
9 Extension Fields

This is an introduction to field theory. There are two aims.

1. Application of Ring Theory. ED, PID, UFD in particular.

2. Foundation of Galois Theory, to be treated in Special Topics in Mathematics.

Review: Let F be a field, F [x] the polynomial ring over F , and f(x), p(x) ∈ F [x].

1. The only ideals of F are {0} and F . In particular, if φ : F → R is a ring homomor-
phism, then Kerφ = {0} or F .

2. F [x] is a Euclidian Domain (ED), hence a Principal Ideal Domain (PID), and thus
a Unique Factorization Domain (UFD).

3. If A is a nonzero proper ideal of F [x]. If f(x) is a nonzero polynomial in A of
minimal degree, then A = ⟨f(x)⟩. Theorem 5.3.

4. The following are equivalent: p(x) is an irreducible polynomial ⇔ ⟨p(x)⟩ is a maxi-
mal ideal ⇔ F [x]/⟨p(x)⟩ is a field.

Definition 9.1 1. A field E is an extension field of a field F if F is a subring of E. In
this case 1E = 1F . 14

2. Let E be an extension field of F and let f(x) ∈ F [x]. We say that f(x) splits in E
if f(x) can be factored as a product of linear factors in E[x]. We call E a splitting
field for f(x) over F , if f(x) splits in E but in no proper subfield of E.

3. Let E be an extension field of F and a1, a2, . . . , an ∈ E. Then F (a1, a2, . . . , an)
denotes the smallest subfield of E containing F and the set {a1, a2, . . . , an}, i.e., the
intersection of all subfields of E containing F and the set {a1, a2, . . . , an}. (Exercise
35)

Note. If f(x) ∈ F [x] factors as

(c1x− b1)(c2x− b2) · · · (cnx− bn) = c(x− a1)(x− a2) · · · (x− an),

with b1, b2, . . . , bn, c1, c2, . . . , cn ∈ E, c ∈ F , over some extension E of F , i.e., a ∈ F ,
a1, a2, . . . , an ∈ E. Then F (a1, a2, . . . , an) is the splitting field for f(x) over F in E.

Example 9.1 Q ⊂ Q( 4
√
2) ⊂ Q( 4

√
2,
√
−1) ⊂ C.

f(x) = x4 − 2 ∈ Q[x] is irreducible over Q, it has a root in Q( 4
√
2) but does not split

in Q( 4
√
2). Q( 4

√
2,
√
−1) is the splitting field of f(x) over Q contained in C.

Lemma 9.1 (Theorem 20.1 (Kronecker, 1887)) Let F be a field and let f(x) be a
nonconstant polynomial in F [x]. Then there is an extension field E of F in which f(x)
has a zero.

141E = 1F (1F )−1 = 1F 1F (1F )−1 = 1F . Note that identity element in a ring R is a nonzero element e
satisfying re = r = er for all r ∈ R. This is the case when E is an integral domain.
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Proof. Let p(x) be an irreducible factor of f(x). Set E = F [x]/⟨p(x)⟩, and

φ : F → E (a )→ a+ ⟨p(x)⟩).

Since p(x) is irreducible, ⟨p(x)⟩ is a maximal ideal and E is a field. Moreover, since p(x)
is a factor of f(x), a zero of p(x) is a zero of f(x). Then φ is an injection15 and φ(F ) can
be regarded as F . Let X = x+ ⟨p(x)⟩. Then

p(X) = p(x) + ⟨p(x)⟩ = ⟨p(x)⟩ = 0E.

This proves the assertion.

Theorem 9.2 (Theorem 20.2) Let F be a field and let f(x) be a nonconstant element
of F [x]. Then there exists a splitting field E for f(x) over F .

