7 Divisibility in Integral Domains

Definition 7.1 Let D be an integral domain and let $a, b \in D$. Then a is said to divide b in D, in symbols $a \mid b$, if $a c=b$ for some $c \in D$, i.e., $\langle b\rangle \subseteq\langle a\rangle$.

Elements $a, b \in D$ are called associates if $a \mid b$ and $b \mid a$, i.e., $\langle a\rangle=\langle b\rangle$ and equivalently there is a unit $u \in D$ such that $b=u a$. In this case, we write $a \sim b$. (Exercises 2 and 5)

A nonzero element a is called irreducible if it is not a unit and if $a=b c$ for some b, $c \in D$ then b or c is a unit, i.e., $\langle a\rangle \neq\{0\}, R$ and $\langle a\rangle \subseteq\langle b\rangle \subset R$ implies $\langle a\rangle=\langle b\rangle$.

A nonzero element a is called prime if a is not a unit and $a \mid b c$ implies $a \mid b$ or $a \mid c$, equivalently if $\langle a\rangle$ is a prime ideal.

Example 7.1 Let $D=\boldsymbol{Z}[\sqrt{-3}]$. Then $2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3}) .1 \pm \sqrt{-3}$ and 2 are irreducible but not prime.

Let $\alpha \in D$. Then $\alpha \in U(D) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha \in\{1,-1\} . N(2)=N(1 \pm \sqrt{-3})=4$ and $2 \notin N(D)$.

Lemma 7.1 (Theorem 18.1) Let D be an integral domain and p a prime. Then p is irreducible.

Proof. Let $p=a b$. Then $\langle p\rangle \subseteq\langle a\rangle \cap\langle b\rangle$. So $a \in\langle p\rangle$ implies $b \in U(D)$ and $b \in\langle p\rangle$ implies $a \in U(D)$. Thus p is irreducible.

Proposition 7.2 (Theorem 18.2) Let I be a non-zero ideal of a principal ideal domain D and $I=\langle p\rangle$. Then the following statements about I are equivalent: (Exercise 10)
(i) I is maximal,
(ii) I is prime, i.e., p is prime,
(iii) p is an irreducible element of D.

Proof. (i) \Rightarrow (ii) is from Theorem 3.3, and (ii) \Rightarrow (iii) is from Lemma 7.1.
Suppose p is irreducible. Let $\langle p\rangle \subseteq\langle a\rangle$. Then $p=a b$. Hence either p and a are associates, or $a \in U(D)$. Thus $\langle p\rangle=\langle a\rangle$ or $\langle a\rangle=D$, and $I=\langle p\rangle$ is maximal..

Definition 7.2 An integral domain D is a unique factorization domain if

1. Every nonzero element of D that is not a unit can be written as a product of irreducibles of D.
2. The factorization into irreducibles is unique up to associates and the order in which the factors appear.

Definition 7.3 Let D be a unique factorization domain. For $a_{1}, a_{2}, \ldots, a_{m} \in D$, a greatest common divisor $d=\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is an element of D satisfying the following.

1. $d\left|a_{1}, d\right| a_{2}, \ldots, d \mid a_{m}$.
2. If $c\left|a_{1}, c\right| a_{2}, \ldots, c \mid a_{m}$, then $c \mid d$.

If both d and d^{\prime} are greatest common divisors, we have $d \sim d^{\prime}$.

Note that in a unique factorization domain, the greatest common divisor always exists. Let

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}},
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are irreducibles that are not mutually associates, and $e_{1}, e_{2}, \ldots, e_{r}$ and $f_{1}, f_{2}, \ldots, f_{r}$ are nonnegative integers. Then the greatest common divisor of a and b is

$$
d=p_{1}^{g_{1}} p_{2}^{g_{2}} \cdots p_{r}^{g_{r}}, \text { where } g_{1}=\min \left\{e_{1}, f_{1}\right\}, g_{2}=\min \left\{e_{2}, f_{2}\right\}, \ldots, g_{r}=\min \left\{e_{r}, f_{r}\right\}
$$

