
Quiz 1 Due at 10:00 a.m. Wednesday, September 20, 2006

Division: ID#: Name:

1. Let R be a ring. Suppose that a, b are elements of R. Show that (−a) · (−b) = a · b. Use
only the definition of rings.

2. Let Z[t] be the ring of polynomials in t over the ring of rational integers. If f, g ∈ Z[t]
satisfy f · g = 1, i.e., f is a unit and g is its inverse, then f = ±1.

Message: Any requests?



Solutions to Quiz 1 September 20, 2006

1. Let R be a ring. Suppose that a, b are elements of R. Show that (−a) · (−b) = a · b. Use
only the definition of rings.

Solution: Let c be an arbitrary element.

0 = c · 0 + (−(c · 0)) = c · (0 + 0) + (−(c · 0)) = c · 0 + c · 0 + (−(c · 0)) = c · 0.

Similarly, 0 · c = 0. Clearly −(−c) = c as (−c) + c = 0 = c + (−c). Now

(−a) · (−b) = (−a) · (−b) + (−a) · b + (−((−a) · b))
= (−a) · ((−b) + b) + (−((−a) · b + a · b + (−(a · b))))
= (−a) · 0 + (−((−a) + a) · b + (−(a · b))))
= 0 + (−(0 · b + (−(a · b))))
= −(0 + (−(a · b)))
= −(−(a · b))
= a · b.

2. Let Z[t] be the ring of polynomials in t over the ring of rational integers. If f, g ∈ Z[t]
satisfy f · g = 1, i.e., f is a unit and g is its inverse, then f = ±1.

Solution: Let m = deg f and n = deg g, f = amtm + · · · + a0 and g = bntn + · · · + b0.
Since am ̸= 0, bn ̸= 0 and am, bn ∈ Z, am · bn ̸= 0. Hence deg f · g = m + n as
f · g = ambntm+n + · · · + a0b0. On the other hand, 0 = deg 1 = deg f · g by assumption.
Hence m = n = 0. In particular, f = a0, g = b0 and a0 · b0 = 1. Since a0, b0 ∈ Z, a0 = ±1
and we have the assertion.

Using the notation on page 102, U(Z[t]) = {±1}. Can you determine U(Z4[t])? Note that
([2]4t + [1]4)([2]4t + [1]4) = [1]4.



Quiz 2 Due at 10:00 a.m. Wednesday, September 27, 2006

Division: ID#: Name:

Let R be a ring. Prove the following.

1. Let x ∈ R. Then Rx = {r · x | r ∈ R} is a left ideal of R.

2. Let I and J be left ideals of R. Then I ∩ J is a left ideal of R.

3. Let I and J be left ideals of R. Then I + J = {x + y | x ∈ I, y ∈ J} is a left ideal of R.

4. Let I be a left ideal of R and S a subring of R. Then I ∩ S is a left ideal of S.

5. Let I be a left ideal of R. Then A = {a ∈ R | ax = 0 for all x ∈ I} is a left ideal of R.

Message: Requests? Questions?



Solutions to Quiz 2 September 27, 2006

Let R be a ring. Prove the following.

In order to show a nonempty subset Y of a ring X is a left ideal, it suffices to show; (i)
a + b ∈ Y whenever a, b ∈ Y , (ii) −a ∈ Y whenever a ∈ Y and (iii) c · a ∈ Y whenever c ∈ X
and a ∈ Y .

By definition a left ideal is an additive subgroup of X satisfying the property (iii) above,
and a nonempty subset of a group is a subgroup if it is closed under the binary operation and
taking inverse. See (3.3.3) in the textbook. If R has an identity element 1, it is not difficult
to show that (−1)a = −a. Hence the condition (ii) follows from (iii). But the existence of an
identity element is not guaranteed in general.

1. Let x ∈ R. Then Rx = {r · x | r ∈ R} is a left ideal of R.

Solution: Let a, b ∈ Rx. Then by the definition of Rx, there exist r, s ∈ R such that
a = r · x and b = s · x. (i) Since a + b = r · x + s · x = (r + s) · x and r + s ∈ R,
a + b ∈ Rx. (ii) Since r ·x + (−r) ·x = (r + (−r)) ·x = 0 ·x = 0, (−r) ·x = −(r ·x). Hence
−a = −(r · x) = (−r) · x ∈ Rx. For the proof of 0 · x = 0, see Solutions to Quiz 1. (iii) Let
s ∈ R. Then s · a = s · (r · x) = (s · r) · x and s · r ∈ R. Hence s · a ∈ Rx.

2. Let I and J be left ideals of R. Then I ∩ J is a left ideal of R.

Solution: Let a, b ∈ I ∩J . Then a, b ∈ I and a, b ∈ J . Since both I and J are left ideals,
(i) a+ b ∈ I and a+ b ∈ J , hence a+ b ∈ I ∩J , (ii) −a ∈ I and −a ∈ J , hence −a ∈ I ∩J ,
(iii) r · a ∈ I and r · a ∈ J , hence r · a ∈ I ∩ J whenever r ∈ R. Therefore I ∩ J is a left
ideal of R.

