Quiz 1

Division:

ID\#:

An integral domain is a commutative ring R with identity such that

$$
a b=0 \rightarrow a=0 \text { or } b=0 \text { for all } a, b \in R \text {. }
$$

1. Show that if R is an integral domain, then the polynomial ring $R[t]$ is also an integral domain.
2. Show that if R is an integral domain, then the polynomial ring $R\left[t_{1}, t_{1}, \ldots, t_{n}\right]$ is also an integral domain.

Solutions to Quiz 1

An integral domain is a commutative ring R with identity such that

$$
a b=0 \rightarrow a=0 \text { or } b=0 \text { for all } a, b \in R \text {. }
$$

1. Show that if R is an integral domain, then the polynomial ring $R[t]$ is also an integral domain.
Solution. Let $f=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$ and $g=b_{m} t^{m}+b_{m-1} t^{m-1}+$ $\cdots+b_{1} t+b_{0} \in R[t]$. We assume $f \neq 0, g \neq 0$ and show that $f \cdot g \neq 0$. In this case we may assume that $a_{n} \neq 0$ and $b_{m} \neq 0$. Now

$$
f \cdot g=a_{n} b_{m} t^{n+m}+\left(a_{n} b_{m-1}+a_{n-1} b_{m}\right) t^{n+m-1}+\cdots+\left(a_{1} b_{0}+a_{0} b_{1}\right) t+a_{0} b_{0} .
$$

Since R is an integral domain, and $a_{n} \neq 0 \neq b_{m}, a_{n} b_{m} \neq 0$. Therefore $f \cdot g \neq 0$ as desired.

The above proof shows that $\operatorname{deg} f \cdot g=\operatorname{deg} f+\operatorname{deg} g$ when $f \neq 0$ and $f \neq 0$. But if one of f or g is zero, its degree is $-\infty$. Hence if we extend our addition of integers to $\boldsymbol{Z} \cup\{-\infty\}$ and $a+(-\infty)=(-\infty)+(-\infty)=-\infty$, then $\operatorname{deg} f \cdot g=\operatorname{deg} f+\operatorname{deg} g$ holds even when f or g is a zero polynomial. Note that zero polynomial is the only polynomial with non-integral degree and polynomials of degree zero are nonzero constants.
2. Show that if R is an integral domain, then the polynomial ring $R\left[t_{1}, t_{1}, \ldots, t_{n}\right]$ is also an integral domain.
Solution. Note that $R\left[t_{1}, t_{2}, \ldots, t_{n}\right]=R\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]\left[t_{n}\right]$ if $n \geq 2$. So if $f \in R\left[t_{1}, t_{2}, \ldots, t_{n}\right]$, then f can be written as
$f=f_{m} t_{n}^{m}+f_{m-1} t_{n}^{m-1}+\cdots+f_{1} t_{n}+f_{0}$, where $f_{m}, f_{m-1}, \ldots, f_{1}, f_{0} \in R\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]$.
We proceed by induction. If $n=1, R\left[t_{1}\right]$ is an integral domain by 1 . Suppose $R\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]$ is an integral domain. Then by $1 R\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]\left[t_{n}\right]$ is an integral domain as this ring is a polynomial ring over an integral domain as well. Therefore for all positive integer $n, R\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ is an integral domain.

Try a direct proof to show, say $\boldsymbol{Z}[x, y]$ is an integral domain. You will see a difficulty avoided by the proof above.

Quiz 2

Division:

ID\#:

Let R be a commutative ring with 1 and let I and J be ideals of R.

1. Show that $I+J=\{x+y \mid x \in I, y \in J\}$ is an ideal of R.
2. Show that with respect to entrywise addition and multiplication, $R / I \times R / J$ becomes a commutative ring with 1 .
3. $\alpha: R \rightarrow R / I \times R / J(x \mapsto(x+I, x+J))$ is a ring homomorphism.
4. Suppose $I+J=R$. Show that $I \cap J=I J$, where $I J=\left\{\sum_{i} x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J\right\}$.
5. Suppose $I+J=R$. Then the homomorphism α in 3 is surjective and $R / I J \simeq$ $R / I \times R / J$.

Solutions to Quiz 2

Let R be a commutative ring with 1 and let I and J be ideals of R.

