4 Ring Homomorphisms

Definition 4.1 A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that preserves the two ring operations; that is, for all $a, b \in R$,

 $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

A ring homomorphism that is both one-to-one and onto is called a *ring isomorphism*.

Proposition 4.1 (Theorems 15.1, 15.2) Let ϕ be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S.

- (i) $\phi(A)$ is a subring of S. In particular, $\phi(R)$ is a subring of S.
- (ii) If A is an ideal of R, then $\phi(A)$ is an ideal of $\phi(R)$. In particular, if ϕ is onto, $\phi(A)$ is an ideal of S.
- (iii) $\phi^{-1}(B)$ is an ideal of R. In particular, $\text{Ker}(\phi)$ is an ideal of R.
- (iv) ϕ is one-to-one if and only if $\text{Ker}(\phi) = \{0\}$.
- (v) If ϕ is an isomorphism from R to S, then ϕ^{-1} is an isomorphism from S onto R.

Theorem 4.2 (Theorem 15.3) Let ϕ be a ring homomorphism from R to S. Then the mapping from $R/\ker(\phi)$ to $\phi(R)$, given by $r + \operatorname{Ker}(\phi) \mapsto \phi(r)$, is an isomorphism. In symbols, $R/\operatorname{Ker}(\phi) \approx \phi(R)$.

Proof. Let us consider the induced group isomorphism:

$$\overline{\phi}: R/ker(\phi) \to \phi(R) \subset S \ (r + \operatorname{Ker}(\phi) \mapsto \phi(r)).$$

This is a ring isomorphism because

$$\bar{\phi}((r + \operatorname{Ker}(\phi))(r' + \operatorname{Ker}(\phi)) = \bar{\phi}(rr' + \operatorname{Ker}(\phi)) = \phi(rs) = \phi(r)\phi(r')$$
$$= \bar{\phi}(r + \operatorname{Ker}(\phi))\bar{\phi}(r' + \operatorname{Ker}(\phi)). \quad \blacksquare$$

Note. Every ideal A of a ring R is the kernel of a homomorphism $\phi : R \to R/A$ ($x \mapsto x + A$).

Example 4.1 Let $R = \mathbf{Z}[x]$ and $A = \{f \in \mathbf{Z}[x] \mid f(0) = 0\}$. Then A is the kernel of

$$\phi: \mathbf{Z}[x] \to \mathbf{Z} \ (f \mapsto f(0)).$$

Since ϕ is onto, $\mathbf{R}[x]/A \approx \mathbf{Z}$. Since \mathbf{Z} is an integral domain, A is a prime ideal of $\mathbf{R}[x]$. Since \mathbf{Z} is not a field, A is not maximal.

Example 4.2 Let $R = \mathbf{Z}[x]$ and

$$\varphi: \mathbf{Z}[x] \to \mathbf{Z}_2 \ (a_0 + a_1 x + \dots + a_n x^n \mapsto \overline{a_0}),$$

where for every integer a, \overline{a} denotes the corresponding elements in \mathbb{Z}_2 . Since φ is onto, and $\operatorname{Ker}(\varphi) = \langle 2, x \rangle, \mathbb{R}[x]/\operatorname{Ker}(\varphi) \approx \mathbb{Z}_2$. Since \mathbb{Z}_2 is a field, $\langle 2, x \rangle$ is a maximal ideal. **Example 4.3** [See Ex.14.22] Let $R = \mathbf{Z}[x]$ and

 $\psi: \mathbf{Z}[x] \to \mathbf{Z}_2[x] \ (a_0 + a_1 x + \dots + a_n x^n \mapsto \overline{a_0} + \overline{a_1} x + \dots + \overline{a_n} x^n),$

where for every integer a, \overline{a} denotes the corresponding elements in \mathbb{Z}_2 . Since ψ is onto, and $\operatorname{Ker}(\psi) = \langle 2 \rangle$, $\mathbb{R}[x]/\operatorname{Ker}(\psi) \approx \mathbb{Z}_2[x]$. Since $\mathbb{Z}_2[x]$ is an integral domain, but not a field, $\langle 2 \rangle$ is a prime ideal of $\mathbb{Z}[x]$, but it is not maximal.

Exercise 4.1 Prove the following evercises in Chapter 14 and Supplementary Exercises for Chapters 12–14.

