7 Divisibility in Integral Domains

Definition 7.1 Let *D* be an integral domain and let $a, b \in D$. Then *a* is said to *divide b* in *D*, in symbols $a \mid b$, if ac = b for some $c \in D$, i.e., $\langle b \rangle \subseteq \langle a \rangle$.

Elements $a, b \in D$ are called *associates* if $a \mid b$ and $b \mid a$, i.e., $\langle a \rangle = \langle b \rangle$ and equivalently there is a unit $u \in D$ such that b = ua. In this case, we write $a \sim b$. (Exercises 2 and 5)

A nonzero element *a* is called *irreducible* if it is not a unit and if a = bc for some *b*, $c \in D$ then *b* or *c* is a unit, i.e., $\langle a \rangle \neq \{0\}$, *R* and $\langle a \rangle \subseteq \langle b \rangle \subset R$ implies $\langle a \rangle = \langle b \rangle$.

A nonzero element a is called *prime* if a is not a unit and $a \mid bc$ implies $a \mid b$ or $a \mid c$, equivalently if $\langle a \rangle$ is a prime ideal.

Example 7.1 Let $D = \mathbb{Z}[\sqrt{-3}]$. Then $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. $1 \pm \sqrt{-3}$ and 2 are irreducible but not prime.

Let $\alpha \in D$. Then $\alpha \in U(D) \Leftrightarrow N(\alpha) = 1 \Leftrightarrow \alpha \in \{1, -1\}$. $N(2) = N(1 \pm \sqrt{-3}) = 4$ and $2 \notin N(D)$.

Lemma 7.1 (Theorem 18.1) Let D be an integral domain and p a prime. Then p is irreducible.

Proof. Let p = ab. Then $\langle p \rangle \subseteq \langle a \rangle \cap \langle b \rangle$. So $a \in \langle p \rangle$ implies $b \in U(D)$ and $b \in \langle p \rangle$ implies $a \in U(D)$. Thus p is irreducible.

Proposition 7.2 (Theorem 18.2) Let I be a non-zero ideal of a principal ideal domain D and $I = \langle p \rangle$. Then the following statements about I are equivalent: (Exercise 10)

- (i) I is maximal,
- (ii) I is prime, i.e., p is prime,
- (iii) p is an irreducible element of D.

Proof. (i) \Rightarrow (ii) is from Theorem 3.3, and (ii) \Rightarrow (iii) is from Lemma 7.1.

Suppose p is irreducible. Let $\langle p \rangle \subseteq \langle a \rangle$. Then p = ab. Hence either p and a are associates, or $a \in U(D)$. Thus $\langle p \rangle = \langle a \rangle$ or $\langle a \rangle = D$, and $I = \langle p \rangle$ is maximal..

Definition 7.2 An integral domain *D* is a *unique factorization domain* if

- 1. Every nonzero element of D that is not a unit can be written as a product of irreducibles of D.
- 2. The factorization into irreducibles is unique up to associates and the order in which the factors appear.

Definition 7.3 Let *D* be a unique factorization domain. For $a_1, a_2, \ldots, a_m \in D$, a greatest common divisor $d = \gcd\{a_1, a_2, \ldots, a_m\}$ is an element of *D* satisfying the following.

- **1.** $d \mid a_1, d \mid a_2, \ldots, d \mid a_m$.
- **2.** If $c | a_1, c | a_2, \ldots, c | a_m$, then c | d.

If both d and d' are greatest common divisors, we have $d \sim d'$.

Note that in a unique factorization domain, the greatest common divisor always exists. Let

$$a = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}, \ b = p_1^{f_1} p_2^{f_2} \cdots p_r^{f_r},$$

where p_1, p_2, \ldots, p_r are irreducibles that are not mutually associates, and e_1, e_2, \ldots, e_r and f_1, f_2, \ldots, f_r are nonnegative integers. Then the greatest common divisor of a and b is

$$d = p_1^{g_1} p_2^{g_2} \cdots p_r^{g_r}, \text{ where } g_1 = \min\{e_1, f_1\}, g_2 = \min\{e_2, f_2\}, \dots, g_r = \min\{e_r, f_r\}.$$

We find the greatest common divisor of $a_1, a_2, \ldots, a_m \in D$ similarly.

Lemma 7.3 Let D be a unique factorization domain. Then every irreducible element is prime. (Ex. 43)

Proof. Suppose p is an irreducible element. Let $p \mid ab \ (a, b \in D)$. Set ab = pc, $a = p_1 \cdots p_r$, $b = p'_1 \cdots p'_s$ and $c = q_1 \cdots q_t$, where p_i, p'_j, q_k are irreducible elements in D. Then

$$p \cdot q_1 \cdots q_t = pc = ab = p_1 \cdots p_r p'_1 \cdots p'_s.$$

Since D is a unique factorization domain, $p \sim p_i$ for some i, or $p \sim p'_j$ for some j. If $p \sim p_i$, then $p \mid a$. If $p \sim p'_j$, then $p \mid b$. Therefore, p is prime.