1. Show that $I+J=\{x+y \mid x \in I, y \in J\}$ is an ideal of R.

Solution. Let $x, x^{\prime} \in I, y, y^{\prime} \in J$ and $r \in R$. Then

$$
\begin{gathered}
(x+y)+\left(x^{\prime}+y^{\prime}\right)=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) \in I+J,-(x+y)=(-x)+(-y) \in I+J, \\
\text { and } r(x+y)=r x+r y \in I+J .
\end{gathered}
$$

Hence $I+J$ is an ideal.
2. Show that with respect to entrywise addition and multiplication, $R / I \times R / J$ becomes a commutative ring with 1 .

Solution. Let $x, x^{\prime} \in I$ and $y, y^{\prime} \in J$. Binary operations are defined as follows. $(x+I, y+J)+\left(x^{\prime}+I, y^{\prime}+J\right)=\left(x+x^{\prime}+I, y+y^{\prime}+J\right)$ and $(x+I, y+J) \cdot\left(x^{\prime}+I, y^{\prime}+J\right)=$ $\left(x x^{\prime}+I, y y^{\prime}+J\right)$. Everything is clear and $(1+I, 1+J)$ is the identity element of $R / I \times R / J$.
3. $\alpha: R \rightarrow R / I \times R / J(x \mapsto(x+I, x+J))$ is a ring homomorphism.

Solution. $\quad \alpha(x+y)=(x+y+I, x+y+J)=(x+I, x+J)+(y+I, y+J)=$ $\alpha(x)+\alpha(y)$ and $\alpha(x \cdot y)=(x y+I, x y+J)=(x+I, x+J) \cdot(y+I, y+J)=\alpha(x) \cdot \alpha(y)$. Hence α is a ring homomorphism.
4. Suppose $I+J=R$. Show that $I \cap J=I J$, where $I J=\left\{\sum_{i} x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J\right\}$.

Solution. Since both I and J are ideals, $I J \subset I \cap J$. Let $x \in I \cap J$. Since $I+J=R$ and $1 \in R$, there exist $s \in I$ and $t \in J$ such that $1=s+t$. Hence $x=x 1=x(s+t)=s x+x t \in I J$ and $I \cap J \subset I J$.
5. Suppose $I+J=R$. Then the homomorphism α in 3 is surjective and $R / I J \simeq$ $R / I \times R / J$.

Solution. Let $x, y \in R$. Let s and t be those in the previous problem. In particular, $s+t=1$ and $s y, x s \in I, x t, t y \in J$. Hence

$$
\begin{aligned}
\alpha(x t+s y) & =(x t+s y+I, x t+s y+J)=(x t+I, s y+J) \\
& =(x(1-s)+I,(1-t) y+J)=(x+I, y+J) .
\end{aligned}
$$

Thus α is surjective. It is clear that $\operatorname{ker}(\alpha)=I \cap J$. Hence by the previous problem, $\operatorname{ker}(\alpha)=I J$ and $R / I J \simeq R / I \times R / J$ by the first isomorphism theorem.

Quiz 3

(Due at 1:50 p.m. on Mon. Sept. 24, 2008)
Division:

Let K be a field and $K[x, y]$ be a polynomial ring over K with two indeterminates x and y. Let $I=K[x, y] x+K[x, y] y=\{f(x, y) \cdot x+g(x, y) \cdot y \mid f(x, y), g(x, y) \in K[x, y]\}$.

1. Show that I is an ideal of $K[x, y]$ such that $I \neq K[x, y]$.
2. Let $\alpha: K[x, y] \rightarrow K[x, y](f(x, y) \mapsto f(x, x))$. Show that α is a ring homomorphism and $J=\operatorname{ker}(\alpha)=K[x, y] \cdot(x-y)$.
3. Show that J in the previous problem is a prime ideal of $K[x, y]$.
4. Show that $J \subset I$ and I is not a principal ideal.
5. Show that I is a maximal ideal of $K[x, y]$.

Solutions to Quiz 3

Let K be a field and $K[x, y]$ be a polynomial ring over K with two indeterminates x and y. Let $I=K[x, y] x+K[x, y] y=\{f(x, y) \cdot x+g(x, y) \cdot y \mid f(x, y), g(x, y) \in K[x, y]\}$.

