
10 Algebraic Extensions

Review Let F be a field and p(x) be an irreducible polynomial in F [x]. Let a be a zero
of p(x) in an extension field E of F , If deg p(x) = n, then

F [x]/⟨p(x)⟩ ≈ F (a) = {c0 + c1a + c2a
2 + · · · + cn−1a

n−1 | c0, c1, . . . , cn−1 ∈ F}

and as a vector space over F , F (a) is of dimension n and {1, a, a2, . . . , an−1} is a basis
over F .

Definition 10.1 Let E be an extension field of a field F and let a ∈ E.

1. We call a algebraic over F if a is a zero of some nonzero polynomial in F [x].

2. If a is not algebraic over F , it is called transcendental over F .

3. An extension E of F is called an algebraic extension of F if every element of E is
algebraic over F .

4. If E is not an algebraic extension of F , it is called a transcendental extension of F .

5. An extension of F of the form F (a) is called a simple extension of F .

6. F (x) = {f(x)/g(x) | f(x), g(x) ∈ F [x], g(x) ̸= 0} is the field of quotients of F [x].

Theorem 10.1 (Theorems 21.1, 21.2, 21.3) Let E be an extension field of the field
F and let a ∈ E.

(i) If a is transcendental over F , then F (a) ≈ F (x).

(ii) If a is algebraic over F , then F (a) ≈ F [x]/⟨p(x)⟩, where p(x) is a nonzero polyno-
mial in F [x] of minimum degree such that p(a) = 0. Moreover, p(x) is irreducible
over F .

(iii) If the polynomial in (ii) is monic, it is a unique monic irreducible polynomial p(x) ∈
F [x] such that p(a) = 0. Moreover, for f(x) ∈ F [x], f(a) = 0 if and only if
p(x) | f(x), and p(x) is called the minimal polynomial of a. (Ex.1)

Proof. Let φ : F [x] → F (a) (f(x) '→ f(a)) be a natural ring homomorphism. If a
is transcendental over F , φ is injective and F [a] = Imφ is isomorphic to F [x]. Now
φ : F (x) → F (a) (f(x)/g(x) '→ f(a)/g(a)) is well-defined and φ is an isomorphism.

If a is algebraic over F , then Kerφ ̸= 0 and F [x]/Kerφ ≈ Imφ ⊂ F (a). Since Imφ is
a subring of a field containing 1, it is an integral domain. Let Kerφ = ⟨f(x)⟩ as F [x] is
a PID. Since p(x) ̸= 0, p(x) is primitive and Imφ is a maximal ideal. So Imφ is a filed
containing F and a. Therefore Imφ = F (a). Clearly p(x) is a polynomial of minimum
degree such that p(a) = 0, as f(a) = 0 implies p(x) | f(x). This proves (i) and (ii).

(iii) is obvious.

Definition 10.2 Let E be an extension field of a field F . Then E can be regarded as a
vector space over F .
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1. We say that E has degree n over F and write [E : F ] = n if E has dimension n as a
vector space over F .

2. If [E : F ] is finite, E is called a finite extension of F ; otherwise, we say that E is an
infinite extension of F .

Example 10.1 1. [C : R] = 2. Since C = R(
√
−1) and x2 + 1 is the minimal

polynomial of
√
−1 over R, this follows from the next.

2. If a is algebraic over F and p(x) the minimal polynomial of a, then [F (a) : F ] =
deg(p(x)).

Theorem 10.2 (Theorem 21.5) [K : F ] = [K : E][E : F ].

Proof. Let {xi | i ∈ I} be a basis of K over E, and {yj | i ∈ J} a basis of E over F . It
suffices to show that {xiyj | i ∈ I, j ∈ J} is a bssis of K over F .

[Linear Independence: ] Let kij ∈ F (i ∈ I, j ∈ J) such that

0 =
∑

i∈I, j∈J

kijxiyj =
∑

j∈J

(
∑

i∈I

kijxi

)
yj

Since
∑

i∈I kijxi ∈ E and {yj | i ∈ J} is linearly independent over E, we have
∑

i∈I kijxi =
0 for all j ∈ J . Similarly {xi | i ∈ I} is linearly independent over F , kij = 0 for all i ∈ I
and j ∈ J . Thus the set is linearly independent.

