Algebra II Review ${ }^{1}$

1. Let R be a commutative ring with idetity. Show the following.
[Theorem 12.1]
(a) $0 a=0$ for all $a \in R$.
(b) $(-a)(-b)=a b$ for all $a, b \in R$.
2. Let $R=\boldsymbol{Z}_{18}$. (Try a more general case $R=\boldsymbol{Z}_{n}$.)
(a) Find all zero divisors of R.
(b) Find all units of R.
(c) Show that every nonzero element of R is a unit or a zero-divisor.
[Ex 13.5]
(d) Prove or disprove that the unit group $U(R)$ is a cyclic group.
(e) Find all idempotents $e \in R$ such that $e^{2}=e$.
[Ex 13.18]
(f) Find all prime ideals and maximal ideals of R.
(g) Every ideal I of R has the form $I=\langle a\rangle$ for some $a \in I$.
[Ex. 14.41, 57]
(h) Find all ring homomorphisms from R into R.
[Ex.15.8]
(i) Find all ring isomorphisms from R to itself.
3. Let R be an integral domain and let $a, b \in R$. Show that the following are equivalent.
(i) $a \mid b$ and $b \mid a$.
(ii) $\langle a\rangle=\langle b\rangle$.
(iii) $a \approx b$, i.e., there exists $u \in U(R)$ such that $b=u a$. where u is a unit of R.
4. Let R be a commutative ring with unity and let A be an ideal of R. Then
(a) If $A \cap U(R) \neq \emptyset$, then $A=R$.
[Ex. 14.17]
(b) If R is a field, then R is an integral domain.
(c) R / A is an integral domain if and only if A is prime.
[Theorem 14.3]
(d) R / A is a field if and only if A is maximal.
[Theorem 14.4]
(e) If A is maximal, A is prime.

5 . Let R be an integral domain, $R[x]$ and $R[x, y]$ rings of polynomials over R.
(a) Define $\operatorname{deg} f$ for $f \in R[x]$ and show that for $f, g \in R[x], \operatorname{deg} f \cdot g=\operatorname{deg} f+\operatorname{deg} g$ holds including the case $f=0$ or $g=0$.
(b) Show that $R[x, y]$ is an integral domain.
(c) Show that $U(R[x, y])=U(R)$. Here $U(R[x, y])$ and $U(R)$ denote the set of units (invertible elements) of $R[x, y]$ and R respectively.
(d) Let $f(x, y), g(x, y) \in R[x, y]$. Show that if the ideals generated by $f(x, y)$ and $g(x, y)$ are equal, i.e., $R[x, y] f(x, y)=R[x, y] g(x, y)$, then there exists $a \in U(R)$ such that $f(x, y)=a \cdot g(x, y)$.

[^0](e) Show that $R[x, y]$ is not a principal ideal domain. ${ }^{2}$
(f) $A=\{f(x) \in R[x] \mid f(0)=0\}$ is a prime ideal.
[Example 14.17]
(g) A above is a maximal ideal if and only if R is a field. [Example 14.17, Ex 14.34, Ex 16.20]
6. Let R and R^{\prime} be rings with an identity element. Let $f: R \longrightarrow R^{\prime}$ be a ring homomorphism from R to R^{\prime}, i.e., f satisfies $f(a+b)=f(a)+f(b), f(a b)=f(a) f(b),(a, b \in R)$. In addition assume that $f(1)=1$. Let J be a (two-sided) ideal of R^{\prime}. Show the following.
(a) $f(0)=0$ and $f(-a)=-f(a)$.
[Theorem 10.1]
(b) $f^{-1}(J)$ is a two-sided ideal of R.
[Theorem 15.1]
(c) If J is a prime ideal, then $f^{-1}(J)$ is a prime ideal.
[Ex 15.47]
(d) If $f^{-1}(J) \cap U(R) \neq \emptyset$, then $J=R^{\prime}$.
[Ex.14.17]
7. Let R be a commutative ring with identity, and I, J, K be its ideals. Suppose $I+J=$ $I+K=J+K=R$. Show the following.
(a) $I J=I \cap J$. Recall that $I J$ is the set of finite sums of the products of elements in I and J, i.e., $I J=\left\{\sum_{i} x_{i} \cdot y_{i} \mid x_{i} \in I\right.$, and $\left.y_{i} \in J\right\}$.
[Ex 14.14, 16]
(b) Let $\phi: R \rightarrow R / I \times R / J(x \mapsto(x+I, x+J))$. Show that ϕ is surjective. [Suppl. Ex 6, p.347]
(c) $I J K=I \cap J \cap K$.
8. Let R be an integral domain and p a non zero, non unit element of R.
(a) Suppose that $\langle p\rangle$ is a prime ideal. Show that p is an irreducible element.[Theorem 18.1]
(b) Suppose that R is a UFD and that p is an irreducible element. Show that $\langle p\rangle$ is a prime ideal.
[Ex.18.39]
9. Let $\boldsymbol{Z}[x]$ be a polynomial ring in x over \boldsymbol{Z}. Let
$$
\phi: \boldsymbol{Z}[x] \longrightarrow \boldsymbol{C}(f(x) \mapsto f(\sqrt{-13})) .
$$
(You may assume that ϕ is a ring homomorphism.)
(a) Let $R=\operatorname{Im} \phi$. Show that R is a subring of \boldsymbol{C} and R is an integral domain.
(b) Show that $R=\{a+b \sqrt{-13} \mid a, b \in \boldsymbol{Z}\}$.
(c) For $\alpha=a+b \sqrt{-13} \in R$, let $N(\alpha)=N(a+b \sqrt{-13})=a^{2}+13 b^{2}$. Show that for $\alpha, \beta \in R, N(\alpha \cdot \beta)=N(\alpha) N(\beta)$.
(d) Show that
$$
\alpha \in U(R) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha \in\{1,-1\} .
$$
(e) Show that 2 is an irreducible element of R.
(f) Show that R is not a UFD. ${ }^{3}$

