6 Factorization of Polynomials

Recall that if D is an integral domain, $D[x]$ is an integral domain and $U(D[x])=U(D)$. Both of them are consequences of $\operatorname{deg} f(x) g(x)=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.

Definition 6.1 Let D be an integral domain. A polynomial $f(x) \in D[x]$ that is neither the zero polynomial nor a unit in $D[x]$ is said to be irreducible over D if, whenever $f(x)$ is expresses as a product $f(x)=g(x) h(x), g(x)$ and $h(x)$ are from $D[x]$, then $g(x)$ or $h(x)$ is a unit in $D[x]$. A nonzero nonunit element of $D[x]$ that is not irreducible over D is called reducible over D.

If F is a field, $f(x) \in F[x]$ is a non-zero non-unit polynomial if and only if $\operatorname{deg} f(x) \geq 1$. Hence a non-constant polynomial $f(x) \in F[x]$ is irreducible if $f(x)$ can not be expressed as a product of two polynomials of lower degree.

Example 6.1 1. $f(x)=2 x^{2}+4$ is irreducible over \boldsymbol{Q} but reducible over \boldsymbol{Z}.
2. $f(x)=2 x^{2}+4$ is irreducible over \boldsymbol{R} but reducible over \boldsymbol{C}.
3. Let F be a field. A polynomial $f(x) \in F[x]$ of degree at most three is reducible if and only if there is $a \in F$ such that $f(a)=0$.

Definition 6.2 The content of a nonzero polynomial $f(x)=a_{n} x^{2}+a_{n-1} x^{n-1}+\cdots+$ $a_{1} x+a_{0} \in \boldsymbol{Z}[x]$ is the greatest common divisor of $a_{n}, a_{n-1}, \ldots, a_{0}$ and denoted by $c(f(x))$. A primitive polynomial is an element of $\boldsymbol{Z}[x]$ with content 1 .

1. Every polynomial $f(x) \in \boldsymbol{Z}[x]$ can be written as $f(x)=c(f(x)) f_{0}(x)$, where $f_{0}(x) \in$ $\boldsymbol{Z}[x]$ is primitive. Since the greatest common divisor is uniquely determined, $c(f(x))$ is uniquely determined.
2. Every polynomial $f(x) \in \boldsymbol{Q}[x]$ can be written as $f(x)=c f_{0}(x)$, where $c \in \boldsymbol{Q}$ and $f_{0}(x) \in \boldsymbol{Z}[x]$ is primitive. If $f(x)=d g_{0}(x)$ for some constant $d \in \boldsymbol{Q}$ and a primitive polynomial $g_{0}(x)$, then $c= \pm d$. So if both c and d are nonnegative, $c=d$, and $c \in \boldsymbol{Z}$ if and only if $f(x) \in \boldsymbol{Z}[x]$.

Proposition 6.1 (Gauss' Lemma) Let $f(x)$ and $g(x)$ be primitive polynomials in $\boldsymbol{Z}[x]$. Then $f(x) g(x)$ is also primitive.

Proof. Suppose $f(x) g(x)$ is not primitive. Let p be a prime factor of $c(f(x) g(x))$. Then $\bar{f}(x) \bar{g}(x)=\overline{f(x) g(x)}=0 \in \boldsymbol{Z}_{p}[x]$. Since $\boldsymbol{Z}_{p}[x]$ is an integral domain, $\bar{f}(x)=0$ or $\bar{g}(x)=0$ in $\boldsymbol{Z}_{p}[x]$. This is absurd.

Proposition 6.2 (Theorem 17.2) Let $f(x) \in \boldsymbol{Z}[x]$ be a primitive polynomial, then $f(x)$ is irreducible over \boldsymbol{Z} if and only if it is irreducible over \boldsymbol{Q}.