3. Let I and J be left ideals of R. Then I + J = {x + y | x ∈ I, y ∈ J} is a left ideal of R.

Solution: Let a, b ∈ I + J . Then by the definition of I + J , there exist x, x′ ∈ I and
y, y′ ∈ J such that a = x + y and b = x′ + y′. Now we use the fact that both I and J are
left ideals. (i) Since a + b = (x + y) + (x′ + y′) = (x + x′) + (y + y′) ∈ I + J and x + x′ ∈ I,
y + y′ ∈ J , a + b ∈ I + J . (ii) −a = −(x + y) = (−x) + (−y) ∈ I + J as −x ∈ I and
−y ∈ J . (iii) Let r ∈ R. Then r · a = r · (x + y) = r · x + r · y and r · x ∈ I and r · y ∈ J .
Hence r · a ∈ I + J .

4. Let I be a left ideal of R and S a subring of R. Then I ∩ S is a left ideal of S.

Solution: (i) and (ii) follow from the proof of 2. Let s ∈ S and x ∈ I ∩ S. Since I is a
left ideal of R and s ∈ S ⊂ R, s · x ∈ I. Since S is a subring and s, x ∈ S, s · x ∈ S. Hence
s · x ∈ I ∩ S. This proves (iii) and I ∩ S is a left ideal of S.

5. Let I be a left ideal of R. Then A = {a ∈ R | ax = 0 for all x ∈ I} is a left ideal of R.

Solution: Let a, b ∈ A. Then a · x = 0 = b · x whenever x ∈ I. Let x be an arbitrary
element of I. (i) Since (a + b) · x = a · x + b · x = 0 + 0 = 0, a + b ∈ A. (ii) As in the proof
of 1, (−a) · x = −(ax). Hence (−a) · x = 0. Therefore −a ∈ A. (iii) Let r ∈ R. Then
(r · a) · x = r · (a · x) = r · 0 = 0. Hence r · a ∈ A and A is a left ideal of R.



Quiz 3 Due at 10:00 a.m. Wednesday, October 4, 2006

Division: ID#: Name:

Let R = Z18.

1. Find all zero divisors of R.

2. Find U(R), i.e, the set of all units in R.

3. Find a prime ideal I of R.

4. Let I be the prime ideal chosen in the previous problem. Determine whether R/I is a
field.

5. Find all proper deals of R which are not prime ideals. Note that an ideal J of R is proper
if J ̸= R.

Message: Requests? Questions?



Solutions to Quiz 3 October 4, 2006

Let R = Z18 = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]}.

1. Find all zero divisors of R.

Solution: Let ZD(R) denote the set of all zero devisors of R. Since R is a commutative
ring,

ZD(R) = {a ∈ R | (a ̸= 0) ∧ (∃b ∈ R)[(b ̸= 0) ∧ (a · b = 0)]}.

Hence
ZD(R) = {[2], [3], [4], [6], [8], [9], [10], [12], [14], [15], [16]}.

2. Find U(R), i.e, the set of all units in R.

Solution: Since R is a commutative ring,

U(R) = {a ∈ R | (∃b ∈ R)[a · b = 1]} = {a ∈ R | a · b = 1 for some b ∈ R}.

Hence
U(R) = {[1], [5], [7], [11], [13], [17]}.

3. Find a prime ideal I of R.

Solution: Let I = {[0], [2], [4], [6], [8], [10], [12], [14], [16]}. Since I = R · [2], I is of form
Rx with x ∈ R, and I is an ideal. See Quiz 2, Problem 1. Since every ideal is an additive
subgroup of R, if J with I ⊂ J ⊂ R is an ideal of R, |J | is a divisor of |R| = 18. Since
|I| = 9 and I ⊂ J , I = J or J = R. Hence I is a maximal ideal. Therefore I is a prime
ideal. (6.3.7).

I ′ = {[0], [3], [6], [9], [12], [15]} is also a prime ideal. I ′ is a maximal ideal as well. It is not
so difficult to check that there are no other prime ideals. So in this particular case, I is a
prime ideal if and only if I is a maximal ideal.

4. Let I be the prime ideal chosen in the previous problem. Determine whether R/I is a
field.

Solution: As we have seen above, I is a maximal ideal. Hence by (6.3.7) in the textbook,
R/I is a field.

Note that R/I = {I, [1] + I} and it is isomorphic to Z2, a field with two elements.
R/I ′ = {I ′, [1] + I ′, [2] + I ′} is isomorphic to Z3. .

5. Find all proper deals of R which are not prime ideals. Note that an ideal J of R is proper
if J ̸= R.

Solution: As an additive group R is a cyclic group and all of its subgroup is cyclic.
Hence all ideals of R are of form R · x. Hence R · [0] = {[0]}, R · [6] = {[0], [6], [12]},
R · [9] = {[0], [9]}.
Note that if x is a unit, Rx = R. So we must choose non-units. Please refer to (4.1.7).



