5 Polynomial Rings

Definition 5.1 Let R be a commutative ring. The set of formal symbols

 $R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in R, \ n \in \mathbb{Z}^+\}$

is called the ring of polynomials over R in the indeterminate x. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$

be elements of R[x]. (Assume $a_i = 0$ if i > n and $b_j = 0$ if j > m.)

(i) Two elements f and g are equal if and only if $a_i = b_i$ for all i.

(ii)
$$f(x) + g(x) = (a_{\ell} + b_{\ell})x^{\ell} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$
. where $\ell = \max\{n, m\}$

(iii) $f(x)g(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_1x + c_0$, where

$$c_k = a_k b_0 + a_{k-1} b_1 + \dots + a_1 b_{k-1} + a_0 b_k$$

for
$$k = 0, 1, \dots, m + n$$
.

When $a_n \neq 0$, we write deg f(x) = n, a_n is called the *leading coefficient* and n the *degree* of f(x). We define deg $0 = -\infty^{12}$. When R has a unity, a polynomial with unity as its leading coefficient is said to be *monic*.

Remarks. Formally it is better to define

 $R[x] = \{(a_0, a_1, a_2, \dots, a_i, \dots) \mid a_i \in R \text{ only finitely many } a_i \text{'s are nonzero}\}.$

Consider also R[[x]], the ring of formal power series

$$R[[x]] = \{(a_0, a_1, a_2, \dots, a_i, \dots) \mid a_i \in R\},\$$

 $R[x, x^{-1}]$. the ring of Laurent polynomials

 $R[x, x^{-1}] = \{(\dots, a_{-i}, \dots, a, a_{-1}, a_0, a_1, a_2, \dots, a_i, \dots) \mid \text{ only finitely many } a_i \in R \text{ are nonzero}\},\$

and R((x)), the ring of Laurent series,

 $R((x)) = \{(\dots, a_{-i}, \dots, a, a_{-1}, a_0, a_1, a_2, \dots, a_i, \dots) \mid \text{ only finitely many } a_i \in R \ i < 0 \text{ are nonzero} \}.$

Proposition 5.1 (Theorem 16.1) Let R be a commutative ring and let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$

with $a_n \neq 0 \neq b_m$.

(i)
$$\deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}.$$

 $^{^{12}\}mathrm{In}$ the textbook no degree is defined for 0.

- (ii) $\deg(f(x)g(x)) \leq \deg f(x) + \deg g(x)$. Equality holds if $a_n b_m \neq 0$.
- (iii) If R is an integral domain, R[x] is an integral domain. Moreover, U(R[x]) = U(R).

Proposition 5.2 (Theorem 16.2, Corollaries 1, 2) Let F be a field.

- (i) Let $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x) and (either r(x) = 0 or) deg $r(x) < \deg g(x)$.
- (ii) Let $f(x) \in F[x]$ and $a \in F$. Then f(x) = q(x)(x-a) + f(a) for some $q(x) \in F[x]$. In particular, x - a is a factor of f(x) if and only if f(a) = 0.
- (iii) A nonzero polynomial of degree n has at most n zeros, counting multiplicity.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$

be elements of F[x]. If m > n, then set q(x) = 0 and r(x) = f(x). Then $f(x) = 0 \cdot g(x) + f(x)$ and deg $f < \deg g$. Assume $m \ge n$. Then $f_1(x) = f(x) - b_m^{-1} a_n x^{n-m} g(x)$ is a polynomial of degree at most n - 1. Hence by induction there exists $q_1(x)$ and r(x) with deg $r < \deg g$ such that $f_1(x) = q_1(x)g(x) + r(x)$. Thus by setting $q(x) = q_1(x) + b_m^{-1} a_n x^{n-m}$,

$$f(x) = ((q_1(x) + b_m^{-1}a_nx^{n-m})g(x) + r(x) = q(x)g(x) + r(x))$$

(ii) If f(x) = q(x)(x-a) + r(x) with deg r(x) < deg(x-a) = 1, with $r(x) = r \in F$, Moreover, f(a) = r. Thus, we have the expression.

(iii) If f(x) is a nonzero constant, there is no zero. Suppose f(a) = 0. Then $f(x) = f_1(x)(x-a)$ and deg $f_1(x) = n-1$. By induction, the zeros of f(x) that are not equal to a are the zeros of $f_1(x)$ and its number does not exceed n-1.

Remarks.

- 1. Proposition 5.2 (i) the expression f(x) = g(x)q(x) + r(x) and (either r(x) = 0 or) $\deg r(x) < \deg g(x)$ exists if R has a unity and the leading coefficient of g(x) is a unit. Moreover, if R is an integral domain, uniqueness also holds.
- 2. If F is an integral domain, (ii) and (iii) hold.
- 3. If F is an integral domain, f(a) = g(a) for all $a \in F$ imples that either f(x) = g(x) or $\deg(f(x) g(x)) \ge |F|$.

Definition 5.2 A principal ideal domain (PID) is an integral domain R in which every ideal has the form $\langle a \rangle = \{ra \mid r \in R\}$ for some $a \in R$.

Theorem 5.3 (Theorem 16.3) Let F be a field. Then F[x] is a principal ideal domain, i.e., if A is an ideal of F[x], then there is a polynomial $f(x) \in F[x]$ such that $A = \langle f(x) \rangle$. Moreover, if A is a nonzero ideal in F[x], $A = \langle f(x) \rangle$ if and only if f(x) is a nonzero polynomial of minimal degree in A. *Proof.* Let A be a nonzero ideal in F[x] and let f(x) be a nonzero polynomial of minimal degree in A. Let $g(x) \in A$ and let g(x) = q(x)f(x) + r(x) with $q(x), r(x) \in F[x]$ and $\deg r(x) < \deg f(x)$. Since $r(x) = g(x) - q(x)f(x) \in A$ as $g(x), f(x) \in A$, we have r(x) = 0 by the minimality of the degree of f(x) as a nonzero element in A. Hence $g(x) \in \langle f(x) \rangle$. Therefore $A = \langle f(x) \rangle$ and F[x] is a principal ideal domain. Conversely if $A = \langle h(x) \rangle$, and f(x) is the polynomial chosen above. Then $f(x) \in A$ and $0 \neq f(x) = g(x)h(x)$. So $\deg h(x) \leq \deg f(x) \leq \deg h(x)$, and h(x) is a nonzero polynomial of minimal degree in A.