[^1]10. Let F be a field and $F[x]$ a polynomial ring over F. Let E be an extension field of F and $a \in E$ algebraic over F. Suppose $p(x)$ is a monic (i.e., the leading coefficient is 1) polynomial in $F[x]$ of minimal degree such that $p(x)=0$. Let $\phi: F[x] \rightarrow E(f(x) \mapsto$ $f(a)) .{ }^{4}$
(a) Show that $p(x)$ is irreducible.
(b) If $q(x) \in F[x]$ is a monic irreducible polynomial such that $q(a)=0$, then $p(x)=q(x)$.
(c) For $f(x) \in F[x], f(a)=0$ if and only if $p(x) \mid f(x)$.
(d) For $f(x) \in F[x]$, if $f(a) \neq 0$, then there exists $g(x), h(x) \in F[x]$ such that $f(x) g(x)+$ $h(x) p(x)=1$.
(e) $\operatorname{Ker}(\phi)=\langle p(x)\rangle$.
(f) $\operatorname{Ker}(\phi)$ is a maximal ideal and $\phi(F[x])=\{f(a) \mid f(x) \in F[x]\}=F(a)$ is the smallest subfield of E containing F and a.
(g) Suppose $n=\operatorname{deg} p(x)$. Then $\phi(F[x])=\left\{\alpha_{0}+\alpha_{1} a+\cdots+\alpha_{n-1} a^{n-1} \mid \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\}$ and $1, a, a^{2}, \ldots, a^{n-1}$ are linearly independent over F.
11. Let $F=\boldsymbol{Q}(\sqrt{2}+\sqrt{3})$ be a subfield of \boldsymbol{C}.
(a) Show that $F=\boldsymbol{Q}(\sqrt{2}, \sqrt{3})$.
(b) Show that $[F: Q]=4$.
(c) Show that $x^{2}-3$ is irreducible over $\boldsymbol{Q}(\sqrt{2})$.
(d) Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \boldsymbol{Q}.

Recommended Exercises for Review

Ch.12. 23, 24, 25, 26
Ch.13. 7, 26, 49 (See 15.44)
Ch.14. 22, 34, 37
Suppl.12-14. 4, 19, 24, 29
Ch.15. 8, 22, 44, 47
Ch.16. 17, 19, 23, 24, 42
Ch.17. 6, 30, 31, 32
Ch.18. 1, 2, 13, 15, 22, 23
Suppl.15-18. 2, 6, 8, 22
Ch.19. 9, 10, 30
Ch.20. 1, 2, 27, 35
Ch.21. 1, 20, 35

[^2]
[^0]: ${ }^{1}$ For references, see 'Contemporary Abstract Algebra, Eighth Edition' by Joseph A. Gallian

[^1]: ${ }^{2}$ Hint: Proposition 7.2 (Theorem 18.2)
 ${ }^{3}$ Show by definition of UFD or use Ex.18.39.

[^2]: ${ }^{4}$ First show (a)-(d) only by 'Division Algorithm for $F[x]$. Next show (e)-(g) by using (a)-(d). Finally prove (e)-(g) first by results developed by ring theory and show (a)- (d) as well.

