
Quiz 1 (Due at 1:50 p.m. on Mon. Sept. 15, 2008)

Division: ID#: Name:

An integral domain is a commutative ring R with identity such that

ab = 0 → a = 0 or b = 0 for all a, b ∈ R.

1. Show that if R is an integral domain, then the polynomial ring R[t] is also an integral
domain.

2. Show that if R is an integral domain, then the polynomial ring R[t1, t1, . . . , tn] is
also an integral domain.

Message: What do you expect for this course? Any requests?



Solutions to Quiz 1
An integral domain is a commutative ring R with identity such that

ab = 0 → a = 0 or b = 0 for all a, b ∈ R.

1. Show that if R is an integral domain, then the polynomial ring R[t] is also an integral
domain.

Solution. Let f = ant
n + an−1t

n−1 + · · · + a1t + a0 and g = bmtm + bm−1t
m−1 +

· · · + b1t + b0 ∈ R[t]. We assume f ̸= 0, g ̸= 0 and show that f · g ̸= 0. In this case
we may assume that an ̸= 0 and bm ̸= 0. Now

f · g = anbmtn+m + (anbm−1 + an−1bm)tn+m−1 + · · · + (a1b0 + a0b1)t + a0b0.

Since R is an integral domain, and an ̸= 0 ̸= bm, anbm ̸= 0. Therefore f · g ̸= 0 as
desired.

The above proof shows that deg f · g = deg f + deg g when f ̸= 0 and f ̸= 0. But if
one of f or g is zero, its degree is −∞. Hence if we extend our addition of integers
to Z ∪{−∞} and a+(−∞) = (−∞)+ (−∞) = −∞, then deg f · g = deg f +deg g
holds even when f or g is a zero polynomial. Note that zero polynomial is the only
polynomial with non-integral degree and polynomials of degree zero are nonzero
constants.

2. Show that if R is an integral domain, then the polynomial ring R[t1, t1, . . . , tn] is
also an integral domain.

Solution. Note that R[t1, t2, . . . , tn] = R[t1, t2, . . . , tn−1][tn] if n ≥ 2. So if
f ∈ R[t1, t2, . . . , tn], then f can be written as

f = fmtmn +fm−1t
m−1
n +· · ·+f1tn+f0, where fm, fm−1, . . . , f1, f0 ∈ R[t1, t2, . . . , tn−1].

We proceed by induction. If n = 1, R[t1] is an integral domain by 1. Suppose
R[t1, t2, . . . , tn−1] is an integral domain. Then by 1 R[t1, t2, . . . , tn−1][tn] is an integral
domain as this ring is a polynomial ring over an integral domain as well. Therefore
for all positive integer n, R[t1, t2, . . . , tn] is an integral domain.

Try a direct proof to show, say Z[x, y] is an integral domain. You will see a difficulty
avoided by the proof above.



Quiz 2 (Due at 1:50 p.m. on Mon. Sept. 22, 2008)

Division: ID#: Name:

Let R be a commutative ring with 1 and let I and J be ideals of R.

1. Show that I + J = {x + y | x ∈ I, y ∈ J} is an ideal of R.

2. Show that with respect to entrywise addition and multiplication, R/I×R/J becomes
a commutative ring with 1.

3. α : R → R/I × R/J (x 7→ (x + I, x + J)) is a ring homomorphism.

4. Suppose I + J = R. Show that I ∩ J = IJ , where IJ = {∑
i xiyi | xi ∈ I, yi ∈ J}.

5. Suppose I + J = R. Then the homomorphism α in 3 is surjective and R/IJ ≅
R/I × R/J .

Message: Please write your comments and requests.



Solutions to Quiz 2
Let R be a commutative ring with 1 and let I and J be ideals of R.

1. Show that I + J = {x + y | x ∈ I, y ∈ J} is an ideal of R.

Solution. Let x, x′ ∈ I, y, y′ ∈ J and r ∈ R. Then

(x + y) + (x′ + y′) = (x + x′) + (y + y′) ∈ I + J, −(x + y) = (−x) + (−y) ∈ I + J,

and r(x + y) = rx + ry ∈ I + J.

Hence I + J is an ideal.

