^{*}$ may be 0 sometimes. But as $T v$ is dual thin of diameter at least $D-2$. The dual endpint $r^{*} \leq 2$, so in that case, $E_{2} v \neq 0$. Hence, if $D \geq 3$, $E_{2} v \neq 0$ always.

HS MEMO

Now assume $M^{*} v^{*} \subseteq M v=T v$. Then

$$
M v=\{f(A) v \mid f(\lambda) \in \mathbb{C}[\lambda]\}
$$

So,

$$
E_{i} T v=E_{i} M v \in \operatorname{Span}\left(E_{i} v\right)
$$

Hence, $T v$ is dual thin.
Now we can construct a basis, $0 \neq w_{0}^{*} \in E_{r^{*}} W$, where r^{*} is the dual endpoint, and

$$
w_{0}^{*}, w_{1}^{*}, \ldots, w_{d}^{*} \in W=T v
$$

where $w_{i}^{*}=E_{r^{*}+i}^{*} A_{1}^{*}{ }^{i} w_{0}^{*}$.

$$
A_{1}^{*} w_{i}^{*}=w_{i+1}^{*}+a_{i}^{*} w_{i}^{*}+x_{i}^{*} w_{i-1}^{*}
$$

and $w_{i}^{*}=p_{i}^{*}\left(A^{*}\right) w_{0}^{*}$.

$$
\begin{gathered}
\left.E_{r^{*}+i}^{*} A_{1}^{*} E_{r^{*}+i}\right|_{E_{r^{*}+i} W}=\left.a_{i}^{*} \cdot 1\right|_{E_{r^{*}+i} W} \\
\left.E_{r^{*}+i-1}^{*} A_{1}^{*} E_{r^{*}+i} A^{*} E_{r^{*}+i-1}\right|_{E_{r^{*}+i-1} W}=\left.x_{i}^{*} \cdot 1\right|_{E_{r^{*}+i-1} W}
\end{gathered}
$$

See Lemma 9.1, and Lemma 22.2.
From above, $T v=M^{*} w_{0}^{*}$. So,

$$
E_{i}^{*} T v=E_{i}^{*} M^{*} w_{0}^{*} \in \operatorname{Span}\left\{E_{i}^{*} w_{0}^{*}\right\}
$$

Thus, $T v$ is thin.
*Need to write down the dual at least for Lemma 9.1, Corollary 9.1.
(iii) $E_{1}^{*} W$ is an \tilde{A}-module. So, there exists $0 \neq v^{\prime} \in E_{1}^{*} W$ that is an eigenvalue for \tilde{A}. Also $T v^{\prime} \subseteq W$.
Since W is irreducible, $T v^{\prime}=W$.
(iii) Suppose $T v \rightarrow T v^{\prime}$ is an isomorsphism of T-modules.

Recall $\sigma s=s \sigma$ for all $s \in T$.

$$
\operatorname{Span}\{\sigma v\}=\sigma E_{1}^{*} T v=E_{1}^{*} \sigma T v=E_{1}^{*} T v^{\prime}=\operatorname{Span}\left\{v^{\prime}\right\}
$$

Hence,

$$
a_{0}(T v) \sigma v=\sigma\left(a_{0}(T v) v\right)=\sigma \tilde{A} v=\tilde{A} \sigma v=a_{0}\left(T v^{\prime}\right) \sigma v
$$

Since $\sigma v \neq 0, a_{0}(T v)=a_{0}\left(T v^{\prime}\right)$.
Now suppose $a_{0}(T v)=a_{0}\left(T v^{\prime}\right)$. Show

$$
\sigma: T v \rightarrow T v^{\prime} \quad\left(s v \mapsto s v^{\prime}\right) \quad(s \in T)
$$

is an isomorphism of T-modules.
Pick $s \in T$. Require $s v=0$ if and only if $s v^{\prime}=0$.
Without loss of generality , $s \in T E_{1}^{*}$, since $v, v^{\prime} \in E_{1}^{*} V$.
Now $0=s v$ if and only if

$$
0=\|s v\|^{2}=\bar{v}^{\top} \bar{s}^{\top} s v
$$

But, $\bar{s}^{\top} s \in E_{1}^{*} T E_{1}^{*}$.
Hence, by Lemma 33.4 (iii),

$$
\bar{s}^{\top} s=\alpha \tilde{J}+p(\tilde{A})
$$

for some $\alpha \in \mathbb{C}$ and $p(\lambda) \in \mathbb{C}[\lambda]$.

Thus, using the fact that $\tilde{J} v=0$,

$$
0=\|s v\|^{2}=\bar{v}^{\top}(\alpha \tilde{J}+p(\tilde{A})) v=\|v\|^{2} p\left(a_{0}(T v)\right)
$$

if and only if $0=p\left(a_{0}(T v)\right)$.
Replacing v by v^{\prime}, we have

$$
\begin{align*}
0=s v^{\prime} & \leftrightarrow 0=p\left(a_{0}\left(T v^{\prime}\right)\right) \tag{34.39}\\
& \leftrightarrow 0=p\left(a_{0}(T v)\right) \tag{34.40}\\
& \leftrightarrow 0=s v \tag{34.41}
\end{align*}
$$

as desired.
(iv) The following hold.
$\ell=$ the number of mutually nonisomorphic T-modules with endpoint 1
$=$ the number of distinct eigenvalues of $\tilde{A}:\left(E_{1}^{*} V\right)_{\text {new }} \rightarrow\left(E_{1}^{*} V\right)_{\text {new }}$
$=$ the degree of minimal polynomial of $\tilde{A}:\left(E_{1}^{*} V\right)_{\text {new }} \rightarrow\left(E_{1}^{*} V\right)_{\text {new }}$.

Claim 1. $\tilde{J} . E_{1}^{*}, \tilde{A}, \ldots, \tilde{A}^{\ell-1}$ are linearly independent.
Proof of Claim 1. Suppose not. Then

$$
\alpha \tilde{J}+p(\tilde{A})=O
$$

for some $\alpha \in \mathrm{C}$ and $p(\lambda) \in \mathbb{C}[\lambda]$ with $\operatorname{deg} p \leq \ell-1$.
But $\left.\tilde{J}\right|_{\left(E_{1}^{*} V\right)_{n e w}}=O$ impiles $\left.p(\tilde{A})\right|_{\left(E_{1}^{*} V\right)_{n e w}}=O$.
Since

$$
\operatorname{deg} p<\text { the degree of minimal polynomial of }\left.\tilde{A}\right|_{\left(E_{1}^{*} V\right)_{n e w}},
$$

we find p is identically 0 .
Then α is identically 0 also.
Claim 2. $\tilde{J} . E_{1}^{*}, \tilde{A}, \ldots, \tilde{A}^{\ell-1} \operatorname{span} E_{i}^{*} T E_{i}^{*}$.
Proof of Claim 2. It needs to show

$$
\begin{equation*}
\tilde{J} . E_{1}^{*}, \tilde{A}, \ldots, \tilde{A}^{\ell} \text { are linearly dependent. } \tag{34.45}
\end{equation*}
$$

Let m denote the minimal polynomial of $\left.\tilde{A}\right|_{\left(E_{1}^{*} V\right)_{n e w}}$. So,

$$
m\left(\left.\tilde{A}\right|_{\left(E_{1}^{*} V\right)_{\text {new }}}\right)=0
$$

Observe that

$$
E_{1}^{*} V=\left(E_{1}^{*} V\right)_{\text {new }}+\operatorname{Span}\{A \widehat{x}\}
$$

(direct sum of $E_{1}^{*} T E_{1}^{*}$-modules.)

$$
m(\tilde{A}) A \hat{x}=f \cdot A \hat{x} \quad \text { for some } f \in \mathbb{C}
$$

On the other hand,

$$
\tilde{J} A \hat{x}=k A \hat{x} \quad(k: \text { valency of } \Gamma) .
$$

Therefore,

$$
m(\tilde{A})-\frac{f}{k} \tilde{J}=O,
$$

and (34.45) holds.

Chapter 35

$\operatorname{dim} E_{1}{ }^{*} T E_{1}{ }^{*} \leq 5$

Monday, April 26, 1993
Theorem 35.1. Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3$. Assume Γ is Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x)$.
(i) Up to isomorphism, there are at most four thin irreducible T-modules with endpoint 1.
(ii) Suppose Γ is thin with respect to x. Then

$$
\operatorname{dim} E_{1}^{*} T E_{1}^{*} \leq 5
$$

Proof.
(ii) is immediate from (i) and part (iv) of Lemma 34.3.
(i)

Claim 1. $E_{1}^{*} M E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}\right)$.
Proof of Claim 1.

$$
E_{1}^{*} M E_{1}^{*}=\operatorname{Span}\left\{E_{1}^{*}, E_{1}^{*} A E_{1}^{*}, E_{1}^{*} A_{2} E_{1}^{*}, E_{1}^{*} A_{3} E_{1}^{*}, \ldots\right\}
$$

But $E_{1}^{*} A_{h} E_{h}^{*}=O$ if $h>2$ (by Lemma 16.1). So,

$$
E_{1}^{*} M E_{1}^{*}=\operatorname{Span}\left\{E_{1}^{*}, E_{1}^{*} A E_{1}^{*}, E_{1}^{*} A_{2} E_{1}^{*}\right\}
$$

Also,

$$
\begin{align*}
\tilde{J} & =E_{1}^{*} J E_{1}^{*} \tag{35.1}\\
& =E_{1}^{*}\left(\sum_{h=0}^{D} A_{h}\right) E_{1}^{*} \tag{35.2}\\
& =E_{1}^{*}+E_{1}^{*} A E_{1}^{*}+E_{1}^{*} A_{2} E_{1}^{*} \tag{35.3}
\end{align*}
$$

So,

$$
E_{1}^{*} M E_{1}^{*}=\operatorname{Span}\left\{E_{1}^{*}, E_{1}^{*} A E_{1}^{*}, \tilde{J}\right\}
$$

We are done, since $\tilde{A}=E_{1}^{*} A E_{1}^{*}$.
Claim 2. $E_{1}^{*} M M^{*} M E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}\right)$.
Proof of Claim 2. \supseteq : Clear.
\subseteq : In Lemma 33.4 (i), we say

$$
E_{1}^{*} T=E_{1}^{*} E_{0} M^{*}+E_{1}^{*} M+E_{1}^{*} E_{1} M^{*}+E^{*} E_{1} E_{1}^{*} M+\cdots
$$

In fact, the proof of that lemma gives a sequence;

$$
\begin{align*}
E_{1}^{*} M M^{*} & =E_{1}^{*} E_{0} M^{*}+E_{1}^{*} M+E_{1}^{*} E_{1} M^{*}, \tag{35.4}\\
E_{1}^{*} M M^{*} M & =E_{1}^{*} E_{0} M^{*}+E_{1}^{*} M+E_{1}^{*} E_{1} M^{*}+E^{*} E_{1} E_{1}^{*} M, \tag{35.5}\\
E_{1}^{*} M M^{*} M M^{*} & =E_{1}^{*} E_{0} M^{*}+E_{1}^{*} M+E_{1}^{*} E_{1} M^{*}+E^{*} E_{1} E_{1}^{*} M+E^{*} E_{1} E_{1}^{*} M M^{*}, \tag{35.6}
\end{align*}
$$

Multiply (35.5) through on the right by E_{1}^{*} to get

$$
E_{1}^{*} M M^{*} M E_{1}^{*}=E_{1}^{*} M E_{1}^{*}+E_{1}^{*} E_{1} E_{1}^{*} M E_{1}^{*}=\operatorname{Span}\left\{\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}\right\}
$$

since $\tilde{J}^{2}, \tilde{A} \tilde{J}=\tilde{J} \tilde{A} \in \operatorname{Span}\{\tilde{J}\}$.
This proves Claim 2.
Now, let W denote any irreducible T-module with endpoint 1 , and pick $0 \neq v \in$ $E_{1}^{*} W$. Set

$$
v_{i}^{+}=E_{i}^{*} A_{i-1} E_{1}^{*} v, \quad v_{i}^{-}=E_{i}^{*} A_{i+1} E_{1}^{*} v, i \in\{1, \ldots, D\}
$$

We know by Lemma 34.2 (ii) that W is thin if and only if v_{i}^{+}, v_{i}^{-}are linearly dependent for all $i \in\{2, \ldots, D-1\}$.
In general,

$$
\Phi_{i}=\operatorname{det}\left(\begin{array}{cc}
\left\|v_{i}^{+}\right\|^{2} & \left\langle v_{i}^{+}, v_{i}^{-}\right\rangle \\
\left\langle v_{i}^{+}, v_{i}^{-}\right\rangle & \left\|v_{i}^{-}\right\|^{2}
\end{array}\right) \geq 0
$$

with equality if and only if v_{i}^{+}, v_{i}^{-}are linearly dependent, (because Φ_{i} is the determinant of a Gram matrix).