Lemma 7.4 In a principal ideal domain, any strictly increasing chain of ideals $I_1 \subset I_2 \subset \cdots$ must be finite in length. (This condition is called the Ascending Chain Condition (ACC).) (See Exercise 3.)

Proof. Let $I = \bigcup_{i=1}^{\infty} I_i = \langle a \rangle$, Then there is a number *n* such that $a \in I_n$.

Theorem 7.5 (Theorem 18.3, PID \Rightarrow **UFD)** Every principal ideal domain is a unique factorization domain.

Proof. Let a be neither a zero nor a unit. If a is not irreducible, then there exist non units $a_1, b \in D$ such that $a = a_1 b$ and $\langle a \rangle$ is properly contained in $\langle a_1 \rangle$. If a_1 is not irreducible, we can continue this process. So by the previous lemma, we may assume that $a = p_1 a_1$ and p_1 is irreducible. Similarly we can continue this process to factor a as a product of irreducibles of D.

Suppose $a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$. Then by Proposition 7.2, $p_1 \mid q_i$ for some *i*. Now we can proceed by induction.

Corollary 7.6 Let F be a field. Then the polynomial ring in x over F, F[x], is a unique factorization domain.

Definition 7.4 An integral domain is called a *Euclidean Domain* if there is a function (called the measure) from the nonzero element of D to the nonnegative integers such that

- 1. $d(a) \leq d(ab)$ for all nonzero $a, b \in D$.
- **2.** If $a, b \in D$, $b \neq 0$ then there exist elements q and $r \in D$ such that a = bq + r, where r = 0 or d(r) < d(b).

Example 7.2 $Z[\sqrt{-1}]$ is a Euclidean domain.

(See Exercise 7.)

Define $d(\alpha) = N(\alpha) = \alpha \cdot \overline{\alpha}$. For $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$, let

$$\alpha/\beta = (a + b\sqrt{-1}) + (a' + b'\sqrt{-1}), \text{ where } a, b \in \mathbb{Z}, \ |a| \le \frac{1}{2}, \ |b| \le \frac{1}{2}.$$

Set $\gamma = a + b\sqrt{-1}$ and $\rho = (a' + b'\sqrt{-1})\beta$. Then $\alpha = \gamma\beta + \rho$ and

$$N(\rho) = N((a' + b'\sqrt{-1})\beta) = N(a' + b'\sqrt{-1})N(\beta) \le \left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right)N(\beta) < N(\beta).$$

Theorem 7.7 (Theorem 18.4 ED \Rightarrow **PID)** Every Euclidean domain is a principal ideal domain.

Proof. Let I be a nonzero ideal. Let $d = \min\{d(a) \mid a \in I, a \neq 0\}$ and d = d(a). Suppose $b \in I$. Then there exist $q, r \in D$ such that b = aq + r with r = 0 or $r \neq 0$ and d(r) < d(a). The latter does not occur as $r \in I$ as well.

Theorem 7.8 (Theorem 18.5) If D is a unique factorization domain, then so is the polynomial ring $D[x_1, x_2, ..., x_k]$.

7.1 Proof of Theorem 7.8

Definition 7.5 Let R be a UFD and let $0 \neq f(x) \in R[x]$. The gcd of the coefficients of f(x) is called the *content* of f(x), and is denoted by c(f(x)). If $c(f(x)) \sim 1$, i.e., $c(f(x)) \in U(R)$, then f(x) is said to be *primitive*.

Lemma 7.9 Let $0 \neq f(x) \in R[x]$ where R is a UFD. Then $f(x) = cf_0(x)$ where c = c(f(x)) and $f_0(x)$ is primitive in R[x].

Proof. Write $f(x) = a_0 + a_1x + \cdots + a_nx^n$; then $c(f(x)) = \gcd\{a_0, \ldots, a_n\} = c$. Write $a_i = cb_i$ with $b_i \in R$, and put $f_0(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$. Thus $f(x) = cf_0(x)$. If $d = \gcd\{b_0, b_1, \ldots, b_n\}$, then $d \mid b_i$ and so $cd \mid cb_i = a_i$. Since c is the gcd of the a_i , it follows that cd divides c and hence that d is a unit and $f_0(x)$ is primitive.

Proposition 7.10 Let R be a UFD and let f(x), g(x) be non-zero polynomials over R. Then $c(f(x)g(x)) \sim c(f(x))c(g(x))$. In particular, if f(x) and g(x) are primitive, then so is f(x)g(x).

