10 Algebraic Extensions

Review Let F be a field and $p(x)$ be an irreducible polynomial in $F[x]$. Let a be a zero of $p(x)$ in an extension field E of F, If $\operatorname{deg} p(x)=n$, then

$$
F[x] /\langle p(x)\rangle \approx F(a)=\left\{c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n-1} a^{n-1} \mid c_{0}, c_{1}, \ldots, c_{n-1} \in F\right\}
$$

and as a vector space over $F, F(a)$ is of dimension n and $\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a basis over F.

Definition 10.1 Let E be an extension field of a field F and let $a \in E$.

1. We call a algebraic over F if a is a zero of some nonzero polynomial in $F[x]$.
2. If a is not algebraic over F, it is called transcendental over F.
3. An extension E of F is called an algebraic extension of F if every element of E is algebraic over F.
4. If E is not an algebraic extension of F, it is called a transcendental extension of F.
5. An extension of F of the form $F(a)$ is called a simple extension of F.
6. $\quad F(x)=\{f(x) / g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0\}$ is the field of quotients of $F[x]$.

Theorem 10.1 (Theorems 21.1, 21.2, 21.3) Let E be an extension field of the field F and let $a \in E$.
(i) If a is transcendental over F, then $F(a) \approx F(x)$.
(ii) If a is algebraic over F, then $F(a) \approx F[x] /\langle p(x)\rangle$, where $p(x)$ is a nonzero polynomial in $F[x]$ of minimum degree such that $p(a)=0$. Moreover, $p(x)$ is irreducible over F.
(iii) If the polynomial in (ii) is monic, it is a unique monic irreducible polynomial $p(x) \in$ $F[x]$ such that $p(a)=0$. Moreover, for $f(x) \in F[x], f(a)=0$ if and only if $p(x) \mid f(x)$, and $p(x)$ is called the minimal polynomial of a.
(Ex.1)
Proof. Let $\phi: F[x] \rightarrow F(a)(f(x) \mapsto f(a))$ be a natural ring homomorphism. If a is transcendental over F, ϕ is injective and $F[a]=\operatorname{Im} \phi$ is isomorphic to $F[x]$. Now $\phi: F(x) \rightarrow F(a)(f(x) / g(x) \mapsto f(a) / g(a))$ is well-defined and ϕ is an isomorphism.

If a is algebraic over F, then $\operatorname{Ker} \phi \neq 0$ and $F[x] / \operatorname{Ker} \phi \approx \operatorname{Im} \phi \subset F(a)$. Since $\operatorname{Im} \phi$ is a subring of a field containing 1 , it is an integral domain. Let $\operatorname{Ker} \phi=\langle f(x)\rangle$ as $F[x]$ is a PID. Since $p(x) \neq 0, p(x)$ is primitive and $\operatorname{Im} \phi$ is a maximal ideal. So $\operatorname{Im} \phi$ is a filed containing F and a. Therefore $\operatorname{Im} \phi=F(a)$. Clearly $p(x)$ is a polynomial of minimum degree such that $p(a)=0$, as $f(a)=0$ implies $p(x) \mid f(x)$. This proves (i) and (ii).
(iii) is obvious.

Definition 10.2 Let E be an extension field of a field F. Then E can be regarded as a vector space over F.

1. We say that E has degree n over F and write $[E: F]=n$ if E has dimension n as a vector space over F.
2. If $[E: F]$ is finite, E is called a finite extension of F; otherwise, we say that E is an infinite extension of F.

Example 10.1 1. $[\boldsymbol{C}: \boldsymbol{R}]=2$. Since $\boldsymbol{C}=\boldsymbol{R}(\sqrt{-1})$ and $x^{2}+1$ is the minimal polynomial of $\sqrt{-1}$ over \boldsymbol{R}, this follows from the next.
2. If a is algebraic over F and $p(x)$ the minimal polynomial of a, then $[F(a): F]=$ $\operatorname{deg}(p(x))$.

Theorem 10.2 (Theorem 21.5) $[K: F]=[K: E][E: F]$.
Proof. Let $\left\{x_{i} \mid i \in I\right\}$ be a basis of K over E, and $\left\{y_{j} \mid i \in J\right\}$ a basis of E over F. It suffices to show that $\left\{x_{i} y_{j} \mid i \in I, j \in J\right\}$ is a bssis of K over F.
[Linear Independence:] Let $k_{i j} \in F(i \in I, j \in J)$ such that

$$
0=\sum_{i \in I, j \in J} k_{i j} x_{i} y_{j}=\sum_{j \in J}\left(\sum_{i \in I} k_{i j} x_{i}\right) y_{j}
$$

Since $\sum_{i \in I} k_{i j} x_{i} \in E$ and $\left\{y_{j} \mid i \in J\right\}$ is linearly independent over E, we have $\sum_{i \in I} k_{i j} x_{i}=$ 0 for all $j \in J$. Similarly $\left\{x_{i} \mid i \in I\right\}$ is linearly independent over $F, k_{i j}=0$ for all $i \in I$ and $j \in J$. Thus the set is linearly independent.
[Generation] Let $x \in K$. Since $\left\{y_{j} \mid i \in J\right\}$ is a basis of K over E, there are $l_{j} \in E$ $(j \in J)$ such that $x=\sum_{j \in J} l_{j} y_{j}$. Similarly, since $\left\{x_{i} \mid i \in I\right\}$ is a basis of E over F, for each $j \in J$, there exist $k_{i j} \in F(i \in I)$ such that $l_{j}=\sum_{i \in I} k_{i j} x_{i}$. By substituting this in the previous formula, we have

$$
x=\sum_{j \in J} l_{j} y_{j}=\sum_{i \in I, j \in J} k_{i j} x_{i} y_{j} .
$$

Therefore all elements of K can be expressed as a F linear combination of $\left\{x_{i} y_{j} \mid i \in\right.$ $I, j \in J\}$.

