6 Factorization of Polynomials

Recall that if D is an integral domain, D[x] is an integral domain and U(D[x]) = U(D). Both of them are consequences of deg $f(x)g(x) = \deg f(x) + \deg g(x)$.

Definition 6.1 Let D be an integral domain. A polynomial $f(x) \in D[x]$ that is neither the zero polynomial nor a unit in D[x] is said to be *irreducible* over D if, whenever f(x) is expresses as a product f(x) = g(x)h(x), g(x) and h(x) are from D[x], then g(x) or h(x)is a unit in D[x]. A nonzero nonunit element of D[x] that is not irreducible over D is called *reducible* over D.

If F is a field, $f(x) \in F[x]$ is a non-zero non-unit polynomial if and only if deg $f(x) \ge 1$. Hence a non-constant polynomial $f(x) \in F[x]$ is irreducible if f(x) can not be expressed as a product of two polynomials of lower degree.

Example 6.1 1. $f(x) = 2x^2 + 4$ is irreducible over Q but reducible over Z.

- 2. $f(x) = 2x^2 + 4$ is irreducible over **R** but reducible over **C**.
- 3. Let F be a field. A polynomial $f(x) \in F[x]$ of degree at most three is reducible if and only if there is $a \in F$ such that f(a) = 0.

Definition 6.2 The *content* of a nonzero polynomial $f(x) = a_n x^2 + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ is the greatest common divisor of $a_n, a_{n-1}, \ldots, a_0$ and denoted by c(f(x)). A *primitive polynomial* is an element of $\mathbb{Z}[x]$ with content 1.

- 1. Every polynomial $f(x) \in \mathbb{Z}[x]$ can be written as $f(x) = c(f(x))f_0(x)$, where $f_0(x) \in \mathbb{Z}[x]$ is primitive. Since the greatest common divisor is uniquely determined, c(f(x)) is uniquely determined.
- 2. Every polynomial $f(x) \in \mathbf{Q}[x]$ can be written as $f(x) = cf_0(x)$, where $c \in \mathbf{Q}$ and $f_0(x) \in \mathbf{Z}[x]$ is primitive. If $f(x) = dg_0(x)$ for some constant $d \in \mathbf{Q}$ and a primitive polynomial $g_0(x)$, then $c = \pm d$. So if both c and d are nonnegative, c = d, and $c \in \mathbf{Z}$ if and only if $f(x) \in \mathbf{Z}[x]$.

Proposition 6.1 (Gauss' Lemma) Let f(x) and g(x) be primitive polynomials in $\mathbb{Z}[x]$. Then f(x)g(x) is also primitive.

Proof. Suppose f(x)g(x) is not primitive. Let p be a prime factor of c(f(x)g(x)). Then $\bar{f}(x)\bar{g}(x) = \overline{f(x)g(x)} = 0 \in \mathbb{Z}_p[x]$. Since $\mathbb{Z}_p[x]$ is an integral domain, $\bar{f}(x) = 0$ or $\bar{g}(x) = 0$ in $\mathbb{Z}_p[x]$. This is absurd.

Proposition 6.2 (Theorem 17.2) Let $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial, then f(x) is irreducible over \mathbb{Z} if and only if it is irreducible over \mathbb{Q} .

Proof. We may assume that f(x) is primitive. Suppose f(x) = g(x)h(x) in Q[x]. Let a and b be the least common multiple of the denominators of g(x) and h(x) respectively. Then

$$ab \cdot f(x) = (a \cdot g(x))(b \cdot h(x)) = c(a \cdot g(x))g_0(x)c(b \cdot h(x))h_0(x),$$

where $g_0(x)$ and $h_0(x)$ are primitive polynomials in $\mathbf{Z}[x]$. Now $\pm ab = c(a \cdot g(x))c(b \cdot h(x))$ and $f(x) = \pm g_0(x)h_0(x)$ by the previous proposition. Since $\deg g_0(x) = \deg g(x)$ and $\deg h_0(x) = \deg h(x), f(x)$ is reducible over \mathbf{Z} . **Proposition 6.3 (Theorem 17.3)** Let p be a prime and suppose that $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial with degree $f(x) \ge 1$. Let $\overline{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If $\overline{f}(x)$ is irreducible over \mathbb{Z}_p , i.e., in $\mathbb{Z}_p[x]$, and deg $\overline{f}(x) = \text{deg } f(x)$, then f(x) is irreducible over \mathbb{Q} .