- 1. Show that $A = \{f \in \mathbf{R}[x] \mid f(0) = 0\}$ is a maximal ideal in $\mathbf{R}[x]$. Ex.14.31
- 2. Show that $\mathbf{R}[x]/\langle x^2+1\rangle$ is a field. Ex.14.28

3. $\langle x, y \rangle$ is a prime ideal in $\mathbf{Z}[x, y]$ but not maxima. Suppl.Ex.42

- 4. $\langle x, y \rangle$ is a maximal ideal in $\mathbb{Z}_5[x, y]$. Suppl.Ex.43
- 5. $\langle 2, x, y \rangle$ is a maximal ideal in $\mathbf{Z}[x, y]$. Suppl.Ex.44

Proposition 4.3 (Theorem 15.5, Corollaries 1, 2, 3) Suppose R is a ring with unity.

- (i) The mapping $\phi : \mathbb{Z} \to R \ (n \mapsto n \cdot 1)$ is a ring homomorphism.
- (ii) If $\operatorname{char}(R) = 0$, then R contains a subring isomorphic to Z. If $\operatorname{char}(R) = n > 0$, then R contains a subring isomorphic to \mathbb{Z}_n .
- (iii) If F is a field of characteristic 0, F contains a subfield isomorphic to Q.

Proof. (iii) Let S is a subring isormophic to Z and let $T = \{ab^{-1} \mid a, b \in S, b \neq 0\}$. Then T is isomorphic to Q. (Exercise 63)

Theorem 4.4 (Theorem 15.6) Let D be an integral domain. Then there exists a field F (called the field of quotients of D) that contains a subring isomorphic to D.

Proof. Let $S = \{(a, b) \mid a, b \in D, b \neq 0\}$. We define an equivalence relation on S by

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc.$$

Let F denote the set of equivalence classes of S and write x/y for the equivalence class containing (x, y). Define addition and multiplication on F as follows.

$$a/b + c/d = (ad + bc)/(bd)$$
 and $a/b \cdot c/d = (ac)/(bd)$.

Then these operations are well-defined and F becomes a field.

Finally the mapping

 $\phi: D \to F \ (x \mapsto x/1)$

is a ring isomorphism from D to $\phi(D)$.

22

abc conjecture For a positive integer n, the radical of n, denoted rad(n), is the product of the distinct prime factors of n. For example

$$rad(16) = rad(4) = 2$$
, $rad(17) = 17$, $rad(18) = rad(24) = 2 \cdot 3 = 6$.

If a, b, and c are coprime positive integers such that a + b = c, it turns out that "usually" $c < \operatorname{rad}(abc)$. The abc conjecture deals with the exceptions. Specifically, it states that for every $\epsilon > 0$ there exist only finitely many triples (a, b, c) of positive coprime integers with a + b = c such that

$$c > \operatorname{rad}(abc)^{1+\epsilon}.$$

An equivalent formulation states that for any $\epsilon > 0$, there exists a constant K such that, for all triples of coprime positive integers (a, b, c) satisfying a + b = c, the inequality

$$c < K \cdot \operatorname{rad}(abc)^{1+\epsilon}$$

holds. A third formulation of the conjecture involves the quality q(a, b, c) of the triple (a, b, c), defined by:

$$q(a, b, c) = \frac{\log(c)}{\log(\operatorname{rad}(abc)))}.$$

For example

- $q(4, 127, 131) = \log(131) / \log(\operatorname{rad}(4 \cdot 127 \cdot 131)) = \log(131) / \log(2 \cdot 127 \cdot 131) = 0.46820....$
- $q(3, 125, 128) = \log(128) / \log(rad(3 \cdot 125 \cdot 128)) = \log(128) / \log(30) = 1.426565...$

A typical triple (a, b, c) of coprime positive integers with a + b = c will have $c < \operatorname{rad}(abc)$, i.e. q(a, b, c) < 1. Triples with q > 1 such as in the second example are rather special, they consist of numbers divisible by high powers of small prime numbers. The *abc* conjecture states that, for any $\epsilon > 0$, there exist only finitely many triples (a, b, c) of coprime positive integers with a + b = c such that $q(a, b, c) > 1 + \epsilon$. Whereas it is known that there are infinitely many triples (a, b, c) of coprime positive integers with a + b = c such that q(a, b, c) > 1, the conjecture predicts that only finitely many of those have q > 1.01 or q > 1.001 or even q > 1.0001, etc...

Example 4.4 [Example 9 (Theorem of Gersonides)] If $2^m - 3^n = \pm 1$, then

$$(2^m, 3^n) = (2, 1), (2, 3), (4, 3), (8, 9).$$

Case 1. $2^m = 3^n + 1$.

 $3^n + 1 \equiv 4 \text{ or } 2 \pmod{8}$. Thus $m \leq 2$.

Case 2.
$$2^m = 3^n - 1$$

 $3^n - 1 \equiv 2, 8, 10, \text{ or } 0 \pmod{16}$. Thus $m \leq 2$. $n \not\equiv 1, 2, 3$. $3^{4k} - 1 \equiv 0 \pmod{5}$.