1. Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^3$ be a transformation defined by:

$$T(x_1, x_2, x_3, x_4) = (3x_1 + x_2 - x_4, x_1 + 2x_2 - 3x_3 + 3x_4, -2x_1 + 4x_2 - 2x_3 + 5x_4).$$

(a) Show that T is a linear transformation.

(b) Find the standard matrix $A = [v_1, v_2, v_3, v_4]$ for the linear transformation T.

Points:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>2.(a)*</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1.(a)</td>
<td></td>
</tr>
<tr>
<td>3.(a)*</td>
<td>(b)*</td>
<td>(c)</td>
<td>4.(a)</td>
<td>(b)</td>
<td>(c)*</td>
<td>none</td>
<td>*</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
1. Continued from page 1.

(c) Find $v_1 \times v_2$, where v_1 and v_2 are in (b).

(d) Find the volume of the parallelepiped determined by v_1, v_2, v_3, where v_1, v_2 and v_3 are in (b).

(e) Determine whether T is one-to-one. Explain your answer.

(f) Determine whether T is onto. Explain your answer.
2. Let A be the following 4×4 matrix and a, b, c, d real numbers. (25 pts)

$$
A = \begin{bmatrix}
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
1 & x_3 & x_3^2 & x_3^3 \\
1 & x_4 & x_4^2 & x_4^3
\end{bmatrix}.
$$

$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ is called a cubic polynomial.

(a) Show that $\det(A) = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3)$.
2. Continued from page 3.

(b) Explain that a cubic polynomial \(f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \) is uniquely determined when \(f(1) = 2, f(2) = 0, f(3) = 1, f(4) = 3 \).

(c) Find \(a_3 \) in (b) by Cramer’s rule. Don’t evaluate determinants.

(d) Suppose \(x_1, x_2, x_3, x_4 \) are distinct. Explain that a cubic polynomial \(f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \) is uniquely determined when \(f(x_1) = y_1, f(x_2) = y_2, f(x_3) = y_3, f(x_4) = y_4 \) for any \(y_1, y_2, y_3, y_4 \).
3. Let A and B be matrices given below. (25 pts)

$$A = \begin{bmatrix}
3 & -5 & -5 & -4 & -2 \\
-3 & 4 & 2 & 6 & 6 \\
-3 & 3 & 0 & 6 & 9 \\
-3 & 1 & -4 & 7 & 8 \\
-3 & 6 & 6 & 6 & 7
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & -1 & 0 & -2 & -3 \\
0 & 1 & 2 & 0 & -3 \\
0 & -2 & -5 & 2 & 7 \\
0 & -2 & -4 & 1 & -1 \\
0 & 3 & 6 & 0 & -2
\end{bmatrix}.$$

(a) The matrix B is obtained from the matrix A by applying a sequence of elementary row operations. Find (i) such a sequence of elementary row operations, (ii) a matrix P such that $PA = B$, and (iii) $\det(P)$.

(b) Evaluate $\det(A)$. Briefly explain each step.

(c) Write the $(2, 4)$ entry of $\text{adj}(A)$, the adjugate of A, as a determinant. Don’t evaluate it.
4. Let \(A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ -1 & 2 & 4 & 1 \\ 1 & -2 & 2 & 5 \end{bmatrix} \). (20 pts)

(a) Explain that \(A \) has eigenvalues 6 and 0 without computing the characteristic polynomial of \(A \).

(b) Find all eigenvalues of \(A \).

(c) Find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(P^{-1}AP = D \).