2 Integral Domains

Let R be a ring and $a, b \in R$. Then ab = 0 may not imply a = 0 or b = 0. For example,

- 1. In $R = \mathbf{Z}_4, 2 \cdot 2 = 0.$
- 2. In $M_2(\mathbf{R})$,

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

AB = O may not imply BA = O.

In this course, we discuss only the case when R is commutative.

- **Definition 2.1 Zero-Divisor:** A *zero-divisor* is a nonzero element a of a commutative ring R such that there is a nonzero element $b \in R$ with ab = 0.
- **Integral Domain:** An integral domain is a commutative ring with unity and no zero divisors.
- **Field:** A *field* is a commutative ring with unity in which every nonzero element is a unit.
 - For non-commutative rings, right and left zero divisors have to be defined separately and distinguished.
 - Let R be an integral domain. If ab = ac with $a \neq 0$, then b = c. (Theorem 13.1) In particular, if $a \neq 0$, then $a^n \neq 0$ for any positive integer n.
 - Every field is an integral domain.
 - Let R be an integral domain. If S is a subring of R containing 1, then S is an integral domain. Note that if e is a unity of S, then ee = e implies e(e-1) = 0 and e = 1 as $e \neq 0$.

Proposition 2.1 (Theorem 13.2) A finite integral domain is a field.

Proof. Let R be a finite integral domain and $a \in R \setminus \{0\}$. Since R is finite, there exist positive integers i < j such that $a^i = a^j$. Then $a^i(1 - a^{j-i}) = 0$ and we have $a^{j-i} = 1$. Hence a^{j-i-1} is the multiplicative inverse of a.

Example 2.1 1. Z.

- 2. $\mathbf{Z} \oplus \mathbf{Z}$ is not an integral domain.
- 3. \mathbf{Z}_n is an integral domain, and hence a field, if and only if n is a prime.

Example 2.2 1. $\boldsymbol{Z}[\boldsymbol{x}]$

2. R[x]: polynomial ring over an integral domain. R[x] is an integral domain.

$$\deg(f(x)g(x)) = \deg f(x) + \deg g(x), \quad -\infty + a = -\infty.$$

- 3. $Z_6[x]$: (2x+4)(3x+3) = 0.
- 4. $x^2 4x + 3 = (x 3)(x 1) = (x 7)(x 9)$ has four roots in \mathbb{Z}_{12} . $x^2 4x + 3 = (x 2)^2 1$. So if y = x 2, $y^2 = 1$. Since $y^2 = 1$ implies y = 1, -1, 5, -5, x = 3, 1, 7, -3 = 9.

Definition 2.2 [Characteristic of a Ring] The *characteristic* of a ring R is the least positive integer n such that nx = 0 for all $x \in R$. If no such integer exists, we say that R has characteristic 0. The characteristic of R is denoted by charR.

Suppose R is a ring with unity 1. If n1 = 0, then nx = (n1)x = 0 for any integer $n \in \mathbb{Z}$. So if there is no positive integer n such that n1 = 0, then $\operatorname{char} R = 0$, otherwise $\operatorname{char} R$ is the additive order of 1.

Proposition 2.2 The characteristic of an integral domain is 0 or prime.

Proof. We may assume that $m = \operatorname{char}(R) > 0$. If $m = m_1m_2$ a composite number with $0 < m_1, m_2 < m, 0 = m1 = (m_1m_2)1 = (m_11)(m_21)$. Since R is an integral domain, $m_11 = 0$ or $m_1 = 0$, which contradicts the minimality of m.

Example 2.3 Recall that every subring with 1 of an integral domain is an integral domain.

- 1. Z[i].
- 2. $\boldsymbol{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \boldsymbol{Z}\}.$
- 3. $Q[i] = \{a + bi \mid a, b \in Q\}$ is a field.
- 4. $\boldsymbol{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \boldsymbol{Q}\}$ is a field.

Example 2.4 1. $Z_3[i]$: Field with nine elements.

- 2. $\mathbf{Z}_5[i]$: (1+2i)(1-2i) = 5 = 0. Hence $\mathbf{Z}_5[i]$ is not an integral domain. However, since *i* is an element such that $i^2 = -1$, i = 2, 3. Hence we can also say that $\mathbf{Z}_5[i] = \mathbf{Z}_5$. See Exercise 24.
- 3. $\mathbf{Z}_n[i]$? Check the definition.⁸ Assume that there is a ring R containing \mathbf{Z}_n and a such that $a^2 = -1$, and set a = i. The definition of the textbook seems to be $\mathbf{Z}_n[i] = \mathbf{Z}_n[x]/\langle x^2 + 1 \rangle$, or $\mathbf{Z}_n[i] = \{a + bi \mid a, b \in \mathbf{Z}_n\}$ and i is a symbol such that $i^2 = -1$.

Further Readings

- 1. E. Berg, A Family of Fields, Pi Mu Epsilon 9 (1990), 154–155.
- N. A. Koan, The Characteristic of a Ring, American Mathematical Monthly 70 (1963), 736–738.
- 3. R. McLean, Groups in Modular Arithmetic, The Mathematical Gazette 62 (1978), 94–104.

 $[\]overline{{}^{8}\mathbf{Z}[i] = \mathbf{Z}[x]/\langle x^{2}+1\rangle}$ with $i = x + \langle x^{2}+1\rangle$. Since, in general, the number of solutions to $x^{2} = -1$ is dependent on n, it is safer to restrict the case when n is a prime number.