[Generation] Let x ∈ K. Since {yj | i ∈ J} is a basis of K over E, there are lj ∈ E
(j ∈ J) such that x =

∑
j∈J ljyj. Similarly, since {xi | i ∈ I} is a basis of E over F , for

each j ∈ J , there exist kij ∈ F (i ∈ I) such that lj =
∑

i∈I kijxi. By substituting this in
the previous formula, we have

x =
∑

j∈J

ljyj =
∑

i∈I, j∈J

kijxiyj.

Therefore all elements of K can be expressed as a F linear combination of {xiyj | i ∈
I, j ∈ J}.

Corollary 10.3 Let E be an extension field of F . If a1, a2, . . . , an ∈ E are algebraic over
F , then F (a1, a2, . . . , an) is a finite extension of F . (Exercise 20.20)

Proof. We show by induction. Let E = F (a1, a2, . . . , an−1). Then

[F (a1, a2, . . . , an) : F ] = [E(an) : E][E : F ] < ∞.

Thus we have the assertion.

Proposition 10.4 (Theorems 21.4, 21.7) 1. If E is a finite extension of F , then E
is an algebraic extension of F .

2. If K is an algebraic extension of E and E is an algebraic extension of F , then K is
an algebraic extension of F .
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3. If E is an extension field of the field F . Then the set A of all elements of E that are
algebraic over F is a subfield of E. A is called the algebraic closure of F in E.

Proof. Let [E : F ] = n and a ∈ E. Then 1, a, a2, . . . , an is not linearly independent over
F . Hence there exist c0, c1, . . . , cn ∈ F such that c0 + c1a + c2a2 + · · · + cnan = 0. Let
f(x) = c0 + c1x + c2x2 + · · · + cnxn ∈ F [x]. Then f(x) ̸= 0 and f(a) = 0. Hence a is
algebraic over F .

Let a ∈ K. Then a is algebraic over E. Hence there is a polynomial 0 ̸= f(x) =
c0 + c1x + c2x2 + · · · + cnxn ∈ E[x] such that f(a) = 0. Since c0, c1, . . . , cn are algebraic
over F , [F (c0, c1, . . . , cn) : F ] < ∞ and a ∈ F (c0, c1, . . . , cn). Thus a is algebraic over F .

Let A be the set of all elements of E that are algebraic over F . Let a and b be
algebraic over F . Then F (a, b) is a finite extension of F . Hence a− b and a/b with b ̸= 0
are elements of F (a, b) ⊂ A. Therefore, A is a field.

Definition 10.3 Let E be a field. If there is no proper algebraic extension of E, then
E is called algebraically closed. Every field F has a unique, up to isomorphism, algebraic
extension that is algebraically closed. This field is called the algebraic closure of F . (This
result requires the Axiom of Choice.)

Example 10.2 Let A be the set of all algebraic elements of C over Q. Then A is an
infinite extension of Q. Note that A contains { n

√
2}. So A contains a field En with

[En : Q] = n. Elements of A is called algebraic numbers and |A| = ℵ0.

Theorem 10.5 (Primitive Element Theorem (Theorem 21.6), Steinitz, 1910) If
F is a field of characteristic 0, and a and b are algebraic over F , then there is an element
c ∈ F (a, b) such that F (a, b) = F (c).

Proof. Let p(x) and q(x) be minimal polynomials of a and b and a1 = a, a2, . . . , am

and b1 = b, b2, . . . , bn are roots of p(x) and q(x) in a splitting field of p(x)q(x). Choose
d ∈ F \ {(ai − a)/(b − bj) | i ≥ 1, j > 1}. In particular ai ̸= a + d(b − bj) for j > 1. We
shall show that c = a + db has the property. Note that d ̸= 0 by definition.

Consider q(x) and r(x) = p(c−dx) in F (c)[x]. Since q(b) = 0 = p(a) = p(c−db) = r(b).
Let s(x) be the minimal polynomial of b in F (c)[x]. We claim that s(x) = x − b. This is
because s(x) | r(x), and r(bj) = p(c − dbj) = p(a + db − dbj) = p(a + d(b − bj)) ̸= 0.

Therefore, b ∈ F (c), a = c − db ∈ F (c) and F (a, b) ⊂ F (c) = F (a + db) ⊂ F (a, b).

Thus any finite extension of a field of characteristic 0 is a simple extension. An element
a with the property that E = F (a) is called a primitive element of E.

Example 10.3 F = Q(
√

2,
√

3). Then [F : Q] = 4 and F = Q(
√

2 +
√

3).

Example 10.4 F = Q( 4
√

2,
√
−1) ⊃ Q( 4

√
2). Then [F : Q] = 8.
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