5 Polynomial Rings

Definition 5.1 Let R be a commutative ring. The set of formal symbols

$$
R[x]=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{i} \in R, n \in \boldsymbol{Z}^{+}\right\}
$$

is called the ring of polynomials over R in the indeterminate x.
Let
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$ be elements of $R[x]$. (Assume $a_{i}=0$ if $i>n$ and $b_{j}=0$ if $j>m$.)
(i) Two elements f and g are equal if and only if $a_{i}=b_{i}$ for all i.
(ii) $f(x)+g(x)=\left(a_{\ell}+b_{\ell}\right) x^{\ell}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)$. where $\ell=\max \{n, m\}$.
(iii) $f(x) g(x)=c_{m+n} x^{m+n}+c_{m+n-1} x^{m+n-1}+\cdots+c_{1} x+c_{0}$, where

$$
c_{k}=a_{k} b_{0}+a_{k-1} b_{1}+\cdots+a_{1} b_{k-1}+a_{0} b_{k}
$$

for $k=0,1, \ldots, m+n$.
When $a_{n} \neq 0$, we write $\operatorname{deg} f(x)=n, a_{n}$ is called the leading coefficient and n the degree of $f(x)$. We define $\operatorname{deg} 0=-\infty^{12}$. When R has a unity, a polynomial with unity as its leading coefficient is said to be monic.

Remarks. Formally it is better to define

$$
R[x]=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{i}, \ldots\right) \mid a_{i} \in R \text { only finitely many } a_{i} \text { 's are nonzero }\right\} .
$$

Consider also $R[[x]]$, the ring of formal power series

$$
R[[x]]=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{i}, \ldots\right) \mid a_{i} \in R\right\},
$$

$R\left[x, x^{-1}\right]$. the ring of Laurent polynomials
$R\left[x, x^{-1}\right]=\left\{\left(\ldots, a_{-i}, \ldots, a, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{i}, \ldots\right) \mid\right.$ only finitely many $a_{i} \in R$ are nonzero $\}$, and $R((x))$, the ring of Laurent series, $R((x))=\left\{\left(\ldots, a_{-i}, \ldots, a, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{i}, \ldots\right) \mid\right.$ only finitely many $a_{i} \in R i<0$ are nonzero $\}$.

Proposition 5.1 (Theorem 16.1) Let R be a commutative ring and let
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$ with $a_{n} \neq 0 \neq b_{m}$.
(i) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}$.

[^0](ii) $\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)$. Equality holds if $a_{n} b_{m} \neq 0$.
(iii) If R is an integral domain, $R[x]$ is an integral domain. Moreover, $U(R[x])=U(R)$.

Proposition 5.2 (Theorem 16.2, Corollaries 1, 2) Let F be a field.
(i) Let $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=g(x) q(x)+r(x)$ and (either $r(x)=0$ or) $\operatorname{deg} r(x)<$ $\operatorname{deg} g(x)$.
(ii) Let $f(x) \in F[x]$ and $a \in F$. Then $f(x)=q(x)(x-a)+f(a)$ for some $q(x) \in F[x]$. In particular, $x-a$ is a factor of $f(x)$ if and only if $f(a)=0$.
(iii) A nonzero polynomial of degree n has at most n zeros, counting multiplicity.

Proof. (i) Let
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$
be elements of $F[x]$. If $m>n$, then set $q(x)=0$ and $r(x)=f(x)$. Then $f(x)=$ $0 \cdot g(x)+f(x)$ and $\operatorname{deg} f<\operatorname{deg} g$. Assume $m \geq n$. Then $f_{1}(x)=f(x)-b_{m}^{-1} a_{n} x^{n-m} g(x)$ is a polynomial of degree at most $n-1$. Hence by induction there exists $q_{1}(x)$ and $r(x)$ with $\operatorname{deg} r<\operatorname{deg} g$ such that $f_{1}(x)=q_{1}(x) g(x)+r(x)$. Thus by setting $q(x)=$ $q_{1}(x)+b_{m}^{-1} a_{n} x^{n-m}$,

$$
f(x)=\left(\left(q_{1}(x)+b_{m}^{-1} a_{n} x^{n-m}\right) g(x)+r(x)=q(x) g(x)+r(x) .\right.
$$

(ii) If $f(x)=q(x)(x-a)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg}(x-a)=1$, with $r(x)=r \in F$, Moreover, $f(a)=r$. Thus, we have the expression.
(iii) If $f(x)$ is a nonzero constant, there is no zero. Suppose $f(a)=0$. Then $f(x)=$ $f_{1}(x)(x-a)$ and $\operatorname{deg} f_{1}(x)=n-1$. By induction, the zeros of $f(x)$ that are not equal to a are the zeros of $f_{1}(x)$ and its number does not exceed $n-1$.

Remarks.

1. Proposition 5.2 (i) the expression $f(x)=g(x) q(x)+r(x)$ and (either $r(x)=0$ or) $\operatorname{deg} r(x)<\operatorname{deg} g(x)$ exists if R has a unity and the leading coefficient of $g(x)$ is a unit. Moreover, if R is an integral domain, uniqueness also holds.
2. If F is an integral domain, (ii) and (iii) hold.
3. If F is an integral domain, $f(a)=g(a)$ for all $a \in F$ impies that either $f(x)=g(x)$ or $\operatorname{deg}(f(x)-g(x)) \geq|F|$.

Definition 5.2 A principal ideal domain (PID) is an integral domain R in which every ideal has the form $\langle a\rangle=\{r a \mid r \in R\}$ for some $a \in R$.

Theorem 5.3 (Theorem 16.3) Let F be a field. Then $F[x]$ is a principal ideal domain, i.e., if A is an ideal of $F[x]$, then there is a polynomial $f(x) \in F[x]$ such that $A=\langle f(x)\rangle$. Moreover, if A is a nonzero ideal in $F[x], A=\langle f(x)\rangle$ if and only if $f(x)$ is a nonzero polynomial of minimal degree in A.

Proof. Let A be a nonzero ideal in $F[x]$ and let $f(x)$ be a nonzero polynomial of minimal degree in A. Let $g(x) \in A$ and let $g(x)=q(x) f(x)+r(x)$ with $q(x), r(x) \in F[x]$ and $\operatorname{deg} r(x)<\operatorname{deg} f(x)$. Since $r(x)=g(x)-q(x) f(x) \in A$ as $g(x), f(x) \in A$, we have $r(x)=0$ by the minimality of the degree of $f(x)$ as a nonzero element in A. Hence $g(x) \in\langle f(x)\rangle$. Therefore $A=\langle f(x)\rangle$ and $F[x]$ is a principal ideal domain. Conversely if $A=\langle h(x)\rangle$, and $f(x)$ is the polynomial chosen above. Then $f(x) \in A$ and $0 \neq f(x)=g(x) h(x)$. So $\operatorname{deg} h(x) \leq \operatorname{deg} f(x) \leq \operatorname{deg} h(x)$, and $h(x)$ is a nonzero polynomial of minimal degree in A.

[^0]: ${ }^{12}$ In the textbook no degree is defined for 0.

