7 Divisibility in Integral Domains

Definition 7.1 Let D be an integral domain and let a,b € D. Then a is said to divide b
in D, in symbols a | b, if ac = b for some ¢ € D, i.e., (b) C (a).

Elements a, b € D are called associatesif a | band b | a, i.e., (a) = (b) and equivalently
there is a unit v € D such that b = ua. In this case, we write a ~ b. (Exercises 2 and 5)

A nonzero element a is called irreducible if it is not a unit and if @ = be for some b,
c € D then b or ¢ is a unit, i.e., (a) # {0}, R and (a) C (b) C R implies (a) = (b).

A nonzero element a is called prime if a is not a unit and a | be implies a | b or a | ¢,
equivalently if (a) is a prime ideal.

Example 7.1 Let D = Z[\/=3]. Then 2-2 = (1 ++/=3)(1 —/-=3). 1 ++/=3 and 2 are
irreducible but not prime.

Let « € D. Then a € U(D) < N(a) =1 a € {1,-1}. N(2)=N(1++/-3) =4
and 2 ¢ N(D).

Lemma 7.1 (Theorem 18.1) Let D be an integral domain and p a prime. Then p is
irreducible.

Proof. Let p = ab. Then (p) C (a) N (b). So a € (p) implies b € U(D) and b € (p)
implies a € U(D). Thus p is irreducible. |

Proposition 7.2 (Theorem 18.2) Let I be a non-zero ideal of a principal ideal domain
D and I = (p). Then the following statements about I are equivalent: (Ezercise 10)

(i) I is maximal,
(ii) I is prime, i.e., p is prime,
(iii) p is an irreducible element of D.

Proof. (i) = (ii) is from Theorem 3.3, and (ii) = (iii) is from Lemma 7.1.
Suppose p is irreducible. Let (p) C (a). Then p = ab. Hence either p and a are
associates, or a € U(D). Thus (p) = (a) or (a) = D, and I = (p) is maximal.. |

Definition 7.2 An integral domain D is a unique factorization domain if

1. Every nonzero element of D that is not a unit can be written as a product of irre-
ducibles of D.

2. The factorization into irreducibles is unique up to associates and the order in which
the factors appear.

Definition 7.3 Let D be a unique factorization domain. For aq,as, ..., a,, € D, a great-
est common divisor d = ged{ay, as, ..., a,} is an element of D satisfying the following.

1. d|ay, d|ag,...,d]|any.
2. Ifel|ay, clag,...,c|am, then c|d.

If both d and d' are greatest common divisors, we have d ~ d'.
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Note that in a unique factorization domain, the greatest common divisor always exists.
Let

a=pips - pir, b=pl'pl - pl,
where p1, pa, ..., p, are irreducibles that are not mutually associates, and e, es, ..., e, and
fi, fo, ..., [ are nonnegative integers. Then the greatest common divisor of a and b is

g1,.92

d=p{'py ---pJr, where g = min{ey, f1}, g2 = min{es, fo},..., ¢, = min{e,, f,}.

We find the greatest common divisor of ay,as, ..., a, € D similarly.

Lemma 7.3 Let D be a unique factorization domain. Then every irreducible element is
prime. (Ez. 43)

Proof. Suppose p is an irreducible element. Let p | ab (a,b € D). Set ab = pc, a =
prepr, b=py---p;and ¢ = q - - - ¢, where p;, py, qx are irreducible elements in D. Then

Prqu g =pc=ab=pi- PPy Pl
Since D is a unique factorization domain, p ~ p; for some i, or p ~ p’ for some j. If
p ~ p;, then p | a. If p ~ pf, then p | b. Therefore, p is prime. ]

Lemma 7.4 In a principal ideal domain, any strictly increasing chain of ideals I; C 15 C
- must be finite in length. (This condition is called the Ascending Chain Condition
(ACC).) (See Ezercise 3.)

