9 Extension Fields

This is an introduction to field theory. There are two aims.

- 1. Application of Ring Theory. ED, PID, UFD in particular.
- 2. Foundation of Galois Theory, to be treated in Special Topics in Mathematics.

Review: Let F be a field, F[x] the polynomial ring over F, and $f(x), p(x) \in F[x]$.

- 1. The only ideals of F are $\{0\}$ and F. In particular, if $\phi : F \to R$ is a ring homomorphism, then Ker $\phi = \{0\}$ or F.
- 2. F[x] is a Euclidian Domain (ED), hence a Principal Ideal Domain (PID), and thus a Unique Factorization Domain (UFD).
- 3. If A is a nonzero proper ideal of F[x]. If f(x) is a nonzero polynomial in A of minimal degree, then $A = \langle f(x) \rangle$. Theorem 5.3.
- 4. The following are equivalent: p(x) is an irreducible polynomial $\Leftrightarrow \langle p(x) \rangle$ is a maximal ideal $\Leftrightarrow F[x]/\langle p(x) \rangle$ is a field.
- **Definition 9.1 1.** A field *E* is an *extension field* of a field *F* if *F* is a subring of *E*. In this case $1_E = 1_F$.¹⁴
- 2. Let E be an extension field of F and let $f(x) \in F[x]$. We say that f(x) splits in E if f(x) can be factored as a product of linear factors in E[x]. We call E a splitting field for f(x) over F, if f(x) splits in E but in no proper subfield of E.
- **3.** Let *E* be an extension field of *F* and $a_1, a_2, \ldots, a_n \in E$. Then $F(a_1, a_2, \ldots, a_n)$ denotes the smallest subfield of *E* containing *F* and the set $\{a_1, a_2, \ldots, a_n\}$, i.e., the intersection of all subfields of *E* containing *F* and the set $\{a_1, a_2, \ldots, a_n\}$. (Exercise 35)

Note. If $f(x) \in F[x]$ factors as

$$(c_1x - b_1)(c_2x - b_2) \cdots (c_nx - b_n) = c(x - a_1)(x - a_2) \cdots (x - a_n),$$

with $b_1, b_2, \ldots, b_n, c_1, c_2, \ldots, c_n \in E$, $c \in F$, over some extension E of F, i.e., $a \in F$, $a_1, a_2, \ldots, a_n \in E$. Then $F(a_1, a_2, \ldots, a_n)$ is the splitting field for f(x) over F in E.

Example 9.1 $Q \subset Q(\sqrt[4]{2}) \subset Q(\sqrt[4]{2}, \sqrt{-1}) \subset C$.

 $f(x) = x^4 - 2 \in \mathbf{Q}[x]$ is irreducible over \mathbf{Q} , it has a root in $\mathbf{Q}(\sqrt[4]{2})$ but does not split in $\mathbf{Q}(\sqrt[4]{2})$. $\mathbf{Q}(\sqrt[4]{2}, \sqrt{-1})$ is the splitting field of f(x) over \mathbf{Q} contained in \mathbf{C} .

Lemma 9.1 (Theorem 20.1 (Kronecker, 1887)) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then there is an extension field E of F in which f(x) has a zero.

 $^{1^{4}1}_{E} = 1_{F}(1_{F})^{-1} = 1_{F}1_{F}(1_{F})^{-1} = 1_{F}$. Note that identity element in a ring R is a nonzero element e satisfying re = r = er for all $r \in R$. This is the case when E is an integral domain.

Proof. Let p(x) be an irreducible factor of f(x). Set $E = F[x]/\langle p(x) \rangle$, and

$$\phi: F \to E \ (a \mapsto a + \langle p(x) \rangle).$$

Since p(x) is irreducible, $\langle p(x) \rangle$ is a maximal ideal and E is a field. Moreover, since p(x) is a factor of f(x), a zero of p(x) is a zero of f(x). Then ϕ is an injection¹⁵ and $\phi(F)$ can be regarded as F. Let $X = x + \langle p(x) \rangle$. Then

$$p(X) = p(x) + \langle p(x) \rangle = \langle p(x) \rangle = 0_E.$$

This proves the assertion.

Theorem 9.2 (Theorem 20.2) Let F be a field and let f(x) be a nonconstant element of F[x]. Then there exists a splitting field E for f(x) over F.

