8 Applications of Deter

8.1 Cramer’s Rule
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where A;(b) is the matriz obtained by replacing the jth column of A by b.

Proof. By Review 2 (c), for j =1,2,...
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The last equality follows from our observation above. Hence we have the formula.
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8.2 Combinatorial Definition of Determinants

Definition 8.1 A permutation (IE##) of the set of integers (¥#4%) {1,2,...,n}is an
arrangement (MO Z) of these integers in some order without omissions or repetitions.
Let S,, denote the set of all permutations of {1,2,...,n}. Let 0 = (i1,42,...,4,) be a
permutation. Then the number of inversions (HKiE#{) , denoted by £(c), is defined by

Uo) = [{(j, k) | 7 <k, i; > ix}|, and sign(o) = (1)1
is called the signature (ff%5) of o.

Let A = (a;;) be a square matrix of size n. Then
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8.3 Vector Product in R?

Let u,v be (column) vectors in R3. Then the vector product (X7 +ILF&)
product) of u and v is:

(or cross

-
UXV = [ugls — U3la, UsV] — U U3, U Vg — UV ]
€1 €2 €3
Uz U3 us U Uy U2
= = | Uy Uo U3
V2 Vs vz U1 vp V2
V1 Vg Vs

Let u, v, w be vectors in R3. Then the scalar triple product of w, v and w is defined
as follows.

-
_ T V2 Vg | 1 U3 U1 V2
u (’U X 'w) = [U17U2,U3] |: Wy ws W, ws Wy ws :|
Uy Uz U3
= vy U2 Vs
w1 Wy Ws
= v (wxu)=w-(uxv)
The following hold:
uxXxv=—-vXxu u(uxv)=v-(uxv)=0.

Theorem 8.2 (Determinants as Area or Volume in page 198) If A is a 2x2 ma-
triz, the area of the parallelogram (PATVUANS)  determined by the columns of A is
|det(A)|. If A is a 3 x 3 matriz, the volume of the parallelepiped (VAT/NIHIAE) deter-
mined by the columns of A is | det(A)].
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