Take-Home Midterm Due: 10:00 a.m. October 11, 2006

Division: ID#: Name:

1. Let R be a ring with identity element 1. Prove or find a counter example for the following
statements.

(a) For a, b ∈ R, (−a) · b = (−1) · a · b.

(b) There exist nonzero elements a, b ∈ R, a · b = 0.

(c) For elements a, b ∈ R, a · b − b · a = 0.

(d) Let f and g be polynomials in R[t]. Then deg(f) + deg(g) ≥ deg(fg).



2. Show that the polynomial ring R[t, u] = (R[t])[u] with two indeterminates t and u over an
integral domain R is an integral domain.

3. Let R be an integral domain. For a, b ∈ R, suppose R · a = R · b. Then there exists a unit
u ∈ U(R) such that b = ua.

4. Let R and R′ be commutative rings with identity. Suppose α : R → R′ is a ring homo-
morphism, I is an ideal of R and J is an ideal of R′.

(a) Show that α−1(J) = {x ∈ R | α(x) ∈ J} is an ideal of R.

(b) Show that α−1(α(I)) = I + Ker(α).



5. Let Z[t] be a polynomial ring over Z and R = {f(
√
−1) | f(t) ∈ Z[t]}.

(a) Let α : Z[t] → C (f(t) 7→ f(
√
−1)). Then α is a ring homomorphism.

(b) Show that R = {a + b
√
−1 | a, b ∈ Z}, and R is an integral domain.

(c) Z[t](t2 + 1) is a prime ideal of Z[t].

(d) Show that Z[t](t2 + 1) is not a maximal ideal of Z[t].

Message: Requests? Questions?



Solutions to Midterm October 11, 2006

1. Let R be a ring with identity element 1. Prove or find a counter example for the following
statements.

(a) For a, b ∈ R, (−a) · b = (−1) · a · b.
Solution: It suffices to show that −a = (−1) · a. Recall that 0 · a = 0. (See Quiz
1.)

−a = (−a) + (1 + (−1)) · a = (−a) + 1 · a + (−1) · a = (−a) + a + (−1) · a = (−1) · a.

Hence −a = (−1) · a and (−a) · b = (−1) · a · b for all a, b ∈ R.

(b) For nonzero elements a, b ∈ R, a · b = 0. (I meant the following: There exist nonzero
elements a, b ∈ R, a · b = 0.)
Solution: Let R = Z4 = {[0]4, [1]4, [2]4, [3]4}. While [2]4 ̸= [0]4 = 0R,
[2]4 · [2]4 = [0]4 = 0R.

(c) For elements a, b ∈ R, a · b − b · a = 0.
Solution: Let R = Mat2(R) be the 2 × 2 matrix ring over the reals. Let

a =
(

1 0
0 0

)
, and b =

(
0 1
0 0

)
.

Then

a · b − b · a =
(

1 0
0 0

)
·
(

0 1
0 0

)
−

(
0 1
0 0

)
·
(

1 0
0 0

)
=

(
0 1
0 0

)
−

(
0 0
0 0

)
̸=

(
0 0
0 0

)
.

(d) Let f and g be polynomials in R[t]. Then deg(f) + deg(g) ≥ deg(fg).
Solution: Let f = amtm + am−1t

m−1 + · · ·+ a0 and g = bntn + bn−1t
n−1 + · · ·+ b0.

Suppose am ̸= 0 ̸= bn. Then deg f = m and deg g = n. Since

f · g = ambntm+n + (ambn−1 + am−1bn)tm+n−1 + · · · + a0b0,

deg(f · g) ≤ m + n = deg f + deg g. Note that if R is a domain, then equality holds
in the equation as ambn ̸= 0.



2. Show that the polynomial ring R[t, u] = (R[t])[u] with two indeterminates t and u over an
integral domain R is an integral domain.

Solution: As we have seen in 1 (d), we have deg(f)+deg(g) = deg(fg) if R is a domain.
Hence if f · g = 0 in R[t], −∞ = deg 0 = deg f · g = deg f + deg g implies that at least one
of deg f or deg g is −∞. Hence either f = 0 or g = 0. Thus R[t] is a domain. Therefore
in general, if R is a domain, R[t] is a domain. Since R[t, u] is a polynomial ring over a
domain R[t], R[t, u] is also a domain as well.

3. Let R be an integral domain. For a, b ∈ R, suppose R · a = R · b. Then there exists a unit
u ∈ U(R) such that b = ua.

Solution: Suppose R ·a = R ·b. By definition of a ring with identity, 1 ̸= 0 and R ̸= {0}.
See page 97. So if a = 0, then b = 1 · b ∈ R · b = R · a = {0} implies that b = 0. In this
case a = 0 = 1 · 0 = 1 · b, and the assertion holds. Hence we may assume that a ̸= 0. Since
a ∈ R · a = R · b, there exists r ∈ R such that a = r · b. Similarly, since b ∈ R · b = R · a,
there exists s ∈ R such that b = u · a.

(r · u − 1) · a = r · u · a − a = r · b − a = a − a = 0.

