
7 Divisibility in Integral Domains

Definition 7.1 Let D be an integral domain and let a, b ∈ D. Then a is said to divide b
in D, in symbols a | b, if ac = b for some c ∈ D, i.e., ⟨b⟩ ⊆ ⟨a⟩.

Elements a, b ∈ D are called associates if a | b and b | a, i.e., ⟨a⟩ = ⟨b⟩ and equivalently
there is a unit u ∈ D such that b = ua. In this case, we write a ∼ b. (Exercises 2 and 5)

A nonzero element a is called irreducible if it is not a unit and if a = bc for some b,
c ∈ D then b or c is a unit, i.e., ⟨a⟩ ̸= {0}, R and ⟨a⟩ ⊆ ⟨b⟩ ⊂ R implies ⟨a⟩ = ⟨b⟩.

A nonzero element a is called prime if a is not a unit and a | bc implies a | b or a | c,
equivalently if ⟨a⟩ is a prime ideal.

Example 7.1 Let D = Z[
√
−3]. Then 2 · 2 = (1 +

√
−3)(1−

√
−3). 1±

√
−3 and 2 are

irreducible but not prime.
Let α ∈ D. Then α ∈ U(D) ⇔ N(α) = 1 ⇔ α ∈ {1,−1}. N(2) = N(1 ±

√
−3) = 4

and 2 ̸∈ N(D).

Lemma 7.1 (Theorem 18.1) Let D be an integral domain and p a prime. Then p is
irreducible.

Proof. Let p = ab. Then ⟨p⟩ ⊆ ⟨a⟩ ∩ ⟨b⟩. So a ∈ ⟨p⟩ implies b ∈ U(D) and b ∈ ⟨p⟩
implies a ∈ U(D). Thus p is irreducible.

Proposition 7.2 (Theorem 18.2) Let I be a non-zero ideal of a principal ideal domain
D and I = ⟨p⟩. Then the following statements about I are equivalent: (Exercise 10)

(i) I is maximal,

(ii) I is prime, i.e., p is prime,

(iii) p is an irreducible element of D.

Proof. (i) ⇒ (ii) is from Theorem 3.3, and (ii) ⇒ (iii) is from Lemma 7.1.
Suppose p is irreducible. Let ⟨p⟩ ⊆ ⟨a⟩. Then p = ab. Hence either p and a are

associates, or a ∈ U(D). Thus ⟨p⟩ = ⟨a⟩ or ⟨a⟩ = D, and I = ⟨p⟩ is maximal..

Definition 7.2 An integral domain D is a unique factorization domain if

1. Every nonzero element of D that is not a unit can be written as a product of irre-
ducibles of D.

2. The factorization into irreducibles is unique up to associates and the order in which
the factors appear.

Definition 7.3 Let D be a unique factorization domain. For a1, a2, . . . , am ∈ D, a great-
est common divisor d = gcd{a1, a2, . . . , am} is an element of D satisfying the following.

1. d | a1, d | a2, . . . , d | am.

2. If c | a1, c | a2, . . . , c | am, then c | d.

If both d and d′ are greatest common divisors, we have d ∼ d′.
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Note that in a unique factorization domain, the greatest common divisor always exists.
Let

a = pe11 pe22 · · · perr , b = pf11 pf22 · · · pfrr ,

where p1, p2, . . . , pr are irreducibles that are not mutually associates, and e1, e2, . . . , er and
f1, f2, . . . , fr are nonnegative integers. Then the greatest common divisor of a and b is

d = pg11 pg22 · · · pgrr , where g1 = min{e1, f1}, g2 = min{e2, f2}, . . . , gr = min{er, fr}.

We find the greatest common divisor of a1, a2, . . . , am ∈ D similarly.

Lemma 7.3 Let D be a unique factorization domain. Then every irreducible element is
prime. (Ex. 43)

Proof. Suppose p is an irreducible element. Let p | ab (a, b ∈ D). Set ab = pc, a =
p1 · · · pr, b = p′1 · · · p′s and c = q1 · · · qt, where pi, p′j, qk are irreducible elements in D. Then

p · q1 · · · qt = pc = ab = p1 · · · prp′1 · · · p′s.

