1 Introduction to Rings

Definition 1.1 [Ring (p.245)] A ring R is a set with two binary operations, addition (denoted by $a+b$) and multiplication (denoted by $a b$), such that for all $a, b, c \in R$:

1. $a+b=b+a$.
2. $(a+b)+c=a+(b+c)$.
3. There is an additive identity 0 . That is, there is an element $0 \in R$ such that $a+0=a$ for all $a \in R$.
4. There is an element $-a \in R$ such that $a+(-a)=0$.
5. $a(b c)=(a b) c$.
6. $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.

Hence, a ring is an Abelian group under addition, also having an associative multiplication that is left and right distributive over addition.

- When $a b=b a$ for all $a, b \in R, R$ is called commutative, or a commutative ring.
- A unity (or identity) in a ring is a nonzero element that is an identity under multiplication.
- An element of a ring with a unity is called a unit if it has a multiplicative inverse. When R is a ring $U(R)=\{u \in R \mid \exists v \in R$ s.t. $u v=1=v u\}$ forms a group called the unit group, or the group of units of R. (Exercise 22)
- When n is a positive integer we write $n \cdot a$ or $n a$ for $a+a+\cdots+a$ with n summands. By convention we write $(-n) \cdot a$ for $n(-a)=-(n \cdot a)$ when n is a nonnegative integer. (Exercise 16)

Example 1.1 1. $\boldsymbol{Z} . U(\boldsymbol{Z})=\{ \pm 1\}$.

2. $\boldsymbol{Z}_{n} . U\left(\boldsymbol{Z}_{n}\right)=\boldsymbol{Z}_{n}^{*}=U(n)$.
3. $\boldsymbol{Z}[x] . U(\boldsymbol{Z}[x])=\{ \pm 1\}$. (Exercise 25)
4. $M_{2}(\boldsymbol{Z}) . U\left(M_{2}(\boldsymbol{Z})\right)=\left\{A \in M_{2}(\boldsymbol{Z}) \mid \operatorname{det}(A)= \pm 1\right\}$. (Exercise 20)
5. 2Z. No unity.
6. All continuous real-valued functions f of a real variable such that $f(1)=0^{1}$. Binary operations are defined by $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$. No unity
7. Let $R_{1}, R_{2}, \ldots, R_{n}$ be rings. Then the direct sum is defined by coordinate wise operation on the set:

$$
R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in R_{i}\right\} .
$$

What is $U(R)$? (Exercise 24)

[^0]Proposition 1.1 (Theorem 12.1) ${ }^{2}$ Let R be a ring and $a, b, c \in R$. Then
(i) $a 0=0 a=0$.
(ii) $a(-b)=(-a) b=-(a b)$.
(iii) $(-a)(-b)=a b$.
(iv) $a(b-c)=a b-a c$ and $(b-c) a=b a-c a^{3}$. if R has a unity element 1 , then
(v) $(-1) a=-a$. 4
(vi) $(-1)(-1)=1$.
(vii) If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.
(Theorem 12.2, Exercise 5)
Proof. [Exerises]
(i) $a 0=a(0+0)=a 0+a 0$. Hence $0=a 0+(-a 0)=(a 0+a 0)+(-a 0)=a 0+(a 0+(-a 0))=$ $a 0=0=a 0.0 a=0$ is similar.
(ii) $a b+a(-b)=a(b+(-b))=a 0=0$. Since in a group the inverse of each element is unique, $a(-b)=-(a b)$. $(-a) b=-(a b)$ is similar.
(iii) $(-a)(-b)=-((-a) b)=-(-(a b))=a b$. Note that in general $-(-a)=a$.
(iv) $a(b-c)=a(b+(-c))=a b+a(-c)=a b+(-a c)=a b-a c$. $(b-c) a=b a-c a$ is similar.
(v) This follows from (ii).
(vi) This follows from (v).
(vii) The proof is same as in the case of a group.

Note. A ring need not have a multiplicative identity, and even if it has a multiplicative identity it need not have multiplicative inverses. $a b=a c$ does not imply $b=c$ even if $a \neq 0$. This holds if a is a unit. ${ }^{5}$

For example in $\boldsymbol{Z}_{6}, 3 \cdot 4=3 \cdot 2=0$.
Definition 1.2 [Subring (p.248)] A subset S of a ring R is a subring of R if S is itself a ring with the operations of R. \{0\} and R are always subrings and are called the trivial subrings of R.

Proposition 1.2 (Theorem 12.3) A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication - that is if $a-b$ and $a b$ are in S, whenever $a, b \in S$.

Example 1.2 1. $\{0,2,4\} \in \boldsymbol{Z}_{6}$ is a subring. Although 1 is the unity in $\boldsymbol{Z}_{6}, 4$ is the unity in $\{0,2,4\}$.

$$
4 \cdot 0=0,4 \cdot 2=2, \text { and } 4 \cdot 4=4
$$

[^1]2. $n \boldsymbol{Z}$ is subring of \boldsymbol{Z} for each positive integer n.
3. $\boldsymbol{Z}[i]$, where $i=\sqrt{-1}^{6}$, is a subring of $\boldsymbol{C} \cdot U(\boldsymbol{Z}[i])=\{ \pm 1, \pm i\}$. $\left(\right.$ Exercise 23) ${ }^{7}$

Further Readings

1. B. Erickson, Orders for Finite Noncommutative Rings, American Mathematical Monthly 73 (1966), 376-377.
2. K. E. Eldridge, Orders for Finite Noncommutative Rings with Unity, American Mathematical Monthly 75 (1968), 512-514.
[^2]
[^0]: ${ }^{1}$ Why do you think we assume this condition?

[^1]: ${ }^{2}$ If you have not taken Algebra I, please write out your proof confirming which condition in Definition 1.1 is used in each step.
 ${ }^{3}$ For $a, b \in R$, we write $a-b$ for $a+(-b)$ as in Abelian groups.
 ${ }^{4}$ There are two meanings of this formula.
 ${ }^{5}$ Do we always need this condition?

[^2]: ${ }^{6}$ In this textbook, i is an element in a larger ring such that $i^{2}=-1$
 ${ }^{7} O_{d}=\boldsymbol{Z}[\sqrt{d}]$ if $d \equiv 2,3$ (4) and $\left\{\left.\frac{a+b \sqrt{d}}{2} \right\rvert\, a, b \in \boldsymbol{Z}, a \equiv b(2)\right\}$ otherwise.