1. Show that I is an ideal of $K[x, y]$ such that $I \neq K[x, y]$.

Solution. I is clearly an ideal of $K[x, y]$. Hence its proof is omitted. Suppose $I=K[x, y]$. Then there exist $f(x, y), g(x, y) \in K[x, y]$ such that $1=f(x, y) x+$ $g(x, y) y$. Then $1=f(x, 0) x \in K[x]$. By comparing the degrees in $K[x]$, we have a contradiction. Hence $I \neq K[x, y]$.
2. Let $\alpha: K[x, y] \rightarrow K[x, y](f(x, y) \mapsto f(x, x))$. Show that α is a ring homomorphism and $J=\operatorname{ker}(\alpha)=K[x, y] \cdot(x-y)$.
Solution. It is clear that α is a ring homomorphism such that $\operatorname{ker}(\alpha) \supset$ $K[x, y] \cdot(x-y)$. Let $f(x, y) \in \operatorname{ker}(\alpha)$ and write $f(x, y)=f_{n}(y) x^{n}+f_{n-1}(y) x^{n-1}+$ $\cdots+f_{1}(y) x+f_{0}(y)$. Then we find $g(x, y) \in K[y][x]$ and $r(x, y) \in K[y][x]$ with $\operatorname{deg}_{x} r(x, y)<\operatorname{deg}_{x}(x-y)=1$ such that $f(x, y)=g(x, y)(x-y)+r(x, y)$. Here $\operatorname{deg}_{x} r(x, y)$ denotes the degree of $r(x, y)$ as a polynomial in x. In particular, x does not appear in $r(x, y)$ and $r(x, y)=r_{0}(y)$. Since $f(x, y) \in \operatorname{ker}(\alpha), r_{0}(x)=0$ and $r(x, y)=0$. Therefore $f(x, y) \in K[x, y] \cdot(x-y)$.
3. Show that J in the previous problem is a prime ideal of $K[x, y]$.

Solution. Since the image of α is a subring of an integral domain $K[x, y]$, it is an integral domain as well. Hence its kernel is a prime ideal.
4. Show that $J \subset I$ and I is not a principal ideal.

Solution. The assertion $J \subset I$ is clear. Suppose I is an principal ideal and $K[x, y] \cdot x+K[x, y] \cdot y=I=K[x, y] \cdot f(x, y)$. Since $x, y \in I$, there exist $g(x, y), h(x, y) \in K[x, y]$ such that $x=g(x, y) f(x, y)$ and $y=h(x, y) f(x, y)$. Since $0=\operatorname{deg}_{y} x=\operatorname{deg}_{y}\left(g(x, y)+\operatorname{deg}_{y} f(x, y), \operatorname{deg}_{y} f(x, y)=0\right.$. Similarly, since $0=\operatorname{deg}_{x} y=\operatorname{deg}_{x} h(x, y)+\operatorname{deg}_{x} f(x, y), \operatorname{deg}_{x} f(x, y)=0$. Therefore $f(x, y)$ is a nonzero constant and $I=K[x, y] \cdot f(x, y)=K[x, y]$. This contradicts 1 .
5. Show that I is a maximal ideal of $K[x, y]$.

Solution. Let $\beta: K[x, y] \rightarrow K(f(x, y) \mapsto f(0,0))$. Then this is a surjective ring homomorphism and $\operatorname{ker}(\beta) \supset I$. Let $f(x, y) \in \operatorname{ker}(\beta)$ and $f(x, y)=f_{n}(y) x^{n}+$ $f_{n-1}(y) x^{n-1}+\cdots+f_{1}(y) x+f_{0}(y)$. Then $f_{0}(0)=0$ as $\beta(f)=0$. Hence $f_{0}(y) \in K[y] \cdot y$ and $f(x, y) \in K[x, y] x+K[x, y] y=I$.

Quiz 4

Division:

ID\#:

Name:
Let R be an integral domain. A non-constant polynomial $f(t) \in R[t]$ is said to be irreducible if $f(t)=g(t) h(t)$ for some $g(t), h(t) \in R[t]$ implies $\operatorname{deg} g(t)=0$ or $\operatorname{deg} h(t)=0$.

1. Let R be an integral domain. Show that $U(R[t])=U(R)$.
2. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$. Suppose $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=1, a_{n} \neq 0$ and there exist $g(t), h(t) \in \boldsymbol{Q}[t]$ such that $f(t)=g(t) h(t)$. Show that there exist $g_{1}(t), h_{1}(t) \in \boldsymbol{Z}[t]$ and $c, d \in \boldsymbol{Q}$ such that $f(t)=g_{1}(t) h_{1}(t)$ and that $g_{1}(t)=c g(t)$ and $h_{1}(t)=d h(t)$. (Hint: See (7.3.6).)
3. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$ be an irreducible polynomial in $\boldsymbol{Z}[t]$. Then $f(t)$ is irreducible in $\boldsymbol{Q}[t]$.
4. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$. Suppose that there is a prime p such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but p does not divide a_{n} and p^{2} does not divide a_{0}. Then $f(t)$ is irreducible in $\boldsymbol{Q}[t]$. (Hint: See (7.4.9).)