Since D is a unique factorization domain, p ∼ pi for some i, or p ∼ p′j for some j. If
p ∼ pi, then p | a. If p ∼ p′j, then p | b. Therefore, p is prime.

Lemma 7.4 In a principal ideal domain, any strictly increasing chain of ideals I1 ⊂ I2 ⊂
· · · must be finite in length. (This condition is called the Ascending Chain Condition
(ACC).) (See Exercise 3.)

Proof. Let I =
⋃∞

i=1 Ii = ⟨a⟩, Then there is a number n such that a ∈ In.

Theorem 7.5 (Theorem 18.3, PID ⇒ UFD) Every principal ideal domain is a unique
factorization domain.

Proof. Let a be neither a zero nor a unit. If a is not irreducible, then there exist non
units a1, b ∈ D such that a = a1b and ⟨a⟩ is properly contained in ⟨a1⟩. If a1 is not
irreducible, we can continue this process. So by the previous lemma, we may assume that
a = p1a1 and p1 is irreducible. Similarly we can continue this process to factor a as a
product of irreducibles of D.

Suppose a = p1p2 · · · pr = q1q2 · · · qs. Then by Proposition 7.2, p1 | qi for some i. Now
we can proceed by induction.

Corollary 7.6 Let F be a field. Then the polynomial ring in x over F , F [x], is a unique
factorization domain.

Definition 7.4 An integral domain is called a Euclidean Domain if there is a function
(called the measure) from the nonzero element of D to the nonnegative integers such that

1. d(a) ≤ d(ab) for all nonzero a, b ∈ D.

2. If a, b ∈ D, b ̸= 0 then there exist elements q and r ∈ D such that a = bq + r, where
r = 0 or d(r) < d(b).
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Example 7.2 Z[
√
−1] is a Euclidean domain. (See Exercise 7.)

Define d(α) = N(α) = α · α. For α, β ∈ Z[
√
−1], let

α/β = (a+ b
√
−1) + (a′ + b′

√
−1), where a, b ∈ Z, |a| ≤ 1

2
, |b| ≤ 1

2
.

Set γ = a+ b
√
−1 and ρ = (a′ + b′

√
−1)β. Then α = γβ + ρ and

N(ρ) = N((a′ + b′
√
−1)β) = N(a′ + b′

√
−1)N(β) ≤

((
1

2

)2

+

(
1

2

)2
)
N(β) < N(β).

Theorem 7.7 (Theorem 18.4 ED ⇒ PID) Every Euclidean domain is a principal ideal
domain.

Proof. Let I be a nonzero ideal. Let d = min{d(a) | a ∈ I, a ̸= 0} and d = d(a).
Suppose b ∈ I. Then there exist q, r ∈ D such that b = aq + r with r = 0 or r ̸= 0 and
d(r) < d(a). The latter does not occur as r ∈ I as well.

Theorem 7.8 (Theorem 18.5) If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . . . , xk].

7.1 Proof of Theorem 7.8

Definition 7.5 Let R be a UFD and let 0 ̸= f(x) ∈ R[x]. The gcd of the coefficients
of f(x) is called the content of f(x), and is denoted by c(f(x)). If c(f(x)) ∼ 1, i.e.,
c(f(x)) ∈ U(R), then f(x) is said to be primitive.

Lemma 7.9 Let 0 ̸= f(x) ∈ R[x] where R is a UFD. Then f(x) = cf0(x) where c =
c(f(x)) and f0(x) is primitive in R[x].

Proof. Write f(x) = a0 + a1x + · · · + anxn; then c(f(x)) = gcd{a0, . . . , an} = c. Write
ai = cbi with bi ∈ R, and put f0(x) = b0 + b1x + · · · + bnxn ∈ R[x]. Thus f(x) = cf0(x).
If d = gcd{b0, b1, . . . , bn}, then d | bi and so cd | cbi = ai. Since c is the gcd of the ai, it
follows that cd divides c and hence that d is a unit and f0(x) is primitive.

Proposition 7.10 Let R be a UFD and let f(x), g(x) be non-zero polynomials over R.
Then c(f(x)g(x)) ∼ c(f(x))c(g(x)). In particular, if f(x) and g(x) are primitive, then so
is f(x)g(x).

