Quiz 1
Division: ID\#:

Due at 10:00 a.m. Wednesday, September 20, 2006 Name:

1. Let R be a ring. Suppose that a, b are elements of R. Show that $(-a) \cdot(-b)=a \cdot b$. Use only the definition of rings.
2. Let $\boldsymbol{Z}[t]$ be the ring of polynomials in t over the ring of rational integers. If $f, g \in \boldsymbol{Z}[t]$ satisfy $f \cdot g=1$, i.e., f is a unit and g is its inverse, then $f= \pm 1$.

Solutions to Quiz 1

1. Let R be a ring. Suppose that a, b are elements of R. Show that $(-a) \cdot(-b)=a \cdot b$. Use only the definition of rings.

Solution: Let c be an arbitrary element.

$$
0=c \cdot 0+(-(c \cdot 0))=c \cdot(0+0)+(-(c \cdot 0))=c \cdot 0+c \cdot 0+(-(c \cdot 0))=c \cdot 0
$$

Similarly, $0 \cdot c=0$. Clearly $-(-c)=c$ as $(-c)+c=0=c+(-c)$. Now

$$
\begin{aligned}
(-a) \cdot(-b) & =(-a) \cdot(-b)+(-a) \cdot b+(-((-a) \cdot b)) \\
& =(-a) \cdot((-b)+b)+(-((-a) \cdot b+a \cdot b+(-(a \cdot b)))) \\
& =(-a) \cdot 0+(-((-a)+a) \cdot b+(-(a \cdot b)))) \\
& =0+(-(0 \cdot b+(-(a \cdot b)))) \\
& =-(0+(-(a \cdot b))) \\
& =-(-(a \cdot b)) \\
& =a \cdot b .
\end{aligned}
$$

2. Let $\boldsymbol{Z}[t]$ be the ring of polynomials in t over the ring of rational integers. If $f, g \in \boldsymbol{Z}[t]$ satisfy $f \cdot g=1$, i.e., f is a unit and g is its inverse, then $f= \pm 1$.
Solution: Let $m=\operatorname{deg} f$ and $n=\operatorname{deg} g, f=a_{m} t^{m}+\cdots+a_{0}$ and $g=b_{n} t^{n}+\cdots+b_{0}$. Since $a_{m} \neq 0, b_{n} \neq 0$ and $a_{m}, b_{n} \in \boldsymbol{Z}, a_{m} \cdot b_{n} \neq 0$. Hence $\operatorname{deg} f \cdot g=m+n$ as $f \cdot g=a_{m} b_{n} t^{m+n}+\cdots+a_{0} b_{0}$. On the other hand, $0=\operatorname{deg} 1=\operatorname{deg} f \cdot g$ by assumption. Hence $m=n=0$. In particular, $f=a_{0}, g=b_{0}$ and $a_{0} \cdot b_{0}=1$. Since $a_{0}, b_{0} \in \boldsymbol{Z}, a_{0}= \pm 1$ and we have the assertion.

Using the notation on page 102, $U(\boldsymbol{Z}[t])=\{ \pm 1\}$. Can you determine $U\left(\boldsymbol{Z}_{4}[t]\right)$? Note that $\left([2]_{4} t+[1]_{4}\right)\left([2]_{4} t+[1]_{4}\right)=[1]_{4}$.

Quiz 2

Division:

ID\#:

Due at 10:00 a.m. Wednesday, September 27, 2006 Name:

Let R be a ring. Prove the following.

1. Let $x \in R$. Then $R x=\{r \cdot x \mid r \in R\}$ is a left ideal of R.
2. Let I and J be left ideals of R. Then $I \cap J$ is a left ideal of R.
3. Let I and J be left ideals of R. Then $I+J=\{x+y \mid x \in I, y \in J\}$ is a left ideal of R.
4. Let I be a left ideal of R and S a subring of R. Then $I \cap S$ is a left ideal of S.
5. Let I be a left ideal of R. Then $A=\{a \in R \mid a x=0$ for all $x \in I\}$ is a left ideal of R.

Solutions to Quiz 2

Let R be a ring. Prove the following.

In order to show a nonempty subset Y of a ring X is a left ideal, it suffices to show; (i) $a+b \in Y$ whenever $a, b \in Y$, (ii) $-a \in Y$ whenever $a \in Y$ and (iii) $c \cdot a \in Y$ whenever $c \in X$ and $a \in Y$.

By definition a left ideal is an additive subgroup of X satisfying the property (iii) above, and a nonempty subset of a group is a subgroup if it is closed under the binary operation and taking inverse. See (3.3.3) in the textbook. If R has an identity element 1 , it is not difficult to show that $(-1) a=-a$. Hence the condition (ii) follows from (iii). But the existence of an identity element is not guaranteed in general.

