
6 Factorization of Polynomials

Recall that if D is an integral domain, D[x] is an integral domain and U(D[x]) = U(D).
Both of them are consequences of deg f(x)g(x) = deg f(x) + deg g(x).

Definition 6.1 Let D be an integral domain. A polynomial f(x) ∈ D[x] that is neither
the zero polynomial nor a unit in D[x] is said to be irreducible over D if, whenever f(x) is
expresses as a product f(x) = g(x)h(x), g(x) and h(x) are from D[x], then g(x) or h(x)
is a unit in D[x]. A nonzero nonunit element of D[x] that is not irreducible over D is
called reducible over D.

If F is a field, f(x) ∈ F [x] is a non-zero non-unit polynomial if and only if deg f(x) ≥ 1.
Hence a non-constant polynomial f(x) ∈ F [x] is irreducible if f(x) can not be expressed
as a product of two polynomials of lower degree.

Example 6.1 1. f(x) = 2x2 + 4 is irreducible over Q but reducible over Z.

2. f(x) = 2x2 + 4 is irreducible over R but reducible over C.

3. Let F be a field. A polynomial f(x) ∈ F [x] of degree at most three is reducible if
and only if there is a ∈ F such that f(a) = 0.

Definition 6.2 The content of a nonzero polynomial f(x) = anx2 + an−1xn−1 + · · · +
a1x+a0 ∈ Z[x] is the greatest common divisor of an, an−1, . . . , a0 and denoted by c(f(x)).
A primitive polynomial is an element of Z[x] with content 1.

1. Every polynomial f(x) ∈ Z[x] can be written as f(x) = c(f(x))f0(x), where f0(x) ∈
Z[x] is primitive. Since the greatest common divisor is uniquely determined, c(f(x))
is uniquely determined.

2. Every polynomial f(x) ∈ Q[x] can be written as f(x) = cf0(x), where c ∈ Q and
f0(x) ∈ Z[x] is primitive. If f(x) = dg0(x) for some constant d ∈ Q and a primitive
polynomial g0(x), then c = ±d. So if both c and d are nonnegative, c = d, and
c ∈ Z if and only if f(x) ∈ Z[x].

Proposition 6.1 (Gauss’ Lemma) Let f(x) and g(x) be primitive polynomials in Z[x].
Then f(x)g(x) is also primitive.

Proof. Suppose f(x)g(x) is not primitive. Let p be a prime factor of c(f(x)g(x)). Then
f̄(x)ḡ(x) = f(x)g(x) = 0 ∈ Zp[x]. Since Zp[x] is an integral domain, f̄(x) = 0 or ḡ(x) = 0
in Zp[x]. This is absurd.

Proposition 6.2 (Theorem 17.2) Let f(x) ∈ Z[x] be a primitive polynomial, then
f(x) is irreducible over Z if and only if it is irreducible over Q.

Proof. We may assume that f(x) is primitive. Suppose f(x) = g(x)h(x) in Q[x]. Let a
and b be the least common multiple of the denominators of g(x) and h(x) respectively.
Then

ab · f(x) = (a · g(x))(b · h(x)) = c(a · g(x))g0(x)c(b · h(x))h0(x),

where g0(x) and h0(x) are primitive polynomials in Z[x]. Now ±ab = c(a · g(x))c(b ·h(x))
and f(x) = ±g0(x)h0(x) by the previous proposition. Since deg g0(x) = deg g(x) and
deg h0(x) = deg h(x), f(x) is reducible over Z.
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Proposition 6.3 (Theorem 17.3) Let p be a prime and suppose that f(x) ∈ Z[x] be a
primitive polynomial with degree f(x) ≥ 1. Let f̄(x) be the polynomial in Zp[x] obtained
from f(x) by reducing all the coefficients of f(x) modulo p. If f̄(x) is irreducible over Zp,
i.e., in Zp[x], and deg f̄(x) = deg f(x), then f(x) is irreducible over Q.

Proof. Suppose f(x) = g(x)h(x) with g(x), h(x) ∈ Z[x]. Then f̄(x) = ḡ(x)h̄(x). Since
Zp[x] is an integral domain and deg f(x) = deg f̄(x) by assumption, we have

deg g(x) + deg h(x) = deg f(x) = deg f̄(x) = deg ḡ(x) + deg h̄(x) ≤ deg g(x) + deg h(x).

Hence deg g(x) = deg ḡ(x) and deg h(x) = deg h̄(x). Since f̄(x) is irreducible, the only
possibility is either deg g(x) = 0 or deg h(x) = 0, say deg g(x) = 0. Since f(x) is primitive,
g(x) ∈ U(Z) = {±1} and f(x) is irreducible over Z, and hence it is irreducible over Q
by Proposition 6.2.

Example 6.2 1. Let f(x) = 21x3 − 3x2 +2x+9. Then f̄(x) = x3 + x2 +1 ∈ Z2[x] is
irreducible as f(0) ̸= 0 ̸= f(1). So f(x) is irreducible over Q by Example 6.2–3.

2. Let g(x) = x5 + 2x+ 4. Then ḡ(x) = x5 − x+ 1 ∈ Z3[x]. Irreducible polynomial of
degree at most 2 are x, x+ 1, x2 + 1, x2 + x+ 2 and x2 − x− 1 in Z3[x].

3. h(x) = x4 + 1 ∈ Q[x] is irreducible but it is reducible over Zp for every prime p.
(Exercise 29).

Proposition 6.4 (Theorem 17.4 Eisenstein’s Criterion (1850)) Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x].

If there is a prime p such that p | a0, p | a1, . . . , p | an−1, but p ! an and p2 ! a0. Then f
is irreducible over Q.