2. Show that with respect to entrywise addition and multiplication, R/I×R/J becomes
a commutative ring with 1.

Solution. Let x, x′ ∈ I and y, y′ ∈ J . Binary operations are defined as follows.
(x+I, y+J)+(x′+I, y′+J) = (x+x′+I, y+y′+J) and (x+I, y+J)·(x′+I, y′+J) =
(xx′ + I, yy′ + J). Everything is clear and (1 + I, 1 + J) is the identity element of
R/I × R/J .

3. α : R → R/I × R/J (x 7→ (x + I, x + J)) is a ring homomorphism.

Solution. α(x + y) = (x + y + I, x + y + J) = (x + I, x + J) + (y + I, y + J) =
α(x)+α(y) and α(x·y) = (xy+I, xy+J) = (x+I, x+J)·(y+I, y+J) = α(x)·α(y).
Hence α is a ring homomorphism.

4. Suppose I + J = R. Show that I ∩ J = IJ , where IJ = {∑
i xiyi | xi ∈ I, yi ∈ J}.

Solution. Since both I and J are ideals, IJ ⊂ I ∩ J . Let x ∈ I ∩ J . Since
I + J = R and 1 ∈ R, there exist s ∈ I and t ∈ J such that 1 = s + t. Hence
x = x1 = x(s + t) = sx + xt ∈ IJ and I ∩ J ⊂ IJ .

5. Suppose I + J = R. Then the homomorphism α in 3 is surjective and R/IJ ≅
R/I × R/J .

Solution. Let x, y ∈ R. Let s and t be those in the previous problem. In
particular, s + t = 1 and sy, xs ∈ I, xt, ty ∈ J . Hence

α(xt + sy) = (xt + sy + I, xt + sy + J) = (xt + I, sy + J)

= (x(1 − s) + I, (1 − t)y + J) = (x + I, y + J).

Thus α is surjective. It is clear that ker(α) = I∩J . Hence by the previous problem,
ker(α) = IJ and R/IJ ≅ R/I × R/J by the first isomorphism theorem.



Quiz 3 (Due at 1:50 p.m. on Mon. Sept. 24, 2008)

Division: ID#: Name:

Let K be a field and K[x, y] be a polynomial ring over K with two indeterminates x
and y. Let I = K[x, y]x + K[x, y]y = {f(x, y) · x + g(x, y) · y | f(x, y), g(x, y) ∈ K[x, y]}.

1. Show that I is an ideal of K[x, y] such that I ̸= K[x, y].

2. Let α : K[x, y] → K[x, y] (f(x, y) 7→ f(x, x)). Show that α is a ring homomorphism
and J = ker(α) = K[x, y] · (x − y).

3. Show that J in the previous problem is a prime ideal of K[x, y].

4. Show that J ⊂ I and I is not a principal ideal.

5. Show that I is a maximal ideal of K[x, y].

Message: Please write your comments and requests.



Solutions to Quiz 3
Let K be a field and K[x, y] be a polynomial ring over K with two indeterminates x

and y. Let I = K[x, y]x + K[x, y]y = {f(x, y) · x + g(x, y) · y | f(x, y), g(x, y) ∈ K[x, y]}.

1. Show that I is an ideal of K[x, y] such that I ̸= K[x, y].

Solution. I is clearly an ideal of K[x, y]. Hence its proof is omitted. Suppose
I = K[x, y]. Then there exist f(x, y), g(x, y) ∈ K[x, y] such that 1 = f(x, y)x +
g(x, y)y. Then 1 = f(x, 0)x ∈ K[x]. By comparing the degrees in K[x], we have a
contradiction. Hence I ̸= K[x, y].

2. Let α : K[x, y] → K[x, y] (f(x, y) 7→ f(x, x)). Show that α is a ring homomorphism
and J = ker(α) = K[x, y] · (x − y).