Since a ̸= 0 and R is an integral domain, r ·u− 1 = 0 and r ·u = 1. Thus u is a unit. Note
that an integral domain is commutative. Hence b = u · a and u is a unit, as desired.

4. Let R and R′ be commutative rings with identity. Suppose α : R → R′ is a ring homo-
morphism, I is an ideal of R and J is an ideal of R′.

(a) Show that α−1(J) = {x ∈ R | α(x) ∈ J} is an ideal of R.
Solution: Fist note that α(0) = 0 and α(−x) = −α(x) as α is a homomorphism.
In particular, 0 ∈ α−1(J) and α−1(J) ̸= ∅. Let a, b ∈ α−1(J) and r ∈ R. Then

α(a + b) = α(a) + α(b) ∈ J, α(−a) = −α(a) ∈ J, and α(r · a) = α(r) · α(a) ∈ J

as J is an ideal in R′. Hence a + b ∈ α−1(J), −a ∈ α−1(J) and r · a ∈ α−1(J).
Therefore α−1(J) is an ideal in R.

(b) Show that α−1(α(I)) = I + Ker(α).
Solution: In the following we do not need the fact that I is an ideal in R. Assume
that I is a subset of R. Let x ∈ I + Ker(α). Then there exists a ∈ I and b ∈ Ker(α)
such that x = a+b. Since α(x) = α(a+b) = α(a)+α(b) = α(a) ∈ α(I), x ∈ α−1(α(I)).
Hence I + Ker(α) ⊂ α−1(α(I)).
Let x ∈ α−1(α(I)). Then by definition, α(x) ∈ α(I). Hence there exists a ∈ I such
that α(x) = α(a). Now α(x − a) = α(x) − α(a) = 0. Hence x − a ∈ Ker(α). Let
b ∈ Ker(α) such that x − a = b. Then x = a + b ∈ I + Ker(α). Thus α−1(α(I)) ⊂
I + Ker(α). Therefore, α−1(α(I)) = I + Ker(α).



5. Let Z[t] be a polynomial ring over Z and R = {f(
√
−1) | f(t) ∈ Z[t]}.

(a) Let α : Z[t] → C (f(t) 7→ f(
√
−1)). Then α is a ring homomorphism.

Solution: This is almost clear. See Exercise 6.2.7. Let f(t), g(t) ∈ Z[t]. Then

α(f(t) + g(t)) = f(
√
−1) + g(

√
−1) = α(f(t)) + α(g(t)), and

α(f(t) · g(t)) = f(
√
−1) · g(

√
−1) = α(f(t)) · α(g(t)).

Hence α is a ring homomorphism.

(b) Show that R = {a + b
√
−1 | a, b ∈ Z}, and R is an integral domain.

Solution: By definition, R = Im(α) ⊂ C. Since α is a ring homomorphism, R is a
subring of a field C. Since C does not have a zero-divisor, R is an integral domain.
Since for any nonnegative integer n, α(t2n) =

√
−12n = (−1)n, and α(t2n+1) =√

−12n+1 = (−1)n
√
−1, R = {f(

√
−1) | f(t) ∈ Z[t]} ⊂ {a + b

√
−1 | a, b ∈ Z}. Since

α(a+bt) = a+b
√
−1, the other inclusion, R = {f(

√
−1) | f(t) ∈ Z[t]} ⊃ {a+b

√
−1 |

a, b ∈ Z} is clear. Hence we have R = {a + b
√
−1 | a, b ∈ Z}.

(c) Z[t](t2 + 1) is a prime ideal of Z[t].
Solution: By First Isomorphism Theorem (6.2.4), R = Im(α) ≅ Z[t]/Ker(α).
Hence by (6.3.7), Ker(α) is a prime ideal as 1 ̸∈ Ker(α) and Ker(α) ̸= R. Let
I = Z[t](t2+1). Since t2+1 ∈ Ker(α), it is clear that I ⊂ Ker(α). Let f(t) ∈ Ker(α).
Then there exists a polynomial g(t) such that f(t) = g(t)(t2 + 1) + a · t + b. Since
f(t) ∈ Ker(α),

0 = α(f(t)) = f(
√
−1) = g(

√
−1)(

√
−1

2
+ 1) + a ·

√
−1 + b = a

√
−1 + b.

Since a and b are integers, a = b = 0 and f(t) = g(t)(t2 + 1). Therefore, f(t) ∈
Z[t](t2 + 1) and Ker(α) = Z[t](t2 + 1). Therefore, Z[t](t2 + 1) is a prime ideal.

(d) Show that Z[t](t2 + 1) is not a maximal ideal of Z[t].
Solution: Suppose Z[t](t2 + 1) is a maximal ideal, then R ≅ Z[t]/Z[t](t2 + 1) is a
field. But 2−1 ̸∈ R and R is not a field. Hence Z[t](t2 + 1) is not a maximal ideal.
Note that Z[t](t2 + 1) ⊂ Z[t](t2 + 1) + Z[t] · 2 ⊂ Z[t].



