3 Ideals and Factor Rings

Definition 3.1 A subring A of a ring is called a (two-sided) ideal of R if for every $r \in R$ and every $a \in A$ both $r a$ and ar are in $A . R$ and $\{0\}$ are always ideals. $\{0\}$ is called a trivial ideal. When an ideal $A \neq R, A$ is called a proper ideal.

Proposition 3.1 A nonempty subset A of a ring R is an ideal of R if
(i) $a-b \in A$ whenever $a, b \in A$.
(ii) $r a$ and ar are in A whenever $a \in A$ and $r \in R$.

Example 3.1 1. For $n \in \boldsymbol{N}, n \boldsymbol{Z}$ is an ideal of \boldsymbol{Z}.
2. Let R be a commutative ring with unity ${ }^{9}$. The set $\langle a\rangle=\{r a \mid r \in R\}$ is an ideal of R called the principal ideal generated by a.
3. Let R be a commutative ring with unity and $a_{1}, a_{2}, \ldots, a_{n} \in R$. Then

$$
I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n} \mid r_{i} \in R\right\}
$$ is an ideal of R called the ideal generated by $a_{1}, a_{2}, \ldots, a_{n}$. (Exercise 3)

4. Let $R=\boldsymbol{Z}[x]$. Consider $\langle x\rangle,\langle f\rangle,\langle x, 2\rangle$.

Theorem 3.2 Let R be a ring and let A be a subring of R. The set of cosets $\{r+A \mid r \in$ $R\}$ is a ring under the operations: $(s+A)+(t+A)=s+t+A$ and $(s+A)(t+A)=s t+A$ if and only if A is an ideal of R.

Proof. Recall that A is a subgroup of an Abelian group (with respect to addition) R, A is a normal subgroup of R and for $x, y \in R, x+A=y+A$ if and only if $x-y \in A$.

Since A is a subring, it is an additive subgroup and R / A is an Abelian group as all subgroups of an Abelian group is normal. Suppose $s+A=s^{\prime}+A$ and $t+A=t^{\prime}+A$. Then there exist $a \in A$ and $b \in A$ such that $s=s^{\prime}+a, t=t^{\prime}+b$. Thus

$$
s t=\left(s^{\prime}+a\right)\left(t^{\prime}+b\right)=s^{\prime} t^{\prime}+s^{\prime} b+a t^{\prime}+a b .
$$

Thus if A is an ideal, the right hand side is in $s^{\prime} t^{\prime}+A$. If there is an element $a^{\prime} \in R$ such that $s^{\prime} b \notin A$ for some $b \in A$. Then by setting $a=0$, st $-s^{\prime} t^{\prime} \notin A$ and the product is not well-defined.

When A is an ideal of a ring R, the ring defined above is called the factor ring and denoted by R / A. Clearly $A=0+A$ is the zero element in R / A. When R has a unity 1 , then R / A has a unity if A is a proper ideal and $1+A$ is the unity in R / A. Note that by definition, unity is a nonzero element.

Note that

$$
\begin{aligned}
& (s+A)(r+A)=\{x y \mid x \in s+A, y \in r+A\} \neq s r+A, \text { even if } \\
& (s+A)+(r+A)=\{x+y \mid x \in s+A, y \in r+A\}=s+r+A
\end{aligned}
$$

[^0]Definition 3.2 A prime ideal A of a commutative ring R is a proper ideal of that $a, b \in R$ and $a b \in A$ imply $a \in A$ or $b \in A$. A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever A is an ideal of R and $A \subseteq B \subseteq R$, then $B=A$ or $B=R$.

Theorem 3.3 Let R be a commutative ring with unity and let A be an ideal of R. Then
(i) R / A is an integral domain if and only if A is prime.
(ii) R / A is a field if and only if A is maximal.

In particular, if A is maximal, A is prime.
Proof. Since unity is a nonzero element, if R / A is an integral domain or a field, $R \neq A$ and A is a proper ideal. So to prove this theorem, we may assume from the beginning that A is a proper ideal.
(i) Suppose A is a prime ideal. For $a, b \in R$, by definition $(a+A)(b+A)=a b+A$. So $(a+A)(b+A)=A\left(=0_{R / A}\right)$ if and only if $a b \in A$. Since A is prime, $a \in A$ or $b \in A$ and $a+A=A$ or $b+A=A$. Conversely, supper R / A is an integral domain. Suppose $a b \in A$ for some $a, b \in R$. Then $(a+A)(b+A)=a b+A=A=0_{R / A}$. Hence this implies $a+A=A$ or $b+A=A$. Thus $a \in A$ or $b \in A$ and A is a prime ideal.
(ii) Suppose R / A is a field and B is an ideal such that $A \subset B \subset R$. Assume $A \neq B$ and show $B=R$. Since $A \neq B$, there exists $b \in B \backslash A$. Then $b+A \neq A=0_{R / A}$, there exists $c+A \in R / A$ such that $(b+A)(c+A)=b c+A=1+A=1_{R / A}$. Therefore, $1-b c \in A \subset B$ and $R=R 1 \subset B \subset R$. Therefore $B=R$. Conversely, assume A is maximal. We will show that every nonzero element in R / A has its multiplicative inverse. Let $b+A \neq A=0_{R / A}$. Then $b \notin A$ and $\langle b\rangle+A=R$ as A is a maximal ideal and $b \notin A$. Hence there exists $r \in R$ such that $r b+a=1$. Therefore, $(r+A)(b+A)=r b+A=1+A$ and R / A is a field.

Example 3.2 In $R=\boldsymbol{Z}[x] . \quad A=\langle x\rangle$ is a prime ideal but not maximal as $\langle 2, x\rangle$ is an ideal properly containing A. See Exercise 37. What about $\langle 2\rangle$? Note that $A=\{f(x) \in$ $\boldsymbol{Z}[x] \mid f(0)=0\}$, and there is a one-to-one correspondence between $\boldsymbol{Z}[x] /\langle x\rangle$ and \boldsymbol{Z}. $\boldsymbol{Z}[x] /\langle 2, x\rangle$ and \boldsymbol{Z}_{2} which is a field. These are discussed in the next section.

[^0]: ${ }^{9}$ If R does not have unity, $R a$ is not the smallest ideal containing a, which is called the ideal generated by a.