Solution. It is clear that α is a ring homomorphism such that ker(α) ⊃
K[x, y] · (x − y). Let f(x, y) ∈ ker(α) and write f(x, y) = fn(y)xn + fn−1(y)xn−1 +
· · · + f1(y)x + f0(y). Then we find g(x, y) ∈ K[y][x] and r(x, y) ∈ K[y][x] with
degx r(x, y) < degx(x − y) = 1 such that f(x, y) = g(x, y)(x − y) + r(x, y). Here
degx r(x, y) denotes the degree of r(x, y) as a polynomial in x. In particular, x does
not appear in r(x, y) and r(x, y) = r0(y). Since f(x, y) ∈ ker(α), r0(x) = 0 and
r(x, y) = 0. Therefore f(x, y) ∈ K[x, y] · (x − y).

3. Show that J in the previous problem is a prime ideal of K[x, y].

Solution. Since the image of α is a subring of an integral domain K[x, y], it is
an integral domain as well. Hence its kernel is a prime ideal.

4. Show that J ⊂ I and I is not a principal ideal.

Solution. The assertion J ⊂ I is clear. Suppose I is an principal ideal
and K[x, y] · x + K[x, y] · y = I = K[x, y] · f(x, y). Since x, y ∈ I, there ex-
ist g(x, y), h(x, y) ∈ K[x, y] such that x = g(x, y)f(x, y) and y = h(x, y)f(x, y).
Since 0 = degy x = degy(g(x, y) + degy f(x, y), degy f(x, y) = 0. Similarly, since
0 = degx y = degx h(x, y) + degx f(x, y), degx f(x, y) = 0. Therefore f(x, y) is a
nonzero constant and I = K[x, y] · f(x, y) = K[x, y]. This contradicts 1.

5. Show that I is a maximal ideal of K[x, y].

Solution. Let β : K[x, y] → K (f(x, y) 7→ f(0, 0)). Then this is a surjective
ring homomorphism and ker(β) ⊃ I. Let f(x, y) ∈ ker(β) and f(x, y) = fn(y)xn +
fn−1(y)xn−1+· · ·+f1(y)x+f0(y). Then f0(0) = 0 as β(f) = 0. Hence f0(y) ∈ K[y]·y
and f(x, y) ∈ K[x, y]x + K[x, y]y = I.



Quiz 4 (Due at 1:50 p.m. on Wednesday, October 1, 2008)

Division: ID#: Name:

Let R be an integral domain. A non-constant polynomial f(t) ∈ R[t] is said to be
irreducible if f(t) = g(t)h(t) for some g(t), h(t) ∈ R[t] implies deg g(t) = 0 or deg h(t) = 0.

1. Let R be an integral domain. Show that U(R[t]) = U(R).

2. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t]. Suppose gcd(a0, a1, . . . , an) = 1, an ̸= 0

and there exist g(t), h(t) ∈ Q[t] such that f(t) = g(t)h(t). Show that there exist
g1(t), h1(t) ∈ Z[t] and c, d ∈ Q such that f(t) = g1(t)h1(t) and that g1(t) = cg(t)
and h1(t) = dh(t). (Hint: See (7.3.6).)

3. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t] be an irreducible polynomial in Z[t]. Then

f(t) is irreducible in Q[t].

4. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t]. Suppose that there is a prime p such that

p | a0, p | a1, . . . , p | an−1, but p does not divide an and p2 does not divide a0. Then
f(t) is irreducible in Q[t]. (Hint: See (7.4.9).)

Message: Please write your comments and requests.



Solutions to Quiz 4
Let R be an integral domain. A non-constant polynomial f(t) ∈ R[t] is said to be
irreducible if f(t) = g(t)h(t) for some g(t), h(t) ∈ R[t] implies deg g(t) = 0 or deg h(t) = 0.

1. Let R be an integral domain. Show that U(R[t]) = U(R).

Solution. Suppose g(t)h(t) = 1. Then 0 = deg(g(t)h(t)) = deg(g(t))+deg(h(t)).
Hence deg(g(t)) = deg(h(t)) = 0 and both g(t) and h(t) are constants. Therefore
g(t) ∈ U(R) and U(R[t]) ⊂ U(R). The other inclusion is obvious.

2. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t]. Suppose gcd(a0, a1, . . . , an) = 1, an ̸= 0

and there exist g(t), h(t) ∈ Q[t] such that f(t) = g(t)h(t). Show that there exist
g1(t), h1(t) ∈ Z[t] and c, d ∈ Q such that f(t) = g1(t)h1(t) and that g1(t) = cg(t)
and h1(t) = dh(t). (Hint: See (7.3.6).)

