4 Ring Homomorphisms

Definition 4.1 A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that preserves the two ring operations; that is, for all $a, b \in R$,

$$
\phi(a+b)=\phi(a)+\phi(b) \quad \text { and } \quad \phi(a b)=\phi(a) \phi(b) .
$$

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.
Proposition 4.1 (Theorems 15.1, 15.2) Let ϕ be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S.
(i) $\phi(A)$ is a subring of S. In particular, $\phi(R)$ is a subring of S.
(ii) If A is an ideal of R, then $\phi(A)$ is an ideal of $\phi(R)$. In particular, if ϕ is onto, $\phi(A)$ is an ideal of S.
(iii) $\phi^{-1}(B)$ is an ideal of R. In particular, $\operatorname{Ker}(\phi)$ is an ideal of R.
(iv) ϕ is one-to-one if and only if $\operatorname{Ker}(\phi)=\{0\}$.
(v) If ϕ is an isomorphism from R to S, then ϕ^{-1} is an isomorphism from S onto R.

Theorem 4.2 (Theorem 15.3) Let ϕ be a ring homomorphism from R to S. Then the mapping from $R / \operatorname{ker}(\phi)$ to $\phi(R)$, given by $r+\operatorname{Ker}(\phi) \mapsto \phi(r)$, is an isomorphism. In symbols, $R / \operatorname{Ker}(\phi) \approx \phi(R)$.

Proof. Let us consider the induced group isomorphism:

$$
\bar{\phi}: R / \operatorname{ker}(\phi) \rightarrow \phi(R) \subset S(r+\operatorname{Ker}(\phi) \mapsto \phi(r))
$$

This is a ring isomorphism because

$$
\begin{aligned}
\bar{\phi}\left((r+\operatorname{Ker}(\phi))\left(r^{\prime}+\operatorname{Ker}(\phi)\right)\right. & =\bar{\phi}\left(r r^{\prime}+\operatorname{Ker}(\phi)\right)=\phi(r s)=\phi(r) \phi\left(r^{\prime}\right) \\
& =\bar{\phi}(r+\operatorname{Ker}(\phi)) \bar{\phi}\left(r^{\prime}+\operatorname{Ker}(\phi)\right)
\end{aligned}
$$

Note. Every ideal A of a ring R is the kernel of a homomorphism $\phi: R \rightarrow R / A(x \mapsto$ $x+A)$.

Example 4.1 Let $R=\boldsymbol{Z}[x]$ and $A=\{f \in \boldsymbol{Z}[x] \mid f(0)=0\}$. Then A is the kernel of

$$
\phi: \boldsymbol{Z}[x] \rightarrow \boldsymbol{Z}(f \mapsto f(0)) .
$$

Since ϕ is onto, $\boldsymbol{R}[x] / A \approx \boldsymbol{Z}$. Since \boldsymbol{Z} is an integral domain, A is a prime ideal of $\boldsymbol{R}[x]$. Since \boldsymbol{Z} is not a field, A is not maximal.

Example 4.2 Let $R=\boldsymbol{Z}[x]$ and

$$
\varphi: \boldsymbol{Z}[x] \rightarrow \boldsymbol{Z}_{2}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto \overline{a_{0}}\right)
$$

where for every integer a, \bar{a} denotes the corresponding elements in \boldsymbol{Z}_{2}. Since φ is onto, and $\operatorname{Ker}(\varphi)=\langle 2, x\rangle, \boldsymbol{R}[x] / \operatorname{Ker}(\varphi) \approx \boldsymbol{Z}_{2}$. Since \boldsymbol{Z}_{2} is a field, $\langle 2, x\rangle$ is a maximal ideal.

Example 4.3 [See Ex.14.22] Let $R=\boldsymbol{Z}[x]$ and

$$
\psi: \boldsymbol{Z}[x] \rightarrow \boldsymbol{Z}_{2}[x]\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto \overline{a_{0}}+\overline{a_{1}} x+\cdots+\overline{a_{n}} x^{n}\right),
$$

where for every integer a, \bar{a} denotes the corresponding elements in \boldsymbol{Z}_{2}. Since ψ is onto, and $\operatorname{Ker}(\psi)=\langle 2\rangle, \boldsymbol{R}[x] / \operatorname{Ker}(\psi) \approx \boldsymbol{Z}_{2}[x]$. Since $\boldsymbol{Z}_{2}[x]$ is an integral domain, but not a field, $\langle 2\rangle$ is a prime ideal of $\boldsymbol{Z}[x]$, but it is not maximal.

Exercise 4.1 Prove the following evercises in Chapter 14 and Supplementary Exercises for Chapters 12-14.

1. Show that $A=\{f \in \boldsymbol{R}[x] \mid f(0)=0\}$ is a maximal ideal in $\boldsymbol{R}[x]$.

Ex. 14.31
2. Show that $\boldsymbol{R}[x] /\left\langle x^{2}+1\right\rangle$ is a field.