Let i be an integer in $\{2, \ldots, D-1\}$.
Claim 3. There exists $p^{++} \in \mathrm{C}[\lambda], \operatorname{deg} p^{++} \leq 2$ (that depends only on the intersection numbers) such that

$$
\left\|v_{i}^{+}\right\|^{2}=\|v\|^{2} p^{++}\left(a_{0}(W)\right)
$$

Proof of Claim 3.

$$
\left\|v_{i}^{+}\right\|^{2}=\bar{v}^{\top} E_{1}^{*} A_{i-1} E_{i}^{*} E_{i}^{*} A_{i-1} E_{1}^{*} v=\bar{v}^{\top} E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} v
$$

But,

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*} \in E_{1}^{*} M M^{*} M E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}\right)
$$

by Claim 2.
So, there exists $\alpha \in \mathbb{C}$, and $p^{++} \in \mathbb{C}[\lambda]$ with $\operatorname{deg} p^{++} \leq 2$ such that

$$
E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*}=\alpha \tilde{J}+p^{++}(\tilde{A}), \quad\left(\tilde{A}^{0}=E_{1}^{*}\right)
$$

Now,

$$
\left\|v_{i}^{+}\right\|^{2}=\bar{v}^{\top}\left(\alpha \tilde{J}+p^{++}(\tilde{A})\right) v=\|v\|^{2} p^{++}\left(a_{0}(W)\right)
$$

since $\tilde{J} v=0$, and $\tilde{A} v=a_{0}(W) v$.
This proves Claim 3.
Similarly, there exist $p^{--}, p^{+-} \in \mathbb{C}[\lambda]$ with $\operatorname{deg} p^{--}, \operatorname{deg} p^{+-} \leq 2$ such that

$$
\left\|v_{i}^{-}\right\|^{2}=\|v\|^{2} p^{--} p\left(a_{0}(W)\right),\left\langle v_{i}^{+}, v_{i}^{-}\right\rangle=\|v\|^{2} p^{+-}\left(a_{0}(W)\right)
$$

Claim 4. $E_{1}^{*} A_{i-1} E_{i}^{*} A_{i+1} E_{1}^{*}=\left(\tilde{J}-\tilde{A}-E_{1}^{*}\right) p_{i-1, i+1}^{2}$. In particular,

$$
p^{+-}(\lambda)=-p_{i-1, i+1}^{2}(\lambda+1)
$$

Proof of Claim 4. Pick vertices $y, z \in X$ such that $\partial(x, y)=\partial(x, z)=1$.

$$
\begin{align*}
(\mathrm{LHS})_{y z} & =\sum_{w \in X}\left(E_{1}^{*} A_{i-1} E_{i}^{*}\right)_{y w}\left(E_{i}^{*} A_{i+1} E_{1}^{*}\right)_{w z} \tag{35.8}\\
& =\sum_{w \in X, \partial(y, w)=i-1, \partial(x, w)=i, \partial(w, z)=i+1} 1 \tag{35.9}\\
& = \begin{cases}0 & \text { if } \partial(y, z)=0 \\
0 & \text { if } \partial(y, z)=1, \\
p_{i-1, i+1}^{2} & \text { if } \partial(y, z)=2, \\
& =\text { RHS }_{y z}\end{cases} \tag{35.10}
\end{align*}
$$

Note that $E_{1}^{*} A_{2} E_{1}^{*}=\tilde{J}-\tilde{A}-E_{1}^{*}$.
Now,

$$
\begin{align*}
\left\langle v_{i}^{+}, v_{i}^{-}\right\rangle & =\bar{v}^{\top} E_{1}^{*} A_{i-1} E_{i}^{*} A_{i+1} E_{1}^{*} v \tag{35.12}\\
& =p_{i-1, i+1}^{2}\left(\bar{v}^{\top}\left(\tilde{J}-\tilde{A}-E_{1}^{*}\right) v\right) \tag{35.13}\\
& =-\left(a_{0}(W)+1\right) p_{i-1, i+1}^{2}\|v\|^{2} . \tag{35.14}
\end{align*}
$$

Claim 5. $\operatorname{deg} p^{++}=\operatorname{deg} p^{--}=2$. (only need for some i)
Proof of Claim 5. We need to calculate p^{++}, p^{--}.

HS MEMO

Pick vertices $y, z \in X$ such that $\partial(x, y)=\partial(x, z)=1$. Then

$$
\left(E_{1}^{*} A_{i-1} E_{i}^{*} A_{i-1} E_{1}^{*}\right)_{y z}=\left|\Gamma_{i-1}(y) \cap \Gamma_{i}(x) \cap \Gamma_{i-1}(z)\right|
$$

which is equal to $p_{i-1, i}^{1}$ if $\partial(y, z)=0$.

$$
\left(E_{1}^{*} A_{i+1} E_{i}^{*} A_{i+1} E_{1}^{*}\right)_{y z}=\left|\Gamma_{i+1}(y) \cap \Gamma_{i}(x) \cap \Gamma_{i+1}(z)\right|
$$

which is equal to $p_{i+1, i}^{1}$ if $\partial(y, z)=0$.
Conclusion.

$$
\begin{align*}
\Phi_{i} & =\operatorname{det}\left(\begin{array}{cc}
\left\|v_{i}^{+}\right\|^{2} & \left\langle v_{i}^{+}, v_{i}^{-}\right\rangle \\
\left\langle v_{i}^{+}, v_{i}^{-}\right\rangle & \left\|v_{i}^{-}\right\|^{2}
\end{array}\right) \geq 0 \tag{35.15}\\
& =\|v\|^{4}\left(p^{++}(\lambda) p^{--}(\lambda)-\left(p_{i-1, i+1}^{2}\right)^{2}(\lambda+1)^{2}\right. \tag{35.16}\\
& \geq 0 \tag{35.17}
\end{align*}
$$

where $\lambda=a_{0}(W)$.
W is thin if and only if $\Phi_{i}(\lambda)=0$ for all $i \in\{2, \ldots, D-1\}$.
Each Φ_{i} is degree 4 solutions for λ. Since λ determines the isomorphism class of W by Lemma 34.3 (iii), there are at most 4 different thin irreducible modules W of endpoint 1 up to isomorphism.

Note. In fact $\Phi_{i}(\lambda)$ is independent of i up to scalar multiple for $i \in\{2, \ldots, D-$ $1\}$.

If Γ has classical parameters (q, D, α, β), the roots are;

$$
\beta-\alpha-1,-1,-q-1, d q \frac{q^{D-1}-1}{q-1}-1
$$

Chapter 36

Dual Endpoint

Wednesday, April 28, 1993

Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3, Q$-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x)$.

Let W be an irreducible T-module of diameter d.
Recall that the endpoint

$$
r(W)=\min \left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\} .
$$

Definition 36.1. The dual endpoint (with respect to above ordering $\left.E_{0}, E_{1}, \ldots, E_{D}\right)$,

$$
\begin{gathered}
r^{*}(W)=\min \left\{i \mid 0 \leq i \leq D, E_{i} W \neq 0\right\} \\
r(W)=0 \leftrightarrow r^{*}(W)=0 \leftrightarrow W: \text { trivial } T \text {-module }
\end{gathered}
$$

(by Lemma 10.1).
Suppose W is thin. Then W is dual thin. (See Corollary 9.1.)
Moreover, $\left\{i \mid E_{i} W \neq 0\right\}$ is a subinterval of $\{0,1, \ldots, D\}$. (same proof as for distance regular)
HS MEMO
Dual version of Lemma 4.1.
Lemma 4.1'. Let $A^{*} \equiv A_{1}^{*}(x), W$ an irreducible T-moduoe, and $d^{*}=\{i \mid$ $\left.E_{i} W \neq 0\right\} \mid-1$.
(i) $E_{i} A^{*} E_{j}=0$ if $|i-j|>1, E_{i} A^{*} E_{j} \neq 0$ if $|i-j|=1, \quad 0 \leq i, j \leq d^{*}(x)$.
(ii) $A^{*} E_{j} W \subseteq E_{j-1} W+E_{j} W+E_{j+1} W, 0 \leq j \leq d^{*}(x)$. $\left(E_{i} W=0\right.$ if $i<j$ or $i>d^{*}(x)$.)
(iii) $E_{j} W \neq 0$ if $r^{*} \leq j \leq r^{*}+d^{*}, E_{j} W=0$ if $0 \leq j \leq r^{*}$ or $r^{*}+d^{*}<j \leq d^{*}(x)$. (iv) $E_{i} A^{*} E_{j} W \neq 0$, if $|i-j|=1\left(r^{*} \leq i, j \leq r^{*}+d^{*}\right)$.

Proof of 4.1'
(i) By Lemma 20.3,

$$
E_{i} A^{*} E_{j}=O \leftrightarrow q_{i 1}^{j}=0 .
$$

By Lemma 22.2,

$$
\begin{align*}
\Gamma: Q \text {-polynomial } & \leftrightarrow q_{i 1}^{j} \begin{cases}=0 & \text { if }|j-i|>1 \\
\neq 0 & \text { if }|j-i|=1\end{cases} \tag{36.1}\\
& \leftrightarrow E_{i} A^{*} E_{j} \begin{cases}=O & \text { if }|j-i|>1 \\
\neq O & \text { if }|j-i|=1\end{cases} \tag{36.2}
\end{align*}
$$

(ii) We have

$$
\begin{align*}
A^{*} E_{j} W & =\left(\sum_{i=0}^{D} E_{i}\right) A^{*} E_{j} W \tag{36.3}\\
& =E_{j-1} A^{*} E_{j} W+E_{j} A^{*} E_{j} W+E_{j+1} A^{*} E_{j} W \tag{36.4}\\
& \subseteq E_{j-1} W+E_{j} W+E_{j+1} W \tag{36.5}
\end{align*}
$$

(iii) Suppose $E_{j} W=0$ for some $j \in\left\{r^{*}, \ldots, r^{*}+d^{*}\right\}$. Then $r^{*}<j$ by the definition of r^{*}. Set

$$
\widetilde{W}=E_{r^{*}} W+E_{r^{*}+1} W+\cdots+E_{j-1} W
$$

Observe $0 \subsetneq \widetilde{W} \subsetneq W$. Also $A \widetilde{W} \subseteq \widetilde{W}$ by (ii), and $E_{i}^{*} \widetilde{W} \subseteq \widetilde{W}$ for every i by construction.
Thus, $T \widetilde{W} \subseteq \widetilde{W}$, contradicting W being irreducible.
(iv) Suppose $E_{j+1} A^{*} E_{j} W=0$ for some $j \in\left\{r^{*}, \ldots, r^{*}+d^{*}-1\right\}$. Then,

$$
\widetilde{W}=E_{r^{*}} W+E_{r^{*}+1} W+\cdots+E_{j} W
$$

is T-invariant. If $E_{j-1} A^{*} E_{j} W=0$ for some $j \in\left\{r^{*}+1, \ldots, r^{*}+d^{*}\right\}$, then

$$
\widetilde{W}=E_{j} W+E_{j+1} W+\cdots+E_{r^{*}+d^{*}} W
$$

is T-invariant. Moreover, $0 \subsetneq \widetilde{W} \subsetneq W$ in both cases. A contradiction.

Definition. Let W be an irreducible dual thin T-module with dual endpoint r^{*} and diameter d^{*}.

Let $a_{i}^{*}=a_{i}^{*}(W) \in \mathbb{C}$ satisfying

$$
\left.E_{r^{*}+i} A^{*} E_{r^{*}+i}\right|_{E_{r^{*}+i} W}=\left.a_{i}^{*} \cdot 1\right|_{E_{r^{*}+i} W}
$$

Let $x_{i}^{*}=x_{i}^{*}(W) \in \mathbb{C}$ satisfying

$$
\left.E_{r^{*}+i-1} A^{*} E_{r^{*}+i} A^{*} E_{r^{*}+i-1}\right|_{E_{r^{*}+i-1} W}=x_{i}^{*} \cdot 1| |_{E_{r^{*}+i-1} W}
$$

Lemma 9.1'. With above notation, the following hold.
(i) $a_{i}^{*} \in \mathbb{R}$ for all $i \in\left\{0, \ldots, d^{*}\right\}$.
(ii) $x_{i}^{*} \in \mathbb{R}^{>0}$ for all $i \in\left\{1, \ldots, d^{*}\right\}$.
(iii) Pick $0 \neq w_{0}^{*} \in E_{r^{*}}^{*} W$. Set $w_{i}^{*}=E_{r^{*}+i} A^{* i} w_{0}^{*}$ for all i. Then
(iiia) $w_{0}^{*}, w_{1}^{*}, \ldots, w_{d^{*}}^{*}$ is a basis for $W, w_{-1}^{*}=w_{d^{*}+1}^{*}=0$.
(iiib) $A^{*} w_{i}^{*}=w_{i+1}^{*}+a_{i}^{*} w_{i}+x_{i}^{*} w_{i-1}^{*}$ for all $i \in\left\{0, \ldots, d^{*}\right\}$.
(iv) Define $p_{0}^{*}, p_{1}^{*}, \ldots, p_{d^{*}+1}^{*} \in \mathbb{R}[\lambda]$ by

$$
p_{0}^{*}=1, \quad \lambda p_{i}^{*}=p_{i+1}^{*}+a_{i}^{*} p_{i}^{*}+x_{i}^{*} p_{i-1}^{*} \quad \text { for all } i \in\left\{0, \ldots, d^{*}\right\}, \quad p_{-1}^{*}=0
$$

(iva) $p_{i}^{*}\left(A^{*}\right) w_{0}^{*}=w_{i}^{*}$, for all $i \in\left\{0, \ldots, d^{*}+1\right\}$.
(ivb) $p_{d^{*}+1}^{*}$ is the minimal polynomial of $\left.A^{*}\right|_{W}$.
Proof of Lemma 9.1,
(i) Recall

$$
A^{*}=\sum_{j=0}^{D} \theta_{j}^{*} E_{j}^{*}, \quad \theta_{j}^{*}=q_{1}(j)=|X|\left(E_{1}\right)_{x y} \in \mathbb{R}, \partial(x, y)=j
$$

a_{i}^{*} is an eigenvalue of a real symmetric matrix $E_{r^{*}+i} A^{*} E_{r^{*}+i}$.
(ii) Let $B=E_{r^{*}+i}^{*} A E_{r^{*}+i-1}^{*}$.