Proof. We may assume that f(x) is primitive. Suppose that f(x) is reducible over Z
and

f(x) = (b0 + b1x+ · · ·+ brx
r)(c0 + c1x+ · · ·+ csx

s)

where bi, cj ∈ Z, r, s < n, and r + s = n. Then

ai = b0ci + b1ci−1 + · · ·+ bic0.

Now by hypothesis p | a0 = b0c0 but p2 ! a0; thus p must divide exactly one of b0
and c0, say p | b0 and p ! c0. Also p cannot divide every bi since otherwise it would
divide an = b0cn + · · · + bnc0. Therefore, there is a smallest positive integer k such that
p ! bk. Now p divides each of b0, b1, . . . , bk−1 and also p | ak since k ≤ r < n. Since
ak = (b0ck + · · · + bk−1c1) + bkc0, it follows that p | bkc0. Hence p | bk or p | c0, both of
which are forbidden.

Example 6.3 If p is a prime, the polynomial f(x) = 1+x+x2+ · · ·+xp−1 is irreducible
over Q.

g(x) = f(x+ 1) = 1 + (x+ 1) + (x+ 1)2 + · · ·+ (x+ 1)p−1

=
(x+ 1)p − 1

x

= xp−1 +

(
p

p− 1

)
xp−2 + · · ·+

(
p

2

)
x+

(
p

1

)
.

Hence we can apply Eisenstein’s Criterion.
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Proposition 6.5 (Theorem 17.5) Let F be a field and let p(x) ∈ F [x]. Then ⟨p(x)⟩ is
a maximal ideal in F [x] if and only if p(x) is irreducible over F .

Proof. By Theorem 5.3, F [x] is a principal ideal domain. So if A is an ideal with
⟨p(x)⟩ ⊆ A ⊆ F [x], then A = ⟨q(x)⟩ for some polynomial q(x) ∈ F [x]. p(x) ∈ ⟨q(x)⟩ if
and only if q(x) | p(x), and ⟨q(x)⟩ = F [x] if and only if q(x) is a nonzero constant.

Corollary 6.6 Let F be a field and p(x), a(x), b(x) ∈ F [x]. If p(x) is irreducible over F
and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

Proof. ⟨p(x)⟩ is a prime ideal.

Example 6.4 1. xn − p is irreducible over Q for a positive integer n and a prime p.

2. Recall that f(x) = 21x3−3x2+2x+9 is irreducible over Q and f̄(x) = x3+x2+1 ∈
Z2[x] is irreducible over Z2 by Example 6.2. Hence Q[x]/⟨f(x)⟩ is a field with
infinitely many elements and Z2[x]/⟨f̄(x)⟩ is a field with 23 elements.

3. Similarly, g(x) = x5 + 2x + 4 is irreducible over Q and ḡ(x) = x5 − x + 1 ∈ Z3[x]
is irreducible over Z3 by Example 6.2. Hence Q[x]/⟨g(x)⟩ is a field with infinitely
many elements and Z3[x]/⟨ḡ(x)⟩ is a field with 35 elements.

Theorem 6.7 (Theorem 17.6 (Unique Factorization in Z[x])) Every polynomial in
Z[x] that is not the zero polynomial or a unit in Z[x] can be written in the form b1b2 · · · bs
p1(x)p2(c) · · · pm(x) where bi’s are irreducible polynomial of degree 013 and pi(x)’s are
irreducible polynomials of positive degree. Furthermore such decomposition is unique, i.e.,

b1b2 · · · bsp1(x)p2(x) · · · pm(x) = c1c2 · · · ctq1(x)q2(x) · · · qn(x)
implies, s = t, m = n and, after renumbering the c’s and q(x)’s, we have bi = ±ci for
i = 1, 2, . . . , s, and pi(x) = ±qi(x). for i = 1, 2, . . . ,m.

Proof. (a) Any non-constant polynomial f(x) in Z[x] is expressible as a product of
irreducible elements of Z and primitive irreducible polynomials over Z.

Proof of (a). First of all write f(x) = c(f(x))f0(x) where f0(x) ∈ Z[x] is primitive using
Lemma 7.9. Hence c(f(x)) is either a unit, i.e., 1 in this case, or a product of irreducibles
of Z, i.e., ±p, where p is a prime. So we can assume that f(x) is primitive. If f(x)
is irreducible, we are done. So assume f(x) = g(x)h(x) where g(x), h(x) are non-unit
polynomials Z[x]. Since f(x) is primitive, g(x) and h(x) are primitive polynomials of
degree at least 1. Hence by induction on degree, f(x) can be written as a product of
irreducible primitive polynomials of positive degree.

(b) The uniqueness of expression.

Proof of (b). Suppose

b1b2 · · · bsp1(x)p2(c) · · · pm(x) = c1c2 · · · ctq1(x)q2(c) · · · qn(x)

Then c(f(x)) = ±b1b2 · · · bs = ±c1c2 · · · ct. Hence by the uniqueness of factorization in
Z, this decomposition is unique. Thus we have p1(x)p2(c) · · · pm(x) = q1(x)q2(c) · · · qn(x).
Since ⟨p1(x)⟩ is a maximal ideal in Q[x], there exists qi(x) such that qi(x) = h(x)p1(x).
Since both qi(x) and p(x) are primitive and irreducible, h(x) = h1/h2 with h1, h2 ∈ Z and
h2qi(x) = h1p(x) implies that h2 = ±h1. Therefore, qi(x) = ±p(x). Now the uniqueness
follows by induction.

13b is an irreducible polynomial of degree 0 if and only if b or −b is a prime number in Z.
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