INTRODUCTION TO LINEAR ALGEBRA

Hiroshi SUZUKI* Division of Natural Sciences International Christian University

October 21, 2010

10 Vectors in 2-Space and 3-Space

- **Definition 10.1** 1. Vectors: $v = \overrightarrow{PQ}$. $P = P(p_1, p_2, p_3)$: initial point, $Q = Q(q_1, q_2, q_3)$: terminal point.
 - 2. Components of $\boldsymbol{v} = (v_1, v_2, v_3)$ (or $\boldsymbol{v} = (v_1, v_2)$). Initial point at the origin.

$$v = PQ = (q_1 - p_1, q_2 - p_2, q_3 - p_3).$$

- 3. $\boldsymbol{v} = (v_1, v_2, v_3), \, \boldsymbol{w} = (w_1, w_2, w_3). \, k \in \boldsymbol{R}.$ Then $\boldsymbol{v} + \boldsymbol{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$ and $k\boldsymbol{v} = (kv_1, kv_2, kv_3).$
- 4. $\|v\| = \sqrt{v_2^2 + v_2^2 + v_3^2}$: the norm of v.
- 5. Let $P = P(p_1, p_2, p_3), Q = Q(q_1, q_2, q_3)$. Then $d(P, Q) = \|\overrightarrow{PQ}\|$ is the distance.
- 6. Let $\boldsymbol{v} = (v_1, v_2, v_3), \ \boldsymbol{w} = (w_1, w_2, w_3)$. Then $\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 (= \boldsymbol{v} \boldsymbol{w}^T)$: Euclidean inner product. In particular, $\|\boldsymbol{u}\| = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$.

$$\boldsymbol{u}\cdot\boldsymbol{v} = \boldsymbol{v}\cdot\boldsymbol{u}, \ (\boldsymbol{u}+\boldsymbol{v})\cdot\boldsymbol{w} = \boldsymbol{u}\cdot\boldsymbol{w}+\boldsymbol{v}\cdot\boldsymbol{w}, (k\boldsymbol{u})\cdot\boldsymbol{v} = k(\boldsymbol{u}\cdot\boldsymbol{v}).$$

Example 10.1 u = (3, -2, -5), v = (1, 4, -4), w = (0, 3, 2).

Note.

- 1. The vectors above are often called *row vectors*. *Column vectors* are also considered.
- 2. We can extend the definitions above to vectors in \mathbb{R}^n and Cacchy-Schwarz is valid for vectors in $\mathbb{R}^n = \{(v_1, v_2, \dots, v_n) \mid v_i \in \mathbb{R}\}.$

Theorem 10.1 (Cauchy-Schwarz) The following holds for $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^n$.

$$-\|\boldsymbol{u}\|\|\boldsymbol{v}\| \leq \boldsymbol{u} \cdot \boldsymbol{v} \leq \|\boldsymbol{u}\|\|\boldsymbol{v}\|$$

Proof. Let $\boldsymbol{u} = (u_1, u_2, u_3)$ and $\boldsymbol{v} = (v_1, v_2, v_3)$ be non-zero vectors in \boldsymbol{R}^n .

1. Let λ be a real number. Show the following. (Hint: use $\|\boldsymbol{w}\|^2 = \boldsymbol{w} \cdot \boldsymbol{w}$.)

$$\|\lambda \boldsymbol{u} + \boldsymbol{v}\|^2 = \lambda^2 \|\boldsymbol{u}\|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v})\lambda + \|\boldsymbol{v}\|^2$$

- 2. Using the fact that $\|\lambda \boldsymbol{u} + \boldsymbol{v}\|^2 \ge 0$ for all real λ and a property of a quadratic function, show the Cauchy-Schwarz Inequality. (Hint: Discriminant (Hanbetsu-shiki))
- 3. Show the equivalence of the following:

 $\begin{aligned} |\boldsymbol{u} \cdot \boldsymbol{v}| &= \|\boldsymbol{u}\| \|\boldsymbol{v}\| \\ \Leftrightarrow \quad \text{There exists } \boldsymbol{\alpha} \in \boldsymbol{R} \text{ such that } \boldsymbol{u} = \boldsymbol{\alpha} \boldsymbol{v}. \end{aligned}$

Definition 10.2 1. Suppose $u \neq 0$ and $v \neq 0$. The angle θ such that $0 \leq \theta \leq \pi$ satisfying

$$\cos \theta = rac{oldsymbol{u} \cdot oldsymbol{v}}{\|oldsymbol{u}\| \|oldsymbol{v}\|}.$$

2. Vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal whenever $\boldsymbol{u} \cdot \boldsymbol{v} = 0$, i.e., $\theta = \pi/2$.