Solution. By taking the common denominators of g(t) and h(t), we can find
g1(t) = b0 + b1t + · · · + bℓt

ℓ ∈ Z[t] and h1(t) = c0 + c1t + · · · + cmtm ∈ Z[t] and
c, d ∈ Q such that g1(t) = cg(t), h1(t) = dh(t) and that ef(t) = g1(t)h1(t) for some
integer e ∈ Z. Suppose e ̸= ±1. It suffices to show that each prime divisor p of e
divides all coefficients of g1(t) or all coefficients of h1(t). Since p | b0c0 = ea0, we
may assume that there exist indices i > 0 and j ≥ 0 such that p | b0, . . . , p | bi−1

and p does not divide bi, and p | c0, . . . , p | cj−1 and p does not divide cj. Then p
divides eai+j but p does not divide b0ci+j + · · ·+bi−1cj+1 +bicj +bi+1cj−1 + · · · bi+jc0.
A contradiction.

3. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t] be an irreducible polynomial in Z[t]. Then

f(t) is irreducible in Q[t].

Solution. Let d = gcd(a0, a1, . . . , an). Then there is a polynomial f1(t) ∈ Z[t]
such that f(t) = d · f1(t), and the greatest common divisor of the coefficients of
f1(t) is 1. Hence by the previous problem, f(t) is irreducible in Q[t] and hence so
is f(t).

4. Let f(t) = a0 + a1t + · · · + ant
n ∈ Z[t]. Suppose that there is a prime p such that

p | a0, p | a1, . . . , p | an−1, but p does not divide an and p2 does not divide a0. Then
f(t) is irreducible in Q[t]. (Hint: See (7.4.9).)

Solution. Let f(t) = g(t)h(t), g(t) = b0 + b1t + · · · + bℓt
ℓ ∈ Z[t] and h(t) =

c0 + c1t+ · · ·+ cmtm ∈ Z[t]. Since a0 = b0c0 is divisible by p but not p2, there exists
i > 0 such that p | b0, . . . , p | bi−1 and p does not divide bi, and p | cm, . . . , p | cj+1

and p does not divie cj with j ≤ m. Since p does not divide b0ci+· · ·+bic0, i = n and
h(t) is a constant. Therefore f(t) is irreducible in Z[t]. By the previous problem,
it is irreducible in Q[t].



Quiz 5 (Due at 1:50 p.m. on Wednesday. Oct. 8, 2008)

Division: ID#: Name:

Let F [[t]] be the ring of formal power series over a field F . See Exercise (6.1.8).

1. Show that U(F [[t]]) = {f ∈ F [[t]] | f(0) ̸= 0}.

2. Show that t · F [[t]] is the only maximal ideal in F [[t]].

3. For a nonzero f =
∑∞

i=0 ait
t ∈ F [[t]], let δ(f) be the smallest index i such that

ai ̸= 0. Show that F [[t]] is Euclidean with respect to the function δ.

Message: Please write your comments and requests.



Solutions to Quiz 5
Let F [[t]] be the ring of formal power series over a field F . See Exercise (6.1.8).

1. Show that U(F [[t]]) = {f ∈ F [[t]] | f(0) ̸= 0}.
Solution. Let g = b0 + b1t + · · ·, and fg = c0 + c1t + · · ·.
Suppose fg = 1. Then a0b0 = 1. Hence b0 = a−1

0 . Let i ≥ 1. Since ci =∑i
j=0 ajbi−j = 0, assuming that b0, b1, . . . , bi−1 are determined, bi = −a−1

0

∑i
j=1 ajbi−j.

Thus the inverse is uniquely determined if a0 ̸= 0, and there is no inverse if a0 = 0.

2. Show that t · F [[t]] is the only maximal ideal in F [[t]].

Solution. By the previous problem, it is clear that F [[t]] \ U(F [[t]]) = t · F [[t]].
Thus t · F [[t]] is the only maximal ideal in F [[t]]. Note that F [[t]] \ U(F [[t]]) is the
union of all the proper ideals of F [[t]]. See (6.3.5).