Ex. 14.28
3. $\langle x, y\rangle$ is a prime ideal in $\boldsymbol{Z}[x, y]$ but not maxima.
4. $\langle x, y\rangle$ is a maximal ideal in $\boldsymbol{Z}_{5}[x, y]$.
5. $\langle 2, x, y\rangle$ is a maximal ideal in $\boldsymbol{Z}[x, y]$.

Proposition 4.3 (Theorem 15.5, Corollaries 1, 2, 3) Suppose R is a ring with unity.
(i) The mapping $\phi: \boldsymbol{Z} \rightarrow R(n \mapsto n \cdot 1)$ is a ring homomorphism.
(ii) If $\operatorname{char}(R)=0$, then R contains a subring isomorphic to \boldsymbol{Z}. If $\operatorname{char}(R)=n>0$, then R contains a subring isomorphic to \boldsymbol{Z}_{n}.
(iii) If F is a field of characteristic $0, F$ contains a subfield isomorphic to \boldsymbol{Q}.

Proof. (iii) Let S is a subring isormophic to \boldsymbol{Z} and let $T=\left\{a b^{-1} \mid a, b \in S, b \neq 0\right\}$. Then T is isomorphic to \boldsymbol{Q}. (Exercise 63)

Theorem 4.4 (Theorem 15.6) Let D be an integral domain. Then there exists a field F (called the field of quotients of D) that contains a subring isomorphic to D.

Proof. Let $S=\{(a, b) \mid a, b \in D, b \neq 0\}$. We define an equivalence relation on S by

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c .
$$

Let F denote the set of equivalence classes of S and write x / y for the equivalence class containing (x, y). Define addition and multiplication on F as follows.

$$
a / b+c / d=(a d+b c) /(b d) \quad \text { and } a / b \cdot c / d=(a c) /(b d) .
$$

Then these operations are well-defined and F becomes a field.
Finally the mapping

$$
\phi: D \rightarrow F(x \mapsto x / 1)
$$

is a ring isomorphism from D to $\phi(D)$.
abc conjecture For a positive integer n, the radical of n, denoted $\operatorname{rad}(n)$, is the product of the distinct prime factors of n. For example

$$
\operatorname{rad}(16)=\operatorname{rad}(4)=2, \operatorname{rad}(17)=17, \operatorname{rad}(18)=\operatorname{rad}(24)=2 \cdot 3=6
$$

If a, b, and c are coprime positive integers such that $a+b=c$, it turns out that "usually" $c<\operatorname{rad}(a b c)$. The abc conjecture deals with the exceptions. Specifically, it states that for every $\epsilon>0$ there exist only finitely many triples (a, b, c) of positive coprime integers with $a+b=c$ such that

$$
c>\operatorname{rad}(a b c)^{1+\epsilon} .
$$

An equivalent formulation states that for any $\epsilon>0$, there exists a constant K such that, for all triples of coprime positive integers (a, b, c) satisfying $a+b=c$, the inequality

$$
c<K \cdot \operatorname{rad}(a b c)^{1+\epsilon}
$$

holds. A third formulation of the conjecture involves the quality $q(a, b, c)$ of the triple (a, b, c), defined by:

$$
q(a, b, c)=\frac{\log (c)}{\log (\operatorname{rad}(a b c)))}
$$

For example

- $q(4,127,131)=\log (131) / \log (\operatorname{rad}(4 \cdot 127 \cdot 131))=\log (131) / \log (2 \cdot 127 \cdot 131)=$ 0.46820....
- $q(3,125,128)=\log (128) / \log (\operatorname{rad}(3 \cdot 125 \cdot 128))=\log (128) / \log (30)=1.426565 \ldots$

A typical triple (a, b, c) of coprime positive integers with $a+b=c$ will have $c<\operatorname{rad}(a b c)$, i.e. $q(a, b, c)<1$. Triples with $q>1$ such as in the second example are rather special, they consist of numbers divisible by high powers of small prime numbers. The abc conjecture states that, for any $\epsilon>0$, there exist only finitely many triples (a, b, c) of coprime positive integers with $a+b=c$ such that $q(a, b, c)>1+\epsilon$. Whereas it is known that there are infinitely many triples (a, b, c) of coprime positive integers with $a+b=c$ such that $q(a, b, c)>1$, the conjecture predicts that only finitely many of those have $q>1.01$ or $q>1.001$ or even $q>1.0001$, etc...

Example 4.4 [Example 9 (Theorem of Gersonides)] If $2^{m}-3^{n}= \pm 1$, then

$$
\left(2^{m}, 3^{n}\right)=(2,1),(2,3),(4,3),(8,9) .
$$

Case 1. $2^{m}=3^{n}+1$.
$3^{n}+1 \equiv 4$ or $2(\bmod 8)$. Thus $m \leq 2$.
Case 2. $2^{m}=3^{n}-1$.
$3^{n}-1 \equiv 2,8,10$, or $0(\bmod 16)$. Thus $m \leq 2 . n \not \equiv 1,2,3.3^{4 k}-1 \equiv 0(\bmod 5)$.

