1. Let $u = [2, 1, -3]^T$, $v = [0, 1, 2]^T$, $w = [1, 3, 1]^T$, $e_1 = [1, 0, 0]^T$, $e_2 = [0, 1, 0]^T$ and $e_3 = [0, 0, 1]^T$.

(a) Find $u \times v$ and the volume of the parallelepiped defined by u, v, w. Show work!

(b) Find the standard matrix A of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(e_1) = u$, $T(e_1 + e_2) = v$ and $T(e_1 + e_2 + e_3) = w$. Show work!

Points:

<table>
<thead>
<tr>
<th>1.(a)</th>
<th>(b)</th>
<th>2.(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>3.(a)*</th>
<th>(b)*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.(a)*</td>
<td>(b)</td>
<td>(c)</td>
<td>5.(a)</td>
<td>(b)</td>
<td>(c)*</td>
<td>none</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

メッセージ欄：この授業について、特に改善点について、その他何でもどうぞ。
2. Consider the system of linear equations with augmented matrix \(C = [c_1, c_2, c_3, c_4, c_5, c_6] \), where \(c_1, c_2, \ldots, c_6 \) are the columns of \(C \). We obtained a row echelon form \(G \) after applying a sequence of elementary row operations to the matrix \(C \). (30 pts)

\[
C = \begin{bmatrix}
0 & 0 & 1 & -2 & 0 & -7 \\
1 & 1 & 0 & 2 & 0 & 9 \\
-1 & -1 & 0 & -1 & -1 & -6 \\
-3 & -3 & -2 & -2 & 0 & -13
\end{bmatrix}, \quad G = \begin{bmatrix}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

(a) Describe each step of a sequence of elementary row operations to obtain \(G \) from \(C \) by \([i, j], [i, j; c], [i; c]\) notation. Show work.

(b) Find an invertible matrix \(P \) of size 4 such that \(G = PC \) and express \(P \) as a product of elementary matrices. Show work.

(c) Is \(P \) in (b) uniquely determined? Give a brief explanation.
(d) Find three columns of C that are linearly independent, and find three columns of C that are linearly dependent. Give a brief explanation.

(e) By applying a sequence of elementary row operations, reduce C to the reduced row echelon form. Show work!

(f) Find all solutions of the system of linear equations.
3. Let A, x and b be a matrix and vectors given below. (20 pts)

$$A = \begin{bmatrix}
4 & -1 & 2 & 0 \\
1 & 2 & -2 & -1 \\
-1 & -2 & 1 & 1 \\
-2 & 3 & 1 & 2
\end{bmatrix}, \quad x = \begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}.$$

(a) Evaluate $\det(A)$. Show work!

(b) Express y as a quotient ($bun-su$) of determinants when $Ax = b$, and write $\text{adj}(A)$, the adjugate of A. Don’t evaluate the determinants.

$$y = \quad , \quad \text{adj}(A) =$$
4. Let A be the 6×6 matrix given below, where a and b are real numbers. (20 pts)

$$A = \begin{bmatrix}
 a & b & b & b & b & b \\
 b & a & b & b & b & b \\
 b & b & a & b & b & b \\
 b & b & b & a & b & b \\
 b & b & b & a & b & b \\
 b & b & b & b & a & b
\end{bmatrix}. $$

(a) Find the determinant of A. Show work!

(b) Find the characteristic polynomial of A. Give a brief explanation.

(c) Find the condition on a and b that the matrix linear transformation $T : \mathbb{R}^6 \to \mathbb{R}^6 (\mathbf{x} \mapsto A\mathbf{x})$ is onto. Give a brief explanation.
5. Let A be the following matrix. (20 pts)

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 8 \end{bmatrix}.$$

(a) List all eigenvalues of A, and give a reason that A is diagonalizable.

(b) Find an eigenvector of the largest eigenvalue of A. Show work!

(c) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. Show work!