Proof. Consider first the special case where f(x) and g(x) are primitive. If f(x)g(x) = c(f(x)g(x))h(x) (with h(x) is primitive) is not primitive, then c(f(x)g(x)) is not a unit and it must be divisible by some irreducible element p of R. There are two proofs.

First Proof: Since R is a UFD, p is prime and $P = \langle p \rangle$ is a prime ideal. Consider in (R/P)[x] using bar notation. Then

$$0 = \overline{c(f(x)g(x))h_0(x)} = \overline{f(x)g(x)} = \overline{f(x)} \cdot \overline{g(x)}.$$

Since (R/P)[x] is an integral domain, f(x) = 0 or g(x) = 0 contradicting our assumption that f(x) and g(x) are primitive.

Second Proof: Write

$$f(x) = \sum_{i=0}^{m} a_i x^i, \ g(x) = \sum_{j=0}^{n} b_j x^j, \ \text{and} \ f(x)g(x) = \sum_{k=0}^{m+n} c_k x^k.$$

Since f(x) is primitive, p cannot divide all its coefficients, and so there is an integer $r \ge 0$ such that $p \mid a_0, a_1, \ldots, a_{r-1}$ but $p \nmid a_r$. Similarly there is an $s \ge 0$ such that p divides each of $b_0, b_1, \ldots, b_{s-1}$ but p does not divide b_s . Now consider the coefficient c_{r+s} of x^{r+s} in f(x)g(x); this equals

$$(a_0b_{r+s} + a_1b_{r+s-1} + \dots + a_{r-1}b_{s+1}) + a_rb_s + (a_{r+1}b_{s-1} + \dots + a_{r+s}b_0)$$

We know that $p \mid c_{r+s}$; also both the expressions in parentheses in the expression above. It follows that $p \mid a_r b_s$. By Lemma 7.3, we must have $p \mid a_r$ or $p \mid b_s$, both of which are impossible. By this contradiction f(x)g(x) is primitive.

Now we are ready for the general case. By Lemma 7.9 we wirte $f(x) = cf_0(x)$ and $g(x) = dg_0(x)$ where c = c(f(x)) and d = c(g(x)), and the polynomials $f_0(x)$, $g_0(x)$ are primitive in R[x]. Then $f(x)g(x) = cd(f_0(x)g_0(x))$ and, as has just been shown in Proposition 7.10, f_0g_0 is primitive. In consequence $c(f(x)g(x)) \sim cd = c(f(x))c(g(x))$.

The following proposition is called Gauss's Lemma.

Proposition 7.11 Let R be a unique factorization domain and let F denote the field of fractions of R. Let f(x) be a primitive polynomial in R[x]. Then f(x) is irreducible over R if and only if it is irreducible over F.

Proof. Of course irreducibility over F certainly implies irreducibility over R. It is the converse implication which needs proof. Assume that f(x) is irreducible over R but reducible over F. Here we can assume that f(x) is primitive on the basis of Proposition 7.10. Then f(x) = g(x)h(x) where $g(x), h(x) \in F[x]$ are not constant. Since F is the field of fractions of R, there exist elements $a, b \neq 0$ in R such that $g_1(x) = ag(x) \in R[x]$ and $h_1(x) = bh(x) \in R[x]$. Write $g_1(x) = c(g_1)g_2(x)$ where $g_2(x) \in R[x]$ is primitive. Then $ag(x) = c(g_1(x))g_2(x)$, so we can divide both sides by $gcd\{a, c(g_1(x))\}$. On these grounds it is possible to assume that $c(g_1(x))$ and a are relatively prime, and that the same holds for $c(h_1(x))$ and b.

Next we have $(ab)f(x) = (ag)(bh(x)) = g_1(x)h_1(x)$. Taking the constant of each side and using Proposition 7.10, we obtain $ab = c(g_1(x))c(h_1(x))$ since f(x) is primitive. But $c(g_1(x))$ and a are relatively prime, so $a \mid c(h_1(x))$, and for a similar reason $b \in c(g_1(x))$. Therefore we have the factorization $f(x) = (b^{-1}g_1(x))(a^{-1}h_1(x))$ and now both factors are polynomials over R. But this contradicts the irreducibility of f(x) over R and so the proof is complete.

Theorem 7.12 If R is a unique factorization domain, then so is the polynomial ring $R[x_1, x_2, \ldots, x_k]$.

Proof. We need only to prove this when k = 1. For if k > 1, then

$$R[x_1, x_2, \dots, x_k] = R[x_1, x_2, \dots, x_{k-1}][x_k]$$

and induction on k can be used once the case k = 1 is settled. From now on we restrict attention to S = R[x].

(a) Any non-constant polynomial f(x) in S is expressible as a product of irreducible elements of R and primitive irreducible polynomials over R.