Quiz 4 Due: 10:00 a.m. October 18, 2006

Division: ID#: Name:

1. Let R be a commutative ring with identity. Prove the following.

(a) a ∈ U(R) if and only if R · a = R.

(b) Let a be a nonzero element of R and a ̸∈ U(R). Then a is an irreducible element in
R if and only if R · a ⊂ R · b ⊂ R implies R · a = R · b or R · b = R.

2. Let R = {a + b
√
−3 | a, b ∈ Z}. Let N : R → Z (α = a + b

√
−3 7→ N(α) = a2 + 3b2).

(a) Show that R is an integral domain.

(b) Show that for α, β ∈ R, N(α · β) = N(α)N(β).

(c) Show that α ∈ U(R) ⇔ N(α) = 1 ⇔ α = ±1.

Message: : Requests? Questions?



Solutions to Quiz 4 October 18, 2006

1. Let R be a commutative ring with identity. Prove the following.

(a) a ∈ U(R) if and only if R · a = R.
Solution: Suppose a ∈ U(R). Then for every x ∈ R, x = x(a−1a) = (xa−1)a ∈ R·a.
Hence R ⊂ R·a. Therefore R·a = R. Conversely assume R·a = R. Since 1 ∈ R = R·a,
there exists b ∈ R such that b · a = 1. Since R is commutative, a ∈ U(R).
N.B. This directly follows from Problem 3 in Take Home Midterm by setting b = 1.

(b) Let a be a nonzero element of R and a ̸∈ U(R). Then a is an irreducible element in
R if and only if R · a ⊂ R · b ⊂ R implies R · a = R · b or R · b = R.
Solution: Suppose a is irreducible and R · a ⊂ R · b ⊂ R. Since a ∈ R · a ⊂ R · b,
there exists c ∈ R such that a = c · b. Since a is irreducible, c ∈ U(R) or b ∈ U(R).
If c ∈ U(R) by Problem 3 in Take Home Midterm, R · a = R · b. If b ∈ U(R), then
R · b = R by Problem 1. Hence R · a ⊂ R · b ⊂ R implies R · a = R · b or R · b = R in
this case.
Conversely suppose a = c · b with c, b ∈ R. Since a ∈ R · b, R · a ⊂ R · b ⊂ R. Now by
our assumption, R · a = R · b or R · b = R. If R · b = R, then by Problem 1, b ∈ U(R).
On the other hand if R · a = R · b, then by Problem 3 in Take Home Midterm, there
exists u ∈ U(R) such that a = u · b. Since a = b · c, 0 = a − a = b · (u − c). If b = 0,
then R · a = R · b = {0} which is absurd as a ̸= 0. Hence u = c as R is an integral
domain. Therefore, a = c · b with c, b ∈ R implies b ∈ U(R) or c ∈ U(R) and a is
irreducible.

2. Let R = {a + b
√
−3 | a, b ∈ Z}. Let N : R → Z (α = a + b

√
−3 7→ N(α) = a2 + 3b2).

(a) Show that R is an integral domain.
Solution: As in Problem 5 (a), (b) in Take Home Midterm, α : Z[t] → C (f(t) 7→
f(
√
−3)) is a ring homomorphism. Hence its image R is a subring of C. Since C

does not have a zero divisor, R is an integral domain.

(b) Show that for α, β ∈ R, N(α · β) = N(α)N(β).
Solution: Let α = a + b

√
−3 and β = c + d

√
−3. Then

N(α · β) = N((ac − 3bd) + (ad + bc)
√
−3)) = (ac − 3bd)2 + 3(ad + bc)2

= a2c2 − 6abcd + 9b2d2 + 3a2d2 + 6abcd + 3b2c2

= (a2 + 3b2)(c2 + 3d2) = N(α)N(β).

The fact also follows from the property of complex conjugate as α · β = αβ and
N(α) = α · α.

(c) Show that α ∈ U(R) ⇔ N(α) = 1 ⇔ α = ±1.
Solution: Suppose α ∈ U(R). Then αβ = 1 implies N(α)N(β) = N(1) = 1. Since
N(α) and N(β) are both nonnegative integers, N(α) = 1. Conversely if N(α) = 1,
then α · α = N(α) = 1. Hence, α ∈ U(R). Since N(α) = a2 + 3b2. it is clear that
N(α) = 1 if and only if α = ±1.



Quiz 5 Due: 10:00 a.m. October 25, 2006

Division: ID#: Name:

1. Let R be an integral domain, and p a nonzero element in R. Show the following.

(a) If I = 〈p〉 is a prime ideal, then p is an irreducible element.

(b) If R is a principal ideal domain and p is an irreducible element, then I = 〈p〉 is a
maximal ideal.

2. Let R = Z[t], the polynomial ring over Z. Show the following.

(a) U(R) = {±1} and t is an irreducible element in R.

(b) Let α : R = Z[t] → Z (f(t) 7→ f(0)). Then α is a surjective homomorphism and
Ker(α) = Z[t] · t.

(c) R is not a principal ideal domain.

Message: Requests? Questions?