Proof. Let I =|J;2, I; = (a), Then there is a number n such that a € I,,. |

Theorem 7.5 (Theorem 18.3, PID = UFD) FEvery principal ideal domain is a unique
factorization domain.

Proof. Let a be neither a zero nor a unit. If a is not irreducible, then there exist non
units a;, b € D such that a = ;b and (a) is properly contained in (a;). If a; is not
irreducible, we can continue this process. So by the previous lemma, we may assume that
a = pya; and p; is irreducible. Similarly we can continue this process to factor a as a
product of irreducibles of D.

Suppose a = p1pa - Pr = q1q2 - - - ¢s- Then by Proposition 7.2, py | ¢; for some i. Now
we can proceed by induction. ]

Corollary 7.6 Let F be a field. Then the polynomial ring in x over F, F[zx], is a unique
factorization domain.

Definition 7.4 An integral domain is called a Euclidean Domain if there is a function
(called the measure) from the nonzero element of D to the nonnegative integers such that

1. d(a) < d(ab) for all nonzero a,b € D.

2. Ifa,be D, b=#0 then there exist elements ¢ and » € D such that a = bg + r, where
r=0ord(r)<db).
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Example 7.2 Z[\/—1] is a Euclidean domain. (See Exercise 7.)
Define d(a) = N(a) = - @. For o, f € Z[/—1], let

a/f = (a+by—=1) + (d +¥/=1), where a,b € Z, |a| < %, b < %
Set v =a+by/—1and p = (¢’ +¥'+/~1)3. Then a = 8 + p and
N(p) = N((a +¥v1)8) = Na' + ¥V=IN(B) < ((é) +(3) ) N(B) < N(3).

Theorem 7.7 (Theorem 18.4 ED = PID) Every Fuclidean domain is a principal ideal
domain.

Proof. Let I be a nonzero ideal. Let d = min{d(a) | a € I, a # 0} and d = d(a).
Suppose b € I. Then there exist ¢, € D such that b = aqg + r with r =0 or r # 0 and
d(r) < d(a). The latter does not occur as r € I as well. u

Theorem 7.8 (Theorem 18.5) If D is a unique factorization domain, then so is the
polynomial ring D[z, xa, . .., Tkl

7.1 Proof of Theorem 7.8

Definition 7.5 Let R be a UFD and let 0 # f(x) € R[z]. The ged of the coefficients
of f(z) is called the content of f(z), and is denoted by c(f(x)). If e(f(x)) ~ 1, i.e,
c(f(x)) € U(R), then f(x) is said to be primitive.

Lemma 7.9 Let 0 # f(z) € R|x] where R is a UFD. Then f(x) = cfo(x) where ¢ =
c(f(x)) and fo(x) is primitive in R|x].

Proof. Write f(z) = ag + a1z + - - - + a,a™; then c¢(f(z)) = ged{ay,...,a,} = c. Write
a; = cb; with b; € R, and put fo(x) = bg + byx + - - + ba™ € R[z]. Thus f(x) = cfo(x).
If d = ged{bo,b1,...,b,}, then d | b; and so cd | ¢b; = a;. Since ¢ is the ged of the a;, it
follows that cd divides ¢ and hence that d is a unit and fo(x) is primitive. n

Proposition 7.10 Let R be a UFD and let f(x), g(x) be non-zero polynomials over R.
Then c(f(x)g(z)) ~ c(f(x))c(g(x)). In particular, if f(z) and g(x) are primitive, then so

is f(x)g(x).

Proof. Consider first the special case where f(z) and g(z) are primitive. If f(x)g(z) =
c(f(x)g(x))h(x) (with h(z) is primitive) is not primitive, then ¢(f(x)g(x)) is not a unit
and it must be divisible by some irreducible element p of R. There are two proofs.

First Proof: Since R is a UFD, p is prime and P = (p) is a prime ideal. Consider in
(R/P)[z] using bar notation. Then

0= c(f(z)g(x))ho(z) = f(z)g(z) = f(x) - g().