We find the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{m} \in D$ similarly.
Lemma 7.3 Let D be a unique factorization domain. Then every irreducible element is prime.
(Ex. 43)
Proof. Suppose p is an irreducible element. Let $p \mid a b(a, b \in D)$. Set $a b=p c, a=$ $p_{1} \cdots p_{r}, b=p_{1}^{\prime} \cdots p_{s}^{\prime}$ and $c=q_{1} \cdots q_{t}$, where $p_{i}, p_{j}^{\prime}, q_{k}$ are irreducible elements in D. Then

$$
p \cdot q_{1} \cdots q_{t}=p c=a b=p_{1} \cdots p_{r} p_{1}^{\prime} \cdots p_{s}^{\prime} .
$$

Since D is a unique factorization domain, $p \sim p_{i}$ for some i, or $p \sim p_{j}^{\prime}$ for some j. If $p \sim p_{i}$, then $p \mid a$. If $p \sim p_{j}^{\prime}$, then $p \mid b$. Therefore, p is prime.

Lemma 7.4 In a principal ideal domain, any strictly increasing chain of ideals $I_{1} \subset I_{2} \subset$ \cdots must be finite in length. (This condition is called the Ascending Chain Condition (ACC).)
(See Exercise 3.)
Proof. Let $I=\bigcup_{i=1}^{\infty} I_{i}=\langle a\rangle$, Then there is a number n such that $a \in I_{n}$.
Theorem 7.5 (Theorem 18.3, PID \Rightarrow UFD) Every principal ideal domain is a unique factorization domain.

Proof. Let a be neither a zero nor a unit. If a is not irreducible, then there exist non units $a_{1}, b \in D$ such that $a=a_{1} b$ and $\langle a\rangle$ is properly contained in $\left\langle a_{1}\right\rangle$. If a_{1} is not irreducible, we can continue this process. So by the previous lemma, we may assume that $a=p_{1} a_{1}$ and p_{1} is irreducible. Similarly we can continue this process to factor a as a product of irreducibles of D.

Suppose $a=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$. Then by Proposition 7.2, $p_{1} \mid q_{i}$ for some i. Now we can proceed by induction.

Corollary 7.6 Let F be a field. Then the polynomial ring in x over $F, F[x]$, is a unique factorization domain.

Definition 7.4 An integral domain is called a Euclidean Domain if there is a function (called the measure) from the nonzero element of D to the nonnegative integers such that

1. $d(a) \leq d(a b)$ for all nonzero $a, b \in D$.
2. If $a, b \in D, b \neq 0$ then there exist elements q and $r \in D$ such that $a=b q+r$, where $r=0$ or $d(r)<d(b)$.

Example 7.2 $\boldsymbol{Z}[\sqrt{-1}]$ is a Euclidean domain.
Define $d(\alpha)=N(\alpha)=\alpha \cdot \bar{\alpha}$. For $\alpha, \beta \in \boldsymbol{Z}[\sqrt{-1}]$, let

$$
\alpha / \beta=(a+b \sqrt{-1})+\left(a^{\prime}+b^{\prime} \sqrt{-1}\right), \text { where } a, b \in \boldsymbol{Z},|a| \leq \frac{1}{2},|b| \leq \frac{1}{2}
$$

Set $\gamma=a+b \sqrt{-1}$ and $\rho=\left(a^{\prime}+b^{\prime} \sqrt{-1}\right) \beta$. Then $\alpha=\gamma \beta+\rho$ and

$$
N(\rho)=N\left(\left(a^{\prime}+b^{\prime} \sqrt{-1}\right) \beta\right)=N\left(a^{\prime}+b^{\prime} \sqrt{-1}\right) N(\beta) \leq\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right) N(\beta)<N(\beta) .
$$

Theorem 7.7 (Theorem 18.4 ED \Rightarrow PID) Every Euclidean domain is a principal ideal domain.

Proof. Let I be a nonzero ideal. Let $d=\min \{d(a) \mid a \in I, a \neq 0\}$ and $d=d(a)$. Suppose $b \in I$. Then there exist $q, r \in D$ such that $b=a q+r$ with $r=0$ or $r \neq 0$ and $d(r)<d(a)$. The latter does not occur as $r \in I$ as well.