Then, x_{i}^{*} is an eigenvalue of a real symmetrix matrix $B^{\top} B$. Let $\operatorname{Span}\left\{v_{i-1}\right\}=$ $E_{r^{*}+i-1} W$, and $B v_{i-1} \neq 0$ by Lemma 4.1' (iv) for $i \in\left\{1, \ldots, d^{*}\right\}$. So, $x_{i} \in \mathbb{R}^{>0}$ for all $i \in\left\{1, \ldots, d^{*}\right\}$.
(iiia) Observe

$$
w_{i}^{*}=E_{r^{*}+i} A^{*} E_{r^{*}+i-1}^{*} w_{i-1}^{*} \quad \text { for all } i \in\left\{1, \ldots, d^{*}\right\}
$$

So $w_{i}^{*} \neq 0$ for all $i \in\left\{1, \ldots, d^{*}\right\}$ by Lemma $4.1^{\prime}(i v)$.

Hence,

$$
W=\operatorname{Span}\left(w_{0}^{*}, \ldots, w_{d}^{*}\right)
$$

by Lemma 4.1 (${ }^{\text {(iii) }}$.
(iiib) We have that

$$
\begin{align*}
A^{*} w_{i}^{*} & =E_{r^{*}+i+1} A^{*} w_{i}^{*}+E_{r^{*}+i} A^{*} w_{i}^{*}+E_{r^{*}+i-1} A^{*} w_{i}^{*} \tag{36.6}\\
& =w_{i+1}^{*}+E_{r^{*}+i} A^{*} E_{r^{*}+i} w_{i}^{*}+E_{r^{*}+i-1} A^{*} E_{r^{*}+i} A^{*} E_{r^{*}+i-1} w_{i-1} \tag{36.7}\\
& =w_{i+1}^{*}+a_{i}^{*} w_{i}^{*}+x_{i}^{*} w_{i-1}^{*} . \tag{36.8}
\end{align*}
$$

(iva) Clear for $i=0$. Assume it is valid for $0, \ldots, i$.

$$
p_{i+1}^{*}\left(A^{*}\right) w_{0}^{*}=\left(A^{*}-a_{i}^{*} I\right) w_{i}^{*}-x_{i}^{*} w_{i-1}^{*}=w_{i+1}^{*}
$$

(ivb) By definition,

$$
p_{d^{*}+1}^{*}\left(A^{*}\right) w_{0}^{*}=0
$$

Since $W=\left\{p\left(A^{*}\right) w_{0}^{*} \mid p \in \mathbb{C}[\lambda]\right\}, p_{d^{*}+1}^{*}\left(A^{*}\right) W=0$, and $p_{d^{*}+1}^{*}$ is a minimal polynomial, as $w_{0}^{*}, w_{1}^{*}, \ldots, w_{d^{*}}^{*}$ is a basis of W.
Corollary 9.1'. With the notation above, let W be a dualthin irreducible T-module with dual endpoint $r^{*}(W)$, and dual diameter d^{*}. Then,
(i) W is thin,
(ii) $d^{*}=d=\left|\left\{i \mid E_{i}^{*} W \neq 0\right\}\right|-1$.

Proof of Corollary 9.1,
Set as in Lemma $\{4.1\}$.

$$
w_{i}^{*}=p_{i}^{*}\left(A^{*}\right) w_{0}^{*} \in E_{r^{*}+i} W
$$

Then, $w_{0}^{*}, w_{1}^{*}, \ldots, w_{d^{*}}^{*}$ is a basis for W. We have $W=M^{*} w_{0}^{*}$.
So, $E_{i}^{*} W=E_{i}^{*} M^{*} w_{0}^{*}=\operatorname{Span}\left(E_{i}^{*} w_{0}^{*}\right)$.
Thus, W is thin, and so, we have (ii).

Suppose $r(W)=1$. Then $d(W)=D-2$ or $D-1$ by Lemma 14.1 (iii). See also Lemma 14.2.
Case $d(W)=D-2$. Then

$$
\begin{aligned}
& E_{1} W=0 \text { implies } r^{*}(W)=2 \\
& E_{1} W \neq 0 \text { implies } r^{*}(W)=1
\end{aligned}
$$

Case $d(W)=D-1$. Then

$$
r^{*}(W)=1
$$

Up to isomorphism,
there are at most 3 thin irreducible T-modules with $r(W)=1$ and $r^{*}(W)=1$, there are at most 1 thin irreducible T-module with $r(W)=1$ and $r^{*}(W)=2$, there are none thin irreducible T-modules with $r(W)=1$ and $r^{*}(W)>2$.

By dual argument,
there are at most 3 thin irreducible T-modules with $r^{*}(W)=1$ and $r(W)=1$,
there are at most 1 thin irreducible T-module with $r^{*}(W)=1$ and $r(W)=2$,
there are none thin irreducible T-modules with r and $r(W)>2$.
Conjecture 36.1. Let $\Gamma=(X, E)$ be a thin distance regular graph of diameter $D \geq 3$. Let E_{1} be any primitive idempotent not equal to E_{0}.
Then the following are equivalent.
(i) For every vertex $x \in X$, there is no irreducible T-module W with $r(W)>2$, and $E_{1} W \neq 0$, there exists at most 1 irreducible T-module with $r(W)=2$, and $E_{1} W \neq 0$, and there exist at most 3 irreducible T-modules W with $r(W)=1$, and $E_{1} W \neq 0$.
(ii) Γ is Q-polynomial with respect to E_{1}.

Conjecture 36.2. Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3$, Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x)$. Let W denote an irreducible T-module with endpoint r, dual endpoint r^{*}, diameter d and dual diameter d^{*}.

Then the following hold.
(i) $d=d^{*}$.
(ii) there exists $s \in\{r, \ldots, r+d\}$ such that

$$
1=\operatorname{dim} E_{r}^{*} W \leq \operatorname{dim} E_{r+1}^{*} W \leq \cdots \leq \operatorname{dim} E_{s}^{*} W \geq \cdots \geq \operatorname{dim} E_{r+d}^{*} W
$$

(iii) there exists $s^{*} \in\left\{r^{*}, \ldots, r^{*}+d^{*}\right\}$ such that

$$
1=\operatorname{dim} E_{r^{*}} W \leq \operatorname{dim} E_{r^{*}+1} W \leq \cdots \leq \operatorname{dim} E_{s^{*}} W \geq \cdots \geq \operatorname{dim} E_{r^{*}+d^{*}} W
$$

Let $\Gamma=(X, E)$ be distance regular of diameter $D \geq 3, Q$-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x)$ and $T \equiv T(x)$. Let W denote an irreducible module with endpoint 1.

Conjecture 36.3. The following are equivalent.
(i) The sequence $\operatorname{dim} E_{1}^{*} W, \operatorname{dim} E_{2}^{*} W, \ldots, E_{D}^{*} W$ equals

$$
1,2,2, \ldots, 2,1
$$

(ii) $v, A v, A_{2} v, \ldots, A_{D-2} v, v^{*}, A^{*} v^{*}, A_{2}^{*} v^{*}, \ldots, A_{D-2}^{*} v^{*}$ is a basis for W, where

$$
0 \neq v \in E_{i}^{*} W, \text { and } v^{*}=|X| E_{1} v
$$

(iv) $v_{1}^{+}, v_{2}^{+}, \ldots, v_{D}^{+}, v_{2}^{-}, v_{3}^{-}, \ldots, v_{D-1}^{-}$is a basis for W, where

$$
v_{i}^{+}=E_{i}^{*} A_{i-1} v, \quad v_{i}^{-}=E_{i}^{*} A_{i+1} v
$$

Problem. Let B denote the orthogonal basis for W obtained by applying the Gram-Schemidt procedure to be basis in (iv).
Find the matrix representation A with respect to this basis.
I believe the entries are necely foctorable expressions in the basic variables,

$$
q, s, s^{*}, r_{1}, r_{1}
$$

(Hint: use Theorem 35.1.)
If not, find some nice basis for W, and find the matrices representing A, A^{*} with respect to this basis.

Perhaps, some orthogonal basis based on (iii).
Algebraically, everything is determined by the intersection numbers and $a_{0}(W)$.
Combinatorically, certain quantities mulst be nonnegative integers. Does this give some new bounds, or other information on $a_{0}(W)$?

Chapter 37

Generalized Adjacency Matrix

Friday, April 30, 1993
Lemma 37.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $D \geq 3$, and Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Fix a vertex $x \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(x)$, and $T \equiv T(x)$. Let W be an irreducible T-module of endpoint 1 . If $\operatorname{dim} E_{2}^{*} W=1$, then W is thin.

Proof. Pick $0 \neq v \in E_{1}^{*} W$.
We want to show that

- $F R^{i} v \in \operatorname{Span}\left(R^{i} v\right)$ for $i \in\{0, \ldots, D-1\}$.
- $L R^{i} v \in \operatorname{Span}\left(R^{i-1} v\right)$ for $i \in\{1, \ldots, D-1\}$.

We have that
(1) $F R^{2} E_{j}^{*} \in \operatorname{Span}\left(R F R E_{j}^{*}, R^{2} F E_{j}^{*}, R^{2} E_{j}^{*}\right)$ for $i \in\{0, \ldots, D-3\}$.
(2) $L R^{2} E_{j}^{*} \in \operatorname{Span}\left(R L R E_{j}^{*}, R^{2} L E_{j}^{*}, F^{2} R E_{j}^{*}, F R F E_{j}^{*}, R F^{2} E_{j}^{*}, R F E_{j}^{*}, F R E_{j}^{*}, R E_{j}^{*}\right)$ for $i \in\{0, \ldots, D-3\}$
by Corollary 30.1.
Claim (a) $F R^{i} v \in \operatorname{Span}\left(R^{i} v\right)$ for $i \in\{0, \ldots, D-2\}$,
(b) $L R^{i} v \in \operatorname{Span}\left(R^{i-1} v\right)$ for $i \in\{1, \ldots, D-2\}$.

HS MEMO

Proof of Claim.
(a) By Lemma 34.2, and our assumption

$$
\operatorname{dim} E_{1}^{*} W=\operatorname{dim} E_{2}^{*} W=1
$$

So, $R v \neq 0$, and $E_{2}^{*} W=\operatorname{Span}(R v)$.
We may assume $i \geq 2$. Then $R^{i-2} v \in E_{i-1}^{*} W$,

$$
\begin{align*}
F R^{i} v & =F R^{2} R^{i-2} v, \quad \text { if } i \leq D-2 \tag{37.1}\\
& =R(F R+R F+R) R^{i-2} v \tag{37.2}\\
& \in R\left(\operatorname{Span}\left(R^{i-1} v\right)\right) \tag{37.3}\\
& =\operatorname{Span}\left(R^{i} v\right) \tag{37.4}
\end{align*}
$$

by the induction hypothesis.
(b) If $i \leq D-2$, then $R^{i-2} v \in E_{i-1}^{*} W$ with $i-1 \leq D-3$. Hence,

$$
\begin{align*}
L R^{i} v & =L R^{2}\left(R^{i-2} v\right) \tag{37.5}\\
& =\left(R L R+R^{2} L+F^{2} R+F R F+R F^{2}+R F+F R+R\right) R^{i-2} v \tag{37.6}\\
& \in \operatorname{Span}\left(R^{i-1} v\right) \tag{37.7}
\end{align*}
$$

by induction and (a).
Suppose $R^{D-1} v=0$. Then,

$$
\operatorname{Span}\left(v, R v, \ldots, R^{D-2} v\right)=\widetilde{W}
$$

is invariant under M and M^{*}, hence, under T.
Since W is irreducible, $W=\widetilde{W}$, and W is thin in this case.
Suppose $R^{D-1} v \neq 0$.
Observe: $v, A v, \ldots, A^{D-1} v \in \operatorname{Span}\left(v, R v, \ldots, R^{D-1} v\right)$.
Hence, each $R^{i} v$ is a polynomial of degree i in A applied to v, and

$$
\operatorname{Span}\left(v, A v, \ldots, A^{D-1} v\right)=\operatorname{Span}\left(v, R v, \ldots, R^{D-1} v\right)=\operatorname{Span}\left(v, A_{1} v, \ldots, A_{D-1} v\right)
$$

Also,

$$
A_{D} v=J v-\left(\sum_{h=0}^{D-1} A_{h}\right) v \in \operatorname{Span}\left(v, A_{1} v, \ldots, A_{D-1} v\right)
$$

Thus,

$$
M v=\operatorname{Span}\left(v, R v, \ldots, R^{D-1} v\right)
$$

Therefore,

$$
\operatorname{Span}\left(v, R v, \ldots, R^{D-1} v\right)=\widetilde{W}
$$

is invariant under M, M^{*}, and hence T. We have $W=\widetilde{W}$ and W is thin.

