## 2 Integral Domains

Let $R$ be a ring and $a, b \in R$. Then $a b=0$ may not imply $a=0$ or $b=0$. For example,

1. In $R=\boldsymbol{Z}_{4}, 2 \cdot 2=0$.
2. In $M_{2}(\boldsymbol{R})$,

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

$A B=O$ may not imply $B A=O$.
In this course, we discuss only the case when $R$ is commutative.
Definition 2.1 Zero-Divisor: A zero-divisor is a nonzero element $a$ of a commutative ring $R$ such that there is a nonzero element $b \in R$ with $a b=0$.

Integral Domain: An integral domain is a commutative ring with unity and no zero divisors.

Field: A field is a commutative ring with unity in which every nonzero element is a unit.

- For non-commutative rings, right and left zero divisors have to be defined separately and distinguished.
- Let $R$ be an integral domain. If $a b=a c$ with $a \neq 0$, then $b=c$. (Theorem 13.1) In particular, if $a \neq 0$, then $a^{n} \neq 0$ for any positive integer $n$.
- Every field is an integral domain.
- Let $R$ be an integral domain. If $S$ is a subring of $R$ containing 1 , then $S$ is an integral domain. Note that if $e$ is a unity of $S$, then $e e=e$ implies $e(e-1)=0$ and $e=1$ as $e \neq 0$.

Proposition 2.1 (Theorem 13.2) A finite integral domain is a field.
Proof. Let $R$ be a finite integral domain and $a \in R \backslash\{0\}$. Since $R$ is finite, there exist positive integers $i<j$ such that $a^{i}=a^{j}$. Then $a^{i}\left(1-a^{j-i}\right)=0$ and we have $a^{j-i}=1$. Hence $a^{j-i-1}$ is the multiplicative inverse of $a$.

Example 2.1 1. $Z$.
2. $\boldsymbol{Z} \oplus \boldsymbol{Z}$ is not an integral domain.
3. $\boldsymbol{Z}_{n}$ is an integral domain, and hence a field, if and only if $n$ is a prime.

## Example 2.2 1. $\boldsymbol{Z}[x]$

2. $R[x]$ : polynomial ring over an integral domain. $R[x]$ is an integral domain.

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x) . \quad-\infty+a=-\infty
$$

3. $\boldsymbol{Z}_{6}[x]:(2 x+4)(3 x+3)=0$.
4. $x^{2}-4 x+3=(x-3)(x-1)=(x-7)(x-9)$ has four roots in $\boldsymbol{Z}_{12} . x^{2}-4 x+3=$ $(x-2)^{2}-1$. So if $y=x-2, y^{2}=1$. Since $y^{2}=1$ implies $y=1,-1,5,-5$, $x=3,1,7,-3=9$.

Definition 2.2 [Characteristic of a Ring] The characteristic of a ring $R$ is the least positive integer $n$ such that $n x=0$ for all $x \in R$. If no such integer exists, we say that $R$ has characteristic 0 . The characteristic of $R$ is denoted by $\operatorname{char} R$.

Suppose $R$ is a ring with unity 1 . If $n 1=0$, then $n x=(n 1) x=0$ for any integer $n \in \boldsymbol{Z}$. So if there is no positive integer $n$ such that $n 1=0$, then char $R=0$, otherwise $\operatorname{char} R$ is the additive order of 1 .

Proposition 2.2 The characteristic of an integral domain is 0 or prime.
Proof. We may assume that $m=\operatorname{char}(R)>0$. If $m=m_{1} m_{2}$ a composite number with $0<m_{1}, m_{2}<m, 0=m 1=\left(m_{1} m_{2}\right) 1=\left(m_{1} 1\right)\left(m_{2} 1\right)$. Since $R$ is an integral domain, $m_{1} 1=0$ or $m_{1}=0$, which contradicts the minimality of $m$.

Example 2.3 Recall that every subring with 1 of an integral domain is an integral domain.

1. $\boldsymbol{Z}[i]$.
2. $\boldsymbol{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \boldsymbol{Z}\}$.
3. $\boldsymbol{Q}[i]=\{a+b i \mid a, b \in \boldsymbol{Q}\}$ is a field.
4. $\boldsymbol{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \boldsymbol{Q}\}$ is a field.

Example 2.4 1. $\boldsymbol{Z}_{3}[i]$ : Field with nine elements.
2. $\boldsymbol{Z}_{5}[i]:(1+2 i)(1-2 i)=5=0$. Hence $\boldsymbol{Z}_{5}[i]$ is not an integral domain. However, since $i$ is an element such that $i^{2}=-1, i=2,3$. Hence we can also say that $\boldsymbol{Z}_{5}[i]=\boldsymbol{Z}_{5}$. See Exercise 24.
3. $\boldsymbol{Z}_{n}[i]$ ? Check the definition. ${ }^{8}$ Assume that there is a ring $R$ containing $\boldsymbol{Z}_{n}$ and $a$ such that $a^{2}=-1$, and set $a=i$. The definition of the textbook seems to be $\boldsymbol{Z}_{n}[i]=\boldsymbol{Z}_{n}[x] /\left\langle x^{2}+1\right\rangle$, or $\boldsymbol{Z}_{n}[i]=\left\{a+b i \mid a, b \in \boldsymbol{Z}_{n}\right\}$ and $i$ is a symbol such that $i^{2}=-1$.

## Further Readings

1. E. Berg, A Family of Fields, Pi Mu Epsilon 9 (1990), 154-155.
2. N. A. Koan, The Characteristic of a Ring, American Mathematical Monthly 70 (1963), 736-738.
3. R. McLean, Groups in Modular Arithmetic, The Mathematical Gazette 62 (1978), 94-104.
[^0]
[^0]:    ${ }^{8} \boldsymbol{Z}[i]=\boldsymbol{Z}[x] /\left\langle x^{2}+1\right\rangle$ with $i=x+\left\langle x^{2}+1\right\rangle$. Since, in general, the number of solutions to $x^{2}=-1$ is dependent on $n$, it is safer to restrict the case when $n$ is a prime number.

