
4 Ring Homomorphisms

Definition 4.1 A ring homomorphism φ from a ring R to a ring S is a mapping from R
to S that preserves the two ring operations; that is, for all a, b ∈ R,

φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

Proposition 4.1 (Theorems 15.1, 15.2) Let φ be a ring homomorphism from a ring
R to a ring S. Let A be a subring of R and let B be an ideal of S.

(i) φ(A) is a subring of S. In particular, φ(R) is a subring of S.

(ii) If A is an ideal of R, then φ(A) is an ideal of φ(R). In particular, if φ is onto, φ(A)
is an ideal of S.

(iii) φ−1(B) is an ideal of R. In particular, Ker(φ) is an ideal of R.

(iv) φ is one-to-one if and only if Ker(φ) = {0}.

(v) If φ is an isomorphism from R to S, then φ−1 is an isomorphism from S onto R.

Theorem 4.2 (Theorem 15.3) Let φ be a ring homomorphism from R to S. Then the
mapping from R/ker(φ) to φ(R), given by r + Ker(φ) "→ φ(r), is an isomorphism. In
symbols, R/Ker(φ) ≈ φ(R).

Proof. Let us consider the induced group isomorphism:

φ̄ : R/ker(φ) → φ(R) ⊂ S (r +Ker(φ) "→ φ(r)).

This is a ring isomorphism because

φ̄((r +Ker(φ))(r′ +Ker(φ)) = φ̄(rr′ +Ker(φ)) = φ(rs) = φ(r)φ(r′)

= φ̄(r +Ker(φ))φ̄(r′ +Ker(φ)).

Note. Every ideal A of a ring R is the kernel of a homomorphism φ : R → R/A (x "→
x+ A).

Example 4.1 Let R = Z[x] and A = {f ∈ Z[x] | f(0) = 0}. Then A is the kernel of

φ : Z[x] → Z (f "→ f(0)).

Since φ is onto, R[x]/A ≈ Z. Since Z is an integral domain, A is a prime ideal of R[x].
Since Z is not a field, A is not maximal.

Example 4.2 Let R = Z[x] and

ϕ : Z[x] → Z2 (a0 + a1x+ · · ·+ anx
n "→ a0),

where for every integer a, a denotes the corresponding elements in Z2. Since ϕ is onto,
and Ker(ϕ) = ⟨2, x⟩, R[x]/Ker(ϕ) ≈ Z2. Since Z2 is a field, ⟨2, x⟩ is a maximal ideal.
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Example 4.3 [See Ex.14.22] Let R = Z[x] and

ψ : Z[x] → Z2[x] (a0 + a1x+ · · ·+ anx
n "→ a0 + a1x+ · · ·+ anx

n),

where for every integer a, a denotes the corresponding elements in Z2. Since ψ is onto,
and Ker(ψ) = ⟨2⟩, R[x]/Ker(ψ) ≈ Z2[x]. Since Z2[x] is an integral domain, but not a
field, ⟨2⟩ is a prime ideal of Z[x], but it is not maximal.

Exercise 4.1 Prove the following evercises in Chapter 14 and Supplementary Exercises
for Chapters 12–14.

1. Show that A = {f ∈ R[x] | f(0) = 0} is a maximal ideal in R[x]. Ex.14.31

2. Show that R[x]/⟨x2 + 1⟩ is a field. Ex.14.28

3. ⟨x, y⟩ is a prime ideal in Z[x, y] but not maxima. Suppl.Ex.42

4. ⟨x, y⟩ is a maximal ideal in Z5[x, y]. Suppl.Ex.43

5. ⟨2, x, y⟩ is a maximal ideal in Z[x, y]. Suppl.Ex.44

Proposition 4.3 (Theorem 15.5, Corollaries 1, 2, 3) Suppose R is a ring with unity.

(i) The mapping φ : Z → R (n "→ n · 1) is a ring homomorphism.

(ii) If char(R) = 0, then R contains a subring isomorphic to Z. If char(R) = n > 0,
then R contains a subring isomorphic to Zn.

(iii) If F is a field of characteristic 0, F contains a subfield isomorphic to Q.

Proof. (iii) Let S is a subring isormophic to Z and let T = {ab−1 | a, b ∈ S, b ̸= 0}.
Then T is isomorphic to Q. (Exercise 63)

Theorem 4.4 (Theorem 15.6) Let D be an integral domain. Then there exists a field
F (called the field of quotients of D) that contains a subring isomorphic to D.

Proof. Let S = {(a, b) | a, b ∈ D, b ̸= 0}. We define an equivalence relation on S by

(a, b) ∼ (c, d) ⇔ ad = bc.

Let F denote the set of equivalence classes of S and write x/y for the equivalence class
containing (x, y). Define addition and multiplication on F as follows.

a/b+ c/d = (ad+ bc)/(bd) and a/b · c/d = (ac)/(bd).

Then these operations are well-defined and F becomes a field.
Finally the mapping

φ : D → F (x "→ x/1)

is a ring isomorphism from D to φ(D).

22



abc conjecture For a positive integer n, the radical of n, denoted rad(n), is the product
of the distinct prime factors of n. For example

rad(16) = rad(4) = 2, rad(17) = 17, rad(18) = rad(24) = 2 · 3 = 6.

If a, b, and c are coprime positive integers such that a+ b = c, it turns out that “usually”
c < rad(abc). The abc conjecture deals with the exceptions. Specifically, it states that
for every ϵ > 0 there exist only finitely many triples (a, b, c) of positive coprime integers
with a+ b = c such that

c > rad(abc)1+ϵ.

An equivalent formulation states that for any ϵ > 0, there exists a constant K such that,
for all triples of coprime positive integers (a, b, c) satisfying a+ b = c, the inequality

c < K · rad(abc)1+ϵ

holds. A third formulation of the conjecture involves the quality q(a, b, c) of the triple
(a, b, c), defined by:

q(a, b, c) =
log(c)

log(rad(abc)))
.

For example

• q(4, 127, 131) = log(131)/ log(rad(4 · 127 · 131)) = log(131)/ log(2 · 127 · 131) =
0.46820....

• q(3, 125, 128) = log(128)/ log(rad(3 · 125 · 128)) = log(128)/ log(30) = 1.426565....

A typical triple (a, b, c) of coprime positive integers with a+ b = c will have c < rad(abc),
i.e. q(a, b, c) < 1. Triples with q > 1 such as in the second example are rather special, they
consist of numbers divisible by high powers of small prime numbers. The abc conjecture
states that, for any ϵ > 0, there exist only finitely many triples (a, b, c) of coprime positive
integers with a + b = c such that q(a, b, c) > 1 + ϵ. Whereas it is known that there
are infinitely many triples (a, b, c) of coprime positive integers with a + b = c such that
q(a, b, c) > 1, the conjecture predicts that only finitely many of those have q > 1.01 or
q > 1.001 or even q > 1.0001, etc...

Example 4.4 [Example 9 (Theorem of Gersonides)] If 2m − 3n = ±1, then

(2m, 3n) = (2, 1), (2, 3), (4, 3), (8, 9).

Case 1. 2m = 3n + 1.
3n + 1 ≡ 4 or 2 (mod 8). Thus m ≤ 2.

Case 2. 2m = 3n − 1.
3n − 1 ≡ 2, 8, 10, or 0 (mod 16). Thus m ≤ 2. n ̸≡ 1, 2, 3. 34k − 1 ≡ 0 (mod 5).
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