Corollary 10.3 Let E be an extension field of F. If $a_{1}, a_{2}, \ldots, a_{n} \in E$ are algebraic over F, then $F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a finite extension of F.
(Exercise 20.20)
Proof. We show by induction. Let $E=F\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Then

$$
\left[F\left(a_{1}, a_{2}, \ldots, a_{n}\right): F\right]=\left[E\left(a_{n}\right): E\right][E: F]<\infty
$$

Thus we have the assertion.
Proposition 10.4 (Theorems 21.4, 21.7) 1. If E is a finite extension of F, then E is an algebraic extension of F.
2. If K is an algebraic extension of E and E is an algebraic extension of F, then K is an algebraic extension of F.
3. If E is an extension field of the field F. Then the set A of all elements of E that are algebraic over F is a subfield of E. A is called the algebraic closure of F in E.

Proof. Let $[E: F]=n$ and $a \in E$. Then $1, a, a^{2}, \ldots, a^{n}$ is not linearly independent over F. Hence there exist $c_{0}, c_{1}, \ldots, c_{n} \in F$ such that $c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n} a^{n}=0$. Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \in F[x]$. Then $f(x) \neq 0$ and $f(a)=0$. Hence a is algebraic over F.

Let $a \in K$. Then a is algebraic over E. Hence there is a polynomial $0 \neq f(x)=$ $c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \in E[x]$ such that $f(a)=0$. Since $c_{0}, c_{1}, \ldots, c_{n}$ are algebraic over $F,\left[F\left(c_{0}, c_{1}, \ldots, c_{n}\right): F\right]<\infty$ and $a \in F\left(c_{0}, c_{1}, \ldots, c_{n}\right)$. Thus a is algebraic over F.

Let A be the set of all elements of E that are algebraic over F. Let a and b be algebraic over F. Then $F(a, b)$ is a finite extension of F. Hence $a-b$ and a / b with $b \neq 0$ are elements of $F(a, b) \subset A$. Therefore, A is a field.

Definition 10.3 Let E be a field. If there is no proper algebraic extension of E, then E is called algebraically closed. Every field F has a unique, up to isomorphism, algebraic extension that is algebraically closed. This field is called the algebraic closure of F. (This result requires the Axiom of Choice.)

Example 10.2 Let A be the set of all algebraic elements of \boldsymbol{C} over \boldsymbol{Q}. Then A is an infinite extension of \boldsymbol{Q}. Note that A contains $\{\sqrt[n]{2}\}$. So A contains a field E_{n} with $\left[E_{n}: \boldsymbol{Q}\right]=n$. Elements of A is called algebraic numbers and $|A|=\aleph_{0}$.

Theorem 10.5 (Primitive Element Theorem (Theorem 21.6), Steinitz, 1910) If F is a field of characteristic 0 , and a and b are algebraic over F, then there is an element $c \in F(a, b)$ such that $F(a, b)=F(c)$.

Proof. Let $p(x)$ and $q(x)$ be minimal polynomials of a and b and $a_{1}=a, a_{2}, \ldots, a_{m}$ and $b_{1}=b, b_{2}, \ldots, b_{n}$ are roots of $p(x)$ and $q(x)$ in a splitting field of $p(x) q(x)$. Choose $d \in F \backslash\left\{\left(a_{i}-a\right) /\left(b-b_{j}\right) \mid i \geq 1, j>1\right\}$. In particular $a_{i} \neq a+d\left(b-b_{j}\right)$ for $j>1$. We shall show that $c=a+d b$ has the property. Note that $d \neq 0$ by definition.

Consider $q(x)$ and $r(x)=p(c-d x)$ in $F(c)[x]$. Since $q(b)=0=p(a)=p(c-d b)=r(b)$. Let $s(x)$ be the minimal polynomial of b in $F(c)[x]$. We claim that $s(x)=x-b$. This is because $s(x) \mid r(x)$, and $r\left(b_{j}\right)=p\left(c-d b_{j}\right)=p\left(a+d b-d b_{j}\right)=p\left(a+d\left(b-b_{j}\right)\right) \neq 0$.

Therefore, $b \in F(c), a=c-d b \in F(c)$ and $F(a, b) \subset F(c)=F(a+d b) \subset F(a, b)$.
Thus any finite extension of a field of characteristic 0 is a simple extension. An element a with the property that $E=F(a)$ is called a primitive element of E.

Example 10.3 $F=\boldsymbol{Q}(\sqrt{2}, \sqrt{3})$. Then $[F: \boldsymbol{Q}]=4$ and $F=\boldsymbol{Q}(\sqrt{2}+\sqrt{3})$.
Example 10.4 $F=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1}) \supset \boldsymbol{Q}(\sqrt[4]{2})$. Then $[F: \boldsymbol{Q}]=8$.

