
1 Introduction to Rings

Definition 1.1 [Ring (p.245)] A ring R is a set with two binary operations, addition
(denoted by a+ b) and multiplication (denoted by ab), such that for all a, b, c ∈ R:

1. a+ b = b+ a.

2. (a+ b) + c = a+ (b+ c).

3. There is an additive identity 0. That is, there is an element 0 ∈ R such that a+0 = a
for all a ∈ R.

4. There is an element −a ∈ R such that a+ (−a) = 0.

5. a(bc) = (ab)c.

6. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

Hence, a ring is an Abelian group under addition, also having an associative multiplication
that is left and right distributive over addition.

• When ab = ba for all a, b ∈ R, R is called commutative, or a commutative ring.

• A unity (or identity) in a ring is a nonzero element that is an identity under multi-
plication.

• An element of a ring with a unity is called a unit if it has a multiplicative inverse.
When R is a ring U(R) = {u ∈ R | ∃v ∈ R s.t. uv = 1 = vu} forms a group called
the unit group, or the group of units of R. (Exercise 22)

• When n is a positive integer we write n ·a or na for a+a+ · · ·+a with n summands.
By convention we write (−n)·a for n(−a) = −(n·a) when n is a nonnegative integer.
(Exercise 16)

Example 1.1 1. Z. U(Z) = {±1}.

2. Zn. U(Zn) = Z∗
n = U(n).

3. Z[x]. U(Z[x]) = {±1}. (Exercise 25)

4. M2(Z). U(M2(Z)) = {A ∈ M2(Z) | det(A) = ±1}. (Exercise 20)

5. 2Z. No unity.

6. All continuous real-valued functions f of a real variable such that f(1) = 01. Binary
operations are defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). No
unity

7. Let R1, R2, . . . , Rn be rings. Then the direct sum is defined by coordinate wise
operation on the set:

R1 ⊕R2 ⊕ · · ·⊕Rn = {(a1, a2, . . . , an) | ai ∈ Ri}.

What is U(R)? (Exercise 24)
1Why do you think we assume this condition?
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Proposition 1.1 (Theorem 12.1) 2 Let R be a ring and a, b, c ∈ R. Then

(i) a0 = 0a = 0.

(ii) a(−b) = (−a)b = −(ab).

(iii) (−a)(−b) = ab.

(iv) a(b− c) = ab− ac and (b− c)a = ba− ca3.

if R has a unity element 1, then

(v) (−1)a = −a.4

(vi) (−1)(−1) = 1.

(vii) If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it
is unique. (Theorem 12.2, Exercise 5)

Proof. [Exerises]
(i) a0 = a(0+0) = a0+a0. Hence 0 = a0+(−a0) = (a0+a0)+(−a0) = a0+(a0+(−a0)) =
a0 = 0 = a0. 0a = 0 is similar.
(ii) ab + a(−b) = a(b + (−b)) = a0 = 0. Since in a group the inverse of each element is
unique, a(−b) = −(ab). (−a)b = −(ab) is similar.
(iii) (−a)(−b) = −((−a)b) = −(−(ab)) = ab. Note that in general −(−a) = a.
(iv) a(b − c) = a(b + (−c)) = ab + a(−c) = ab + (−ac) = ab − ac. (b − c)a = ba − ca is
similar.
(v) This follows from (ii).
(vi) This follows from (v).
(vii) The proof is same as in the case of a group.

Note. A ring need not have a multiplicative identity, and even if it has a multiplicative
identity it need not have multiplicative inverses. ab = ac does not imply b = c even if
a ̸= 0. This holds if a is a unit.5

For example in Z6, 3 · 4 = 3 · 2 = 0.

Definition 1.2 [Subring (p.248)] A subset S of a ring R is a subring of R if S is itself a
ring with the operations of R. {0} and R are always subrings and are called the trivial
subrings of R.

Proposition 1.2 (Theorem 12.3) A nonempty subset S of a ring R is a subring if S
is closed under subtraction and multiplication – that is if a− b and ab are in S, whenever
a, b ∈ S.

Example 1.2 1. {0, 2, 4} ∈ Z6 is a subring. Although 1 is the unity in Z6, 4 is the
unity in {0, 2, 4}.

4 · 0 = 0, 4 · 2 = 2, and 4 · 4 = 4.
2If you have not taken Algebra I, please write out your proof confirming which condition in Definition

1.1 is used in each step.
3For a, b ∈ R, we write a− b for a+ (−b) as in Abelian groups.
4There are two meanings of this formula.
5Do we always need this condition?
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2. nZ is subring of Z for each positive integer n.

3. Z[i], where i =
√
−16, is a subring of C. U(Z[i]) = {±1,±i}. (Exercise 23)7
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6In this textbook, i is an element in a larger ring such that i2 = −1
7Od = Z[

√
d] if d ≡ 2, 3 (4) and {a+b

√
d

2 | a, b ∈ Z, a ≡ b (2)} otherwise.
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