Definition 37.1. Let $\Gamma=(X, E)$ be any regular graph (not necessarily connected).

Let A be the adjacency matrix of Γ, and let J be the all 1's matrix.
Pick $O \neq B \in \operatorname{Mat}_{X}(\mathbb{C})$.
B is a generalized adjacency matrix, if
(i) for all vertices $x, y \in X, B_{x y} \neq 0$ implies $A_{x y} \neq 0$ or $x=y$,
(ii) B is in the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by A and J.

Example 37.1. Any nonzero matrix of form

$$
\alpha A+\beta I \quad(\alpha, \beta \in \mathbb{C})
$$

is a generalized adjacency matrix.
If Γ is distance regular, all generalized adjacecy matrices are of this form.
Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $D \geq 3$. Assume Γ is thin, and Q-polynomial.

Pick a vertex $x \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(x), T \equiv T(x)$. Then,

$$
E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}, \tilde{A}^{3}\right)
$$

and $\operatorname{dim} E_{1}^{*} T E_{1}^{*} \leq 5$.
We will produce a 'nice' spanning set

$$
E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}\left(=R^{-1} E_{2}^{*} A E_{1}^{*}\right), A^{+} \tilde{A}\right)
$$

Lemma 37.2. Let $\Gamma=(X, E)$ be a thin distance-regular graph of diameter $D \geq 4$.

Fix a vertex $x \in X$, and write $E_{i}^{*} \equiv E_{i}^{*}(x)$ and $R \equiv R(x)$.
Let Γ_{1} denote the vertex subgraph induced on the first subconstituent of Γ relative to x. Then,

$$
\Delta=\left(R^{-1}\right)^{i-1} E_{i}^{*} A_{i} E_{1}^{*}
$$

is a generalized adjacency matrix for Γ_{1} for all $i \in\{1, \ldots, D-3\}$.
Proof. Write $T \equiv T(x)$. Fix $i \in\{1, \ldots, D-3\}$.
Recall $R^{-1} \in T$ by Lemma 31.1 (iv).
Since $E_{i-1}^{*} R^{-1} E_{i}^{*}=R^{-1} E_{i}^{*}$ by Lemma 31.1 (ii),

$$
\Delta \in E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}, \ldots\right)
$$

by Lemma 34.3 (iv).

Hence, Δ satisfied the condition (ii) of Definition 37.1.
To show (i), pick vertices $y, z \in X$ such that

$$
\partial(x, y)=\partial(x, z)=1, \quad \partial(y, z)=2
$$

We need to show

$$
\Delta_{y z}=0 .
$$

Suppose $\Delta_{y z} \neq 0$. Then,

$$
\langle\Delta \hat{y}, \hat{z}\rangle \neq 0
$$

We will show this cannot occur.
Notation: Set

$$
E_{i j}^{*}=E_{i}^{*}(x) E_{j}^{*}(y), i, j \in\{0,1, \ldots, D\}
$$

Then,

$$
E_{i j}^{*} V=\operatorname{Span}(\hat{w} \mid w \in X, \partial(x, w)=i, \partial(y, w)=j) \text { for } i, j \in\{0,1, \ldots, D\}
$$

Let δ denote the all 1 's vector in V. Let

$$
\delta_{i j}=E_{i j}^{*} \delta=\sum_{w \in X, \partial(x, w)=i, \partial(y, w)=j} \hat{w} .
$$

Now,

$$
\Delta \hat{y} \in E_{1}^{*}(x) V=E_{10}^{*} V+E_{11}^{*} V+E_{12}^{*} V \quad \text { (orthogonal direct sum). }
$$

So, there exist $\delta_{10}^{+} \in E_{10}^{*} V, \delta_{11}^{+} \in E_{11}^{*} V$, and $\delta_{12}^{+} \in E_{12}^{*} V$ such that

$$
\Delta \hat{y}=\delta_{10}^{+}+\delta_{11}^{+}+\delta_{12}^{+}
$$

Observe: $\hat{z} \in E_{12}^{*} V$ is not orthogonal to $\Delta \hat{y}$.
So, $\delta_{12}^{+} \neq 0$.
Observe:

$$
\begin{align*}
R^{i-1}\left(\delta_{10}^{+}+\delta_{11}^{+}+\delta_{12}^{+}\right) & =R^{i-1} \Delta \hat{y} \tag{37.8}\\
& =R^{i-1}\left(R^{-1}\right)^{i-1} E_{i}^{*} A_{i} E_{1}^{*} \hat{y} \tag{37.9}\\
& =E_{i}^{*} A_{i} E_{1}^{*} \hat{y} \tag{37.10}\\
& =\delta_{i i} \tag{37.11}\\
& \in E_{i i} V \tag{37.12}
\end{align*}
$$

HS MEMO

It is because on each irreducible thin module with standard basis $w_{r}, w_{r+1}, \ldots, w_{r+d}$,

$$
R^{-1} w_{i}=w_{i-1}, i>r, R^{-1} w_{r}=0
$$

and $E_{1}^{*} V$ is an orthogonal direct sum of irreducible modules and $r \leq 1$.
But we can control $R^{i-1} \delta_{10}^{+}, R^{i-1} \delta_{11}^{+}$, also.
Claim. $R E_{j j}^{*} V \subseteq E_{j+1, j+1}^{*} V+E_{j+1, j}^{*} V, j \in\{1, \ldots, D-1\}$.
Proof of Claim. Clear.
By Claim

$$
\begin{align*}
& R^{i-1} \delta_{10}^{+} \in E_{i, i-1}^{*} V, \quad \text { and } \tag{37.13}\\
& R^{i-1} \delta_{11}^{+} \in E_{i, i-1}^{*} V+E_{i, i}^{*} V \tag{37.14}
\end{align*}
$$

Hence, we conclude that

$$
R^{i-1} \delta_{12}^{+}=R^{i-1} \Delta \hat{y}-R^{i-1} \delta_{10}^{+}-R^{i-1} \delta_{11}^{+} \in E_{i, i-1}^{*} V+E_{i i}^{*} V
$$

But now

$$
\begin{equation*}
0=E_{i, i+1}^{*} R^{i-1} \delta_{12}^{+}=E_{i, i+1}^{*} A^{i-1} E_{12}^{*} \delta_{12}^{+}=R(y)^{i-1} \delta_{12}^{+} \tag{37.15}
\end{equation*}
$$

By Lemma 32.1 (ii),

$$
R(y)^{i-1}: E_{2}^{*}(y) V \longrightarrow E_{i+1}^{*} V
$$

is one-to-one, since Γ is thin, and $i-1 \leq D-4$.
So, $\delta_{12}^{+}=0$ by (37.15).
But this contradicts (2). Hence our assumption $\Delta_{y z} \neq 0$ is false, and the condition (i) of the definition of generalised adjacency matrices is satisfied.
This proves the lemma.

Chapter 38

An Injection from $\mathrm{E}_{11}{ }^{*}$ to E_{22}

Monday, May 3, 1993
Lemma 38.1. Let $\Gamma=(X, E)$ be a thin distance-regular graph of diameter $D \geq 5$, and Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$. Pick vertices $x, y \in X$ such that $\partial(x, y)=1$, and write $E_{i j}^{*}:=E_{i}^{*}(x) E_{j}^{*}(y)$ for $i, j \in\{0,1, \ldots, D\}$. Then the following hold.
(i) $E_{22}^{*} A E_{11}^{*}: E_{11}^{*} V \rightarrow E_{22}^{*} V$ is one-to-one.
(ii) For every $z \in X$ such that $\partial(x, z)=\partial(y, z)=1$, there is $w \in X$ such that

$$
\partial(w, x)=\partial(w, y)=2, \partial(w, z)=1
$$

Proof.
(i) Write $E_{i}^{*} \equiv E_{i}^{*}(x), R \equiv R(x), F \equiv F(x), L \equiv L(x)$, and $T \equiv T(x)$.

Suppose there exists

$$
\begin{equation*}
0 \neq v \in E_{11}^{*} V \text { such that } E_{22}^{*} A E_{11}^{*} v=0 \tag{38.1}
\end{equation*}
$$

Claim 1. $E_{34}^{*} A^{2} E_{12}^{*} A E_{11}^{*} v \neq 0$.
Proof of Claim 1. Recall by Lemma 32.1 (ii), ($3 \leq 5-2 \leq D-2 t$),

$$
R(y)^{3}: E_{1}^{*}(y) V \rightarrow E_{4}^{*}(y) V
$$

is one-to-one.

Since $v \in E_{1}^{*}(y) V$, we find

$$
\begin{align*}
0 & \neq R^{3}(y) v \tag{38.2}\\
& =E_{4}^{*}(y) A^{3} E_{1}^{*}(y) v \tag{38.3}\\
& =E_{4}^{*}(y) A^{2} E_{2}^{*}(y) A E_{11}^{*} v \tag{38.4}\\
& =E_{4}^{*}(y) A^{2}\left(\sum_{h=0}^{D} E_{h, 2}^{*}\right) A E_{11}^{*} v \tag{38.5}\\
& =E_{4}^{*}(y) A^{2}\left(E_{12}^{*}+E_{22}^{*}\right) A E_{11}^{*} v \tag{38.6}\\
& =E_{4}^{*}(y) A^{2} E_{12}^{*} A E_{11}^{*} v \tag{38.7}\\
& =E_{34}^{*}(y) A^{2} E_{12}^{*} A E_{11}^{*} v \tag{38.8}
\end{align*}
$$

by (38.1). This proves the claim.
By Theorem 30.1 (i),

$$
\begin{equation*}
0=\left(g_{3}^{-} R^{2} F+R F R+g_{3}^{+} F R^{2}-\gamma R^{2}\right) E_{1}^{*} \tag{38.9}
\end{equation*}
$$

HS MEMO

Theorem 30.1 (i) states

$$
\left(g_{i}^{-} F L^{2}+L F L+g_{i}^{+} L^{2} F-\gamma L^{2}\right) E_{i}^{*}=O \text { for } i \in\{2, \ldots, D\}
$$

For $i=3$,

$$
E_{1}^{*}\left(g_{3}^{-} F L^{2}+L F L+g_{3}^{+} L^{2} F-\gamma L^{2}\right) E_{3}^{*}=O
$$

Taking the transpose, we have

$$
E_{3}^{*}\left(g_{3}^{-} R^{2} F+R F R+g_{3}^{+} F R^{2}-\gamma R^{2}\right) E_{1}^{*}=O
$$

Hence, we have (38.9).
Multiplying each term on the left by $E_{4}^{*}(y)$, on the right by $E_{1}^{*}(y)$, we find

$$
\begin{align*}
O & =g_{3}^{-} E_{34}^{*} R^{2} F E_{11}^{*}+E_{34}^{*} R F R E_{11}^{*}+g_{3}^{+} E_{34}^{*} F R^{2} E_{11}^{*}-\gamma E_{34}^{*} R^{2} E_{11}^{*} \tag{38.10}\\
& =g_{3}^{-} E_{34}^{*} A^{2} E_{12}^{*} A E_{11}^{*}+E_{34}^{*} A E_{23}^{*} A E_{22}^{*} A E_{11}^{*}+g_{3}^{+} E_{34}^{*} A E_{33}^{*} A E_{22}^{*} A E_{11}^{*} . \tag{38.11}
\end{align*}
$$

Applying this to v, we find by (38.1) that

$$
0=g_{3}^{-} E_{34}^{*} A^{2} E_{12}^{*} A E_{11}^{*} v
$$

So, $g_{3}^{-}=0$ by Claim 1. But by Lemma 30.1,

$$
g_{3}^{-}=\frac{\theta_{1}^{*}-\theta_{0}^{*}}{\theta_{1}^{*}-\theta_{3}^{*}} \neq 0
$$

a contradiction.

Let Γ, x, y be as in Lemma 38.1. We saw in Lemma 37.2,

$$
R^{-1} E_{2}^{*} A_{2} E_{1}^{*} \hat{y}=\delta_{10}^{+}+\delta_{11}^{+}
$$

where

$$
\delta_{10}^{+} \in E_{10}^{*} V=\operatorname{Span}(\hat{y}), \quad \delta_{11}^{+} \in E_{11}^{*} V
$$

Definition 38.1. Define $\Psi=\Psi(x, y) \in \mathbb{C}$ by $\delta_{10}^{+}=\Psi \hat{y}$.
We will show that $\Psi(x, y)$ is independent of x, y.
Observe $R^{-1}, A_{i}, E_{i}^{*} \in \operatorname{Mat}_{X}(\mathbb{Q})$. So $\Psi \in \mathbb{Q}$.
Firstly, show

$$
\Psi(x, y)=\Psi(y, x)
$$

Lemma 38.2. With the notation of Lemma 38.1, the following hold.
(i) $E_{22}^{*} A E_{11}^{*} \delta_{11}^{+}=\delta_{22}$.
(ii) $E_{21}^{*} A E_{11}^{*} \delta_{11}^{+}=-\Psi(x, y) \delta_{21}$.
(iii) $\left\langle\delta_{11}^{+}, \delta_{11}\right\rangle=\frac{a_{2}}{c_{2}}-\Psi(x, y)$.
(iv) $\Psi(x, y)=\Psi(y, x)$.
(v) $E_{12}^{*} A E_{11}^{*} \delta_{11}^{+}=-\Psi(x, y) \delta_{12}$.