Solutions to Quiz 5 October 25, 2006

1. Let R be an integral domain, and p a nonzero element in R. Show the following.

(a) If I = 〈p〉 is a prime ideal, then p is an irreducible element.
Solution: Since I is a prime ideal, I ̸= R. Hence p is not a unit. (Quiz 4 1(a))
Suppose p = a · b. Since a · b ∈ 〈p〉 = I and I is a prime ideal, a ∈ I or b ∈ I. Since
I = 〈p〉, p | a or p | b. If p | a, then there exists u ∈ R such that a = p · u and that
p = p · u · b. Hence p · (1 − u · b) = 0. Since p ̸= 0 and R is an integral domain, we
have u · b = 1. Thus b ∈ U(R). If p | b, we similarly obtain a ∈ U(R). Therefore, p is
irreducible.

(b) If R is a principal ideal domain and p is an irreducible element, then I = 〈p〉 is a
maximal ideal.
Solution: Suppose J is an ideal such that I ⊂ J ⊂ R. Since R is a PID, there
exists a ∈ R such that J = 〈a〉. Since p ∈ I ⊂ J = 〈a〉, there exists b ∈ R such that
p = a · b. Hence either a ∈ U(R) or b ∈ U(R) and 〈a〉 = 〈p〉. Therefore J = 〈a〉 = I
or J = R, and I is a maximal ideal.

2. Let R = Z[t], the polynomial ring over Z. Show the following.

(a) U(R) = {±1} and t is an irreducible element in R.
Solution: Suppose f · g = 1. Then 0 = deg(f · g) = deg(f) + deg(g). (Note
that this formula holds as Z is an integral domain.) Hence both f and g are in Z.
Hence deg(f) = deg(g) = 0 and f, g ∈ {±1}. Thus U(R) = {±1}. t is nonzero and
t ̸∈ U(R). If t = f · g in R, then 1 = deg(t) = deg(f · g) = deg(f) + deg(g). Hence we
may assume that f ∈ Z and g = a · t + b where a, b ∈ Z and a ̸= 0. Then f · a = 1
and f ∈ U(R). Therefore, t is irreducible.

(b) Let α : R = Z[t] → Z (f(t) 7→ f(0)). Then α is a surjective homomorphism and
Ker(α) = Z[t] · t.
Solution: It is clear that α is a ring homomorphism. It is also clear that Ker(α) =
Z[t] · t. (Let Ker(α) ∋ f(t) = a0 + a1t + · · · + antn and observe that a0 = 0.)

(c) R is not a principal ideal domain.
Solution: Since R/Ker(α) ≅ Z and Z is not a field, Ker(α) is not a maximal ideal.
If R is a principal ideal, the ideal I = 〈t〉 is an ideal generated by an irreducible
element. Therefore by 1(b), I is maximal. This is a contradiction. Thus, R is not a
PID.



Quiz 6 Due: 10:00 a.m. October 30, 2006

Division: ID#: Name:

Let R be an integral domain and P a prime ideal of R. Set S = R \ P = {x ∈ R | x ̸∈ P}. We
define a relation on R × S by the following: (a, s) ∼ (b, t) ⇔ a · t − b · s = 0. Let a/s = {(b, t) ∈
R × S | (a, s) ∼ (b, t)}. Show the following.

1. 0 ̸∈ S, 1 ∈ S and s, t ∈ S implies s · t ∈ S.

2. The relation ∼ on R × S is an equivalence relation.

3. Let S−1R = {a/s | a ∈ R ∧ s ∈ S}, the set of all equivalence classes. Define

a/s + b/t = (a · t + b · s)/(s · t) and (a/s) · (b/t) = (a · b)/(s · t).

Then these binary operations are well-defined and S−1R is an integral domain.

4. Let P ∗ = {p/s | p ∈ P, s ∈ S} ⊂ S−1R. Then P ∗ is the only maximal ideal in S−1R.

Message: Requests? Questions?
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Let R be an integral domain and P a prime ideal of R. Set S = R \ P = {x ∈ R | x ̸∈ P}.
We define a relation on R × S by the following: (a, s) ∼ (b, t) ⇔ a · t − b · s = 0. Let a/s =
{(b, t) ∈ R × S | (a, s) ∼ (b, t)}. Show the following.

1. 0 ̸∈ S, 1 ∈ S and s, t ∈ S implies s · t ∈ S.

Solution: Since 0 ∈ P , 0 ̸∈ S. Since P ̸= R, 1 ̸∈ P and 1 ∈ S. Suppose s · t ̸∈ S. Then
s · t ∈ P . Since P is a prime ideal, either s ∈ P or t ∈ P . Hence s ̸∈ S or t ̸∈ S. This
shows the contraposition of the fact that s, t ∈ S implies s · t ∈ S. Thus we have all the
assertions.

2. The relation ∼ on R × S is an equivalence relation.

Solution: (i) Since a · s − a · s = 0, (a, s) ∼ (a, s) for all a ∈ R, s ∈ S.