Proof. Induction on $n = \deg f(x)$. If n = 1, there is nothing to prove. Suppose $n \ge 2$. Then by Lemma 9.1 there is an extension E_1 of F such that f(x) has a root in E_1 . Now $f(x) = (x - a_1)f_1(x)$, $a_1 \in E_1$ and $f_1(x) \in E_1[x]$ with $\deg f_1(x) = n - 1$. By induction hypothesis, there is a splitting field E for $f_1(x)$ over E_1 . Let a_2, \ldots, a_n be roots of $f_1(x)$ in E. Then $F(a_1, a_2, \ldots, a_n)$ is the splitting field for f(x) over F contained in E.

Example 9.2 $p(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ is irreducible over \mathbb{Z}_2 . $E = \mathbb{Z}_2[x]/\langle p(x) \rangle$ can be regarded as $\mathbb{Z}_2 \times \mathbb{Z}_2$ with usual entry-wise addition and multiplication using multiplication in F[x] modulo $\langle p(x) \rangle$.

Note.

- 1. $(may \ skip)$ F in Lemma 9.1 can be replaced by an integral domain, as there is a quotient field containing an integral domain.
- 2. (may skip) This is not the case if the ring is not an integral domain.

$$f(x) = 2x + 1 \in \mathbf{Z}_4[x].$$

If there exists $\beta \in R \supset \mathbf{Z}_4$ such that $2\beta + 1 = 0$. Then 2 = 0, a contradiction.

Theorem 9.3 (Theorem 20.3) Let F be a field and let $p(x) \in F[x]$ be irreducible over F. Let a be a zero of p(x) in some extension F of F, then F(a) is isomorphic to $F[x]/\langle p(x) \rangle$. Furthermore, if deg p(x) = n, then every member of F(a) can be uniquely expressed in the form

$$c_{n-1}a^{n-1} + c_{n-2}a^{n-2} + \dots + c_1a + c_0$$
, where $c_0, c_1, \dots, c_{n-1} \in F$.

Proof. Let $\phi : F[x] \to F(a)$ $(f(x) \mapsto f(a))$. Then $\text{Ker}(\phi) \supset \langle p(x) \rangle$ which is maximal. Hence equality holds. Moreover $\text{Im}\phi$ is a field containing F and a. Thus surjective. The rest is clear.

¹⁵If $\phi : F \to R$ is a ring homomorphism from a field F, then $\phi = 0$ or ϕ is an injection. This is because Ker ϕ is an ideal of a field and hence Ker $\phi = \{0\}$ or F.

Corollary 9.4 Let F be a field and let $p(x) \in F[x]$ be irreducible over F. If a is a zero of p(x) in some extension E of F and b is a zero of p(x) in some extension E' of F, then the fields F(a) and F(b) are isomorphic.

Lemma 9.5 Let F be a field, let $p(x) \in F[x]$ be irreducible over F, and let a be a zero of p(x) in some extension of F. If ϕ is a field isomorphism from F to F' and b is a zero of $\phi(p(x))$ in some extension of F', then there is an isomorphism from F(a) to F(b) that agrees with ϕ on F and carries a to b.

Proof. Let $\psi : F[x] \to F'[x]/\langle \phi(p(x)) \rangle$ $(f(x) \mapsto \phi(f(x)) + \langle \phi(p(x)) \rangle)$. Then since $\phi : F[x] \to F'[x] (g(x) \mapsto \phi(g(x)))$ is an isomorphism, $\operatorname{Ker}(\psi) = \langle p(x) \rangle$ and $F[x]/\langle p(x) \rangle \approx F'[x]/\langle \phi(p(x)) \rangle$. Therefore

$$F(a) \approx F[x]/\langle p(x) \rangle \approx F'[x]/\langle \phi(p(x)) \rangle \approx F'(b)$$

as desired.

Theorem 9.6 (Theorem 20.4, Corollary) Let ϕ be an isomorphism from a field F to a field F' and let $f(x) \in F[x]$. If E is a splitting field for f(x) over F and E' is a splitting field for $\phi(f(x))$ over F', then there is an isomorphism from E to E' that agrees with ϕ on F.

Let F be a field and let $f(x) \in F[x]$. Then any two splitting fields of f(x) over F are isomorphic.