Theorem 7.8 (Theorem 18.5) If D is a unique factorization domain, then so is the polynomial ring $D\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.

7.1 Proof of Theorem 7.8

Definition 7.5 Let R be a UFD and let $0 \neq f(x) \in R[x]$. The gcd of the coefficients of $f(x)$ is called the content of $f(x)$, and is denoted by $c(f(x))$. If $c(f(x)) \sim 1$, i.e., $c(f(x)) \in U(R)$, then $f(x)$ is said to be primitive.

Lemma 7.9 Let $0 \neq f(x) \in R[x]$ where R is a UFD. Then $f(x)=c f_{0}(x)$ where $c=$ $c(f(x))$ and $f_{0}(x)$ is primitive in $R[x]$.

Proof. Write $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$; then $c(f(x))=\operatorname{gcd}\left\{a_{0}, \ldots, a_{n}\right\}=c$. Write $a_{i}=c b_{i}$ with $b_{i} \in R$, and put $f_{0}(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$. Thus $f(x)=c f_{0}(x)$. If $d=\operatorname{gcd}\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$, then $d \mid b_{i}$ and so $c d \mid c b_{i}=a_{i}$. Since c is the gcd of the a_{i}, it follows that $c d$ divides c and hence that d is a unit and $f_{0}(x)$ is primitive.

Proposition 7.10 Let R be a UFD and let $f(x), g(x)$ be non-zero polynomials over R. Then $c(f(x) g(x)) \sim c(f(x)) c(g(x))$. In particular, if $f(x)$ and $g(x)$ are primitive, then so is $f(x) g(x)$.

Proof. Consider first the special case where $f(x)$ and $g(x)$ are primitive. If $f(x) g(x)=$ $c(f(x) g(x)) h(x)$ (with $h(x)$ is primitive) is not primitive, then $c(f(x) g(x))$ is not a unit and it must be divisible by some irreducible element p of R. There are two proofs.
First Proof: Since R is a UFD, p is prime and $P=\langle p\rangle$ is a prime ideal. Consider in $(R / P)[x]$ using bar notation. Then

$$
0=\overline{c(f(x) g(x)) h_{0}(x)}=\overline{f(x) g(x)}=\overline{f(x)} \cdot \overline{g(x)} .
$$

Since $(R / P)[x]$ is an integral domain, $\overline{f(x)}=0$ or $\overline{g(x)}=0$ contradicting our assumption that $f(x)$ and $g(x)$ are primitive.

Second Proof: Write

$$
f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j}, \text { and } f(x) g(x)=\sum_{k=0}^{m+n} c_{k} x^{k} .
$$

Since $f(x)$ is primitive, p cannot divide all its coefficients, and so there is an integer $r \geq 0$ such that $p \mid a_{0}, a_{1}, \ldots, a_{r-1}$ but $p \nmid a_{r}$. Similarly there is an $s \geq 0$ such that p divides each of $b_{0}, b_{1}, \ldots, b_{s-1}$ but p does not divide b_{s}. Now consider the coefficient c_{r+s} of x^{r+s} in $f(x) g(x)$; this equals

$$
\left(a_{0} b_{r+s}+a_{1} b_{r+s-1}+\cdots+a_{r-1} b_{s+1}\right)+a_{r} b_{s}+\left(a_{r+1} b_{s-1}+\cdots+a_{r+s} b_{0}\right)
$$

We know that $p \mid c_{r+s}$; also both the expressions in parentheses in the expression above. It follows that $p \mid a_{r} b_{s}$. By Lemma 7.3, we must have $p \mid a_{r}$ or $p \mid b_{s}$, both of which are impossible. By this contradiction $f(x) g(x)$ is primitive.

Now we are ready for the general case. By Lemma 7.9 we wirte $f(x)=c f_{0}(x)$ and $g(x)=d g_{0}(x)$ where $c=c(f(x))$ and $d=c(g(x))$, and the polynomials $f_{0}(x), g_{0}(x)$ are primitive in $R[x]$. Then $f(x) g(x)=c d\left(f_{0}(x) g_{0}(x)\right)$ and, as has just been shown in Proposition 7.10, $f_{0} g_{0}$ is primitive. In consequence $c(f(x) g(x)) \sim c d=c(f(x)) c(g(x))$.