Proof. Write $\Psi \equiv \Psi(x, y), R \equiv R(x), E_{i}^{*} \equiv E_{i}^{*}(x)$, etc.
(i) We have

$$
\begin{align*}
R\left(\delta_{11}^{+}+\Psi \hat{y}\right) & =R\left(\delta_{11}^{+}+\delta_{10}^{+}\right) \tag{38.12}\\
& =R\left(R^{-1}\left(E_{2}^{*} A_{2} E_{1}^{*}\right)\right) \hat{y} \tag{38.13}\\
& =E_{2}^{*} A_{2} E_{1}^{*} \hat{y} \tag{38.14}\\
& =\delta_{22} \tag{38.15}
\end{align*}
$$

So,

$$
\begin{align*}
\delta_{22} & =R\left(\delta_{11}^{+}+\Psi \hat{y}\right) \tag{38.16}\\
& =E_{2}^{*} A E_{1}^{*}\left(\delta_{11}^{+}+\Psi \hat{y}\right) \tag{38.17}\\
& =E_{22}^{*} A E_{11}^{*} \delta_{11}^{+}+\Psi E_{22}^{*} A E_{10}^{*} \hat{y} \tag{38.18}
\end{align*}
$$

The second term is zero.
(ii) We have

$$
\begin{align*}
0 & =E_{21}^{*} \delta_{22} \tag{38.19}\\
& =E_{21}^{*} R\left(\delta_{11}^{+}+\Psi \hat{y}\right) \tag{38.20}\\
& =E_{21}^{*} A E_{11}^{*} \delta_{11}^{+}+\Psi E_{21}^{*} A E_{10}^{*} \hat{y} \tag{38.21}\\
& =E_{21}^{*} A E_{11}^{*}+\Psi \delta_{21} \tag{38.22}
\end{align*}
$$

(iii) We have

$$
\begin{align*}
p_{22}^{1} & =\left\|\delta_{22}\right\|^{2} \tag{38.23}\\
& =\left\langle\delta_{22}, \delta_{21}+\delta_{22}+\delta_{23}\right\rangle \tag{38.24}\\
& =\left\langle R\left(\delta_{11}^{+}+\Psi \hat{y}\right), \delta_{21}+\delta_{22}+\delta_{23}\right\rangle \tag{38.25}\\
& =\left\langle\delta_{11}^{+}+\Psi \hat{y}, L\left(\delta_{21}+\delta_{22}+\delta_{23}\right)\right\rangle \tag{38.26}\\
& =b_{1}\left\langle\delta_{11}^{+}+\Psi \hat{y}, \delta_{10}+\delta_{11}+\delta_{12}\right\rangle \tag{38.27}\\
& =b_{1}\left(\left\langle\delta_{11}^{+}, \delta_{11}\right\rangle+\Psi\right) . \tag{38.28}
\end{align*}
$$

So,

$$
\left\langle\delta_{11}^{+}, \delta_{11}\right\rangle=b_{1}^{-1} p_{22}^{1}-\Psi=\frac{a_{2}}{c_{2}}-\Psi
$$

HS MEMO

$$
b_{1}^{-1} p_{22}^{1}=b_{1}^{-1} \frac{k_{1}}{k_{1}} p_{22}^{1}=b_{1}^{-1} \frac{1}{k_{1}} k_{2} p_{12}^{2}=b_{1}^{-1} \frac{b_{1}}{c_{2}} a_{2}=\frac{a_{2}}{c_{2}} .
$$

(iv) Interchanging roles of x, y above, we find there exists $\delta_{11}^{+^{\prime}} \in E_{11}^{*} V$ such that

$$
R(y)^{-1} E_{2}^{*}(y) A_{2} E_{1}^{*}(y) \hat{x}=\delta_{11}^{+^{\prime}}+\Psi(y, x) \hat{y}
$$

Then,

$$
E_{22}^{*} A E_{11}^{*}\left(\delta_{11}^{+^{\prime}}\right)=\delta_{22}
$$

So,

$$
E_{22}^{*} A E_{11}^{*}\left(\delta_{11}^{+}-\delta_{11}^{+^{\prime}}\right)=0
$$

Hence, $\delta_{11}^{+}=\delta_{11}^{+^{\prime}}$ since

$$
E_{22}^{*} A E_{11}^{*}: E_{11}^{*} V \rightarrow E_{22}^{*} V
$$

is one-to-one.
Now,

$$
\frac{a_{2}}{c_{2}}-\Psi(x, y)=\left\langle\delta_{11}^{+}, \delta_{11}\right\rangle=\left\langle\delta_{11}^{+^{\prime}}, \delta_{11}\right\rangle=\frac{a_{2}}{c_{2}}-\Psi(y, x)
$$

Thus,

$$
\Psi(x, y)=\Psi(y, x)
$$

(v) Immediate from (ii), (iv).

Chapter 39

A^{+}and A^{-}

Wednesday, May 5, 1993

Assume $\Gamma=(X, E)$ is thin, distance regular of diameter $D \geq 5$, and Q polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$.
Fix a vertex $x \in X$, write $E_{i}^{*} \equiv E_{i}^{*}(x), R \equiv R(x), T \equiv T(x)$.
Pick $y \in X$ with $\partial(x, y)=1$. Write $E_{i, j}^{*} \equiv E^{*}(x) E^{*}(y), \delta_{i j}=E_{i j}^{*} \delta$, and $\tilde{A}=E_{1}^{*} A E_{1}^{*}$.
Recall that $\delta_{11}^{+} \in E_{11}^{*} V$ and

$$
R^{-1} E_{2}^{*} A_{2} E_{1}^{*} \hat{y}=\delta_{11}^{+}+\Psi(x, y) \hat{y}
$$

We saw $\Psi(x, y)=\Psi(y, x)$. We shall show below that $\Psi(x, y)$ is independent of edge $x y$.
Lemma 39.1. With the above notation, set $\Psi:=\Psi(x, y)$. Then the following hold.
(i) $\delta_{11}^{-}=\tilde{A} \delta_{11}^{+}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) \hat{y}+\Psi \delta_{12} \in E_{11}^{*} V$.
(ii) $\delta_{11}^{-}(x, y)=\delta_{11}^{-1}(y, x)$.

Proof.
(i) $\delta_{12}^{-} \in E_{12}^{*} V, \delta_{11}^{-} \in E_{11}^{*} V$ and $\delta_{10}^{-} \in E_{10}^{*} V$, and

$$
\begin{gather*}
\tilde{A} \delta_{11}^{+}=\delta_{12}^{-}+\delta_{11}^{-}+\delta_{10}^{-} \tag{39.1}\\
\delta_{12}^{-}=E_{12}^{*} A E_{11}^{*} \delta_{11}^{+}=-\Psi(x, y) \delta_{12} \tag{39.2}
\end{gather*}
$$

by Lemma $38.2(v)$.

Also, $\delta_{10}^{-}=\sigma \hat{y}$ for some $\sigma \in \mathbb{C}$, where

$$
\begin{equation*}
\sigma=\left\langle\tilde{A} \delta_{11}^{+}, \hat{y}\right\rangle=\left\langle\delta_{11}^{+}, \tilde{A} \hat{y}\right\rangle=\left\langle\delta_{11}^{+}, \delta_{11}\right\rangle=\frac{a_{2}}{c_{2}}-\Psi . \tag{39.3}
\end{equation*}
$$

Solving for δ_{11}^{-}in (39.1), using (39.2) and (39.3), we have

$$
\begin{align*}
\delta_{11}^{-} & =\tilde{A} \delta_{11}^{+}-\delta_{12}^{-}-\delta_{10}^{-} \tag{39.4}\\
& =A \delta_{11}^{+}+\Psi \delta_{12}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) \hat{y} . \tag{39.5}
\end{align*}
$$

(ii) Since

$$
\delta_{11}^{-}=E_{11}^{*} A E_{11}^{*} \delta_{11}^{+}
$$

we have $\delta_{11}^{+}(x, y)=\delta_{11}^{+}(y, x)$.

Lemma 39.2. With the above noation, $\Psi=\Psi(u, v)$ is independent of u, v, where $u, v \in X$, with $\partial(u, v)=1$.

Proof. Let x, y be as above $(x \sim y)$, and pick $z \in X$ such that $\partial(x, z)=1$, but $z \neq y$. Then it suffices to show:

$$
\Psi(x, y)=\Psi(x, z)
$$

Case: $\partial(y, z)=2$.
Set $\Delta:=\tilde{A} R^{-1} E_{2}^{*} A_{2} E_{1}^{*}$.
Observe: $\Delta \in E_{1}^{*} T E_{1}^{*}$ and $E_{1}^{*} T E_{1}^{*}$ is symmetrix by Lemma 33.4.
Hence, $\Delta_{y z}=\Delta_{z y}$.
Since $\Delta \in \operatorname{Mat}_{X}(\mathbb{R})$,

$$
\langle\Delta \hat{y}, \hat{z}\rangle=\langle\Delta \hat{z}, \hat{y}\rangle
$$

But,

$$
\begin{align*}
\langle\Delta \hat{y}, \hat{z}\rangle & =\left\langle\tilde{A} \delta_{11}^{+}+\Psi(x, y) \hat{y}, \hat{z}\right\rangle \tag{39.6}\\
& =\left\langle\tilde{A} \delta_{11}^{+}, \hat{z}\right\rangle \tag{39.7}\\
& =\left\langle\delta_{11}^{-}+\left(\frac{a_{2}}{c_{2}}-\Psi\right) \hat{y}-\Psi(x, y) \delta_{12}, \hat{z}\right\rangle \tag{39.8}\\
& =-\Psi(x, y) \tag{39.9}
\end{align*}
$$

Note that $\partial(x, y)=2$ by Lemma $39.1(i)$.

Similarly,

$$
\langle\Delta \hat{z}, \hat{y}\rangle=-\Psi(x, z)
$$

Hence, $\Psi(x, y)=\Psi(x, z)$.
Case: $\partial(y, z)=1$.
By Lemma 38.1 (ii), there exists $w \in X$ such that

$$
\partial(x, z)=1, \partial(w, y)=2, \partial(w, z)=2
$$

Now,

$$
\Psi(x, y)=\Psi(x, w)=\Psi(x, z)
$$

from the first case.
Lemma 39.3. With the above notation, the following hold.
(i) $A^{+}:=R^{-1} E_{2}^{*} A_{2} E_{1}^{*}-\Psi E_{1}^{*}$, and
(ii) $A^{-}=\tilde{A} A^{+}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) E_{1}^{*}+\Psi\left(\tilde{J}-\tilde{A}-E_{1}^{*}\right)$
are both generalized adjacency matrices for the subgraph induced on the first subconstituent with respect to x.

Moreover, A^{+}, A^{-}have 0 diagonal.
Proof. Pick vertices $y, z \in X$ such that $\partial(x, y)=\partial(x, z)=1$.
Show that $A_{y z}^{+}, A_{y z}^{-}$are both 0 if $\partial(y, z)=0$ or 2 .
Since $A_{y z}^{+}=R^{-1} E_{2}^{*} A_{2} E_{1}^{*} \hat{y}-\Psi E_{1}^{*} \hat{y}=\delta_{11}^{+}$,

$$
A_{y z}^{+}=\left\langle A^{+} \hat{y}, \hat{z}\right\rangle=\left\langle\delta_{11}^{+}, \hat{z}\right\rangle=0
$$

if $\partial(y, z)=0$ or 2 .
Since

$$
\begin{align*}
A^{-} \hat{y} & =\tilde{A} A^{+} \hat{y}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) E_{1}^{*} \hat{y}+\Psi\left(\tilde{J}-\tilde{A}-E_{1}^{*}\right) \hat{y} \tag{39.10}\\
& =\tilde{A} \delta_{11}^{+}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) \hat{y}+\Psi \delta_{12} \tag{39.11}\\
& =\delta_{11}^{-} \tag{39.12}
\end{align*}
$$

$$
A_{y z}^{-}=\left\langle A^{-} \hat{y}, \hat{z}\right\rangle=\left\langle\delta_{11}^{-}, \hat{z}\right\rangle=0
$$

if $\partial(y, z)=0$ or 2.
Since $E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, \tilde{A}^{2}, \ldots\right)$ by Lemma 33.4.
A^{+}, A^{-}are both generalized matrices for the adjacency subgraph induced on the first subconstituent concerning x.