Message: Please write your comments and requests.

Solutions to Quiz 4

Let R be an integral domain. A non-constant polynomial $f(t) \in R[t]$ is said to be irreducible if $f(t)=g(t) h(t)$ for some $g(t), h(t) \in R[t]$ implies $\operatorname{deg} g(t)=0$ or $\operatorname{deg} h(t)=0$.

1. Let R be an integral domain. Show that $U(R[t])=U(R)$.

Solution. \quad Suppose $g(t) h(t)=1$. Then $0=\operatorname{deg}(g(t) h(t))=\operatorname{deg}(g(t))+\operatorname{deg}(h(t))$. Hence $\operatorname{deg}(g(t))=\operatorname{deg}(h(t))=0$ and both $g(t)$ and $h(t)$ are constants. Therefore $g(t) \in U(R)$ and $U(R[t]) \subset U(R)$. The other inclusion is obvious.
2. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$. Suppose $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=1, a_{n} \neq 0$ and there exist $g(t), h(t) \in \boldsymbol{Q}[t]$ such that $f(t)=g(t) h(t)$. Show that there exist $g_{1}(t), h_{1}(t) \in \boldsymbol{Z}[t]$ and $c, d \in \boldsymbol{Q}$ such that $f(t)=g_{1}(t) h_{1}(t)$ and that $g_{1}(t)=c g(t)$ and $h_{1}(t)=d h(t)$. (Hint: See (7.3.6).)
Solution. By taking the common denominators of $g(t)$ and $h(t)$, we can find $g_{1}(t)=b_{0}+b_{1} t+\cdots+b_{\ell} t^{\ell} \in \boldsymbol{Z}[t]$ and $h_{1}(t)=c_{0}+c_{1} t+\cdots+c_{m} t^{m} \in \boldsymbol{Z}[t]$ and $c, d \in \boldsymbol{Q}$ such that $g_{1}(t)=c g(t), h_{1}(t)=d h(t)$ and that $e f(t)=g_{1}(t) h_{1}(t)$ for some integer $e \in \boldsymbol{Z}$. Suppose $e \neq \pm 1$. It suffices to show that each prime divisor p of e divides all coefficients of $g_{1}(t)$ or all coefficients of $h_{1}(t)$. Since $p \mid b_{0} c_{0}=e a_{0}$, we may assume that there exist indices $i>0$ and $j \geq 0$ such that $p\left|b_{0}, \ldots, p\right| b_{i-1}$ and p does not divide b_{i}, and $p\left|c_{0}, \ldots, p\right| c_{j-1}$ and p does not divide c_{j}. Then p divides $e a_{i+j}$ but p does not divide $b_{0} c_{i+j}+\cdots+b_{i-1} c_{j+1}+b_{i} c_{j}+b_{i+1} c_{j-1}+\cdots b_{i+j} c_{0}$. A contradiction.
3. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$ be an irreducible polynomial in $\boldsymbol{Z}[t]$. Then $f(t)$ is irreducible in $\boldsymbol{Q}[t]$.
Solution. Let $d=\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Then there is a polynomial $f_{1}(t) \in \boldsymbol{Z}[t]$ such that $f(t)=d \cdot f_{1}(t)$, and the greatest common divisor of the coefficients of $f_{1}(t)$ is 1 . Hence by the previous problem, $f(t)$ is irreducible in $\boldsymbol{Q}[t]$ and hence so is $f(t)$.
4. Let $f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n} \in \boldsymbol{Z}[t]$. Suppose that there is a prime p such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but p does not divide a_{n} and p^{2} does not divide a_{0}. Then $f(t)$ is irreducible in $\boldsymbol{Q}[t]$. (Hint: See (7.4.9).)
Solution. Let $f(t)=g(t) h(t), g(t)=b_{0}+b_{1} t+\cdots+b_{\ell} t^{\ell} \in \boldsymbol{Z}[t]$ and $h(t)=$ $c_{0}+c_{1} t+\cdots+c_{m} t^{m} \in \boldsymbol{Z}[t]$. Since $a_{0}=b_{0} c_{0}$ is divisible by p but not p^{2}, there exists $i>0$ such that $p\left|b_{0}, \ldots, p\right| b_{i-1}$ and p does not divide b_{i}, and $p\left|c_{m}, \ldots, p\right| c_{j+1}$ and p does not divie c_{j} with $j \leq m$. Since p does not divide $b_{0} c_{i}+\cdots+b_{i} c_{0}, i=n$ and $h(t)$ is a constant. Therefore $f(t)$ is irreducible in $\boldsymbol{Z}[t]$. By the previous problem, it is irreducible in $\boldsymbol{Q}[t]$.