Proof. The key idea in the proof is to introduce the field of fractions F of R, and exploit the fact that F[x] is known to be a PID and hence a UFD. First of all write $f(x) = c(f(x))f_0(x)$ where $f_0(x) \in S$ is primitive using Lemma 7.9. Hence c(f(x)) is either a unit or a product of irreducibles of R. So we can assume that f(x) is primitive. Regarding f(x) as an element of the UFD F[t], we write $f = p_1 p_2 \cdots p_m$ where $p_i \in F[t]$ is irreducible over F. Now find $a_i \neq 0$ in R such that $f_i(x) = a_i p_i(x) \in S$. Wirting $c(f_i(x)) = c_i$, we have $f_i(x) = c_i q_i(x)$ where $q_i(x) \in R[x]$ is primitive. Hence $p_i(x) = a_i^{-1} x_i = a_i^{-1} c_i q_i(x)$, and $q_i(x)$ is F-irreducible since $p_i(x)$ is. Thus $q_i(x)$ is certainly R-irreducible.

Combining these expressions for $p_i(x)$, we find that

$$f(x) = (a_1^{-1} \cdots a_m^{-1} c_1 \cdots c_m) q_1(x) \cdots q_m(x)$$

and hence $(a_1 \cdots a_m) f(x) = (c_m \cdots) q_1(x) \cdots q_m(x)$. Now take the content of both sides of the equations to get $a_1 \cdots a_m = c_1 \cdots c_m$ up to a unit, since f(x) and $q_i(x)$ are primitive. Consequently, $f(x) = uq_1(x) \cdots q_m(x)$ for some unit u of R. This is what we had to prove.

(b) Every irreducible element of S is either an irreducible element of R or a primitive irreducible polynomial in S.

Proof. Let C_1 be a complete set of irreducibles for R, and C_2 is a set of non-associate primitive irreducible polynomials. Hence every primitive irreducible polynomial in R[x] is associate to some element of C_2 . Now put $C = C_1 \cup C_2$. Then C is a complete set of irreducibles for S.

(c) Uniqueness. *Proof.* Suppose that

$$f(x) = ua_1 \cdots a_k f_1(x) \cdots f_r(x) = vb_1 \cdots b_\ell g_1(x) \cdots g_s(x),$$

where u, v are units, $a_x, b_y \in C_1$, $f_i(x), f_j(x) \in C_2$. By Gauss's Lemma, the $f_i(x)$ and $g_j(x)$ are *F*-irreducible. Since F[x] is a UFD and C_2 is a complete set of irreducibles for F[x], we conclude that r = s and $f_i(x) = w_i g_i(x)$, (after possible relabelling), where $w_i \in F$. Write $w_i = c_i d_i^{-1}$ where $c_i, d_i \in R$. Then $d_i f_i(x) = c_i g_i(x)$, and on taking contents we find that $c_i = d_i$ up to a unit. This implies that w_i is a unit of R and so $f_i(x), g_i(x)$ are associate. Hence $f_i(x) = g_i(x)$.

Cancelling the $f_i(x)$ and $g_i(x)$, we are left with $ua_1 \cdots a_k = vb_1 \cdots b_\ell$. Bur R is a UFD with a complete set of irreducibles C_1 , so that $k = \ell$, u = v and $a_i = b_i$ (after further relabelling). This completes the proof.

Corollary 7.13 The following rings are unique factorization domains: $Z[x_1, x_2, ..., x_k]$ and $F[x_1, x_2, ..., x_k]$ where F is a field.

Proposition 7.14 (Eisenstein's Criterion (1850)) Let R be a unique factorization domain and let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p \mid a_0, p \mid a_1, \ldots, p \mid a_{n-1}$, but $p \nmid a_n$ and $p^2 \nmid a_0$. Then f(x) is irreducible over R. *Proof.* Suppose that f(x) is reducible and

$$f(x) = (b_0 + b_1 x + \dots + b_r x^r)(c_0 + c_1 x + \dots + c_s x^s)$$

where $b_i, c_j \in R, r, s < n$, and r + s = n. Then

$$a_i = b_0 c_i + b_1 c_{i-1} + \dots + b_i c_0$$

Now by hypothesis $p \mid a_0 = b_0c_0$ but $p^2 \nmid a_0$; thus p must divide exactly one of b_0 and c_0 , say $p \mid b_0$ and $p \nmid c_0$. Also p cannot divide every b_i since otherwise it would divide $a_n = b_0c_n + \cdots + b_nc_0$. Therefore, there is a smallest positive integer k such that $p \nmid b_k$. Now p divides each of $b_0, b_1, \ldots, b_{k-1}$ and also $p \mid a_k$ since $k \leq r < n$. Since $a_k = (b_0c_k + \cdots + b_{k-1}c_1) + b_kc_0$, it follows that $p \mid b_kc_0$. By Euclide's lemma, which is valid in any UFD by (7.3.4), $p \mid b_k$ or $p \mid c_0$, both of which are forbidden.