Proof. Induction on n = deg f(x). If n = 1, there is nothing to prove. Suppose n ≥ 2.
Then by Lemma 9.1 there is an extension E1 of F such that f(x) has a root in E1. Now
f(x) = (x − a1)f1(x), a1 ∈ E1 and f1(x) ∈ E1[x] with deg f1(x) = n − 1. By induction
hypothesis, there is a splitting field E for f1(x) over E1. Let a2, . . . , an be roots of f1(x)
in E. Then F (a1, a2, . . . , an) is the splitting field for f(x) over F contained in E.

Example 9.2 p(x) = x2+x+1 ∈ Z2[x] is irreducible over Z2. E = Z2[x]/⟨p(x)⟩ can be
regarded asZ2×Z2 with usual entry-wise addition and multiplication using multiplication
in F [x] modulo ⟨p(x)⟩.

Note.

1. (may skip) F in Lemma 9.1 can be replaced by an integral domain, as there is a
quotient field containing an integral domain.

2. (may skip) This is not the case if the ring is not an integral domain.

f(x) = 2x+ 1 ∈ Z4[x].

If there exists β ∈ R ⊃ Z4 such that 2β + 1 = 0. Then 2 = 0, a contradiction.

Theorem 9.3 (Theorem 20.3) Let F be a field and let p(x) ∈ F [x] be irreducible
over F . Let a be a zero of p(x) in some extension F of F , then F (a) is isomorphic
to F [x]/⟨p(x)⟩. Furthermore, if deg p(x) = n, then every member of F (a) can be uniquely
expressed in the form

cn−1a
n−1 + cn−2a

n−2 + · · ·+ c1a+ c0, where c0, c1, . . . , cn−1 ∈ F.

Proof. Let φ : F [x] → F (a) (f(x) )→ f(a)). Then Ker(φ) ⊃ ⟨p(x)⟩ which is maximal.
Hence equality holds. Moreover Imφ is a field containing F and a. Thus surjective. The
rest is clear.

15If φ : F → R is a ring homomorphism from a field F , then φ = 0 or φ is an injection. This is because
Kerφ is an ideal of a field and hence Kerφ = {0} or F .
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Corollary 9.4 Let F be a field and let p(x) ∈ F [x] be irreducible over F . If a is a zero
of p(x) in some extension E of F and b is a zero of p(x) in some extension E ′ of F , then
the fields F (a) and F (b) are isomorphic.

Lemma 9.5 Let F be a field, let p(x) ∈ F [x] be irreducible over F , and let a be a zero
of p(x) in some extension of F . If φ is a field isomorphism from F to F ′ and b is a zero
of φ(p(x)) in some extension of F ′, then there is an isomorphism from F (a) to F (b) that
agrees with φ on F and carries a to b.

Proof. Let ψ : F [x] → F ′[x]/⟨φ(p(x))⟩ (f(x) )→ φ(f(x)) + ⟨φ(p(x))⟩). Then since φ :
F [x] → F ′[x] (g(x) )→ φ(g(x))) is an isomorphism, Ker(ψ) = ⟨p(x)⟩ and F [x]/⟨p(x)⟩ ≈
F ′[x]/⟨φ(p(x))⟩. Therefore

F (a) ≈ F [x]/⟨p(x)⟩ ≈ F ′[x]/⟨φ(p(x))⟩ ≈ F ′(b)

as desired.

Theorem 9.6 (Theorem 20.4, Corollary) Let φ be an isomorphism from a field F to
a field F ′ and let f(x) ∈ F [x]. If E is a splitting field for f(x) over F and E ′ is a splitting
field for φ(f(x)) over F ′, then there is an isomorphism from E to E ′ that agrees with φ
on F .

Let F be a field and let f(x) ∈ F [x]. Then any two splitting fields of f(x) over F are
isomorphic.

Proof. Induction on deg(f(x)). It is trivial if deg(f(x)) = 1. Suppose deg(f(x)) > 1
and let p(x) be an irreducible factor of f(x), a a zero of p(x) in E and b a zero of
φ(p(x)) ∈ F ′[x] in E ′. Then by Lemma 9.5 there is an isomorphism α from F (a) to F ′(b)
sending a to b. Moreover f(x) = (x− a)g(x) in E[x] and φ(f(x)) = (x− b)α(g(x)). Since
deg(g(x)) < deg(f(x)) and E is a splitting field for f(x) over F (a) and E ′ is a splitting
field for φ(f(x)) over F ′(b), there is an isomorphism ψ : E → E ′ that agrees with α on
F (a). Note that ψ agrees with φ on F .