Quiz 5

Division:

ID\#:

Let $F[[t]]$ be the ring of formal power series over a field F. See Exercise (6.1.8).

1. Show that $U(F[[t]])=\{f \in F[[t]] \mid f(0) \neq 0\}$.
2. Show that $t \cdot F[[t]]$ is the only maximal ideal in $F[[t]]$.
3. For a nonzero $f=\sum_{i=0}^{\infty} a_{i} t^{t} \in F[[t]]$, let $\delta(f)$ be the smallest index i such that $a_{i} \neq 0$. Show that $F[[t]]$ is Euclidean with respect to the function δ.

Solutions to Quiz 5

Let $F[[t]]$ be the ring of formal power series over a field F. See Exercise (6.1.8).

1. Show that $U(F[[t]])=\{f \in F[[t]] \mid f(0) \neq 0\}$.

Solution. Let $g=b_{0}+b_{1} t+\cdots$, and $f g=c_{0}+c_{1} t+\cdots$.
Suppose $f g=1$. Then $a_{0} b_{0}=1$. Hence $b_{0}=a_{0}^{-1}$. Let $i \geq 1$. Since $c_{i}=$ $\sum_{j=0}^{i} a_{j} b_{i-j}=0$, assuming that $b_{0}, b_{1}, \ldots, b_{i-1}$ are determined, $b_{i}=-a_{0}^{-1} \sum_{j=1}^{i} a_{j} b_{i-j}$. Thus the inverse is uniquely determined if $a_{0} \neq 0$, and there is no inverse if $a_{0}=0$.
2. Show that $t \cdot F[[t]]$ is the only maximal ideal in $F[[t]]$.

Solution. By the previous problem, it is clear that $F[[t]] \backslash U(F[t t])=t \cdot F[[t]]$. Thus $t \cdot F[[t]]$ is the only maximal ideal in $F[[t]]$. Note that $F[[t]] \backslash U(F[[t])$ is the union of all the proper ideals of $F[[t]]$. See (6.3.5).
3. For a nonzero $f=\sum_{i=0}^{\infty} a_{i} t^{t} \in F[[t]]$, let $\delta(f)$ be the smallest index i such that $a_{i} \neq 0$. Show that $F[[t]]$ is Euclidean with respect to the function δ.

Solution. Let $f, g \in F[[t]]$ be nonzero elements. then $\delta(f g)=\delta(f)+\delta(g) \geq \delta(f)$.
Now let $f, g \in F[[t]]$ with $g \neq 0$. If $f=0, f=0=0 \cdot g+0$ and there is nothing to prove. Suppose $\delta(f)=n$ and $\delta(g)=m$. If $n<m$, then $f=0 \cdot g+f$ and $\delta(f)<\delta(g)$. Assume $n \geq m$. Then there exist $f_{0}, g_{0} \in U(F[[t]])$ such that $f=f_{0} \cdot t^{n}$ and $g=g_{0} \cdot t^{m}$ by the first problem. Let $q=t^{n-m} \cdot g_{0}^{-1} \cdot f_{0}$. Then

$$
f-q \cdot g=f_{0} \cdot t^{n}-t^{n-m} \cdot g_{0}^{-1} \cdot f_{0} \cdot g_{0} \cdot t^{m}=f_{0} \cdot t^{n}-f_{0} \cdot t^{n}=0 .
$$

Therefore $F[[t]]$ is an Euclidean domain.

Quiz 6

Division:

ID\#:

Let D be an integer greater than or equal to 2. Let $R=\{a+b \sqrt{-D} \mid a, b \in \boldsymbol{Z}\}$. For $z=a+b \sqrt{-D} \in R$ let $N(z)=N(a+b \sqrt{-D})=(a+b \sqrt{-D})(a-b \sqrt{-D})=a^{2}+b^{2} D$.

1. Show that R is an integral domain but not a field.
2. Let $z, z^{\prime} \in R$. Show that $N\left(z z^{\prime}\right)=N(z) N\left(z^{\prime}\right)$, and that $U(R)=\{1,-1\}$.
3. Let p be a prime number in \boldsymbol{Z}. If p is not irreducible in R, then there exists $z \in R$ such that $p=N(z)$. In particular, if $D \geq 3$, then 2 is an irreducible element in R.
4. Suppose $D \equiv 1(\bmod 4)$. Show that both $1+\sqrt{-D}$ and $1-\sqrt{-D}$ are not elements in $\langle 2\rangle$.
5. Show that if $D \equiv 1(\bmod 4), R$ is not a PID. (Hint: If R is a PID, $\langle p\rangle$ is a prime ideal whenever p is an irreducible element.)