Similarly,

$$
E_{1}^{*} T E_{1}^{*} \ni \tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}, A^{-}
$$

and $\operatorname{dim} E_{1}^{*} T E_{1}^{*} \leq 5$.
Fact: With the above assumption,

$$
E_{1}^{*} T E_{1}^{*}=\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}, A^{-}\right)
$$

(may not be independent).
Lemma 39.4. If $\partial(x, y)=1$, then

$$
T(y) \hat{y}=T(x) \hat{y}
$$

Proof.

$$
\begin{align*}
T(x) \hat{x} & =T(x) E_{1}^{*} \hat{y} \tag{39.13}\\
& =M\left(E_{0}^{*}+E_{1}^{*}\right) T(x) E_{1}^{*} \hat{y} \quad(\text { as } \Gamma \text { is thin }) \tag{39.14}\\
& =M \hat{x}+M E_{1}^{*} T E_{1}^{*} \hat{y} \tag{39.15}\\
& =M \hat{x}+M \operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}, A^{-}\right) \hat{y} \tag{39.16}\\
& =M \hat{x}+M \operatorname{Span}\left(\delta_{12}+\delta_{11}+\delta_{10}, \delta_{10}, \delta_{11}, \delta_{11}^{+}, \delta_{11}^{-}\right) \tag{39.17}\\
& =M \operatorname{Span}\left(\delta_{01}, \delta_{10}, \delta_{11}, \delta_{11}^{+}, \delta_{11}^{-}\right) \tag{39.18}
\end{align*}
$$

But the identity of these conditions does not change if we interchange x and y. Hence,

$$
T(y) \hat{y}=T(x) \hat{y}
$$

This proves the lemma.

Chapter 40

Structure of 1-Thin DRG

Friday, May 7, 1993
Lemma 40.1. With the above notation, let W denota a thin irreducible T module of endpoint 0 or 1 . Pick $0 \neq v \in E_{1}^{*} V$. Then the following hold.
(i) Eigenvalue for \tilde{J} is 0 if $r(W)=1$, and k if $r(W)=0$.
(ii) Eigenvalue for E_{1}^{*} is 1 if $r(W)=1$, and 1 if $r(W)=0$.
(iii) Eigenvalue for \tilde{A} is $a_{0}(W)$ if $r(W)=1$, and a_{1} if $r(W)=0$.
(iv) Eigenvalue for A^{+}is $a^{+}(W)=\frac{\gamma_{1}}{c_{2}}-1-\Psi$ if $r(W)=1$, and $\frac{a_{2}}{c_{2}}-\Psi$ if $r(W)=0$.
(v) Eigenvalue for A^{-}is $a^{-}(W)=a_{0}(W)\left(\frac{\gamma_{1}}{c_{2}}-1-2 \Psi\right)-\frac{a_{2}}{c_{2}}$ if $r(W)=1$,
where

$$
\gamma_{0}=1+a_{0}(W), \text { and } \gamma_{1}=\frac{c_{2} b_{2} \gamma_{0}}{b_{1}+\gamma_{0}\left(a_{1}+2-c_{2}\right)-\gamma_{0}^{2}}
$$

as in Theorem 14.2. (The eigenvalue for A^{-}on v will be discussed later in this lecture.)

Proof.
(i) $-($ iii $)$ Clear.
(iv) We have

$$
\begin{align*}
A^{+} & =R^{-1} E_{2}^{*} A_{2} E_{1}^{*}-\Psi E_{1}^{*}, \tag{40.1}\\
A_{2} & =\frac{A^{2}-a_{1} A-k I}{c_{2}}, \tag{40.2}\\
E_{2}^{*} A_{2} E_{1}^{*} & =E_{2}^{*}\left(\frac{A^{2}-a_{1} A-k I}{c_{2}}\right) E_{1}^{*} \tag{40.3}\\
& =\frac{1}{c_{2}}\left(R F+F R-a_{1} R\right) E_{1}^{*} . \tag{40.4}
\end{align*}
$$

If $r(W)=1$,

$$
\begin{align*}
A^{+} v & =\frac{1}{c_{2}}\left(R^{-1} R F v+R^{-1} F R v-a_{1} R^{-1} R v\right)-\Psi v \tag{40.5}\\
& =\frac{1}{c_{2}}\left(R^{-1} R a_{0}(W) v+R^{-1} a_{1}(W) R v-a_{1} R^{-1} R v\right)-\Psi v \tag{40.6}\\
& \left.=\frac{1}{c_{2}}\left(a_{0}(W)+a_{1}(W)-a_{1}\right)-\Psi\right) v \tag{40.7}
\end{align*}
$$

But,

$$
a_{1}(W)=\gamma_{1}-\gamma_{0}+a_{1}+1-c_{2}, \quad \gamma_{0}=a_{0}(W)+1
$$

by Theorem 16.1.
So,

$$
\begin{align*}
A^{+} v & \left.=\left(\frac{1}{c_{2}}\left(a_{0}(W)+\gamma_{1}-\gamma_{0}+a_{1}+1-c_{2}-a_{1}\right)-\Psi\right)\right) v \tag{40.8}\\
& =\left(\frac{\gamma_{1}}{c_{2}}-1-\Psi\right) v \tag{40.9}
\end{align*}
$$

If $r(W)=0$,

$$
\begin{align*}
A^{+} v & =\frac{1}{c_{2}}\left(R^{-1} R F v+R^{-1} F R v-a_{1} R^{-1} R v\right)-\Psi v \tag{40.10}\\
& =\frac{1}{c_{2}}\left(R^{-1} R a_{1} v+R^{-1} a_{2} R v-a_{1} R^{-1} R v\right)-\Psi v \tag{40.11}\\
& =\left(\frac{a_{2}}{c_{2}}-\Psi\right) v \tag{40.12}
\end{align*}
$$

(v) Immediate from (iv), and

$$
A^{-}=\tilde{A} A^{+}-\left(\frac{a_{2}}{c_{2}}-\Psi\right) E_{1}^{*}+\Psi\left(\tilde{J}-\tilde{A}-E_{1}^{*}\right)
$$

HS MEMO

If $r(W)=1$,

$$
\begin{align*}
A^{-} v & =\left(a_{0}(W)\left(\frac{\gamma_{1}}{c_{2}}-1-\Psi\right)-\left(\frac{c_{2}}{a_{2}}-\Psi\right)+\Psi\left(-a_{0}(W)-1\right)\right) v \tag{40.13}\\
& =\left(a_{0}(W)\left(\frac{\gamma_{1}}{c_{2}}-1-2 \Psi\right)-\frac{c_{2}}{a_{2}}\right) v \tag{40.14}
\end{align*}
$$

If $r(W)=0$,

$$
\begin{align*}
A^{-} v & =\left(a_{1}\left(\frac{a_{2}}{c_{2}}-\Psi\right)-\left(\frac{a_{2}}{c_{2}}-\Psi\right)+\Psi\left(k-a_{1}-1\right)\right) v \tag{40.15}\\
& =\left(\left(a_{1}-1\right) \frac{a_{2}}{c_{2}}+\left(k-2 a_{1}\right) \Psi\right) v \tag{40.16}
\end{align*}
$$

This completes the proof.

Let $W_{1}, W_{2}, W_{3}, W_{4}$ denote 4 possible isomorphism classes of T-modules of endpoint 1. Then $a_{0}\left(W_{1}\right), a_{0}\left(W_{2}\right), a_{0}\left(W_{3}\right), a_{0}\left(W_{4}\right)$ are roots of a fourth degree polynomial whose coefficients are determined from intersection numbers of Γ.

So, $a_{0}\left(W_{1}\right), a_{0}\left(W_{2}\right), a_{0}\left(W_{3}\right), a_{0}\left(W_{4}\right)$ are determined by intersection numbers.
Let $\widetilde{m_{i}}$ denote the multiplicity of $W_{i}(1 \leq i \leq 4)$, which is equal to the multiplicity of $a_{0}(W)$ as eigenvalue 1 of $\left.\tilde{A}\right|_{\left(E_{1}^{*} V\right)_{\text {new }}}$.
Lemma 40.2. With the above notation, we have the following.
(i) $\tilde{m}_{1}, \tilde{m}_{2}, \tilde{m}_{3}, \tilde{m}_{4}$ are determined from intersection numbers and Ψ.
(ii) \tilde{m}_{i} is independent of vertex $x .(1 \leq i \leq 4)$.
(iii) $\ell:=\operatorname{dim} E_{1}^{*} T E_{1}^{*}$ is independent of x.

Proof.
(i) Let $e_{i} \in E_{1}^{*} T E_{1}^{*}(1 \leq i \leq 4)$ denote the orthogonal projection on to the maximal eigenspace of $\left(E_{1}^{*} V\right)_{\text {new }}$ corresponding to λ_{i}. $\left(e=0\right.$ if and only if λ_{i} does not appear.) Set

$$
e_{0}=\frac{1}{k} \tilde{J}
$$

Then eigenvalues for each $e_{1}, e_{1}, e_{3}, e_{4}$ are as follows.

	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}
\tilde{J}	k	0	0	0	0
E_{1}^{*}	1	1	1	1	1
\tilde{A}	a_{1}	$a_{0}\left(W_{1}\right)$	$a_{0}\left(W_{2}\right)$	$a_{0}\left(W_{3}\right)$	$a_{0}\left(W_{4}\right)$
A^{+}	$\frac{a_{2}}{c_{2}}-\Psi$	$a^{+}\left(W_{1}\right)$	$a^{+}\left(W_{2}\right)$	$a^{+}\left(W_{3}\right)$	$a^{+}\left(W_{4}\right)$
A^{-}	\star	$a^{-}\left(W_{1}\right)$	$a^{-}\left(W_{2}\right)$	$a^{-}\left(W_{3}\right)$	$a^{-}\left(W_{4}\right)$

Observe that $e_{i}^{2}=e_{i}$, trace $e_{i}=\operatorname{rank} e_{i}=\tilde{m}_{i}(1 \leq i \leq 4)$, and trace $e_{0}=$ $\operatorname{rank} e_{0}=1$.
By taking the trace of $\tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}, A^{-}$, we have

$$
\begin{align*}
& k=k \tag{40.17}\\
& k=1+\tilde{m}_{1}+\tilde{m}_{2}+\tilde{m}_{3}+\tilde{m}_{4} \tag{40.18}\\
& 0=a_{1}+a_{0}\left(W_{1}\right) \tilde{m}_{1}+a_{0}\left(W_{2}\right) \tilde{m}_{2}+a_{0}\left(W_{3}\right) \tilde{m}_{3}+a_{0}\left(W_{4}\right) \tilde{m}_{4} \tag{40.19}\\
& 0=\left(\frac{a_{2}}{c_{2}}-\Psi\right)+a^{+}\left(W_{1}\right) \tilde{m}_{1}+a^{+}\left(W_{2}\right) \tilde{m}_{2}+a^{+}\left(W_{3}\right) \tilde{m}_{3}+a^{+}\left(W_{4}\right) \tilde{m}_{4}, \tag{40.20}\\
& 0=(\star)+a^{-}\left(W_{1}\right) \tilde{m}_{1}+a^{-}\left(W_{2}\right) \tilde{m}_{2}+a^{-}\left(W_{3}\right) \tilde{m}_{3}+a^{-}\left(W_{4}\right) \tilde{m}_{4} . \tag{40.21}
\end{align*}
$$

The coefficient matrix for $\tilde{m}_{1}, \tilde{m}_{2}, \tilde{m}_{3}, \tilde{m}_{4}$ is nonsingular (this is what you need to check and show).

HS MEMO

Complutation is not completed.
(ii) Ψ is independent of base vertex x.
(iii) We have

$$
\begin{align*}
\operatorname{dim} E_{1}^{*} T E_{1}^{*} & =\left|\left\{i \mid 1 \leq i \leq 4, \quad e_{i} \neq 0\right\}\right|+1 \tag{40.22}\\
& =\left|\left\{i \mid 1 \leq i \leq 4, \tilde{m}_{i} \neq 0\right\}\right|+1 \tag{40.23}
\end{align*}
$$

This completes the proof of the lemma.

Let $\Gamma=(X, E)$ be thin distance regular of diameter $D \geq 5$, and Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$.
Fix vertices $x, y \in X$ with $\partial(x, y)=1$,

$$
E_{i j}^{*} \equiv E_{i}^{*}(x) E_{j}^{*}(y), \quad \delta_{i j}=E_{i j}^{*} \delta
$$

We saw

$$
T(x) \hat{y}=T(y) \hat{x}
$$

Hence,

$$
H:=T(x) \hat{y}=T(y) \hat{x}
$$

is a $T(x, y)$ module. $T(x, y) \subseteq \operatorname{Mat}_{X}(\mathbb{C})$ is generated by $M, M^{*}(x), M^{*}(y)$.
Lemma 40.3. With the above notation, we have the following.
(i) $E_{i, i+1}^{*} H=\operatorname{Span}\left(\delta_{i, i+1}\right) \quad(0 \leq i \leq D-1)$.
(ii) $E_{i+1, i}^{*} H=\operatorname{Span}\left(\delta_{i+1, i}\right) \quad(0 \leq i \leq D-1)$.
(iii) $E_{i, i}^{*} H=\ell-2 \leq 3 \quad(1 \leq i \leq D-1)$.