Proof. Suppose f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Z}[x]$. Then $\overline{f}(x) = \overline{g}(x)\overline{h}(x)$. Since $\mathbb{Z}_p[x]$ is an integral domain and deg $f(x) = \text{deg } \overline{f}(x)$ by assumption, we have

 $\deg g(x) + \deg h(x) = \deg f(x) = \deg \bar{f}(x) = \deg \bar{g}(x) + \deg \bar{h}(x) \le \deg g(x) + \deg h(x).$

Hence deg $g(x) = \text{deg } \bar{g}(x)$ and deg $h(x) = \text{deg } \bar{h}(x)$. Since $\bar{f}(x)$ is irreducible, the only possibility is either deg g(x) = 0 or deg h(x) = 0, say deg g(x) = 0. Since f(x) is primitive, $g(x) \in U(\mathbf{Z}) = \{\pm 1\}$ and f(x) is irreducible over \mathbf{Z} , and hence it is irreducible over \mathbf{Q} by Proposition 6.2.

- **Example 6.2** 1. Let $f(x) = 21x^3 3x^2 + 2x + 9$. Then $\overline{f}(x) = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ is irreducible as $f(0) \neq 0 \neq f(1)$. So f(x) is irreducible over \mathbb{Q} by Example 6.2–3.
 - 2. Let $g(x) = x^5 + 2x + 4$. Then $\overline{g}(x) = x^5 x + 1 \in \mathbb{Z}_3[x]$. Irreducible polynomial of degree at most 2 are $x, x + 1, x^2 + 1, x^2 + x + 2$ and $x^2 x 1$ in $\mathbb{Z}_3[x]$.
 - 3. $h(x) = x^4 + 1 \in \mathbf{Q}[x]$ is irreducible but it is reducible over \mathbf{Z}_p for every prime p. (Exercise 29).

Proposition 6.4 (Theorem 17.4 Eisenstein's Criterion (1850)) Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbf{Z}[x].$$

If there is a prime p such that $p \mid a_0, p \mid a_1, \ldots, p \mid a_{n-1}$, but $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible over Q.

Proof. We may assume that f(x) is primitive. Suppose that f(x) is reducible over Z and

$$f(x) = (b_0 + b_1 x + \dots + b_r x^r)(c_0 + c_1 x + \dots + c_s x^s)$$

where $b_i, c_j \in \mathbf{Z}, r, s < n$, and r + s = n. Then

$$a_i = b_0 c_i + b_1 c_{i-1} + \dots + b_i c_0$$

Now by hypothesis $p \mid a_0 = b_0c_0$ but $p^2 \nmid a_0$; thus p must divide exactly one of b_0 and c_0 , say $p \mid b_0$ and $p \nmid c_0$. Also p cannot divide every b_i since otherwise it would divide $a_n = b_0c_n + \cdots + b_nc_0$. Therefore, there is a smallest positive integer k such that $p \nmid b_k$. Now p divides each of $b_0, b_1, \ldots, b_{k-1}$ and also $p \mid a_k$ since $k \leq r < n$. Since $a_k = (b_0c_k + \cdots + b_{k-1}c_1) + b_kc_0$, it follows that $p \mid b_kc_0$. Hence $p \mid b_k$ or $p \mid c_0$, both of which are forbidden.

Example 6.3 If p is a prime, the polynomial $f(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible over Q.

$$g(x) = f(x+1) = 1 + (x+1) + (x+1)^2 + \dots + (x+1)^{p-1}$$

= $\frac{(x+1)^p - 1}{x}$
= $x^{p-1} + {p \choose p-1} x^{p-2} + \dots + {p \choose 2} x + {p \choose 1}.$

Hence we can apply Eisenstein's Criterion.

Proposition 6.5 (Theorem 17.5) Let F be a field and let $p(x) \in F[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in F[x] if and only if p(x) is irreducible over F.

Proof. By Theorem 5.3, F[x] is a principal ideal domain. So if A is an ideal with $\langle p(x) \rangle \subseteq A \subseteq F[x]$, then $A = \langle q(x) \rangle$ for some polynomial $q(x) \in F[x]$. $p(x) \in \langle q(x) \rangle$ if and only if $q(x) \mid p(x)$, and $\langle q(x) \rangle = F[x]$ if and only if q(x) is a nonzero constant.

