3 Ideals and Factor Rings

Definition 3.1 A subring A of a ring is called a (two-sided) *ideal* of R if for every $r \in R$ and every $a \in A$ both ra and ar are in A. R and $\{0\}$ are always ideals. $\{0\}$ is called a *trivial ideal*. When an ideal $A \neq R$, A is called a *proper ideal*.

Proposition 3.1 A nonempty subset A of a ring R is an ideal of R if

- (i) $a b \in A$ whenever $a, b \in A$.
- (ii) ra and ar are in A whenever $a \in A$ and $r \in R$.

Example 3.1 1. For $n \in N$, nZ is an ideal of Z.

- 2. Let R be a commutative ring with unity⁹. The set $\langle a \rangle = \{ra \mid r \in R\}$ is an ideal of R called the *principal ideal generated by a*.
- 3. Let R be a commutative ring with unity and $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Then

$$I = \langle a_1, a_2, \dots, a_n \rangle = \{ r_1 a_1 + r_2 a_2 + \dots + r_n a_n \mid r_i \in R \}$$

is an ideal of R called the *ideal generated by* a_1, a_2, \ldots, a_n . (Exercise 3)

4. Let $R = \mathbf{Z}[x]$. Consider $\langle x \rangle$, $\langle f \rangle$, $\langle x, 2 \rangle$.

Theorem 3.2 Let R be a ring and let A be a subring of R. The set of cosets $\{r+A \mid r \in R\}$ is a ring under the operations: (s+A)+(t+A) = s+t+A and (s+A)(t+A) = st+A if and only if A is an ideal of R.

Proof. Recall that A is a subgroup of an Abelian group (with respect to addition) R, A is a normal subgroup of R and for $x, y \in R$, x + A = y + A if and only if $x - y \in A$.

Since A is a subring, it is an additive subgroup and R/A is an Abelian group as all subgroups of an Abelian group is normal. Suppose s + A = s' + A and t + A = t' + A. Then there exist $a \in A$ and $b \in A$ such that s = s' + a, t = t' + b. Thus

$$st = (s' + a)(t' + b) = s't' + s'b + at' + ab.$$

Thus if A is an ideal, the right hand side is in s't' + A. If there is an element $a' \in R$ such that $s'b \notin A$ for some $b \in A$. Then by setting a = 0, $st - s't' \notin A$ and the product is not well-defined.

When A is an ideal of a ring R, the ring defined above is called the *factor ring* and denoted by R/A. Clearly A = 0 + A is the zero element in R/A. When R has a unity 1, then R/A has a unity if A is a proper ideal and 1 + A is the unity in R/A. Note that by definition, unity is a nonzero element.

Note that

$$(s+A)(r+A) = \{xy \mid x \in s+A, y \in r+A\} \neq sr+A, \text{ even if}$$

 $(s+A) + (r+A) = \{x+y \mid x \in s+A, y \in r+A\} = s+r+A.$

⁹If R does not have unity, Ra is not the smallest ideal containing a, which is called the ideal generated by a.

Definition 3.2 A prime ideal A of a commutative ring R is a proper ideal of that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$. A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever A is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

Theorem 3.3 Let R be a commutative ring with unity and let A be an ideal of R. Then

- (i) R/A is an integral domain if and only if A is prime.
- (ii) R/A is a field if and only if A is maximal.

In particular, if A is maximal, A is prime.

Proof. Since unity is a nonzero element, if R/A is an integral domain or a field, $R \neq A$ and A is a proper ideal. So to prove this theorem, we may assume from the beginning that A is a proper ideal.

(i) Suppose A is a prime ideal. For $a, b \in R$, by definition (a + A)(b + A) = ab + A. So $(a + A)(b + A) = A(= 0_{R/A})$ if and only if $ab \in A$. Since A is prime, $a \in A$ or $b \in A$ and a + A = A or b + A = A. Conversely, supper R/A is an integral domain. Suppose $ab \in A$ for some $a, b \in R$. Then $(a + A)(b + A) = ab + A = A = 0_{R/A}$. Hence this implies a + A = A or b + A = A. Thus $a \in A$ or $b \in A$ and A is a prime ideal.

(ii) Suppose R/A is a field and B is an ideal such that $A \,\subset B \,\subset R$. Assume $A \neq B$ and show B = R. Since $A \neq B$, there exists $b \in B \setminus A$. Then $b + A \neq A = 0_{R/A}$, there exists $c + A \in R/A$ such that $(b + A)(c + A) = bc + A = 1 + A = 1_{R/A}$. Therefore, $1 - bc \in A \subset B$ and $R = R1 \subset B \subset R$. Therefore B = R. Conversely, assume A is maximal. We will show that every nonzero element in R/A has its multiplicative inverse. Let $b + A \neq A = 0_{R/A}$. Then $b \notin A$ and $\langle b \rangle + A = R$ as A is a maximal ideal and $b \notin A$. Hence there exists $r \in R$ such that rb + a = 1. Therefore, (r + A)(b + A) = rb + A = 1 + A and R/A is a field.

Example 3.2 In $R = \mathbb{Z}[x]$. $A = \langle x \rangle$ is a prime ideal but not maximal as $\langle 2, x \rangle$ is an ideal properly containing A. See Exercise 37. What about $\langle 2 \rangle$? Note that $A = \{f(x) \in \mathbb{Z}[x] \mid f(0) = 0\}$, and there is a one-to-one correspondence between $\mathbb{Z}[x]/\langle x \rangle$ and \mathbb{Z} . $\mathbb{Z}[x]/\langle 2, x \rangle$ and \mathbb{Z}_2 which is a field. These are discussed in the next section.