1 Introduction to Rings

Definition 1.1 [Ring (p.245)] A ring R is a set with two binary operations, addition (denoted by a + b) and multiplication (denoted by ab), such that for all $a, b, c \in R$:

1.
$$a + b = b + a$$
.

- 2. (a+b) + c = a + (b+c).
- **3.** There is an additive identity 0. That is, there is an element $0 \in R$ such that a + 0 = a for all $a \in R$.
- 4. There is an element $-a \in R$ such that a + (-a) = 0.

5.
$$a(bc) = (ab)c$$
.

6.
$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$.

Hence, a ring is an Abelian group under addition, also having an associative multiplication that is left and right distributive over addition.

- When ab = ba for all $a, b \in R$, R is called *commutative*, or a *commutative ring*.
- A *unity* (or *identity*) in a ring is a nonzero element that is an identity under multiplication.
- An element of a ring with a unity is called a *unit* if it has a multiplicative inverse. When R is a ring $U(R) = \{u \in R \mid \exists v \in R \text{ s.t. } uv = 1 = vu\}$ forms a group called *the unit group, or the group of units* of R. (Exercise 22)
- When n is a positive integer we write $n \cdot a$ or na for $a + a + \cdots + a$ with n summands. By convention we write $(-n) \cdot a$ for $n(-a) = -(n \cdot a)$ when n is a nonnegative integer. (Exercise 16)

Example 1.1 1. Z. $U(Z) = \{\pm 1\}$.

- 2. Z_n . $U(Z_n) = Z_n^* = U(n)$.
- 3. Z[x]. $U(Z[x]) = \{\pm 1\}$. (Exercise 25)
- 4. $M_2(\mathbf{Z})$. $U(M_2(\mathbf{Z})) = \{A \in M_2(\mathbf{Z}) \mid \det(A) = \pm 1\}$. (Exercise 20)
- 5. 2 \boldsymbol{Z} . No unity.
- 6. All continuous real-valued functions f of a real variable such that $f(1) = 0^1$. Binary operations are defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). No unity
- 7. Let R_1, R_2, \ldots, R_n be rings. Then the *direct sum* is defined by coordinate wise operation on the set:

$$R_1 \oplus R_2 \oplus \cdots \oplus R_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in R_i\}.$$

What is U(R)? (Exercise 24)

¹Why do you think we assume this condition?

Proposition 1.1 (Theorem 12.1) ² Let R be a ring and $a, b, c \in R$. Then

- (i) a0 = 0a = 0.
- (ii) a(-b) = (-a)b = -(ab).
- (iii) (-a)(-b) = ab.
- (iv) a(b-c) = ab ac and $(b-c)a = ba ca^3$. if R has a unity element 1, then

(v)
$$(-1)a = -a.^4$$

- (vi) (-1)(-1) = 1.
- (vii) If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.(Theorem 12.2, Exercise 5)

Proof. [Exerises]

(i) a0 = a(0+0) = a0+a0. Hence 0 = a0+(-a0) = (a0+a0)+(-a0) = a0+(a0+(-a0)) = a0 = 0 = a0. 0a = 0 is similar.

(ii) ab + a(-b) = a(b + (-b)) = a0 = 0. Since in a group the inverse of each element is unique, a(-b) = -(ab). (-a)b = -(ab) is similar.

(iii) (-a)(-b) = -((-a)b) = -(-(ab)) = ab. Note that in general -(-a) = a.

(iv) a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-ac) = ab - ac. (b-c)a = ba - ca is similar.

(v) This follows from (ii).

(vi) This follows from (v).

(vii) The proof is same as in the case of a group.

Note. A ring need not have a multiplicative identity, and even if it has a multiplicative identity it need not have multiplicative inverses. ab = ac does not imply b = c even if $a \neq 0$. This holds if a is a unit.⁵

For example in \mathbf{Z}_6 , $3 \cdot 4 = 3 \cdot 2 = 0$.

Definition 1.2 [Subring (p.248)] A subset S of a ring R is a subring of R if S is itself a ring with the operations of R. $\{0\}$ and R are always subrings and are called the *trivial* subrings of R.

Proposition 1.2 (Theorem 12.3) A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication – that is if a - b and ab are in S, whenever $a, b \in S$.

Example 1.2 1. $\{0, 2, 4\} \in \mathbb{Z}_6$ is a subring. Although 1 is the unity in \mathbb{Z}_6 , 4 is the unity in $\{0, 2, 4\}$.

 $4 \cdot 0 = 0, 4 \cdot 2 = 2$, and $4 \cdot 4 = 4$.

 $^{^{2}}$ If you have not taken Algebra I, please write out your proof confirming which condition in Definition 1.1 is used in each step.

³For $a, b \in R$, we write a - b for a + (-b) as in Abelian groups.

⁴There are two meanings of this formula.

⁵Do we always need this condition?

- 2. nZ is subring of Z for each positive integer n.
- 3. Z[i], where $i = \sqrt{-1^6}$, is a subring of C. $U(Z[i]) = \{\pm 1, \pm i\}$. (Exercise 23)⁷

Further Readings

- 1. B. Erickson, Orders for Finite Noncommutative Rings, American Mathematical Monthly 73 (1966), 376–377.
- 2. K. E. Eldridge, Orders for Finite Noncommutative Rings with Unity, American Mathematical Monthly 75 (1968), 512–514.

⁶In this textbook, *i* is an element in a larger ring such that $i^2 = -1$ ⁷ $O_d = \mathbf{Z}[\sqrt{d}]$ if $d \equiv 2, 3$ (4) and $\{\frac{a+b\sqrt{d}}{2} \mid a, b \in \mathbf{Z}, a \equiv b$ (2)} otherwise.