3. Let $u, v \in V$ and $v \neq 0$. Then there exist u_1 and u_2 such that

$$\boldsymbol{u} = \boldsymbol{u}_1 + \boldsymbol{u}_2, \ \boldsymbol{u}_1 = \alpha \boldsymbol{v}, \ \text{and} \ \boldsymbol{u}_2 \cdot \boldsymbol{v} = 0.$$

- (a) $\operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} = \frac{\boldsymbol{v} \cdot \boldsymbol{u}}{\|\boldsymbol{v}\|^2} \boldsymbol{v}$: vector component of \boldsymbol{u} along \boldsymbol{v} .
- (b) $\boldsymbol{u} \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} = \boldsymbol{u} \frac{\boldsymbol{v} \cdot \boldsymbol{u}}{\|\boldsymbol{v}\|^2} \boldsymbol{v}$: vector component of \boldsymbol{u} orthogonal to \boldsymbol{v} .
- Let u, v be vectors in R³. Then the cross product of u and v is defined as follows.

$$\begin{aligned} \boldsymbol{u} \times \boldsymbol{v} \\ &= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1) \\ &= \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, \begin{vmatrix} u_3 & u_1 \\ v_3 & v_1 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right) \\ &= \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \\ &= -\boldsymbol{v} \times \boldsymbol{u}, \end{aligned}$$

where $\mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0)$ and $\mathbf{k} = (0, 0, 1)$.

^{*}E-mail:hsuzuki@icu.ac.jp

5. Let u, v, w be vectors in \mathbb{R}^3 . Then the scalar triple product of u, v and w is defined as follows.

$$\begin{array}{rcl} \boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) \\ &= & (u_1, u_2, u_3) \cdot \\ & & \left(\left| \begin{array}{ccc} v_2 & v_3 \\ w_2 & w_3 \end{array} \right|, - \left| \begin{array}{ccc} v_1 & v_3 \\ w_1 & w_3 \end{array} \right|, \left| \begin{array}{ccc} v_1 & v_2 \\ w_1 & w_2 \end{array} \right| \right) \\ &= & \left| \begin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right| \\ &= & \boldsymbol{v} \cdot (\boldsymbol{w} \times \boldsymbol{u}) = \boldsymbol{w} \cdot (\boldsymbol{u} \times \boldsymbol{v}) \end{array}$$

Theorem 10.2 Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be vectors in \boldsymbol{R}^3

- 1. $\|\boldsymbol{u} \times \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 (\boldsymbol{u} \cdot \boldsymbol{v})^2$. (Lagrange's identity)
- 2. $\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \sin \theta$. The area of the parallelogram determined by \boldsymbol{u} and \boldsymbol{v} .
- 3. $\boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = 0.$
- Let θ be the angle between u and v, and u is rotated through the angle θ until it coincides with v. If the fingers of the right hand are cupped so that they point in the direction of rotation., then the thumb indicates the direction of u × v.
- 5. $|\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|$ is the volume of the parallelopiped determined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.

Proof.

- 1. By computation.
- 2. $\|\boldsymbol{u} \times \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 (\boldsymbol{u} \cdot \boldsymbol{v})^2 = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 (1 \cos^2 \theta) = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 \sin^2 \theta$
- 3. Clear by definition.
- 4. Check special cases.
- 5. Clear by above.

Theorem 10.3 Let $P_0 = P_0(x_0, y_0, z_0)$ be a point and n = (a, b, c) a vector.

- 1. $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$: point normal form of the equation of a plane P=P(x,y,z).
- 2. Planes ax+by+cz+d = 0 and a'x+b'y+c'z+d' = 0 are parallel if and only if (a, b, c) is a nonzero scalar times (a', b', c').
- **3.** The distance D from a point $P(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}.$$