Solutions to Quiz 6

Let D be an integer greater than or equal to 2. Let $R=\{a+b \sqrt{-D} \mid a, b \in \boldsymbol{Z}\}$. For $z=a+b \sqrt{-D} \in R$ let $N(z)=N(a+b \sqrt{-D})=(a+b \sqrt{-D})(a-b \sqrt{-D})=a^{2}+b^{2} D$.

1. Show that R is an integral domain but not a field.

Solution. Let $\theta: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-D}))$. For $f(t) \in \boldsymbol{Z}[t]$, there exist $q(t) \in \boldsymbol{Z}[t]$ and $a, b \in \boldsymbol{Z}$ such that $f(t)=q(t)\left(t^{2}+D\right)+a+b t$. Since $t^{2}+D \in \operatorname{ker}(\theta)$, $\operatorname{Im}(\theta)=R$ and R is an integral domain as it is a subring of a field \boldsymbol{C}.
2. Let $z, z^{\prime} \in R$. Show that $N\left(z z^{\prime}\right)=N(z) N\left(z^{\prime}\right)$, and that $U(R)=\{1,-1\}$.

Solution. Since $N(z)=z \bar{z}$, for $z, z^{\prime} \in R$

$$
N\left(z z^{\prime}\right)=z z^{\prime} \overline{z z^{\prime}}=z z^{\prime} \bar{z} \overline{z^{\prime}}=z \bar{z} z^{\prime} \overline{z^{\prime}}=N(z) N\left(z^{\prime}\right) .
$$

Let $z=a+b \sqrt{-D} \in R$. Suppose $N\left(z z^{\prime}\right)=1$. Then $1=N(1)=N(z) N\left(z^{\prime}\right)$ and $N(z)=a^{2}+b^{2} D$ is a nonnegative integer. Hence $N(z)=1$ and $z= \pm 1$ as these are the only solutions of $a^{2}+b^{2} D=1$, where $a, b \in \boldsymbol{Z} .\{1,-1\} \subset U(R)$ is clear.
3. Let p be a prime number in \boldsymbol{Z}. If p is not irreducible in R, then there exists $z \in R$ such that $p=N(z)$. In particular, if $D \geq 3$, then 2 is an irreducible element in R.
Solution. Suppose p is not an irreducible element. Note that $z \in U(R)$ if and only if $N(z)=1$. Hence if $p=z z^{\prime}$ and $z, z^{\prime} \notin U(R)$, then $N(z) \neq 1 \neq N\left(z^{\prime}\right)$. On the other hand, $p^{2}=N(z) N\left(z^{\prime}\right)$. Since both $N(z)$ and $N\left(z^{\prime}\right)$ are positive integers, $N(z)=p$ as desired. Furthermore if $p=2$, there are no $a, b \in \boldsymbol{Z}$ such that $a^{2}+b^{2} D=2$ as $D \geq 3$.
4. Suppose $D \equiv 1(\bmod 4)$. Show that both $1+\sqrt{-D}$ and $1-\sqrt{-D}$ are not elements in $\langle 2\rangle$.
Solution. \quad Suppose $1 \pm \sqrt{-D}=2 z$. Then $4 N(z)=N(1 \pm \sqrt{-D})=1+D \equiv 2$ $(\bmod 4)$. A contradiction.
5. Show that if $D \equiv 1(\bmod 4), R$ is not a PID. (Hint: If R is a PID, $\langle p\rangle$ is a prime ideal whenever p is an irreducible element.)
Solution. Consider $(1+\sqrt{-D})(1-\sqrt{-D)}=1+D \in\langle 2\rangle$. But $1 \pm \sqrt{-D} \notin\langle 2\rangle$. thus $\langle 2\rangle$ is not a prime ideal. Since $D \geq 2$ and $D \equiv 1(\bmod 4), D \geq 5$. Thus 2 is an irreducible element in R, which is absurd.

Quiz 7

Division:

ID\#:

Let R be an integral domain. A nonzero element p of R is said to be a prime element if $\langle p\rangle=\{r p \mid r \in R\}$ is a prime ideal of R.