Corollary 6.6 Let F be a field and $p(x), a(x), b(x) \in F[x]$. If p(x) is irreducible over F and $p(x) \mid a(x)b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

Proof. $\langle p(x) \rangle$ is a prime ideal.

Example 6.4 1. $x^n - p$ is irreducible over Q for a positive integer n and a prime p.

- 2. Recall that $f(x) = 21x^3 3x^2 + 2x + 9$ is irreducible over Q and $\overline{f}(x) = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ is irreducible over \mathbb{Z}_2 by Example 6.2. Hence $\mathbb{Q}[x]/\langle f(x) \rangle$ is a field with infinitely many elements and $\mathbb{Z}_2[x]/\langle \overline{f}(x) \rangle$ is a field with 2^3 elements.
- 3. Similarly, $g(x) = x^5 + 2x + 4$ is irreducible over \boldsymbol{Q} and $\bar{g}(x) = x^5 x + 1 \in \boldsymbol{Z}_3[x]$ is irreducible over \boldsymbol{Z}_3 by Example 6.2. Hence $\boldsymbol{Q}[x]/\langle g(x) \rangle$ is a field with infinitely many elements and $\boldsymbol{Z}_3[x]/\langle \bar{g}(x) \rangle$ is a field with 3^5 elements.

Theorem 6.7 (Theorem 17.6 (Unique Factorization in Z[x])) Every polynomial in Z[x] that is not the zero polynomial or a unit in Z[x] can be written in the form $b_1b_2\cdots b_s$ $p_1(x)p_2(c)\cdots p_m(x)$ where b_i 's are irreducible polynomial of degree 0^{13} and $p_i(x)$'s are irreducible polynomials of positive degree. Furthermore such decomposition is unique, i.e.,

$$b_1b_2\cdots b_sp_1(x)p_2(x)\cdots p_m(x) = c_1c_2\cdots c_tq_1(x)q_2(x)\cdots q_n(x)$$

implies, s = t, m = n and, after renumbering the c's and q(x)'s, we have $b_i = \pm c_i$ for i = 1, 2, ..., s, and $p_i(x) = \pm q_i(x)$. for i = 1, 2, ..., m.

Proof. (a) Any non-constant polynomial f(x) in $\mathbf{Z}[x]$ is expressible as a product of irreducible elements of \mathbf{Z} and primitive irreducible polynomials over \mathbf{Z} .

Proof of (a). First of all write $f(x) = c(f(x))f_0(x)$ where $f_0(x) \in \mathbb{Z}[x]$ is primitive using Lemma 7.9. Hence c(f(x)) is either a unit, i.e., 1 in this case, or a product of irreducibles of \mathbb{Z} , i.e., $\pm p$, where p is a prime. So we can assume that f(x) is primitive. If f(x) is irreducible, we are done. So assume f(x) = g(x)h(x) where g(x), h(x) are non-unit polynomials $\mathbb{Z}[x]$. Since f(x) is primitive, g(x) and h(x) are primitive polynomials of degree at least 1. Hence by induction on degree, f(x) can be written as a product of irreducible primitive polynomials of positive degree.

(b) The uniqueness of expression.

Proof of (b). Suppose

$$b_1b_2\cdots b_sp_1(x)p_2(c)\cdots p_m(x) = c_1c_2\cdots c_tq_1(x)q_2(c)\cdots q_n(x)$$

Then $c(f(x)) = \pm b_1 b_2 \cdots b_s = \pm c_1 c_2 \cdots c_t$. Hence by the uniqueness of factorization in \mathbf{Z} , this decomposition is unique. Thus we have $p_1(x)p_2(c)\cdots p_m(x) = q_1(x)q_2(c)\cdots q_n(x)$. Since $\langle p_1(x) \rangle$ is a maximal ideal in $\mathbf{Q}[x]$, there exists $q_i(x)$ such that $q_i(x) = h(x)p_1(x)$. Since both $q_i(x)$ and p(x) are primitive and irreducible, $h(x) = h_1/h_2$ with $h_1, h_2 \in \mathbf{Z}$ and $h_2q_i(x) = h_1p(x)$ implies that $h_2 = \pm h_1$. Therefore, $q_i(x) = \pm p(x)$. Now the uniqueness follows by induction.

 $^{^{13}}b$ is an irreducible polynomial of degree 0 if and only if b or -b is a prime number in Z.