3. For a nonzero f =
∑∞

i=0 ait
t ∈ F [[t]], let δ(f) be the smallest index i such that

ai ̸= 0. Show that F [[t]] is Euclidean with respect to the function δ.

Solution. Let f, g ∈ F [[t]] be nonzero elements. then δ(fg) = δ(f)+δ(g) ≥ δ(f).

Now let f, g ∈ F [[t]] with g ̸= 0. If f = 0, f = 0 = 0 · g + 0 and there is
nothing to prove. Suppose δ(f) = n and δ(g) = m. If n < m, then f = 0 · g + f
and δ(f) < δ(g). Assume n ≥ m. Then there exist f0, g0 ∈ U(F [[t]]) such that
f = f0 · tn and g = g0 · tm by the first problem. Let q = tn−m · g−1

0 · f0. Then

f − q · g = f0 · tn − tn−m · g−1
0 · f0 · g0 · tm = f0 · tn − f0 · tn = 0.

Therefore F [[t]] is an Euclidean domain.



Quiz 6 (Due at 1:50 p.m. on Wednesday. Oct. 15, 2008)

Division: ID#: Name:

Let D be an integer greater than or equal to 2. Let R = {a + b
√
−D | a, b ∈ Z}. For

z = a + b
√
−D ∈ R let N(z) = N(a + b

√
−D) = (a + b

√
−D)(a − b

√
−D) = a2 + b2D.

1. Show that R is an integral domain but not a field.

2. Let z, z′ ∈ R. Show that N(zz′) = N(z)N(z′), and that U(R) = {1,−1}.

3. Let p be a prime number in Z. If p is not irreducible in R, then there exists z ∈ R
such that p = N(z). In particular, if D ≥ 3, then 2 is an irreducible element in R.

4. Suppose D ≡ 1 (mod 4). Show that both 1+
√
−D and 1−

√
−D are not elements

in 〈2〉.

5. Show that if D ≡ 1 (mod 4), R is not a PID. (Hint: If R is a PID, 〈p〉 is a prime
ideal whenever p is an irreducible element.)

Message: Please write your comments and requests.



Solutions to Quiz 6 (June 1, 2008)

Let D be an integer greater than or equal to 2. Let R = {a + b
√
−D | a, b ∈ Z}. For

z = a + b
√
−D ∈ R let N(z) = N(a + b

√
−D) = (a + b

√
−D)(a − b

√
−D) = a2 + b2D.

1. Show that R is an integral domain but not a field.

Solution. Let θ : Z[t] → C (f(t) 7→ f(
√
−D)). For f(t) ∈ Z[t], there exist

q(t) ∈ Z[t] and a, b ∈ Z such that f(t) = q(t)(t2 +D)+a+bt. Since t2 +D ∈ ker(θ),
Im(θ) = R and R is an integral domain as it is a subring of a field C.

2. Let z, z′ ∈ R. Show that N(zz′) = N(z)N(z′), and that U(R) = {1,−1}.
Solution. Since N(z) = zz, for z, z′ ∈ R

N(zz′) = zz′zz′ = zz′zz′ = zzz′z′ = N(z)N(z′).

Let z = a + b
√
−D ∈ R. Suppose N(zz′) = 1. Then 1 = N(1) = N(z)N(z′) and

N(z) = a2 + b2D is a nonnegative integer. Hence N(z) = 1 and z = ±1 as these are
the only solutions of a2 + b2D = 1, where a, b ∈ Z. {1,−1} ⊂ U(R) is clear.

3. Let p be a prime number in Z. If p is not irreducible in R, then there exists z ∈ R
such that p = N(z). In particular, if D ≥ 3, then 2 is an irreducible element in R.

Solution. Suppose p is not an irreducible element. Note that z ∈ U(R) if and
only if N(z) = 1. Hence if p = zz′ and z, z′ ̸∈ U(R), then N(z) ̸= 1 ̸= N(z′). On
the other hand, p2 = N(z)N(z′). Since both N(z) and N(z′) are positive integers,
N(z) = p as desired. Furthermore if p = 2, there are no a, b ∈ Z such that
a2 + b2D = 2 as D ≥ 3.