(ii) Suppose (a, s) ∼ (b, t). Then a · t − b · s = 0. Hence b · s − a · t = 0, which implies
(b, t) ∼ (a, s).

(iii) Suppose (a, s) ∼ (b, t) and (b, t) ∼ (c, u). Then we have a · t − b · s = b · u − c · t = 0.
Since

(a · u − c · s) · t = a · t · u − c · t · s = a · t · u − b · s · u + b · u · s − c · t · s
= (a · t − b · s) · u + (b · u − c · t) · s = 0,

a · u − c · s = 0 as R is an integral domain and t ∈ S, 0 ̸∈ S. we have (a, s) ∼ (c, u).

Therefore the relation ∼ is an equivalence relation.

3. Let S−1R = {a/s | a ∈ R ∧ s ∈ S}, the set of all equivalence classes. Define

a/s + b/t = (a · t + b · s)/(s · t) and (a/s) · (b/t) = (a · b)/(s · t).

Then these binary operations are well-defined and S−1R is an integral domain.

Solution: Suppose (a, s) ∼ (a′, s′) and (b, t) ∼ (b′, t′). We show that

(a · t + b · s, s · t) ∼ (a′ · t′ + b′ · s′, s′ · t′), and (a · b, s · t) ∼ (a′ · b′, s′ · t′).

(a · t + b · s)(s′ · t′) − (a′ · t′ + b′ · s′)(s · t)
= (a · s′ · t · t′ − a′ · s · t · t′) + (b · t′ · s · s′ − b′ · t · s · s′)
= (a · s′ − a′ · s) · t · t′ + (b · t′ − b′ · t) · s · s′ = 0,

a · b · s′ · t′ − a′ · b′ · s · t = a · b · s′ · t′ − a′ · b · s · t′ + a′ · b · s · t′ − a′ · b′ · s · t
= (a · s′ − a′ · s) · b · t′ + a′ · s · (b · t′ − b′ · t) = 0.

Hence binary operations are well-defined. Now other properties of commutative rings with
identity are easy to prove. Note that for all s ∈ S, 0/s = 0/1 = 0S−1R and s/s = 1/1 =
1S−1R. Moreover if (a/s) · (b/t) = 0/1. Then 0 = a · b · 1 − s · t · 0 = a · b. Since R is an
integral domain, we have a = 0 or b = 0, and S−1R is an integral domain.

4. Let P ∗ = {p/s | p ∈ P, s ∈ S} ⊂ S−1R. Then P ∗ is the only maximal ideal in S−1R.

Solution: It is clear that P ∗ is an ideal of S−1P . If s, t ∈ S, then s/t ∈ U(S−1R) and
hence S−1R \ P ∗ = U(S−1R). Therefore P ∗ is the unique maximal ideal of S−1R.



Quiz 7 Due: 10:00 a.m. November 6, 2006

Division: ID#: Name:

Let R = Z[
√

10] = {a + b
√

10 | a, b ∈ Z}, and N(a + b
√

10) = a2 − 10b2. Show the following.

1. For α ∈ R, α ∈ U(R) ⇔ N(α) = ±1.

2. There are infinitely many units in R. (Hint: Firstly find one, say α. Show that αn are all
distinct.)

3. For α ∈ R, N(α) ̸= ±2,±3. (Hint: Use the fact that in Z5, {a2 | a ∈ Z5} = {[0], [1], [4]}.)

4. 3 is an irreducible element in R.

5. R is not a UFD. (Hint: Check whether I = 〈3〉 is a prime ideal or not.)

Message: Requests? Questions?
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Let R = Z[
√

10] = {a + b
√

10 | a, b ∈ Z}, and N(a + b
√

10) = a2 − 10b2. Show the following.

1. For α ∈ R, α ∈ U(R) ⇔ N(α) = ±1.

Solution: First note that N(αβ) = N(α)N(β) for all elements α, β ∈ R. Let β ∈ R
such that αβ = 1. Then N(α)N(β) = 1. Since N(α) is an integer, it has to be ±1.
Conversely, if N(α) = ±1 for α = a + b

√
10. Then (a + b

√
10)(a − b

√
10) = N(a + b

√
10),

and α−1 = N(α)(a − b
√

10).

2. There are infinitely many units in R. (Hint: Firstly find one, say α. Show that αn are all
distinct.)

Solution: By 1, α = 3 −
√

10 ∈ U(R). Since |α| ≠ 1, αi = αj if and only if i = j. Since
αi ∈ U(R), there are infinitely many units in R.

3. For α ∈ R, N(α) ̸= ±2,±3. (Hint: Use the fact that in Z5, {a2 | a ∈ Z5} = {[0], [1], [4]}.)
Solution: Since N(a + b

√
10) = a2 − 10b2 ≡ a2 (mod 5), N(a + b

√
10) ∈ {[0], [1], [4]}

(mod 5). Hence N(α) ̸= ±2,±3.

4. 3 is an irreducible element in R.

Solution: Since N(3) = 9, and there is no element α ∈ R such that N(α) = ±3, 3 is
a primitive element. Note that if 3 = α · β, then 9 = N(3) = N(α)N(β), N(α) = ±1 or
N(β) = ±1. and α ∈ U(R) or β ∈ U(R).