Since (R/P)[x] is an integral domain, f(z) = 0 or g(z) = 0 contradicting our assumption
that f(x) and g(z) are primitive. u
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Second Proof: Write

m—+n

:Zm:aixi7 g(‘r)zzn:bj j’ a’nd'f ZCkSC
i=0 Jj=0

Since f(x) is primitive, p cannot divide all its coefficients, and so there is an integer r > 0
such that p | ag,a1,...,a,—1 but p t a,. Similarly there is an s > 0 such that p divides
each of by, by, ...,bs_1 but p does not divide b,. Now consider the coefficient ¢, of z""*
in f(z)g(z); this equals

(a()br+s + alerrsfl + o+ arflstrl) + arbs + (ar+1bsfl + o+ ar+sb0)-

We know that p | ¢,14; also both the expressions in parentheses in the expression above.
It follows that p | a,bs. By Lemma 7.3, we must have p | a, or p | bs, both of which are
impossible. By this contradiction f(z)g(x) is primitive.

Now we are ready for the general case. By Lemma 7.9 we wirte f(z) = cfy(z) and
g(x) = dgo(x) where ¢ = ¢(f(x)) and d = c(g(z)), and the polynomials fo(x), go(x)
are primitive in R[z]. Then f(x)g(z) = cd(fo(z)go(x)) and, as has just been shown in
Proposition 7.10, fogo is primitive. In consequence c(f(z)g(x)) ~ cd = c(f(z))c(g(x)). =

The following proposition is called Gauss’s Lemma.

Proposition 7.11 Let R be a unique factorization domain and let F' denote the field of
fractions of R. Let f(x) be a primitive polynomial in R[z|. Then f(x) is irreducible over
R if and only if it is irreducible over F.

Proof. Of course irreducibility over F' certainly implies irreducibility over R. It is the
converse implication which needs proof. Assume that f(x) is irreducible over R but re-
ducible over F'. Here we can assume that f(z) is primitive on the basis of Proposition 7.10.
Then f(z) = g(x)h(z) where g(z), h(z) € F|x] are not constant. Since F' is the field of
fractions of R, there exist elements a,b # 0 in R such that g;(z) = ag(z) € R[z] and
hi(z) = bh(z) € Rlx]. Write ¢g1(x) = ¢(g1)g2(x) where go(x) € R[x] is primitive. Then
ag(x) = ¢(g1())g2(z), so we can divide both sides by ged{a, ¢(g1(x))}. On these grounds
it is possible to assume that ¢(g;(z)) and a are relatively prime, and that the same holds
for c(hi(x)) and b.
Next we have (ab)f(z) = (ag)(bh(z)) = g1(x)hi(z). Taking the constant of each side
and using Proposition 7.10, we obtain ab = ¢(g1(x))c(hi(x)) since f(x) is primitive. But
¢(g1(x)) and a are relatively prime, so a | ¢(hi(z)), and for a similar reason b € ¢(g;(x)).
Therefore we have the factorization f(x) = (b~'gi(x))(a " hi(x)) and now both factors
are polynomials over R. But this contradicts the irreducibility of f(z) over R and so the
proof is complete. ]

Theorem 7.12 If R is a unique factorization domain, then so is the polynomial ring
R[SL’l,IEQ, e ,SL’k].

Proof. We need only to prove this when k£ = 1. For if £ > 1, then

Rlxy,z9, ..., x5 = Rlxy, 29, ..., xp_1][xk]
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and induction on k can be used once the case k£ = 1 is settled. From now on we restrict
attention to S = R[x].

(a) Any non-constant polynomial f(x) in S is expressible as a product ot irreducible
elements of R and primitive irreducible polynomials over R.

