10 Algebraic Extensions

Review Let F be a field and p(x) be an irreducible polynomial in F[x]. Let a be a zero of p(x) in an extension field E of F. If deg p(x) = n, then

$$F[x]/\langle p(x)\rangle \approx F(a) = \{c_0 + c_1a + c_2a^2 + \dots + c_{n-1}a^{n-1} \mid c_0, c_1, \dots, c_{n-1} \in F\}$$

and as a vector space over F, F(a) is of dimension n and $\{1, a, a^2, \ldots, a^{n-1}\}$ is a basis over F.

Definition 10.1 Let *E* be an extension field of a field *F* and let $a \in E$.

- **1.** We call a algebraic over F if a is a zero of some nonzero polynomial in F[x].
- **2.** If a is not algebraic over F, it is called *transcendental over* F.
- **3.** An extension E of F is called an *algebraic* extension of F if every element of E is algebraic over F.
- 4. If E is not an algebraic extension of F, it is called a *transcendental* extension of F.
- 5. An extension of F of the form F(a) is called a *simple* extension of F.

6. $F(x) = \{f(x)/g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0\}$ is the field of quotients of F[x].

Theorem 10.1 (Theorems 21.1, 21.2, 21.3) Let E be an extension field of the field F and let $a \in E$.

- (i) If a is transcendental over F, then $F(a) \approx F(x)$.
- (ii) If a is algebraic over F, then $F(a) \approx F[x]/\langle p(x) \rangle$, where p(x) is a nonzero polynomial in F[x] of minimum degree such that p(a) = 0. Moreover, p(x) is irreducible over F.
- (iii) If the polynomial in (ii) is monic, it is a unique monic irreducible polynomial $p(x) \in F[x]$ such that p(a) = 0. Moreover, for $f(x) \in F[x]$, f(a) = 0 if and only if $p(x) \mid f(x)$, and p(x) is called the minimal polynomial of a. (Ex.1)

Proof. Let $\phi : F[x] \to F(a)$ $(f(x) \mapsto f(a))$ be a natural ring homomorphism. If a is transcendental over F, ϕ is injective and $F[a] = \text{Im}\phi$ is isomorphic to F[x]. Now $\phi : F(x) \to F(a)$ $(f(x)/g(x) \mapsto f(a)/g(a))$ is well-defined and ϕ is an isomorphism.

If a is algebraic over F, then $\operatorname{Ker}\phi \neq 0$ and $F[x]/\operatorname{Ker}\phi \approx \operatorname{Im}\phi \subset F(a)$. Since $\operatorname{Im}\phi$ is a subring of a field containing 1, it is an integral domain. Let $\operatorname{Ker}\phi = \langle f(x) \rangle$ as F[x] is a PID. Since $p(x) \neq 0$, p(x) is primitive and $\operatorname{Im}\phi$ is a maximal ideal. So $\operatorname{Im}\phi$ is a filed containing F and a. Therefore $\operatorname{Im}\phi = F(a)$. Clearly p(x) is a polynomial of minimum degree such that p(a) = 0, as f(a) = 0 implies $p(x) \mid f(x)$. This proves (i) and (ii).

(iii) is obvious.

Definition 10.2 Let E be an extension field of a field F. Then E can be regarded as a vector space over F.

- 1. We say that E has degree n over F and write [E:F] = n if E has dimension n as a vector space over F.
- **2.** If [E:F] is finite, E is called a *finite extension* of F; otherwise, we say that E is an *infinite extension* of F.
- **Example 10.1** 1. [C : R] = 2. Since $C = R(\sqrt{-1})$ and $x^2 + 1$ is the minimal polynomial of $\sqrt{-1}$ over R, this follows from the next.
 - 2. If a is algebraic over F and p(x) the minimal polynomial of a, then $[F(a) : F] = \deg(p(x))$.

Theorem 10.2 (Theorem 21.5) [K:F] = [K:E][E:F].

Proof. Let $\{x_i \mid i \in I\}$ be a basis of K over E, and $\{y_j \mid i \in J\}$ a basis of E over F. It suffices to show that $\{x_iy_j \mid i \in I, j \in J\}$ is a basis of K over F.

[Linear Independence:] Let $k_{ij} \in F$ $(i \in I, j \in J)$ such that

$$0 = \sum_{i \in I, j \in J} k_{ij} x_i y_j = \sum_{j \in J} \left(\sum_{i \in I} k_{ij} x_i \right) y_j$$

Since $\sum_{i \in I} k_{ij} x_i \in E$ and $\{y_j \mid i \in J\}$ is linearly independent over E, we have $\sum_{i \in I} k_{ij} x_i = 0$ for all $j \in J$. Similarly $\{x_i \mid i \in I\}$ is linearly independent over F, $k_{ij} = 0$ for all $i \in I$ and $j \in J$. Thus the set is linearly independent.

