6 Factorization of Polynomials

Recall that if D is an integral domain, D[z] is an integral domain and U(D[z]|) = U(D).
Both of them are consequences of deg f(z)g(x) = deg f(z) + deg g(z).

Definition 6.1 Let D be an integral domain. A polynomial f(x) € D[z] that is neither
the zero polynomial nor a unit in D[z] is said to be irreducible over D if, whenever f(z) is
expresses as a product f(z) = g(x)h(x), g(z) and h(x) are from D[z], then g(z) or h(x)
is a unit in D[z]. A nonzero nonunit element of D[z| that is not irreducible over D is
called reducible over D.

If Fis afield, f(z) € F[z]is a non-zero non-unit polynomial if and only if deg f(z) > 1.
Hence a non-constant polynomial f(x) € F[z] is irreducible if f(z) can not be expressed
as a product of two polynomials of lower degree.

Example 6.1 1. f(x) = 22?4 4 is irreducible over @ but reducible over Z.
2. f(x) = 22% + 4 is irreducible over R but reducible over C.

3. Let F be a field. A polynomial f(z) € F[z ] of degree at most three is reducible if
and only if there is a € F such that f(a) =

Definition 6.2 The content of a nonzero polynomial f(z) = a,z® + a,_ 12" ' + -+ +
a1x+ag € Z[z] is the greatest common divisor of a,,, a,_1, ..., ag and denoted by ¢(f(z)).
A primitive polynomial is an element of Z[z] with content 1.

1. Every polynomial f(x) € Z[x] can be written as f(z) = c¢(f(z)) fo(z), where fo(x) €
Z|[z] is primitive. Since the greatest common divisor is uniquely determined, ¢(f(z))
is uniquely determined.

2. Every polynomial f(z) € Q[z]| can be written as f(z) = cfy(z), where ¢ € Q and
fo(z) € Z[z] is primitive. If f(z) = dgo(z) for some constant d € Q and a primitive
polynomial go(z), then ¢ = 4+d. So if both ¢ and d are nonnegative, ¢ = d, and
c € Z if and only if f(z) € Z[z].

Proposition 6.1 (Gauss’ Lemma) Let f(x) and g(x) be primitive polynomials in Z|x].
Then f(x)g(z) is also primitive.

Proof.  Suppose f(x)g(x) is not primitive. Let p be a prime factor of ¢(f(x)g(r)). Then
f(x)g(z) = f(z)g(z) =0 € Z,[z]. Since Z,[x] is an integral domain, f(z) =0or g(z) =0
in Z,[x]. This is absurd. u

Proposition 6.2 (Theorem 17.2) Let f(z) € Z[z| be a primitive polynomial, then
f(z) is irreducible over Z if and only if it is irreducible over Q.

Proof. We may assume that f(x) is primitive. Suppose f(x) = g(x)h(x) in Q|x]. Let a
and b be the least common multiple of the denominators of g(x) and h(z) respectively.

Then

ab- f(x) = (a-g(x))(b- h(x)) = cla - g(x))go(x)e(b - h(x))ho(x),
where go(z) and ho(x) are primitive polynomials in Z[z]. Now +ab = c(a-g(z))c(b- h(x))
and f(x) = £go(x)ho(z) by the previous proposition. Since deggo(z) = degg(z) and
deg ho(z) = deg h(z), f(x) is reducible over Z. u
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Proposition 6.3 (Theorem 17.3) Let p be a prime and suppose that f(x) € Z|x] be a
primitive polynomial with degree f(x) > 1. Let f(z) be the polynomial in Z,[x] obtained
from f(z) by reducing all the coefficients of f(x) modulo p. If f(z) is irreducible over Z,,
i.e., in Zyx], and deg f(x) = deg f(z), then f(x) is irreducible over Q.

Proof. Suppose f(x) = g(x)h(x) with g(x),h(x) € Z[x]. Then f(x) = g(x)h(zx). Since

Z,[z] is an integral domain and deg f(z) = deg f(z) by assumption, we have
deg g(w) + deg h(x) = deg f(v) = deg f(z) = deg g(x) + deg h(z) < degg(x) + degh(x).

Hence deg g(r) = deg g(z) and degh(z) = degh(z). Since f(x) is irreducible, the only
possibility is either deg g(x) = 0 or deg h(z) = 0, say deg g(z) = 0. Since f(z) is primitive,
g(x) € U(Z) = {£1} and f(x) is irreducible over Z, and hence it is irreducible over @
by Proposition 6.2. n

Example 6.2 1. Let f(z) = 212 — 322+ 22+ 9. Then f(z) = 23 + 22 + 1 € Zy[] is
irreducible as f(0) # 0 # f(1). So f(z) is irreducible over Q by Example 6.2-3.

e —

2. Let g(x) = 2° + 22 + 4. Then g(z) = 2° — x + 1 € Z3[z]. Irreducible polynomial of
degree at most 2 are v, v + 1, 22 + 1, 2 + x + 2 and 2° — z — 1 in Z3[z].

3. h(z) = 2* + 1 € Qz] is irreducible but it is reducible over Z, for every prime p.
(Exercise 29).
Proposition 6.4 (Theorem 17.4 Eisenstein’s Criterion (1850)) Let
f(@) = anz™ + ap 12"+ 4 ag € Z[z].