Example 9.3 1. Q( 4
√
2) ≈ Q[x]/⟨x4 − 2⟩ ≈ Q( 4

√
2
√
−1).

2. (may skip) Q( n
√
2) ≈ Q[x]/⟨xn − 2⟩.

3. Every field with 4 elements is isomorphic to Z2[x]/⟨x2 + x+ 1⟩.
Let F be a field with four elements. Then its characteristic is 2 and a3 − 1 =
(a−1)(a2+a+1) = 0 for every nonzero element of F . So if a ∈ F \Z2, a2+a+1 = 0.
Since x2 + x+ 1 is irreducible over Z2, we have the assertion.

Theorem 9.7 (Theorem 20.5) A polynomial f(x) over a field F has a multiple zero in
some extension E if and only if f(x) and f ′(x) have a common factor of positive degree
in F [x].

Proof. Suppose f(x) has a multiple zero in some extension field E. Let f(x) = (x −
a)2g(x) in E[x]. Then x− a | f ′(x) = (x− a)(2g(x) + (x− a)g′(x).

If f(x) and f ′(x) have no common divisor of positive degree in F [x], then there exist
c1(x), c2(x) ∈ F [x] such that c1(x)f(x) + c2(x)f ′(x) = 1 as ⟨f(x), f ′(x)⟩ = F [x]. This is
impossible as 0 = c1(a)f(a) + c2(a)f ′(a) = 1 in E.
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Conversely if p(x) | f(x) and f ′(x), then let p(a) = 0 with a in some extension field
E of F . Then f(x) = (x− a)q(x) and f ′(x) = q(x) + (x− a)q′(x) and q(a) = 0 and f(x)
has a multiple root.

Proposition 9.8 (Theorem 20.6) Let f(x) be an irreducible polynomial over a field F .
If F has characteristic 0, then f(x) has no multiple zeros. If F has characteristic p ̸= 0,
then f(x) has a multiple zero only if it is of the form f(x) = g(xp) for some g(x) ∈ F [x].

Proof. If f(x) has a multiple root, then f ′(x) = 0.

Definition 9.2 A field F is called perfect if F has characteristic 0 or if F has characteristic
p and F p = {ap | a ∈ F} = F .

Theorem 9.9 (Theorem 20.7) Every finite field is perfect.

Proof. Let F be a finite field of characteristic p. The mapping φ : F → F (x )→ xp).
Then this is an automorphism of F .

Proposition 9.10 (Theorem 20.8) If f(x) is an irreducible polynomial over a perfect
field F , then f(x) has no multiple roots.

Proof. Let f(x) = g(xp) with g(x) = bmxm + bm−1xm−1 + · · ·+ b0.

Proposition 9.11 (Theorem 20.9) Let f(x) be an irreducible polynomial over a field
F and let E be a splitting field of f(x) over F . Then all the zeros of f(x) in E have the
same multiplicity.

Proof. For roots a, b of f(x), use isomorphism sending a to b.

Corollary 9.12 Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x). Then f(x) has the form

a(x− a1)
n(x− a2)

n · · · (x− at)
n,

where a1, a2, . . . , at are distinct elements of E and a ∈ F .

Example 9.4 Let F = Z2(t) be the field of quotients of the ring Z2[t] of polynomials in
the indeterminate t. Then f(x) = x2−t ∈ F (t)[x] is irreducible. Note that f(h(t)/k(t)) =
0 yields (h(t))2 = t(k(t))2 or h(t2) = tk(t2), a contradiction. Moreover, f ′(x) = 0 and
f(x) has a multiple root. (See Exercise 39)
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