[Generation] Let $x \in K$. Since $\{y_j \mid i \in J\}$ is a basis of K over E, there are $l_j \in E$ $(j \in J)$ such that $x = \sum_{j \in J} l_j y_j$. Similarly, since $\{x_i \mid i \in I\}$ is a basis of E over F, for each $j \in J$, there exist $k_{ij} \in F$ $(i \in I)$ such that $l_j = \sum_{i \in I} k_{ij} x_i$. By substituting this in the previous formula, we have

$$x = \sum_{j \in J} l_j y_j = \sum_{i \in I, \ j \in J} k_{ij} x_i y_j.$$

Therefore all elements of K can be expressed as a F linear combination of $\{x_i y_j \mid i \in I, j \in J\}$.

Corollary 10.3 Let E be an extension field of F. If $a_1, a_2, \ldots, a_n \in E$ are algebraic over F, then $F(a_1, a_2, \ldots, a_n)$ is a finite extension of F. (Exercise 20.20)

Proof. We show by induction. Let $E = F(a_1, a_2, \ldots, a_{n-1})$. Then

$$[F(a_1, a_2, \dots, a_n) : F] = [E(a_n) : E][E : F] < \infty.$$

Thus we have the assertion.

- **Proposition 10.4 (Theorems 21.4, 21.7) 1.** If E is a finite extension of F, then E is an algebraic extension of F.
- **2.** If K is an algebraic extension of E and E is an algebraic extension of F, then K is an algebraic extension of F.

3. If E is an extension field of the field F. Then the set A of all elements of E that are algebraic over F is a subfield of E. A is called the algebraic closure of F in E.

Proof. Let [E:F] = n and $a \in E$. Then $1, a, a^2, \ldots, a^n$ is not linearly independent over F. Hence there exist $c_0, c_1, \ldots, c_n \in F$ such that $c_0 + c_1 a + c_2 a^2 + \cdots + c_n a^n = 0$. Let $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n \in F[x]$. Then $f(x) \neq 0$ and f(a) = 0. Hence a is algebraic over F.

Let $a \in K$. Then *a* is algebraic over *E*. Hence there is a polynomial $0 \neq f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n \in E[x]$ such that f(a) = 0. Since c_0, c_1, \ldots, c_n are algebraic over *F*, $[F(c_0, c_1, \ldots, c_n) : F] < \infty$ and $a \in F(c_0, c_1, \ldots, c_n)$. Thus *a* is algebraic over *F*.

Let A be the set of all elements of E that are algebraic over F. Let a and b be algebraic over F. Then F(a, b) is a finite extension of F. Hence a - b and a/b with $b \neq 0$ are elements of $F(a, b) \subset A$. Therefore, A is a field.

Definition 10.3 Let E be a field. If there is no proper algebraic extension of E, then E is called *algebraically closed*. Every field F has a unique, up to isomorphism, algebraic extension that is algebraically closed. This field is called the algebraic closure of F. (This result requires the Axiom of Choice.)

Example 10.2 Let A be the set of all algebraic elements of C over Q. Then A is an infinite extension of Q. Note that A contains $\{\sqrt[n]{2}\}$. So A contains a field E_n with $[E_n : Q] = n$. Elements of A is called algebraic numbers and $|A| = \aleph_0$.

Theorem 10.5 (Primitive Element Theorem (Theorem 21.6), Steinitz, 1910) If F is a field of characteristic 0, and a and b are algebraic over F, then there is an element $c \in F(a, b)$ such that F(a, b) = F(c).

Proof. Let p(x) and q(x) be minimal polynomials of a and b and $a_1 = a, a_2, \ldots, a_m$ and $b_1 = b, b_2, \ldots, b_n$ are roots of p(x) and q(x) in a splitting field of p(x)q(x). Choose $d \in F \setminus \{(a_i - a)/(b - b_j) \mid i \ge 1, j > 1\}$. In particular $a_i \ne a + d(b - b_j)$ for j > 1. We shall show that c = a + db has the property. Note that $d \ne 0$ by definition.

Consider q(x) and r(x) = p(c-dx) in F(c)[x]. Since q(b) = 0 = p(a) = p(c-db) = r(b). Let s(x) be the minimal polynomial of b in F(c)[x]. We claim that s(x) = x - b. This is because s(x) | r(x), and $r(b_j) = p(c - db_j) = p(a + db - db_j) = p(a + d(b - b_j)) \neq 0$.

Therefore, $b \in F(c)$, $a = c - db \in F(c)$ and $F(a, b) \subset F(c) = F(a + db) \subset F(a, b)$.

Thus any finite extension of a field of characteristic 0 is a simple extension. An element a with the property that E = F(a) is called a *primitive element* of E.

Example 10.3 $F = Q(\sqrt{2}, \sqrt{3})$. Then [F : Q] = 4 and $F = Q(\sqrt{2} + \sqrt{3})$.

Example 10.4 $F = Q(\sqrt[4]{2}, \sqrt{-1}) \supset Q(\sqrt[4]{2})$. Then [F : Q] = 8.