1. Show that a prime element is an irreducible element.
2. Let $a \in R$ be a nonzero element and $a=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$, where $p_{i}(i=$ $1,2, \ldots, r)$ and $q_{j}(j=1,2, \ldots, s)$ are prime elements. Show that $r=s$ and by reordering q_{j} 's, $p_{i}=u_{i} q_{i}$ with $u_{i} \in U(R)$ for $i=1,2, \ldots, r$, i.e., the uniqueness of prime factorization holds.
3. Show that R is a UFD if and only if every nonzero non-unit element $a \in R$ can be written as a product of prime elements.

Message: Please write your comments and requests.

Solutions to Quiz 7

Let R be an integral domain. A nonzero element p of R is said to be a prime element if $\langle p\rangle=\{r p \mid r \in R\}$ is a prime ideal of R.

1. Show that a prime element is an irreducible element.

Solution. \quad Suppose p is a prime element and $p=x y, x, y \in R$. Since $\langle p\rangle$ is a prime ideal, either $x \in\langle p\rangle$ or $y \in\langle p\rangle$. Assume that $x \in\langle p\rangle$ and there exists $z \in R$ such that $x=z p$. Then $p=x y=z y p$. Therefore $z y=1$ and y is a unit. Similarly if $y \in\langle p\rangle$, then x is a unit. Therefore p is an irreducible element. Note that p is a nonzero element and as $\langle p\rangle$ is a prime ideal and not equal to R, p is not a unit.
2. Let $a \in R$ be a nonzero element and $a=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$, where $p_{i}(i=$ $1,2, \ldots, r)$ and $q_{j}(j=1,2, \ldots, s)$ are prime elements. Show that $r=s$ and by reordering q_{j} 's, $p_{i}=u_{i} q_{i}$ with $u_{i} \in U(R)$ for $i=1,2, \ldots, r$, i.e., the uniqueness of prime factorization holds.

Solution. We proceed by induction on r. If $r=0$, then a is a unit and $s=0$. Note that if $s \geq 1$, then $a \in\left\langle q_{1}\right\rangle \neq R$. Suppose $r \geq 1$. Then $q_{1} q_{2} \cdots q_{s}=$ $a=p_{1} p_{2} \cdots p_{r} \in\left\langle p_{r}\right\rangle$ and $\left\langle p_{r}\right\rangle$ is a prime ideal. Hence there exists j such that $q_{j} \in\left\langle p_{r}\right\rangle$. By reordering let $q_{s} \in\left\langle p_{r}\right\rangle$. Hence there exists $x \in R$ such that $q_{s}=x p_{r}$. By $1, q_{s}$ is an irreducible element and p_{r} is not a unit, x is a unit. Hence $p_{1} \cdots p_{r-1} p_{r}=q_{1} \cdots q_{s-1} q_{s}=q_{1} \cdots\left(q_{s-1} x\right) p_{r}$ as R is an integral domain. Thus $p_{1} \cdots p_{r-1}=q_{1} \cdots\left(q_{s-1} x\right)$. Since $q_{s-1} x$ is a prime element and by induction hypothesis, we have the assertion.
3. Show that R is a UFD if and only if every nonzero non-unit element $a \in R$ can be written as a product of prime elements.

Solution. Suppose R is a UFD. Since every irreducible element is a prime element in a UFD, every nonzero element $a \in R$ can be written as a product of prime elements.
Conversely suppose every nonzero element $a \in R$ can be written as a product of prime elements. Then by $1, a$ can be written as a product of irreducible elements. By 2 the expression is unique modulo ordering and multiplication by unit elements. Therefore R is a UFD.

Quiz 8

Division:

ID\#:

Let $R=\boldsymbol{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \boldsymbol{Z}\}$, and $N(a+b \sqrt{2})=a^{2}-2 b^{2}$. Show the following. 1. For $\alpha \in R, \alpha \in U(R) \Leftrightarrow N(\alpha)= \pm 1$.
2. Show that $U(R)=\left\{ \pm(1+\sqrt{2})^{i} \mid i \in \boldsymbol{Z}\right\}$.
3. Show that R is an Euclidean domain.
4. Express 21 as a product of irreducible elements in R.

Message: Please write your comments and requests.

Solutions to Quiz 8

Let $R=\boldsymbol{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \boldsymbol{Z}\}$, and $N(a+b \sqrt{2})=a^{2}-2 b^{2}$. Show the following.