4. Suppose D ≡ 1 (mod 4). Show that both 1+
√
−D and 1−

√
−D are not elements

in 〈2〉.
Solution. Suppose 1 ±

√
−D = 2z. Then 4N(z) = N(1 ±

√
−D) = 1 + D ≡ 2

(mod 4). A contradiction.

5. Show that if D ≡ 1 (mod 4), R is not a PID. (Hint: If R is a PID, 〈p〉 is a prime
ideal whenever p is an irreducible element.)

Solution. Consider (1 +
√
−D)(1−

√
−D) = 1 + D ∈ 〈2〉. But 1±

√
−D ̸∈ 〈2〉.

thus 〈2〉 is not a prime ideal. Since D ≥ 2 and D ≡ 1 (mod 4), D ≥ 5. Thus 2 is
an irreducible element in R, which is absurd.



Quiz 7 (Due at 1:50 p.m. on Wednesday. Oct. 22, 2008)

Division: ID#: Name:

Let R be an integral domain. A nonzero element p of R is said to be a prime element if
〈p〉 = {rp | r ∈ R} is a prime ideal of R.

1. Show that a prime element is an irreducible element.

2. Let a ∈ R be a nonzero element and a = p1p2 · · · pr = q1q2 · · · qs, where pi (i =
1, 2, . . . , r) and qj (j = 1, 2, . . . , s) are prime elements. Show that r = s and by
reordering qj’s, pi = uiqi with ui ∈ U(R) for i = 1, 2, . . . , r, i.e., the uniqueness of
prime factorization holds.

3. Show that R is a UFD if and only if every nonzero non-unit element a ∈ R can be
written as a product of prime elements.

Message: Please write your comments and requests.



Solutions to Quiz 7
Let R be an integral domain. A nonzero element p of R is said to be a prime element if
〈p〉 = {rp | r ∈ R} is a prime ideal of R.

1. Show that a prime element is an irreducible element.

Solution. Suppose p is a prime element and p = xy, x, y ∈ R. Since 〈p〉 is a
prime ideal, either x ∈ 〈p〉 or y ∈ 〈p〉. Assume that x ∈ 〈p〉 and there exists z ∈ R
such that x = zp. Then p = xy = zyp. Therefore zy = 1 and y is a unit. Similarly
if y ∈ 〈p〉, then x is a unit. Therefore p is an irreducible element. Note that p is a
nonzero element and as 〈p〉 is a prime ideal and not equal to R, p is not a unit.

2. Let a ∈ R be a nonzero element and a = p1p2 · · · pr = q1q2 · · · qs, where pi (i =
1, 2, . . . , r) and qj (j = 1, 2, . . . , s) are prime elements. Show that r = s and by
reordering qj’s, pi = uiqi with ui ∈ U(R) for i = 1, 2, . . . , r, i.e., the uniqueness of
prime factorization holds.

Solution. We proceed by induction on r. If r = 0, then a is a unit and s = 0.
Note that if s ≥ 1, then a ∈ 〈q1〉 ≠ R. Suppose r ≥ 1. Then q1q2 · · · qs =
a = p1p2 · · · pr ∈ 〈pr〉 and 〈pr〉 is a prime ideal. Hence there exists j such that
qj ∈ 〈pr〉. By reordering let qs ∈ 〈pr〉. Hence there exists x ∈ R such that
qs = xpr. By 1, qs is an irreducible element and pr is not a unit, x is a unit.
Hence p1 · · · pr−1pr = q1 · · · qs−1qs = q1 · · · (qs−1x)pr as R is an integral domain.
Thus p1 · · · pr−1 = q1 · · · (qs−1x). Since qs−1x is a prime element and by induction
hypothesis, we have the assertion.

3. Show that R is a UFD if and only if every nonzero non-unit element a ∈ R can be
written as a product of prime elements.

Solution. Suppose R is a UFD. Since every irreducible element is a prime
element in a UFD, every nonzero element a ∈ R can be written as a product of
prime elements.

Conversely suppose every nonzero element a ∈ R can be written as a product of
prime elements. Then by 1, a can be written as a product of irreducible elements.
By 2 the expression is unique modulo ordering and multiplication by unit elements.
Therefore R is a UFD.