Proof. The key idea in the proof is to introduce the field of fractions F' of R, and
exploit the fact that F[z] is known to be a PID and hence a UFD. First of all write f(z) =
c(f(x)) fo(x) where fo(x) € S is primitive using Lemma 7.9. Hence ¢(f(x)) is either a unit
or a product of irreducibles of R. So we can assume that f(z) is primitive. Regarding
f(z) as an element of the UFD F[t], we write f = pips - - - p,, Where p; € F[t] is irreducible
over F'. Now find a; # 0 in R such that f;(x) = a;p;(z) € S. Wirting ¢(f;(z)) = ¢;, we
have fi(r) = ¢;qi(r) where ¢;(z) € R[z] is primitive. Hence p;(z) = a; 'z; = a; 'ciqi(z),
and ¢;(x) is F-irreducible since p;(x) is. Thus ¢;(z) is certainly R-irreducible.

Combining these expressions for p;(z), we find that

fl@)=(ar" - ay e cn)q(@) - gm(z)

and hence (ay -+ ay) f(x) = (¢ - )1 () - - - @ (). Now take the content of both sides of
the equations to get ay -+ - ap = ¢1 -+ - ¢, up to a unit, since f(z) and ¢;(x) are primitive.
Consequently, f(z) = ugi(x) - - - g (x) for some unit u of R. This is what we had to prove.
u

(b) Every irreducible element of S is either an irreducible element of R or a primitive
irreducible polynomial in S.

Proof. Let C} be a complete set of irreducibles for R, and C5 is a set of non-associate
primitive irreducible polynomials. Hence every primitive irreducible polynomial in R]zx]
is associate to some element of C5. Now put C' = C U Cs. Then C'is a complete set of
irreducibles for S. [ ]

(¢) Uniqueness.
Proof. Suppose that

fl@) =way - apfi(z) - fo(@) = b bega() - - gs(2),

where u,v are units, a,,b, € Cy, fi(z), fj(x) € Cy. By Gauss’s Lemma, the f;(z) and
gj(x) are F-irreducible. Since Fz] is a UFD and Cj is a complete set of irreducibles
for F[z], we conclude that r = s and f;(x) = w;g;(x), (after possible relabelling), where
w; € F. Write w; = ¢;d; ' where ¢;,d; € R. Then d;f;(z) = ¢;g;(z), and on taking contents
we find that ¢; = d; up to a unit. This implies that w; is a unit of R and so f;(z), g;(x)
are associate. Hence f;(z) = g;(x).

Cancelling the f;(z) and g;(x), we are left with ua, - - - ax, = vby - - - by. Bur R is a UFD
with a complete set of irreducibles C1, so that k = ¢, w = v and a; = b; (after further
relabelling). This completes the proof. [

Corollary 7.13 The following rings are unique factorization domains:
Z[x1,x,...,xx) and Flzy,xq,. .., xx] where F is a field.

Proposition 7.14 (Eisenstein’s Criterion (1850)) Let R be a unique factorization
domain and let f(x) = ag + a1z + - - - + a,x" be a polynomial over R. Suppose that there
is an irreducible element p of R such thatp | ap, p | ar,...,p | an_1, but pta, and p*{ ao.
Then f(x) is irreducible over R.
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Proof. Suppose that f(z) is reducible and
f(x)=(bg+bix+ - +ba")(co+ cro+ - + csx”)
where b;, ¢c; € R, 7,5 <n, and r +s = n. Then
a; = boc; + bici—1 + -+ - + bico.

Now by hypothesis p | ag = bocy but p? t ag; thus p must divide exactly one of b
and ¢y, say p | bp and p 1 ¢o. Also p cannot divide every b; since otherwise it would
divide a,, = boc, + ---b,co. Therefore, there is a smallest positive integer k such that

p 1 by. Now p divides each of by, by,...,bx—1 and also p | a; since k < r < n. Since
ar = (bock + -+ + br_1¢1) + brco, it follows that p | brco. By Euclide’s lemma, which is
valid in any UFD by (7.3.4), p | b or p | ¢, both of which are forbidden. n
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