Proof.
(i) \supseteq : We have

$$
\delta_{i, i+1}=E_{i}^{*} A_{i+1} \hat{y} \in T(x) \hat{y}=H
$$

\subseteq : Pick $h \in E_{i, i+1}^{*} H$. Then $h=R^{i-1} v$, where $v=\left(R^{-1}\right)^{i-1} h \in E_{1}^{*} V$.
So, $v \in \operatorname{Span}\left(\delta_{12}, \delta_{11}, \delta_{10}, \delta_{11}^{+}, \delta_{11}^{-}\right)$.

HS MEMO

$$
\begin{align*}
v & \in E_{1}^{*} V \cap T(x) \hat{y} \tag{40.24}\\
& =E_{1}^{*} T(x) E_{1}^{*} \hat{y} \tag{40.25}\\
& =\operatorname{Span}\left(\tilde{J}, E_{1}^{*}, \tilde{A}, A^{+}, A^{-}\right) \hat{y} \tag{40.26}\\
& =\operatorname{Span}\left(\delta_{10}+\delta_{11}+\delta_{12}, \delta_{10}, \delta_{11}, \delta_{11}^{+}, \delta_{11}^{-}\right) \tag{40.27}\\
& =\operatorname{Span}\left(\delta_{10}, \delta_{11}, \delta_{12}, \delta_{11}^{+}, \delta_{11}^{-}\right) \tag{40.28}
\end{align*}
$$

Hence, there exists $\alpha \in \mathbb{C}$ such that

$$
v-\alpha \delta_{12} \in \operatorname{Span}\left(\delta_{10}, \delta_{11}, \delta_{11}^{+}, \delta_{11}^{-}\right)=E_{11}^{*} H+E_{10}^{*} H
$$

So,

$$
\begin{gather*}
v-\alpha\left(\delta_{12}+\delta_{11}+\delta_{10}\right) \in E_{11}^{*} H+E_{10}^{*} H \\
\begin{aligned}
E_{i i}^{*} H+E_{i, i-1}^{*} H & \ni R^{i-1}\left(v-\alpha\left(\delta_{12}+\delta_{11}+\delta_{10}\right)\right) \\
& =h-\alpha^{\prime}\left(\delta_{i, i+1}+\delta_{i i}+\delta_{i, i-1}\right)
\end{aligned} \tag{40.29}
\end{gather*}
$$

Hence,

$$
h-\alpha^{\prime} \delta_{i, i+1} \in\left(E_{i i}^{*} H+E_{i, i-1}^{*} H\right) \cap E_{i, i+1}^{*} H
$$

Thus,

$$
h=\alpha^{\prime} \delta_{i, i+1} \in \operatorname{Span}\left(\delta_{i, i+1}\right)
$$

(ii) By symmetry, we have the assertion.
(iii) $E_{i}^{*} H=E_{i, i+1}^{*} H+E_{i, i}^{*} H+E_{i, i-1}^{*} H$, and $\operatorname{dim} E_{i}^{*} H=\ell$, $\operatorname{dim} E_{i, i+1}^{*} H=1$, and $\operatorname{dim} E_{i, i-1}^{*} H=1$.
Hence, $\operatorname{dim} E_{i, i}^{*} H=\ell-2$.

HS MEMO

Since $H=T(x) \widehat{y} \subseteq T(x) E_{1}^{*}(x) V$, and

$$
\left(R^{-1}\right)^{i-1}: E_{i}^{*} H \rightarrow E_{1}^{*} H
$$

is one-to-one and onto if $i \leq D$.
Theorem 40.1. Let $\Gamma=(X, E)$ be thin distance regular of diameter $D \geq 5$, and Q-polynomial with respect to $E_{0}, E_{1}, \ldots, E_{D}$.

Pick $i(2 \leq i \leq D)$, and pick $x, y, z \in X$ such that $\partial(x, y)=1, \partial(y, z)=i-1$, $\partial(x, z)=i$.
Then,

$$
z_{i}=|\{w \mid w \in W, \partial(x, w)=1, \partial(y, w)=1, \partial(z, w)=i-1\}|
$$

is independent of x, y, z.
Proof. Observe that z_{i} is the $z x$ entry in

$$
\Delta=E_{i-1}^{*}(y) A_{i-1} E_{1}^{*}(y) A E_{1}^{*}(y)
$$

as

$$
\Delta \hat{x}=\sum_{z \in X, \partial(x, z)=i, \partial(y, z)=i-1} z_{i}(x, y, z) \hat{z}
$$

Hence, $z_{i}(x, y, z)$ is independent of z.
So, $z_{i}(x, y, z)$ is determined by intersection numbers and $\Psi=\Psi(x, y)$, which is independent of x, y as well.

Appendix A

Open Problems

Some Open Problems Concerning Distance-Regular Graphs, the Thin Condition, and the Q-Polynomial Property

Paul Terwilliger

The questions below are unsolved as of May, 1993 (to my knowledge). A complete solution (or even a significant partial solution in some cases) to any one of these problems would be publishable. I have tried to estimate the level of difficulty of each problem listed below. A \star means I believe the problem is relatively easy in the sense that it can be solved using ideas from the course. There are no conceptual gaps to overcome that I am aware of (but the calculations might be quite difficult, however!). A $\star \star \star \star$ means I have no idea how to begin to attack the problem. I am only mentioning problems of this kind to give you an idea about what is known in this field.

Dist: Γ is distance-transitive.
$Q: \Gamma$ is Q-polynomial with respect to the ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents.

Bip: Γ is bipartite.
$T h: \Gamma$ is thin (over the field of complex numbers).

Few1: The subgraph induced on the first subconstituent of Γ with respect to x
has at most 5 distince eigenvalues.

Few2: The subgraph induced on the second subconstituent of Γ with respect to x has at most 16 distinct eigenvalues.
Z : For all integers $i(2 \leq i \leq D)$, and all triples $u, v, w(u, v, w \in X)$ such that $\partial(u, v)=1, \partial(v, w)=i-1$, and $\partial(v, w)=i$, the number

$$
z_{i}:=|\{y \mid y \in X, \partial(y, u)=\partial(y, v)=1, \partial(y, w)=i-1\}|
$$

is a constant that does not depend on u, v, w.
The following implications are known:

$$
Q+\text { Bip } \rightarrow T H, \quad Q+T H \rightarrow \text { Few1, Few2, } Z .
$$

(1) $\star \star \star \star$ Classify all the distance-regular graphs (with sufficiently large diameter). If necessary, assume some combination of the above properties. (My personal goal is to classify all the graphs Γ satisfying $Q, T H$. I expect this will take a number of years.)
(2) $\star \star$ Assume Q, Bip, and classify Γ.
(3) \star Find generalization to the theorems of the course for non-regular, bipartite distance-regular graphs.
(4) \star Assume, Q, and let W denote an irreducible T-module with endpoint 1 that is not thin. Find a nice basis for W and find the matrices representing the adjacency matrix A and the dual adjacency matrix A^{*} with respect to this basis. Perhaps assume classical parameters. Theorem 30.1, and Lemma 31.1 should be useful.
(5) \star Is it true that Γ is thin over the field of complex numbers if and only if Γ is thin over the field of real numbers? What does it mean for Γ to be thin over the field of rational numbers? The examples suggest that if Γ is thin over the complex numbers then it is already thin over the rational numbers. If this is true, it would be nice to have a proof. For the moment, suppose it is not true. Assume Γ is thin over the field of complex numbers, and define the splitting field of Γ to be the minimal extension of the rational field over which Γ is thin. Then the elements of the Galois group of the splitting field act on the standard module, and permute the isomorphism classes of irreducible T modules. How are the isomorphism classes of T-modules involved related? Can the permutations be nontrivial?
(6) $\star \star$ Assume Q, and assume there is a second Q-polynomial ordering of the primitive idempotent. Prove TH. I believe in this case the first subconstituent has at most 4 distinct eigenvalues, and the constant Ψ from class if determined by the intersection numbers. It may be possible to classify all such Γ.
(7) $\star \star$ Assume Q, and assume there is a second P-polynomial ordering of the distance matrices. I believe the same thing happens as in (6) above.
(8) $\star \star$ A path $y=y_{0}, y_{1}, \ldots, y_{t}=z$ in Γ is said to be geodetic whenever $\partial(y, z)=$ t. Let us say a subset Δ of X is geodetically closed whenever all vertices on all geodetic paths with endpoints in Δ are also in Δ. For any vertices $y, z \in X$, observe there exists a unique minimal geodetically closed subset containing y, z, denoted $[y z]$.

If the diameter of $[y z]$ equals $\partial(y, z)$, we say $[y z]$ is a subspace. Furthermore, show the subgraph induced on $[y z]$ is distance-regular, and satisfies $Q, T H$. If this proves not to be the case, find a simple additional assumption on Γ under which it is true. (It seems to hold for the known examples). I believe these subspaces are the key to an eventual classification of the graphs satisfying Q, TH (and possibly all distance-regular graphs with sufficiently large diameter). In the examples, the partially ordered set of all subspaces, ordered by reverse inclusion, is some classical geometry. There are many classification theorems in the area of finite projective geometry. My hope is that given any Γ, the partially ordered set of all subspaces is some highly regular geometry that can be classified using one of these theorems, leading us to a classification of the original Γ. (By the way, I intend to explore this area in the course I am teaching next fall on partiallly ordered sets).
(9) $\star \star$ Assume $Q, T H$. Find a nice basis for $E_{2}^{*} T E_{2}^{*}$ in a way that generalized what we did in class for $E_{1}^{*} T E_{1}^{*}$.
(10) \star Assume $B, T H$, and that the dimension of $E_{2}^{*} T E_{2}^{*}$ is at most 4. Show that Q holds. Find a nice basis for $E_{2}^{*} T E_{2}^{*}$.
(11) It is not hard to show that in general

$$
\begin{array}{ll}
c_{i} \geq c_{i-1} & (1 \leq i \leq D) \\
b_{i} \leq b_{i-1} & (0 \leq i \leq D-1) \tag{A.2}
\end{array}
$$

It is known that if Γ has at least one cyle $y 1, y 2, y 3, y 4, y 1$ such that $\partial(y 1, y 3)=$ $\partial(y 2, y 4)=2$ then

$$
c_{i}-c_{i-1}+b_{i-1}-b_{i} \geq a_{1}+2 \quad(1 \leq i \leq D)
$$

This bound has proved to be quite fndamental. For example, the graphs Γ where equality holds for all i all satisfy Q, and in fact they are precisely the graphs of type IIA or IIC (refereng to p.10, 11 in the thick paper I handed out in class). These graphs have all been classified. I have some papers describing some more general bounds of the above sort, but they are unsatisfactory in the sense that the class of graphs for which equality is attained is not interesting, and may even be empty. Hence one problem $(\star \star)$ is to find a bound that controls the growth of the c_{i} 's and the decrease of the b_{i} 's, where equality is attained for some nice, large class of graphs. Ideally, this class would contain all the known examples of Γ with sufficiently large diameter, or perhaps all the graphs Γ satisfying $Q+T H$. Specific proble (\star): Assume Z and redo the arguments in the above-mentioned papers. Dramatic improvements in the bounds obtained are expected (I did not realise the significance of Z and redo the arguments in the above-mentioned papers). Since $Q+T H \rightarrow Z$, the new bounds are expected to give important feasibility conditions on the intersection numbers of any Γ satisfying Q and TH.
$(12) \star$ Explore the class of graphs that are Q-polynomial with respect to each vertex. but not assumed to be distance-regular. Are these graphs in fact distanceregular or bi-distance-regular? (This result would be very esthetically pleasing to me, since as we have seen, the sibling property of being thin does not imply distance-regularity or bi-distance-regularity). If the answer to the above question is "no", just what sort of regularity do these graphs have? For a graph that is Q-polynomial with respect to each vertex, how must the orderings of the primitive idempotents associated with adjacent vertices be related? Is it possible for a distance-regular graph to be Q-polynomial with respect to each vertex, but still not be Q-polynomial? (This is a completely new area. Up until now, the Q-polynomial property was only defined for distance-regular graphs.)
(13) $\star \star$ To what extent do the polynomial relations on R, L, F given in Theorem 30.1 actually characterize the Q-polynomial property? For example, suppose
(i) $L^{2} F E_{i}^{*}, L F L E_{i}^{*}, F L^{2} E_{i}^{*}, L^{2} E_{i}^{*}$ are linearly dependent for all $i(2 \leq i \leq D)$.
(ii) $F L R E_{i}^{*}, F R L E_{i}^{*}$ are linearly dependent for all $i(0 \leq i \leq D)$, and
(iii) $R L^{2} E_{i}^{*}, L R L E_{i}^{*}, L^{2} R E_{i}^{*}, L F^{2} E_{i}^{*}, F L F E_{i}^{*}, L F E_{i}^{*}, F^{2} L E_{i}^{*}, F L E_{i}^{*}, L E_{i}^{*}$ are linearly dependent, for all $i(1 \leq i \leq D)$.