Quiz 8 (Due at 1:50 p.m. on Wednesday November 5, 2008)

Division: ID#: Name:

Let R = Z[
√

2] = {a + b
√

2 | a, b ∈ Z}, and N(a + b
√

2) = a2 − 2b2. Show the following.

1. For α ∈ R, α ∈ U(R) ⇔ N(α) = ±1.

2. Show that U(R) = {±(1 +
√

2)i | i ∈ Z}.

3. Show that R is an Euclidean domain.

4. Express 21 as a product of irreducible elements in R.

Message: Please write your comments and requests.



Solutions to Quiz 8
Let R = Z[

√
2] = {a + b

√
2 | a, b ∈ Z}, and N(a + b

√
2) = a2 − 2b2. Show the following.

1. For α ∈ R, α ∈ U(R) ⇔ N(α) = ±1.

Solution. First note that N(αβ) = N(α)N(β) for all elements α, β ∈ R. Let
β ∈ R such that αβ = 1. Then N(α)N(β) = 1. Since N(α) is an integer, it has to
be ±1. Conversely, if N(α) = ±1 for α = a + b

√
2. Then (a + b

√
2)(a − b

√
2) =

N(a + b
√

2), and α−1 = N(α)(a − b
√

2).

2. Show that U(R) = {±(1 +
√

2)i | i ∈ Z}.
Solution. Since N(±(1 +

√
2)i) = N(1 +

√
2)i = (−1)i, U(R) ⊃ {±(1 +

√
2)i |

i ∈ Z}. Suppose α ∈ U(R). Since N(1+
√

2) = −1, we may assume that N(α) = 1
by multiplying 1 +

√
2 if necessary. By taking −α if necessary, we may assume that

α = u + v
√

2 with u > 0. Choose α so that u is minimum among α. Then u is odd.
Since (1 ±

√
2)2 = 3 ± 2

√
2, we will show that u = 3 because 3 ± 2

√
2 are the only

solutions with a = 3. Suppose u > 3. Let (u + v
√

2)(3 − 2
√

2) = s + t
√

2. Then
s = 3u−4v, t = −2u+3v, and u = 3s+4t, v = 2s+3t. Since s2−2t2 = 1, we want
to show that 0 < s < u. First both s and t are positive. Since u2 = 1 + 2v2 > 2v2,
u >

√
2v. Hence s = 3u − 4v > 3

√
2v − 4v = (3

√
2 − 4)v > 0. Moreover since

u > 3, 18v2 = 9(2v2) = 9(u2 − 1) = 9u2 − 9 = 8u2 + (u2 − 9) > 8u2, v > 2
3
u. Hence

t = −2u + 3v > −2u + 32
3
u = 0. Therefore s < u as u = 3s + 4t. Thus we have the

assertion.

3. Show that R is an Euclidean domain.

Solution. Let α = u + v
√

2 and β = s + t
√

2 ̸= 0 be elements of R. Then we
can choose a, b ∈ Z and c, d ∈ Q such that γ = a + b

√
2 ∈ R and

α

β
=

u + v
√

2

s + t
√

2
= (a + b

√
2) + (c + d

√
2) = γ + (c + d

√
2) so that |c| ≤ 1

2
, |d| ≤ 1

2
.

Since |N(c+d
√

2)| = |c2−2d2| ≤ 1
4
+ 2

4
< 1, α = βγ +ρ, where ρ = β(c+d

√
2) ∈ R

and that |N(ρ)| < |N(β)|. Hence R is an Euclidean domain with associated function
δ : R \ {0} → N (α 7→ |N(α)|).

4. Express 21 as a product of irreducible elements in R.

Solution. 21 = 3 · (3 −
√

2) · (3 +
√

2).

Since R is an Euclidean domain, it is a UFD. Hence it suffices to show that 3, 3−
√

2
and 3 +

√
2 are irreducible elements in R.

First 3 is irreducible. Suppose not. Then there exist α, β ∈ R \ U(R) such that
3 = αβ. Hence N(α) = ±3 = a2 − 2b2. Considering modulo 3, we have a2 + b2 ≡ 0
(mod 3), which is impossible as squares in Z3 are 0 and 1.

Finally 3 ±
√

2 are irreducible as N(3 ±
√

2) = 7.