Proof. Consider first the special case where f(x) and g(x) are primitive. If f(x)g(x) =
c(f(x)g(x))h(x) (with h(x) is primitive) is not primitive, then c(f(x)g(x)) is not a unit
and it must be divisible by some irreducible element p of R. There are two proofs.
First Proof: Since R is a UFD, p is prime and P = ⟨p⟩ is a prime ideal. Consider in
(R/P )[x] using bar notation. Then

0 = c(f(x)g(x))h0(x) = f(x)g(x) = f(x) · g(x).

Since (R/P )[x] is an integral domain, f(x) = 0 or g(x) = 0 contradicting our assumption
that f(x) and g(x) are primitive.
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Second Proof: Write

f(x) =
m∑

i=0

aix
i, g(x) =

n∑

j=0

bjx
j, and f(x)g(x) =

m+n∑

k=0

ckx
k.

Since f(x) is primitive, p cannot divide all its coefficients, and so there is an integer r ≥ 0
such that p | a0, a1, . . . , ar−1 but p ! ar. Similarly there is an s ≥ 0 such that p divides
each of b0, b1, . . . , bs−1 but p does not divide bs. Now consider the coefficient cr+s of xr+s

in f(x)g(x); this equals

(a0br+s + a1br+s−1 + · · ·+ ar−1bs+1) + arbs + (ar+1bs−1 + · · ·+ ar+sb0).

We know that p | cr+s; also both the expressions in parentheses in the expression above.
It follows that p | arbs. By Lemma 7.3, we must have p | ar or p | bs, both of which are
impossible. By this contradiction f(x)g(x) is primitive.

Now we are ready for the general case. By Lemma 7.9 we wirte f(x) = cf0(x) and
g(x) = dg0(x) where c = c(f(x)) and d = c(g(x)), and the polynomials f0(x), g0(x)
are primitive in R[x]. Then f(x)g(x) = cd(f0(x)g0(x)) and, as has just been shown in
Proposition 7.10, f0g0 is primitive. In consequence c(f(x)g(x)) ∼ cd = c(f(x))c(g(x)).

The following proposition is called Gauss’s Lemma.

Proposition 7.11 Let R be a unique factorization domain and let F denote the field of
fractions of R. Let f(x) be a primitive polynomial in R[x]. Then f(x) is irreducible over
R if and only if it is irreducible over F .

Proof. Of course irreducibility over F certainly implies irreducibility over R. It is the
converse implication which needs proof. Assume that f(x) is irreducible over R but re-
ducible over F . Here we can assume that f(x) is primitive on the basis of Proposition 7.10.
Then f(x) = g(x)h(x) where g(x), h(x) ∈ F [x] are not constant. Since F is the field of
fractions of R, there exist elements a, b ̸= 0 in R such that g1(x) = ag(x) ∈ R[x] and
h1(x) = bh(x) ∈ R[x]. Write g1(x) = c(g1)g2(x) where g2(x) ∈ R[x] is primitive. Then
ag(x) = c(g1(x))g2(x), so we can divide both sides by gcd{a, c(g1(x))}. On these grounds
it is possible to assume that c(g1(x)) and a are relatively prime, and that the same holds
for c(h1(x)) and b.

Next we have (ab)f(x) = (ag)(bh(x)) = g1(x)h1(x). Taking the constant of each side
and using Proposition 7.10, we obtain ab = c(g1(x))c(h1(x)) since f(x) is primitive. But
c(g1(x)) and a are relatively prime, so a | c(h1(x)), and for a similar reason b ∈ c(g1(x)).
Therefore we have the factorization f(x) = (b−1g1(x))(a−1h1(x)) and now both factors
are polynomials over R. But this contradicts the irreducibility of f(x) over R and so the
proof is complete.

Theorem 7.12 If R is a unique factorization domain, then so is the polynomial ring
R[x1, x2, . . . , xk].

Proof. We need only to prove this when k = 1. For if k > 1, then

R[x1, x2, . . . , xk] = R[x1, x2, . . . , xk−1][xk]
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and induction on k can be used once the case k = 1 is settled. From now on we restrict
attention to S = R[x].

(a) Any non-constant polynomial f(x) in S is expressible as a product ot irreducible
elements of R and primitive irreducible polynomials over R.