Proof. Induction on deg(f(x)). It is trivial if deg(f(x)) = 1. Suppose deg(f(x)) > 1and let p(x) be an irreducible factor of f(x), a a zero of p(x) in E and b a zero of $\phi(p(x)) \in F'[x]$ in E'. Then by Lemma 9.5 there is an isomorphism α from F(a) to F'(b)sending a to b. Moreover f(x) = (x - a)g(x) in E[x] and $\phi(f(x)) = (x - b)\alpha(g(x))$. Since deg $(g(x)) < \deg(f(x))$ and E is a splitting field for f(x) over F(a) and E' is a splitting field for $\phi(f(x))$ over F'(b), there is an isomorphism $\psi : E \to E'$ that agrees with α on F(a). Note that ψ agrees with ϕ on F.

Example 9.3 1. $Q(\sqrt[4]{2}) \approx Q[x]/\langle x^4 - 2 \rangle \approx Q(\sqrt[4]{2}\sqrt{-1}).$

- 2. (may skip) $\mathbf{Q}(\sqrt[n]{2}) \approx \mathbf{Q}[x]/\langle x^n 2 \rangle$.
- 3. Every field with 4 elements is isomorphic to $\mathbf{Z}_2[x]/\langle x^2 + x + 1 \rangle$.

Let *F* be a field with four elements. Then its characteristic is 2 and $a^3 - 1 = (a-1)(a^2+a+1) = 0$ for every nonzero element of *F*. So if $a \in F \setminus \mathbb{Z}_2$, $a^2+a+1 = 0$. Since $x^2 + x + 1$ is irreducible over \mathbb{Z}_2 , we have the assertion.

Theorem 9.7 (Theorem 20.5) A polynomial f(x) over a field F has a multiple zero in some extension E if and only if f(x) and f'(x) have a common factor of positive degree in F[x].

Proof. Suppose f(x) has a multiple zero in some extension field E. Let $f(x) = (x - a)^2 g(x)$ in E[x]. Then $x - a \mid f'(x) = (x - a)(2g(x) + (x - a)g'(x))$.

If f(x) and f'(x) have no common divisor of positive degree in F[x], then there exist $c_1(x), c_2(x) \in F[x]$ such that $c_1(x)f(x) + c_2(x)f'(x) = 1$ as $\langle f(x), f'(x) \rangle = F[x]$. This is impossible as $0 = c_1(a)f(a) + c_2(a)f'(a) = 1$ in E.

Conversely if p(x) | f(x) and f'(x), then let p(a) = 0 with a in some extension field E of F. Then f(x) = (x - a)q(x) and f'(x) = q(x) + (x - a)q'(x) and q(a) = 0 and f(x) has a multiple root.

Proposition 9.8 (Theorem 20.6) Let f(x) be an irreducible polynomial over a field F. If F has characteristic 0, then f(x) has no multiple zeros. If F has characteristic $p \neq 0$, then f(x) has a multiple zero only if it is of the form $f(x) = g(x^p)$ for some $g(x) \in F[x]$.

Proof. If f(x) has a multiple root, then f'(x) = 0.

Definition 9.2 A field F is called *perfect* if F has characteristic 0 or if F has characteristic p and $F^p = \{a^p \mid a \in F\} = F$.

Theorem 9.9 (Theorem 20.7) Every finite field is perfect.

Proof. Let F be a finite field of characteristic p. The mapping $\phi : F \to F(x \mapsto x^p)$. Then this is an automorphism of F.

Proposition 9.10 (Theorem 20.8) If f(x) is an irreducible polynomial over a perfect field F, then f(x) has no multiple roots.

Proof. Let
$$f(x) = g(x^p)$$
 with $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$.

Proposition 9.11 (Theorem 20.9) Let f(x) be an irreducible polynomial over a field F and let E be a splitting field of f(x) over F. Then all the zeros of f(x) in E have the same multiplicity.

Proof. For roots a, b of f(x), use isomorphism sending a to b.

Corollary 9.12 Let f(x) be an irreducible polynomial over a field F and let E be a splitting field of f(x). Then f(x) has the form

$$a(x-a_1)^n(x-a_2)^n\cdots(x-a_t)^n,$$

where a_1, a_2, \ldots, a_t are distinct elements of E and $a \in F$.

Example 9.4 Let $F = \mathbf{Z}_2(t)$ be the field of quotients of the ring $\mathbf{Z}_2[t]$ of polynomials in the indeterminate t. Then $f(x) = x^2 - t \in F(t)[x]$ is irreducible. Note that f(h(t)/k(t)) = 0 yields $(h(t))^2 = t(k(t))^2$ or $h(t^2) = tk(t^2)$, a contradiction. Moreover, f'(x) = 0 and f(x) has a multiple root. (See Exercise 39)