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10 Vectors in 2-Space and 3-
Space

Definition 10.1 1. Vectors: v = −−→
PQ. P =

P (p1, p2, p3): initial point, Q = Q(q1, q2, q3):
terminal point.

2. Components of v = (v1, v2, v3) (or v = (v1, v2)).
Initial point at the origin.

v = −−→
PQ = (q1 − p1, q2 − p2, q3 − p3).

3. v = (v1, v2, v3), w = (w1, w2, w3). k ∈ R. Then
v + w = (v1 + w1, v2 + w2, v3 + w3) and kv =
(kv1, kv2, kv3).

4. ∥v∥ =
√

v2
2 + v2

2 + v2
3 : the norm of v.

5. Let P = P (p1, p2, p3), Q = Q(q1, q2, q3). Then
d(P,Q) = ∥−−→PQ∥ is the distance.

6. Let v = (v1, v2, v3), w = (w1, w2, w3). Then
v ·w = v1w1 + v2w2 + v3w3(= vwT ): Euclidean
inner product. In particular, ∥u∥ =

√
u · u.

u·v = v·u, (u+v)·w = u·w+v·w, (ku)·v = k(u·v).

Example 10.1 u = (3,−2,−5), v = (1, 4,−4), w =
(0, 3, 2).

Note.

1. The vectors above are often called row vectors.
Column vectors are also considered.

2. We can extend the definitions above to vectors
in Rn and Cacchy-Schwarz is valid for vectors in
Rn = {(v1, v2, . . . , vn) | vi ∈ R}.

Theorem 10.1 (Cauchy-Schwarz) The following
holds for u, v ∈ Rn.

−∥u∥∥v∥ ≤ u · v ≤ ∥u∥∥v∥

Proof. Let u = (u1, u2, u3) and v = (v1, v2, v3) be
non-zero vectors in Rn.
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1. Let λ be a real number. Show the following.
(Hint: use ∥w∥2 = w · w.)

∥λu + v∥2 = λ2∥u∥2 + 2(u · v)λ + ∥v∥2.

2. Using the fact that ∥λu + v∥2 ≥ 0 for all real λ
and a property of a quadratic function, show the
Cauchy-Schwarz Inequality. (Hint: Discriminant
(Hanbetsu-shiki))

3. Show the equivalence of the following:

|u · v| = ∥u∥∥v∥
⇔ There exists α ∈ R such that u = αv.

Definition 10.2 1. Suppose u ̸= 0 and v ̸= 0.
The angle θ such that 0 ≤ θ ≤ π satisfying

cos θ =
u · v

∥u∥∥v∥
.

2. Vectors u and v are orthogonal whenever u ·v =
0, i.e., θ = π/2.

3. Let u, v ∈ V and v ̸= 0. Then there exist u1

and u2 such that

u = u1 + u2, u1 = αv, and u2 · v = 0.

(a) projvu = v·u
∥v∥2 v: vector component of u

along v.

(b) u−projvu = u− v·u
∥v∥2 v: vector component

of u orthogonal to v.

4. Let u, v be vectors in R3. Then the cross product
of u and v is defined as follows.

u × v

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

=
(∣∣∣∣ u2 u3

v2 v3

∣∣∣∣ ,

∣∣∣∣ u3 u1

v3 v1

∣∣∣∣ ,

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣)

=

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
= −v × u,

where i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).
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5. Let u,v, w be vectors in R3. Then the scalar
triple product of u, v and w is defined as follows.

u · (v × w)
= (u1, u2, u3) ·(∣∣∣∣ v2 v3

w2 w3

∣∣∣∣ ,−
∣∣∣∣ v1 v3

w1 w3

∣∣∣∣ ,

∣∣∣∣ v1 v2

w1 w2

∣∣∣∣)

=

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= v · (w × u) = w · (u × v)

Theorem 10.2 Let u, v, w be vectors in R3

1. ∥u × v∥2 = ∥u∥2∥v∥2 − (u · v)2. (Lagrange’s
identity)

2. ∥u × v∥ = ∥u∥∥v∥ sin θ. The area of thee paral-
lelogram determined by u and v.

3. u · (u × v) = v · (u × v) = 0.

4. Let θ be the angle between u and v, and u is
rotated through the angle θ until it coincides with
v. If the fingers of the right hand are cupped so
that they point in the direction of rotation., then
the thumb indicates the direction of u × v.

5. |u · (v × w)| is the volume of the parallelopiped
determined by u, v,w.

Proof.

1. By computation.

2. ∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2 = ∥u∥2∥v∥2(1−
cos2 θ) = ∥u∥2∥v∥2 sin2 θ

3. Clear by definition.

4. Check special cases.

5. Clear by above.

Theorem 10.3 Let P0 = P0(x0, y0, z0) be a point
and n = (a, b, c) a vector.

1. a(x−x0)+b(y−y0)+c(z−z0) = 0: point normal
form of the equation of a plane P = P (x, y, z).

2. Planes ax+by+cz+d = 0 and a′x+b′y+c′z+d′ =
0 are parallel if and only if (a, b, c) is a nonzero
scalar times (a′, b′, c′).

3. The distance D from a point P (x0, y0, z0) and
the plane ax + by + cz + d = 0 is

D =
|ax0 + by0 + cz0|√

a2 + b2 + c2
.
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