Then does Q hold? what if we assume $T H$? If not, what other graphs can one get? are they "almost" Q-polynomial in some sense (pserhaps many Krein parameters vanish, but not quite enough to imply Q). What is the essential assumption about the coefficients in the above dependencies that is needed to insure Q.
(14) $\star \star \star$ Assume Q and $T H$. Find the abstract structure of the Norton algebra N. My intuition says that this structure can be computed in terms of the
intersection numbers and a small list of additional parameters such as ψ. The examples suggest that N is "almost associative" in some sense. Specific problem (\star) Find the precise structure of the Norton algebra for the examples $J(d, n)$, $J_{q}(d, n), \ldots$, and find some pattern. The dual of Theorem 30.1 is relevent to this problem. My intuition says that the idempotents of N should correspond to the subspaces of Γ referred to in problem 8, and that somehow the multiplication operation in N should be related to the meet and join operations in the geometry of subspaces referred to in that problem.
(15) $\star \star$ Assume Q and $T H$, and pick $y \in X$. Show

$$
T(x) \hat{y}=T(y) \hat{x}
$$

(I can show this for $\partial(x, y)=1$.) If the above line holds, then apparently $H:=T(x) \hat{y}=T(y) \hat{x}$ is a module for the algebra $T(x, y)$ generated by the BoseMesner algebra M, the dual Bose-Mesner algebra $M^{*}(x)$, and $M^{*}(y)$. Observe the elements of $M^{*}(x), M^{*}(y)$ mutually commute, and in fact that the maximal common engenspaces of $M^{*}(x), M^{*}(y)$ are the $E_{i j}^{*} V(0 \leq i, j \leq D)$, where $E_{i j}^{*}=E_{i}^{*}(x) E_{j}^{*}(y)$. Find a nice orthogonal basis for each $E_{i j}^{*} H$. Observe the union B of these bases is a basis for H. Find the matrices representing A, $A^{*}(x), A^{*}(y)$ with respect to B. Choose B so that the entries in these matrices are nice, factorable expressions in the intersection numbers and whatever other parameters are needed. In the case $\partial(x, y)=1$, these entries can be deteermined from the intersection numbers and the parameter ψ. If $\partial(x, y) \geq 2$, presumably there are some more free parameters analoguous to ψ that play a role. My intuition says that as a $T(x, y)$-module, H is determined from the intersection numbers of Γ and t free parameters, where $t=\partial(x, y)$.
(16) $\star \star$ Does $T H$ and Few1 imply Z ? If not, what extra assumption is needes?
(17) $\star \star$ Does TH, Few1, Few2, imply Q ? If not, what extra assumption is needed?
(18) $\star \star$ Let Γ be an arbitrary grarph, not assumed to be distance-regular. Conjecture: Γ is thin if and only if for all integers i, j, k, and all vertices $x, y, z \in X$ such that $\partial(x, y)=\partial(x, z)=i$, the number of vertices $w \in X$ with $\partial(w, x)=j$, $\partial(w, y)=1, \partial(w, z)=k$ equals the number of vertices $w^{\prime} \in X$ with $\partial\left(w^{\prime}, x\right)=j$, $\partial\left(w^{\prime}, z\right)=1, \partial\left(w^{\prime}, y\right)=k$. If Γ assumed to be distance-regular, then the conjecrure is true and there is a long proof in the thick paper I handed out in class (Theorem 5.1 (iii)) . A short, slick proof (assuming distance-regularity or not) is very much needed. If the conjecture turns out not to be true in the bi-distance-regular case, find some similar combinatorial characterization of the thin property.

There are a number of additional problems in section 7 of the thick paper I handed out in class. Essentially all the known examples of thin, Q-polynomial distance-regular graphs are listed in section 6 of that paper.

For each of the above problems, I have a good deal of background information to communicate, but unfortunately in most cases it is not in published form! If you tell me what problem you want to focus on, I can tailor a series of lectures this summer towards communicating what I know on the subject. But one key point: Often "I don't know what I know". If you are constantly asking probing questions of me it makes my job a lot easier: it often reminds me of information that is relevant that I had forgotten, or that I had forgotten was relevant.

Appendix B

Comparison Table

We list Definitions, Theorems, Lemmas, etc. with the numbers in the original handwritten note.

Chapter	New Numbering	Old Numbering
1	Example 1.1	Example
	Example 1.2	Example
	Definition 1.1	Definition
	Lemma 1.1	Lemma 1
	Definition 1.2	Definition
	Definition 1.3	Definition
	Definition 1.4	Definition
	Definition 1.5	Definition
	Definition 1.6	Definition
	Definition 1.7	Definition
	Lemma 1.2	Lemma 2
2	Definition 2.1	Definition
	Definition 2.2	Definition
	Theorem 2.1	Theorem 3
	Lemma 2.1	Lemma 4
	Definition 2.3	Definition
	Corollary 2.1	Corollary 5
3	Definition 3.1	Definition
	Definition 3.2	Definition
	Definition 3.3	Definition
	Definition 3.4	Definition
	Example 3.1	Example
	Example 3.2	Example
	Example 3.3	Example

Chapter	New Numbering	Old Numbering
4	Theorem 3.1	Theorem 6
	Definition 3.5	Definition
	Example 3.4	Example
	Lemma 3.1	Lemma 7
	Theorem 4.1	Theorem 8
	Example 4.1	Example
	Example 4.2	Example
	Definition 4.1	Definition
	Lemma 4.1	Lemma 9
5	Definition 5.1	Definition
	Theorem 5.1	Theorem 10
6	Theorem 6.1	Theorem 11
	Definition 6.1	Definition
	Definition 6.2	Definition
7	Definition 7.1	Definition
	Example 7.1	Example
	Lemma 7.1	Lemma 12
	Theorem 7.1	Theorem 13
8	Lemma 8.1	Lemma 14
9	Lemma 9.1	Lemma 15
	Corollary 9.1	Corollary 16
	Lemma 9.2	Lemma 17
	Definiton 9.2	Definition
10	Lemma 10.1	Lemma 18
	Lemma 10.2	Lemma 19
	Corollary 10.1	Corollary 20
11	Lemma 11.1	Lemma 21
	Lemma 11.2	Lemma 22
12	Lemma 12.1	Lemma 23
	Theorem 12.1	Theorem 24
13	Lemma 13.1	Lemma 25
	Theorem 13.1	Theorem 26
	Proposition 13.1	Proposition 27
14	Lemma 14.1	Lemma 28
	Lemma 14.2	Lemma 29
15	Definition 15.1	Definition
	Lemma 15.1	Lemma 30
16	Definition 16.1	Definition
	Lemma 16.1	Lemma 31
	Theorem 16.1	Theorem 32
	Lemma 16.2	Lemma 33*
17	Definition 17.1	Definition
	Definition 17.2	Definition

Chapter	New Numbering	Old Numbering
	Example 17.1	Example 1
	Example 17.2	Example 2
	Exercise 17.1	Exercise
	Example 17.3	Example 3
18	Lemma 18.1	Lemma 33
19	Lemma 19.1	Lemma 34
	Definition 19.1	Definition:
20	Lemma 20.1	Lemma 34-a
	Lemma 20.2	Lemma 34-b
	Lemma 20.3	Lemma 35
	Corollary 20.1	Corollary 36
	Lemma 20.4	Lemma 37
21	Lemma 21.1	Lemma 38
	Lemma 21.2	Lemma 39
22	Lemma 22.1	Lemma 40
	Definition 22.1	Definition
	Lemma 22.2	Lemma 41
23	Theorem 23.1	Theorem 42
	Definition 23.1	Definition
	Example 23.1	Example
24	Definition 23.2	Definition
	Lemma 23.1	Lemma 43
	Definition 24.1	Definition
	Theorem 24.1	Theorem 44
26	Corollary 26.1	Corollary 45
	Lemma 26.1	Lemma 46
27	Theorem 27.1	Theorem 47
	Definition 27.1	Definition
	Definition 27.2	Definition
	Lemma 27.1	Lemma 48
	Example 27.1	Example
28	Lemma 28.1	Lemma 49
	Conjecture 28.1	Conjecture
29	Theorem 29.1	Theorem 50
30	Theorem 30.1	Theorem 51
	Lemma 30.1	Lemma 52
	Corollary 30.1	Corollary 53
31	Lemma 31.1	Lemma 54
32	Lemma 32.1	Lemma 55
	Lemma 32.2	Lemma 56
	Lemma 32.3	Lemma 57
33	Lemma 33.1	Lemma 58
	Lemma 33.2	Lemma 59

Chapter	New Numbering	Old
		Numbering
34	Lemma 33.3	Lemma 60
	Lemma 33.4	Lemma 61
	Lemma 34.1	Lemma 62
	Lemma 34.2	Lemma 63
	Lemma 34.3	Lemma 64
35	Theorem 35.1	Theorem 65
36	Conjecture 36.1	Conjecture
	Conjecture 36.2	Conjecture
	Conjecture 36.3	Conjecture
37	Lemma 37.1	Lemma 66
	Definition 37.1	Definition
	Example 37.1	Example
	Lemma 37.2	Lemma 67
38	Lemma 38.1	Lemma 68
	Definition 38.1	Definition
	Lemma 38.2	Lemma 69
39	Lemma 39.1	Lemma 70
	Lemma 39.2	Lemma 71
	Lemma 39.3	Lemma 72
	Lemma 39.4	Lemma 73
40	Lemma 40.1	Lemma 74
	Lemma 40.2	Lemma 75
	Lemma 40.3	Lemma 76
	Theorem 40.1	Theorem 77

Appendix C

Technical Memo

This note is created by bookdown package on RStudio.
For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).
The following is a memo.
A. Install R and R Studio with necessary packages if needed
B. Create and setup ssh key by ssh-keygen
C. Setup Git-GitHub connection

1. Create a GitHub account if needed
2. Set ssh key by copying the value of the public SSH key to the clipboard using pbcopy and paste it into SSH Keys in the GitHub account
D. Remote Repository
3. Log-in to the GitHub account
4. Go to RStudio/bookdown-demo repository: https://github.com/rstudio /bookdown-demo
5. Use This Template
6. Input Repository Name
7. Select Public - default
8. Create a repository from the template
9. Set Pages: Branch main, docs
E. Local Repository
10. Copy: Code $>$ Clone $>$ SSH from the GitHub repository
11. Create a new project by Version Control Git
12. Change directory name _book to docs
13. Edit YAMLs

All source files are in the GitHub Repository.

C. 1 To Do List

- Environment align in ePub_book.
- It may be better to give up ePub book mode.
- https://github.com/rstudio/bookdown/issues/530
- See also bookdown ePub version page 33. I could not retrieve the same. (See page 32 as well.)
- Environment of align

1. align

$$
\begin{align*}
A & =B \tag{C.1}\\
& =C \tag{C.2}
\end{align*}
$$

2. eqnarray*

$$
\begin{aligned}
A & =B \\
& =C
\end{aligned}
$$

3. array in equation with minus spacing

$$
\begin{aligned}
A & =B \\
& =C
\end{aligned}
$$

4. split in equation

$$
\begin{align*}
A & =B \tag{C.3}\\
& =C
\end{align*}
$$

- Shaded Box using frame with environment hs in PDF
- Controlling top icons
- My template of bookdown

Minor

- Difference in numbering; HTML and PDF
- bs4_book format
- bookdown template and doc directory
- Style of citation in PDF

Bibliography

A.E. Brouwer, A.M. Cohen, A. N. (1989). Distance-Regular Graphs. SpringerVerlag, Berlin Heidelberg. 3-540-50619-5, 0-387-50619-5.

Charles W. Curtis, I. R. (2006). Representation Theory of Finite Groups and Associative Algebras. Chelsea Pub Co, uk edition. 978-1138359420.

Terwilliger, P. (1992). The subconstituent algebra of an association scheme. i. J. Algebraic Combin., 1(4):363-388.

Terwilliger, P. (1993a). The subconstituent algebra of an association scheme. ii. J. Algebraic Combin., 2(1):73-103.

Terwilliger, P. (1993b). The subconstituent algebra of an association scheme. iii. J. Algebraic Combin., 2(2):177-210.

Terwilliger, P. (1995). A new inequality for distance-regular graphs. Discrete Math., 137(1-3):319-332.

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. 978-0821840665.

Xie, Y. (2017). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 978-1138469280.

Yihui Xie, J.J Allaire, G. G. (2018). R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. 978-1138359420.

Index

Q-polynomial, 139, 150
association matrix, 114
association scheme, 114
automorphism, 25
bipartite, 19
bipartite graph, 23
Cayley graph, 25
character, 28
complete graph, 102
connected, 16
diameter, 35
diameter of $\Gamma, 16$
diameter wrt $x, 16$
distance, 16
distance-regular, 79
distance-transitive, 60
dual associate matrix, 123
dual Bose-Mesner algebra, 123
dual endpoint, 229
dual thin, 50
endpoint, 35
generalized adjacency matrix, 237 graph, 13
irreducible, 17
isomorophism, 25
isomorphic, 38
measure, 68
module, 17
multiplicity, 38
Norton algebra, 134
path, 16
reducible, 19
regular, 15
restricted, 50
subconstituent algebra, 17
symmetrix, 114
thin, 50
valency, 15
vertex transitive, 25