The following proposition is called Gauss's Lemma.
Proposition 7.11 Let R be a unique factorization domain and let F denote the field of fractions of R. Let $f(x)$ be a primitive polynomial in $R[x]$. Then $f(x)$ is irreducible over R if and only if it is irreducible over F.

Proof. Of course irreducibility over F certainly implies irreducibility over R. It is the converse implication which needs proof. Assume that $f(x)$ is irreducible over R but reducible over F. Here we can assume that $f(x)$ is primitive on the basis of Proposition 7.10. Then $f(x)=g(x) h(x)$ where $g(x), h(x) \in F[x]$ are not constant. Since F is the field of fractions of R, there exist elements $a, b \neq 0$ in R such that $g_{1}(x)=a g(x) \in R[x]$ and $h_{1}(x)=b h(x) \in R[x]$. Write $g_{1}(x)=c\left(g_{1}\right) g_{2}(x)$ where $g_{2}(x) \in R[x]$ is primitive. Then $a g(x)=c\left(g_{1}(x)\right) g_{2}(x)$, so we can divide both sides by $\operatorname{gcd}\left\{a, c\left(g_{1}(x)\right)\right\}$. On these grounds it is possible to assume that $c\left(g_{1}(x)\right)$ and a are relatively prime, and that the same holds for $c\left(h_{1}(x)\right)$ and b.

Next we have $(a b) f(x)=(a g)(b h(x))=g_{1}(x) h_{1}(x)$. Taking the constant of each side and using Proposition 7.10, we obtain $a b=c\left(g_{1}(x)\right) c\left(h_{1}(x)\right)$ since $f(x)$ is primitive. But $c\left(g_{1}(x)\right)$ and a are relatively prime, so $a \mid c\left(h_{1}(x)\right)$, and for a similar reason $b \in c\left(g_{1}(x)\right)$. Therefore we have the factorization $f(x)=\left(b^{-1} g_{1}(x)\right)\left(a^{-1} h_{1}(x)\right)$ and now both factors are polynomials over R. But this contradicts the irreducibility of $f(x)$ over R and so the proof is complete.

Theorem 7.12 If R is a unique factorization domain, then so is the polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.

Proof. We need only to prove this when $k=1$. For if $k>1$, then

$$
R\left[x_{1}, x_{2}, \ldots, x_{k}\right]=R\left[x_{1}, x_{2}, \ldots, x_{k-1}\right]\left[x_{k}\right]
$$

and induction on k can be used once the case $k=1$ is settled. From now on we restrict attention to $S=R[x]$.
(a) Any non-constant polynomial $f(x)$ in S is expressible as a product ot irreducible elements of R and primitive irreducible polynomials over R.

Proof. The key idea in the proof is to introduce the field of fractions F of R, and exploit the fact that $F[x]$ is known to be a PID and hence a UFD. First of all write $f(x)=$ $c(f(x)) f_{0}(x)$ where $f_{0}(x) \in S$ is primitive using Lemma 7.9. Hence $c(f(x))$ is either a unit or a product of irreducibles of R. So we can assume that $f(x)$ is primitive. Regarding $f(x)$ as an element of the UFD $F[t]$, we write $f=p_{1} p_{2} \cdots p_{m}$ where $p_{i} \in F[t]$ is irreducible over F. Now find $a_{i} \neq 0$ in R such that $f_{i}(x)=a_{i} p_{i}(x) \in S$. Wirting $c\left(f_{i}(x)\right)=c_{i}$, we have $f_{i}(x)=c_{i} q_{i}(x)$ where $q_{i}(x) \in R[x]$ is primitive. Hence $p_{i}(x)=a_{i}^{-1} x_{i}=a_{i}^{-1} c_{i} q_{i}(x)$, and $q_{i}(x)$ is F-irreducible since $p_{i}(x)$ is. Thus $q_{i}(x)$ is certainly R-irreducible.