Proof. We may assume that $f(x)$ is primitive. Suppose $f(x)=g(x) h(x)$ in $\boldsymbol{Q}[x]$. Let a and b be the least common multiple of the denominators of $g(x)$ and $h(x)$ respectively. Then

$$
a b \cdot f(x)=(a \cdot g(x))(b \cdot h(x))=c(a \cdot g(x)) g_{0}(x) c(b \cdot h(x)) h_{0}(x),
$$

where $g_{0}(x)$ and $h_{0}(x)$ are primitive polynomials in $\boldsymbol{Z}[x]$. Now $\pm a b=c(a \cdot g(x)) c(b \cdot h(x))$ and $f(x)= \pm g_{0}(x) h_{0}(x)$ by the previous proposition. Since $\operatorname{deg} g_{0}(x)=\operatorname{deg} g(x)$ and $\operatorname{deg} h_{0}(x)=\operatorname{deg} h(x), f(x)$ is reducible over \boldsymbol{Z}.

Proposition 6.3 (Theorem 17.3) Let p be a prime and suppose that $f(x) \in \boldsymbol{Z}[x]$ be a primitive polynomial with degree $f(x) \geq 1$. Let $\bar{f}(x)$ be the polynomial in $\boldsymbol{Z}_{p}[x]$ obtained from $f(x)$ by reducing all the coefficients of $f(x)$ modulo p. If $\bar{f}(x)$ is irreducible over \boldsymbol{Z}_{p}, i.e., in $\boldsymbol{Z}_{p}[x]$, and $\operatorname{deg} \bar{f}(x)=\operatorname{deg} f(x)$, then $f(x)$ is irreducible over \boldsymbol{Q}.

Proof. Suppose $f(x)=g(x) h(x)$ with $g(x), h(x) \in \boldsymbol{Z}[x]$. Then $\bar{f}(x)=\bar{g}(x) \bar{h}(x)$. Since $\boldsymbol{Z}_{p}[x]$ is an integral domain and $\operatorname{deg} f(x)=\operatorname{deg} \bar{f}(x)$ by assumption, we have
$\operatorname{deg} g(x)+\operatorname{deg} h(x)=\operatorname{deg} f(x)=\operatorname{deg} \bar{f}(x)=\operatorname{deg} \bar{g}(x)+\operatorname{deg} \bar{h}(x) \leq \operatorname{deg} g(x)+\operatorname{deg} h(x)$.
Hence $\operatorname{deg} g(x)=\operatorname{deg} \bar{g}(x)$ and $\operatorname{deg} h(x)=\operatorname{deg} \bar{h}(x)$. Since $\bar{f}(x)$ is irreducible, the only possibility is either $\operatorname{deg} g(x)=0$ or $\operatorname{deg} h(x)=0$, say $\operatorname{deg} g(x)=0$. Since $f(x)$ is primitive, $g(x) \in U(\boldsymbol{Z})=\{ \pm 1\}$ and $f(x)$ is irreducible over \boldsymbol{Z}, and hence it is irreducible over \boldsymbol{Q} by Proposition 6.2.
Example 6.2 1. Let $f(x)=21 x^{3}-3 x^{2}+2 x+9$. Then $\bar{f}(x)=x^{3}+x^{2}+1 \in \boldsymbol{Z}_{2}[x]$ is irreducible as $f(0) \neq 0 \neq f(1)$. So $f(x)$ is irreducible over \boldsymbol{Q} by Example 6.2-3.
2. Let $g(x)=x^{5}+2 x+4$. Then $\bar{g}(x)=x^{5}-x+1 \in \boldsymbol{Z}_{3}[x]$. Irreducible polynomial of degree at most 2 are $x, x+1, x^{2}+1, x^{2}+x+2$ and $x^{2}-x-1$ in $\boldsymbol{Z}_{3}[x]$.
3. $h(x)=x^{4}+1 \in \boldsymbol{Q}[x]$ is irreducible but it is reducible over \boldsymbol{Z}_{p} for every prime p. (Exercise 29).

Proposition 6.4 (Theorem 17.4 Eisenstein's Criterion (1850)) Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \boldsymbol{Z}[x] .
$$

If there is a prime p such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$. Then f is irreducible over \boldsymbol{Q}.