1. For $\alpha \in R, \alpha \in U(R) \Leftrightarrow N(\alpha)= \pm 1$.

Solution. First note that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all elements $\alpha, \beta \in R$. Let $\beta \in R$ such that $\alpha \beta=1$. Then $N(\alpha) N(\beta)=1$. Since $N(\alpha)$ is an integer, it has to be ± 1. Conversely, if $N(\alpha)= \pm 1$ for $\alpha=a+b \sqrt{2}$. Then $(a+b \sqrt{2})(a-b \sqrt{2})=$ $N(a+b \sqrt{2})$, and $\alpha^{-1}=N(\alpha)(a-b \sqrt{2})$.
2. Show that $U(R)=\left\{ \pm(1+\sqrt{2})^{i} \mid i \in \boldsymbol{Z}\right\}$.

Solution. \quad Since $N\left(\pm(1+\sqrt{2})^{i}\right)=N(1+\sqrt{2})^{i}=(-1)^{i}, U(R) \supset\left\{ \pm(1+\sqrt{2})^{i}\right.$ $i \in \boldsymbol{Z}\}$. Suppose $\alpha \in U(R)$. Since $N(1+\sqrt{2})=-1$, we may assume that $N(\alpha)=1$ by multiplying $1+\sqrt{2}$ if necessary. By taking $-\alpha$ if necessary, we may assume that $\alpha=u+v \sqrt{2}$ with $u>0$. Choose α so that u is minimum among α. Then u is odd. Since $(1 \pm \sqrt{2})^{2}=3 \pm 2 \sqrt{2}$, we will show that $u=3$ because $3 \pm 2 \sqrt{2}$ are the only solutions with $a=3$. Suppose $u>3$. Let $(u+v \sqrt{2})(3-2 \sqrt{2})=s+t \sqrt{2}$. Then $s=3 u-4 v, t=-2 u+3 v$, and $u=3 s+4 t, v=2 s+3 t$. Since $s^{2}-2 t^{2}=1$, we want to show that $0<s<u$. First both s and t are positive. Since $u^{2}=1+2 v^{2}>2 v^{2}$, $u>\sqrt{2} v$. Hence $s=3 u-4 v>3 \sqrt{2} v-4 v=(3 \sqrt{2}-4) v>0$. Moreover since $u>3,18 v^{2}=9\left(2 v^{2}\right)=9\left(u^{2}-1\right)=9 u^{2}-9=8 u^{2}+\left(u^{2}-9\right)>8 u^{2}, v>\frac{2}{3} u$. Hence $t=-2 u+3 v>-2 u+3 \frac{2}{3} u=0$. Therefore $s<u$ as $u=3 s+4 t$. Thus we have the assertion.
3. Show that R is an Euclidean domain.

Solution. Let $\alpha=u+v \sqrt{2}$ and $\beta=s+t \sqrt{2} \neq 0$ be elements of R. Then we can choose $a, b \in \boldsymbol{Z}$ and $c, d \in \boldsymbol{Q}$ such that $\gamma=a+b \sqrt{2} \in R$ and

$$
\frac{\alpha}{\beta}=\frac{u+v \sqrt{2}}{s+t \sqrt{2}}=(a+b \sqrt{2})+(c+d \sqrt{2})=\gamma+(c+d \sqrt{2}) \text { so that }|c| \leq \frac{1}{2},|d| \leq \frac{1}{2} .
$$

Since $|N(c+d \sqrt{2})|=\left|c^{2}-2 d^{2}\right| \leq \frac{1}{4}+\frac{2}{4}<1, \alpha=\beta \gamma+\rho$, where $\rho=\beta(c+d \sqrt{2}) \in R$ and that $|N(\rho)|<|N(\beta)|$. Hence R is an Euclidean domain with associated function $\delta: R \backslash\{0\} \rightarrow \boldsymbol{N}(\alpha \mapsto|N(\alpha)|)$.
4. Express 21 as a product of irreducible elements in R.

Solution. $21=3 \cdot(3-\sqrt{2}) \cdot(3+\sqrt{2})$.
Since R is an Euclidean domain, it is a UFD. Hence it suffices to show that $3,3-\sqrt{2}$ and $3+\sqrt{2}$ are irreducible elements in R.
First 3 is irreducible. Suppose not. Then there exist $\alpha, \beta \in R \backslash U(R)$ such that $3=\alpha \beta$. Hence $N(\alpha)= \pm 3=a^{2}-2 b^{2}$. Considering modulo 3, we have $a^{2}+b^{2} \equiv 0$ $(\bmod 3)$, which is impossible as squares in \boldsymbol{Z}_{3} are 0 and 1 .
Finally $3 \pm \sqrt{2}$ are irreducible as $N(3 \pm \sqrt{2})=7$.