Combining these expressions for $p_{i}(x)$, we find that

$$
f(x)=\left(a_{1}^{-1} \cdots a_{m}^{-1} c_{1} \cdots c_{m}\right) q_{1}(x) \cdots q_{m}(x)
$$

and hence $\left(a_{1} \cdots a_{m}\right) f(x)=\left(c_{m} \cdots\right) q_{1}(x) \cdots q_{m}(x)$. Now take the content of both sides of the equations to get $a_{1} \cdots a_{m}=c_{1} \cdots c_{m}$ up to a unit, since $f(x)$ and $q_{i}(x)$ are primitive. Consequently, $f(x)=u q_{1}(x) \cdots q_{m}(x)$ for some unit u of R. This is what we had to prove.
(b) Every irreducible element of S is either an irreducible element of R or a primitive irreducible polynomial in S.

Proof. Let C_{1} be a complete set of irreducibles for R, and C_{2} is a set of non-associate primitive irreducible polynomials. Hence every primitive irreducible polynomial in $R[x]$ is associate to some element of C_{2}. Now put $C=C_{1} \cup C_{2}$. Then C is a complete set of irreducibles for S.
(c) Uniqueness.

Proof. Suppose that

$$
f(x)=u a_{1} \cdots a_{k} f_{1}(x) \cdots f_{r}(x)=v b_{1} \cdots b_{\ell} g_{1}(x) \cdots g_{s}(x)
$$

where u, v are units, $a_{x}, b_{y} \in C_{1}, f_{i}(x), f_{j}(x) \in C_{2}$. By Gauss's Lemma, the $f_{i}(x)$ and $g_{j}(x)$ are F-irreducible. Since $F[x]$ is a UFD and C_{2} is a complete set of irreducibles for $F[x]$, we conclude that $r=s$ and $f_{i}(x)=w_{i} g_{i}(x)$, (after possible relabelling), where $w_{i} \in F$. Write $w_{i}=c_{i} d_{i}^{-1}$ where $c_{i}, d_{i} \in R$. Then $d_{i} f_{i}(x)=c_{i} g_{i}(x)$, and on taking contents we find that $c_{i}=d_{i}$ up to a unit. This implies that w_{i} is a unit of R and so $f_{i}(x), g_{i}(x)$ are associate. Hence $f_{i}(x)=g_{i}(x)$.

Cancelling the $f_{i}(x)$ and $g_{i}(x)$, we are left with $u a_{1} \cdots a_{k}=v b_{1} \cdots b_{\ell}$. Bur R is a UFD with a complete set of irreducibles C_{1}, so that $k=\ell, u=v$ and $a_{i}=b_{i}$ (after further relabelling). This completes the proof.

Corollary 7.13 The following rings are unique factorization domains:
$\boldsymbol{Z}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ and $F\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ where F is a field.
Proposition 7.14 (Eisenstein's Criterion (1850)) Let R be a unique factorization domain and let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible over R.

Proof. Suppose that $f(x)$ is reducible and

$$
f(x)=\left(b_{0}+b_{1} x+\cdots+b_{r} x^{r}\right)\left(c_{0}+c_{1} x+\cdots+c_{s} x^{s}\right)
$$

where $b_{i}, c_{j} \in R, r, s<n$, and $r+s=n$. Then

$$
a_{i}=b_{0} c_{i}+b_{1} c_{i-1}+\cdots+b_{i} c_{0} .
$$

Now by hypothesis $p \mid a_{0}=b_{0} c_{0}$ but $p^{2} \nmid a_{0}$; thus p must divide exactly one of b_{0} and c_{0}, say $p \mid b_{0}$ and $p \nmid c_{0}$. Also p cannot divide every b_{i} since otherwise it would divide $a_{n}=b_{0} c_{n}+\cdots b_{n} c_{0}$. Therefore, there is a smallest positive integer k such that $p \nmid b_{k}$. Now p divides each of $b_{0}, b_{1}, \ldots, b_{k-1}$ and also $p \mid a_{k}$ since $k \leq r<n$. Since $a_{k}=\left(b_{0} c_{k}+\cdots+b_{k-1} c_{1}\right)+b_{k} c_{0}$, it follows that $p \mid b_{k} c_{0}$. By Euclide's lemma, which is valid in any UFD by (7.3.4), $p \mid b_{k}$ or $p \mid c_{0}$, both of which are forbidden.