Proof. We may assume that $f(x)$ is primitive. Suppose that $f(x)$ is reducible over \boldsymbol{Z} and

$$
f(x)=\left(b_{0}+b_{1} x+\cdots+b_{r} x^{r}\right)\left(c_{0}+c_{1} x+\cdots+c_{s} x^{s}\right)
$$

where $b_{i}, c_{j} \in \boldsymbol{Z}, r, s<n$, and $r+s=n$. Then

$$
a_{i}=b_{0} c_{i}+b_{1} c_{i-1}+\cdots+b_{i} c_{0} .
$$

Now by hypothesis $p \mid a_{0}=b_{0} c_{0}$ but $p^{2} \nmid a_{0}$; thus p must divide exactly one of b_{0} and c_{0}, say $p \mid b_{0}$ and $p \nmid c_{0}$. Also p cannot divide every b_{i} since otherwise it would divide $a_{n}=b_{0} c_{n}+\cdots+b_{n} c_{0}$. Therefore, there is a smallest positive integer k such that $p \nmid b_{k}$. Now p divides each of $b_{0}, b_{1}, \ldots, b_{k-1}$ and also $p \mid a_{k}$ since $k \leq r<n$. Since $a_{k}=\left(b_{0} c_{k}+\cdots+b_{k-1} c_{1}\right)+b_{k} c_{0}$, it follows that $p \mid b_{k} c_{0}$. Hence $p \mid b_{k}$ or $p \mid c_{0}$, both of which are forbidden.
Example 6.3 If p is a prime, the polynomial $f(x)=1+x+x^{2}+\cdots+x^{p-1}$ is irreducible over \boldsymbol{Q}.

$$
\begin{aligned}
g(x) & =f(x+1)=1+(x+1)+(x+1)^{2}+\cdots+(x+1)^{p-1} \\
& =\frac{(x+1)^{p}-1}{x} \\
& =x^{p-1}+\binom{p}{p-1} x^{p-2}+\cdots+\binom{p}{2} x+\binom{p}{1} .
\end{aligned}
$$

Hence we can apply Eisenstein's Criterion.

Proposition 6.5 (Theorem 17.5) Let F be a field and let $p(x) \in F[x]$. Then $\langle p(x)\rangle$ is a maximal ideal in $F[x]$ if and only if $p(x)$ is irreducible over F.

Proof. By Theorem 5.3, $F[x]$ is a principal ideal domain. So if A is an ideal with $\langle p(x)\rangle \subseteq A \subseteq F[x]$, then $A=\langle q(x)\rangle$ for some polynomial $q(x) \in F[x] . p(x) \in\langle q(x)\rangle$ if and only if $q(x) \mid p(x)$, and $\langle q(x)\rangle=F[x]$ if and only if $q(x)$ is a nonzero constant.
Corollary 6.6 Let F be a field and $p(x), a(x), b(x) \in F[x]$. If $p(x)$ is irreducible over F and $p(x) \mid a(x) b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.
Proof. $\langle p(x)\rangle$ is a prime ideal.
Example 6.4 1. $x^{n}-p$ is irreducible over \boldsymbol{Q} for a positive integer n and a prime p.
2. Recall that $f(x)=21 x^{3}-3 x^{2}+2 x+9$ is irreducible over \boldsymbol{Q} and $\bar{f}(x)=x^{3}+x^{2}+1 \in$ $\boldsymbol{Z}_{2}[x]$ is irreducible over \boldsymbol{Z}_{2} by Example 6.2. Hence $\boldsymbol{Q}[x] /\langle f(x)\rangle$ is a field with infinitely many elements and $\boldsymbol{Z}_{2}[x] /\langle\bar{f}(x)\rangle$ is a field with 2^{3} elements.
3. Similarly, $g(x)=x^{5}+2 x+4$ is irreducible over \boldsymbol{Q} and $\bar{g}(x)=x^{5}-x+1 \in \boldsymbol{Z}_{3}[x]$ is irreducible over \boldsymbol{Z}_{3} by Example 6.2. Hence $\boldsymbol{Q}[x] /\langle g(x)\rangle$ is a field with infinitely many elements and $\boldsymbol{Z}_{3}[x] /\langle\bar{g}(x)\rangle$ is a field with 3^{5} elements.
Theorem 6.7 (Theorem 17.6 (Unique Factorization in $\boldsymbol{Z}[x]$)) Every polynomial in $\boldsymbol{Z}[x]$ that is not the zero polynomial or a unit in $\boldsymbol{Z}[x]$ can be written in the form $b_{1} b_{2} \cdots b_{s}$ $p_{1}(x) p_{2}(c) \cdots p_{m}(x)$ where b_{i} 's are irreducible polynomial of degree 0^{13} and $p_{i}(x)$'s are irreducible polynomials of positive degree. Furthermore such decomposition is unique, i.e.,