Proof. The key idea in the proof is to introduce the field of fractions F of R, and
exploit the fact that F [x] is known to be a PID and hence a UFD. First of all write f(x) =
c(f(x))f0(x) where f0(x) ∈ S is primitive using Lemma 7.9. Hence c(f(x)) is either a unit
or a product of irreducibles of R. So we can assume that f(x) is primitive. Regarding
f(x) as an element of the UFD F [t], we write f = p1p2 · · · pm where pi ∈ F [t] is irreducible
over F . Now find ai ̸= 0 in R such that fi(x) = aipi(x) ∈ S. Wirting c(fi(x)) = ci, we
have fi(x) = ciqi(x) where qi(x) ∈ R[x] is primitive. Hence pi(x) = a−1

i xi = a−1
i ciqi(x),

and qi(x) is F -irreducible since pi(x) is. Thus qi(x) is certainly R-irreducible.
Combining these expressions for pi(x), we find that

f(x) = (a−1
1 · · · a−1

m c1 · · · cm)q1(x) · · · qm(x)

and hence (a1 · · · am)f(x) = (cm · · · )q1(x) · · · qm(x). Now take the content of both sides of
the equations to get a1 · · · am = c1 · · · cm up to a unit, since f(x) and qi(x) are primitive.
Consequently, f(x) = uq1(x) · · · qm(x) for some unit u of R. This is what we had to prove.

(b) Every irreducible element of S is either an irreducible element of R or a primitive
irreducible polynomial in S.

Proof. Let C1 be a complete set of irreducibles for R, and C2 is a set of non-associate
primitive irreducible polynomials. Hence every primitive irreducible polynomial in R[x]
is associate to some element of C2. Now put C = C1 ∪ C2. Then C is a complete set of
irreducibles for S.

(c) Uniqueness.
Proof. Suppose that

f(x) = ua1 · · · akf1(x) · · · fr(x) = vb1 · · · bℓg1(x) · · · gs(x),

where u, v are units, ax, by ∈ C1, fi(x), fj(x) ∈ C2. By Gauss’s Lemma, the fi(x) and
gj(x) are F -irreducible. Since F [x] is a UFD and C2 is a complete set of irreducibles
for F [x], we conclude that r = s and fi(x) = wigi(x), (after possible relabelling), where
wi ∈ F . Write wi = cid

−1
i where ci, di ∈ R. Then difi(x) = cigi(x), and on taking contents

we find that ci = di up to a unit. This implies that wi is a unit of R and so fi(x), gi(x)
are associate. Hence fi(x) = gi(x).

Cancelling the fi(x) and gi(x), we are left with ua1 · · · ak = vb1 · · · bℓ. Bur R is a UFD
with a complete set of irreducibles C1, so that k = ℓ, u = v and ai = bi (after further
relabelling). This completes the proof.

Corollary 7.13 The following rings are unique factorization domains:
Z[x1, x2, . . . , xk] and F [x1, x2, . . . , xk] where F is a field.

Proposition 7.14 (Eisenstein’s Criterion (1850)) Let R be a unique factorization
domain and let f(x) = a0 + a1x+ · · ·+ anxn be a polynomial over R. Suppose that there
is an irreducible element p of R such that p | a0, p | a1, . . . , p | an−1, but p ! an and p2 ! a0.
Then f(x) is irreducible over R.
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Proof. Suppose that f(x) is reducible and

f(x) = (b0 + b1x+ · · ·+ brx
r)(c0 + c1x+ · · ·+ csx

s)

where bi, cj ∈ R, r, s < n, and r + s = n. Then

ai = b0ci + b1ci−1 + · · ·+ bic0.

Now by hypothesis p | a0 = b0c0 but p2 ! a0; thus p must divide exactly one of b0
and c0, say p | b0 and p ! c0. Also p cannot divide every bi since otherwise it would
divide an = b0cn + · · · bnc0. Therefore, there is a smallest positive integer k such that
p ! bk. Now p divides each of b0, b1, . . . , bk−1 and also p | ak since k ≤ r < n. Since
ak = (b0ck + · · · + bk−1c1) + bkc0, it follows that p | bkc0. By Euclide’s lemma, which is
valid in any UFD by (7.3.4), p | bk or p | c0, both of which are forbidden.
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