5. R is not a UFD. (Hint: Check whether I = 〈3〉 is a prime ideal or not.)

Solution: Note that (1+
√

10)(1−
√

10) = −9 ∈ (3). If 1±
√

10 ∈ (3), then 1±
√

10 = 3·α
and −9 = N(1 ±

√
10) = N(3 · α) = N(3)N(α) = 9 · N(α). Thus α ∈ U(R) and

(1 ±
√

10)/3 ∈ R, which is absurd. Hence I is not a prime ideal. Therefore, R cannot be
a UFD.



Quiz 8 Due: 10:00 a.m. November 13, 2006

Division: ID#: Name:

Let α = 3
√

2 ∈ R, p(t) = t3−2 ∈ Q[t] and R = Q[α] = {f(α) | f(t) ∈ Q[t]}. Show the following.

1. p(t) is irreducible over Q, i.e., it is irreducible as a polynomial in Q[t].

2. 〈p(t)〉 is a maximal ideal in Q[t].

3. Q[t]/〈p(t)〉 ≅ R and that R is a field.

4. R = {a0 + a1α + a2α
2 | a0, a1, a2 ∈ Q}.

5. Find the multiplicative inverse of 1 + α and express it in the form a0 + a1α + a2α
2, where

a0, a1, a2 ∈ Q.

Message: Requests? Questions?
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Let α = 3
√

2 ∈ R, p(t) = t3−2 ∈ Q[t] and R = Q[α] = {f(α) | f(t) ∈ Q[t]}. Show the following.

1. p(t) is irreducible over Q, i.e., it is irreducible as a polynomial in Q[t].

Solution: Since Z is a UFD, we can apply (7.4.9) to p(t) ∈ Z[t] with p = 2. Note that
2 | −2 = a0, 2 | 0 = a1 = a2 and that 2 - 1 = a3, 22 - −2 = a0. Thus p(t) is irreducible
over Z. Since Q is the field of fractions of Z, p(t) is irreducible over Q by Gauss’ Lemma
(7.3.7).

2. 〈p(t)〉 is a maximal ideal in Q[t].

Solution: Since Q is a field, Q[t] is a Euclidian domain by (7.1.3). Since every Euclidean
domain is a principal ideal domain by (7.2.1), Q[t] is a principal ideal domain. Since
U(Q[t]) = Q \ {0}, every irreducible polynomial in Q[t] is an irreducible element in Q[t].
In particular, p(t) is an irreducible element in Q[t]. Thus by (7.2.6), the ideal generated
by an irreducible element p(t) is a maximal ideal in the principal ideal domain Q[t].

3. Q[t]/〈p(t)〉 ≅ R and that R is a field.

Solution: Let θα : Q[t] → C (f(t) 7→ f(α)). Then clearly θα is a ring homomorphism
and its image is R. Since Q[t] is a principal ideal domain, and Ker(θα) is an ideal, there
exists a polynomial q(t) ∈ Q[t] such that Ker(θα) = 〈q(t)〉. Since p(α) = α3−2 = 0, p(t) ∈
Ker(θα) = 〈q(t)〉 and q(t) | p(t). Since q(t) ∈ Ker(θα), q(t) is not a constant. Since p(t)
is irreducible, p(t) is a nonzero constant multiple of q(t). Thus Ker(θα) = 〈q(t)〉 = 〈p(t)〉.
Now by First Isomorphism Theorem (6.2.4), Q[t]/〈p(t)〉 = Q[t]/〈p(t)〉 ≅ Im(θα) = R, as
desired.

4. R = {a0 + a1α + a2α
2 | a0, a1, a2 ∈ Q}.

Solution: Let f(t) ∈ Q[t]. By (7.1.3), there exists q(t) and r(t) ∈ Q[t] such that
f(t) = q(t)p(t) + r(t) with deg(r(t)) < deg(p(t)) = 3. Since p(α) = 0, f(α) = r(α).
Therefore, f(α) = r(α) ∈ {a0 + a1α + a2α

2 | a0, a1, a2 ∈ Q}, as the degree of r(t) is at
most 2. This proves R ⊂ {a0 + a1α + a2α

2 | a0, a1, a2 ∈ Q}. The other inclusion is clear
by definition.

5. Find the multiplicative inverse of 1 + α and express it in the form a0 + a1α + a2α
2, where

a0, a1, a2 ∈ Q.

Solution: Let ω = (−1 +
√
−3)/2. Then 1 + ω + ω2 = 0 and ω3 = 1. Now compute

(1 + α)(1 + αω)(1 + αω2) = 1 + α(1 + ω + ω2) + α2(1 + ω + ω2) + α3 = 3.

Hence

(1 + α)−1 =
1
3
(1 + αω)(1 + αω2) =

1
3
(1 + α(ω + ω2) + α2) =

1
3
(1 − α + α2).

Therefore a0 = 1/3, a1 = −1/3 and a2 = 1/3.