$$
b_{1} b_{2} \cdots b_{s} p_{1}(x) p_{2}(x) \cdots p_{m}(x)=c_{1} c_{2} \cdots c_{t} q_{1}(x) q_{2}(x) \cdots q_{n}(x)
$$

implies, $s=t, m=n$ and, after renumbering the c 's and $q(x)$'s, we have $b_{i}= \pm c_{i}$ for $i=1,2, \ldots, s$, and $p_{i}(x)= \pm q_{i}(x)$. for $i=1,2, \ldots, m$.
Proof. (a) Any non-constant polynomial $f(x)$ in $\boldsymbol{Z}[x]$ is expressible as a product of irreducible elements of \boldsymbol{Z} and primitive irreducible polynomials over \boldsymbol{Z}.
Proof of (a). First of all write $f(x)=c(f(x)) f_{0}(x)$ where $f_{0}(x) \in \boldsymbol{Z}[x]$ is primitive using Lemma 7.9. Hence $c(f(x))$ is either a unit, i.e., 1 in this case, or a product of irreducibles of \boldsymbol{Z}, i.e., $\pm p$, where p is a prime. So we can assume that $f(x)$ is primitive. If $f(x)$ is irreducible, we are done. So assume $f(x)=g(x) h(x)$ where $g(x), h(x)$ are non-unit polynomials $\boldsymbol{Z}[x]$. Since $f(x)$ is primitive, $g(x)$ and $h(x)$ are primitive polynomials of degree at least 1. Hence by induction on degree, $f(x)$ can be written as a product of irreducible primitive polynomials of positive degree.
(b) The uniqueness of expression.

Proof of (b). Suppose

$$
b_{1} b_{2} \cdots b_{s} p_{1}(x) p_{2}(c) \cdots p_{m}(x)=c_{1} c_{2} \cdots c_{t} q_{1}(x) q_{2}(c) \cdots q_{n}(x)
$$

Then $c(f(x))= \pm b_{1} b_{2} \cdots b_{s}= \pm c_{1} c_{2} \cdots c_{t}$. Hence by the uniqueness of factorization in \boldsymbol{Z}, this decomposition is unique. Thus we have $p_{1}(x) p_{2}(c) \cdots p_{m}(x)=q_{1}(x) q_{2}(c) \cdots q_{n}(x)$. Since $\left\langle p_{1}(x)\right\rangle$ is a maximal ideal in $\boldsymbol{Q}[x]$, there exists $q_{i}(x)$ such that $q_{i}(x)=h(x) p_{1}(x)$. Since both $q_{i}(x)$ and $p(x)$ are primitive and irreducible, $h(x)=h_{1} / h_{2}$ with $h_{1}, h_{2} \in \boldsymbol{Z}$ and $h_{2} q_{i}(x)=h_{1} p(x)$ implies that $h_{2}= \pm h_{1}$. Therefore, $q_{i}(x)= \pm p(x)$. Now the uniqueness follows by induction.

[^0]
[^0]: ${ }^{13} b$ is an irreducible polynomial of degree 0 if and only if b or $-b$ is a prime number in \boldsymbol{Z}.