If there is a prime p such that p | ag, p | a1,...,p | an_1, but p{ a, and p* 1 ag. Then f
18 1rreducible over Q.

Proof. We may assume that f(z) is primitive. Suppose that f(x) is reducible over Z
and
f(x) = (b +brw+ -+ +ba")(co + 1@ + -+ c52°)

where b;, ¢; € Z, r,s <n, and r + s =n. Then
ai = bo¢;i +bici1 + -+ + bico.

Now by hypothesis p | ag = bocy but p? { ag; thus p must divide exactly one of by
and ¢, say p | bp and p 1 ¢o. Also p cannot divide every b; since otherwise it would
divide a,, = boc,, + - -+ + bpco. Therefore, there is a smallest positive integer k£ such that

p 1 bg. Now p divides each of by, by,...,bx_1 and also p | ay since k < r < n. Since
ar = (bock + -+ - + bp_1¢1) + bico, it follows that p | brco. Hence p | by or p | ¢y, both of
which are forbidden. [ |

Example 6.3 If p is a prime, the polynomial f(z) = 1+ +2%+---+ 2P~ ! is irreducible
over Q.
gz) = fle+)=1+@+D+@+1)"+ -+ @+1)""
(+ 1) — 1
x

R p =2, ... (P p
T +(p_1>x + +(2>x—|—(1).

Hence we can apply Eisenstein’s Criterion.
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Proposition 6.5 (Theorem 17.5) Let F' be a field and let p(x) € F[x]. Then (p(x)) is
a mazimal ideal in Flx| if and only if p(x) is irreducible over F.

Proof. By Theorem 5.3, F[z] is a principal ideal domain. So if A is an ideal with
(p(z)) € A C Flx], then A = (g(z)) for some polynomial ¢(x) € F[z]. p(z) € (q(x)) if
and only if ¢(z) | p(z), and {(g(x)) = F[z] if and only if ¢(z) is a nonzero constant. |

Corollary 6.6 Let F' be a field and p(x),a(x),b(x) € Flz]. If p(x) is irreducible over F
and p(z) | a(z)b(z), then p(z) | a(z) or p(z) | b(z).

Proof. (p(z)) is a prime ideal. n

Example 6.4 1. 2™ — p is irreducible over @ for a positive integer n and a prime p.

2. Recall that f(z) = 212® — 32242249 is irreducible over Q and f(z) = 2°+ 2241 €
Z,[x] is irreducible over Z, by Example 6.2. Hence Q[z]/(f(z)) is a field with
infinitely many elements and Z,[z|/(f(x)) is a field with 2* elements.

3. Similarly, g(z) = 2° + 22 + 4 is irreducible over Q and g(z) = 2° —x + 1 € Z3[z]
is irreducible over Z3 by Example 6.2. Hence Q[z]/{(g(z)) is a field with infinitely
many elements and Z3[z|/(g(x)) is a field with 3° elements.

Theorem 6.7 (Theorem 17.6 (Unique Factorization in Z[z])) FEvery polynomial in
Z[x] that is not the zero polynomial or a unit in Z[x| can be written in the form bybs - - - by
p1(z)pa(c) - pm(x) where b;’s are irreducible polynomial of degree 0'3 and p;(x)’s are
wrreducible polynomials of positive degree. Furthermore such decomposition is unique, 1i.e.,

biby - - bspr(w)pa(z) - - - pm(T) = 162+ - 11 (1) qa() - - - g ()

implies, s = t, m = n and, after renumbering the ¢’s and q(x)’s, we have b; = +c¢; for
i=1,2,...,s, and p;(x) = +q;(z). fori=1,2,... ,m.

Proof. (a) Any non-constant polynomial f(z) in Z[z] is expressible as a product of
irreducible elements of Z and primitive irreducible polynomials over Z.

Proof of (a). First of all write f(x) = c¢(f(z))fo(x) where fo(z) € Z][z] is primitive using
Lemma 7.9. Hence ¢(f(z)) is either a unit, i.e., 1 in this case, or a product of irreducibles
of Z, i.e., £p, where p is a prime. So we can assume that f(z) is primitive. If f(x)
is irreducible, we are done. So assume f(z) = g(z)h(z) where g(z), h(x) are non-unit
polynomials Z[z]. Since f(x) is primitive, g(x) and h(z) are primitive polynomials of
degree at least 1. Hence by induction on degree, f(x) can be written as a product of
irreducible primitive polynomials of positive degree. ]

(b) The uniqueness of expression.
Proof of (b). Suppose

biby -+ - bsp1()pa(c) -+ pm(r) = 102+ - - ciqu () qa(c) - - - gu()

Then ¢(f(x)) = £biby---bs = £cico--- ;. Hence by the uniqueness of factorization in
Z, this decomposition is unique. Thus we have p;(z)pa(c) - - - pm(x) = q1(x)g2(c) - - - g ().
Since (p;(z)) is a maximal ideal in Q|z], there exists ¢;(x) such that ¢;(x) = h(z)p;(x).
Since both ¢;(x) and p(z) are primitive and irreducible, h(x) = hy/hy with hy, hy € Z and
hagi(z) = hip(z) implies that hy = +h;. Therefore, ¢;(z) = £p(z). Now the uniqueness
follows by induction. [ ]

13p is an irreducible polynomial of degree 0 if and only if b or —b is a prime number in Z.
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