1. Let $x \in R$. Then $R x=\{r \cdot x \mid r \in R\}$ is a left ideal of R.

Solution: Let $a, b \in R x$. Then by the definition of $R x$, there exist $r, s \in R$ such that $a=r \cdot x$ and $b=s \cdot x$. (i) Since $a+b=r \cdot x+s \cdot x=(r+s) \cdot x$ and $r+s \in R$, $a+b \in R x$. (ii) Since $r \cdot x+(-r) \cdot x=(r+(-r)) \cdot x=0 \cdot x=0,(-r) \cdot x=-(r \cdot x)$. Hence $-a=-(r \cdot x)=(-r) \cdot x \in R x$. For the proof of $0 \cdot x=0$, see Solutions to Quiz 1. (iii) Let $s \in R$. Then $s \cdot a=s \cdot(r \cdot x)=(s \cdot r) \cdot x$ and $s \cdot r \in R$. Hence $s \cdot a \in R x$.
2. Let I and J be left ideals of R. Then $I \cap J$ is a left ideal of R.

Solution: Let $a, b \in I \cap J$. Then $a, b \in I$ and $a, b \in J$. Since both I and J are left ideals, (i) $a+b \in I$ and $a+b \in J$, hence $a+b \in I \cap J$, (ii) $-a \in I$ and $-a \in J$, hence $-a \in I \cap J$, (iii) $r \cdot a \in I$ and $r \cdot a \in J$, hence $r \cdot a \in I \cap J$ whenever $r \in R$. Therefore $I \cap J$ is a left ideal of R.
3. Let I and J be left ideals of R. Then $I+J=\{x+y \mid x \in I, y \in J\}$ is a left ideal of R.

Solution: Let $a, b \in I+J$. Then by the definition of $I+J$, there exist $x, x^{\prime} \in I$ and $y, y^{\prime} \in J$ such that $a=x+y$ and $b=x^{\prime}+y^{\prime}$. Now we use the fact that both I and J are left ideals. (i) Since $a+b=(x+y)+\left(x^{\prime}+y^{\prime}\right)=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) \in I+J$ and $x+x^{\prime} \in I$, $y+y^{\prime} \in J, a+b \in I+J$. (ii) $-a=-(x+y)=(-x)+(-y) \in I+J$ as $-x \in I$ and $-y \in J$. (iii) Let $r \in R$. Then $r \cdot a=r \cdot(x+y)=r \cdot x+r \cdot y$ and $r \cdot x \in I$ and $r \cdot y \in J$. Hence $r \cdot a \in I+J$.
4. Let I be a left ideal of R and S a subring of R. Then $I \cap S$ is a left ideal of S.

Solution: (i) and (ii) follow from the proof of 2 . Let $s \in S$ and $x \in I \cap S$. Since I is a left ideal of R and $s \in S \subset R, s \cdot x \in I$. Since S is a subring and $s, x \in S, s \cdot x \in S$. Hence $s \cdot x \in I \cap S$. This proves (iii) and $I \cap S$ is a left ideal of S.
5. Let I be a left ideal of R. Then $A=\{a \in R \mid a x=0$ for all $x \in I\}$ is a left ideal of R.

Solution: Let $a, b \in A$. Then $a \cdot x=0=b \cdot x$ whenever $x \in I$. Let x be an arbitrary element of I. (i) Since $(a+b) \cdot x=a \cdot x+b \cdot x=0+0=0, a+b \in A$. (ii) As in the proof of $1,(-a) \cdot x=-(a x)$. Hence $(-a) \cdot x=0$. Therefore $-a \in A$. (iii) Let $r \in R$. Then $(r \cdot a) \cdot x=r \cdot(a \cdot x)=r \cdot 0=0$. Hence $r \cdot a \in A$ and A is a left ideal of R.

Quiz 3

Division:

Let $R=\boldsymbol{Z}_{18}$.

1. Find all zero divisors of R.
2. Find $U(R)$, i.e, the set of all units in R.
3. Find a prime ideal I of R.
4. Let I be the prime ideal chosen in the previous problem. Determine whether R / I is a field.
5. Find all proper deals of R which are not prime ideals. Note that an ideal J of R is proper if $J \neq R$.

Solutions to Quiz 3

Let $R=\boldsymbol{Z}_{18}=\{[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]\}$.

1. Find all zero divisors of R.

Solution: Let $\mathrm{ZD}(R)$ denote the set of all zero devisors of R. Since R is a commutative ring,

$$
\mathrm{ZD}(R)=\{a \in R \mid(a \neq 0) \wedge(\exists b \in R)[(b \neq 0) \wedge(a \cdot b=0)]\}
$$

Hence

$$
\mathrm{ZD}(R)=\{[2],[3],[4],[6],[8],[9],[10],[12],[14],[15],[16]\}
$$

2. Find $U(R)$, i.e, the set of all units in R.

Solution: Since R is a commutative ring,

$$
U(R)=\{a \in R \mid(\exists b \in R)[a \cdot b=1]\}=\{a \in R \mid a \cdot b=1 \text { for some } b \in R\} .
$$

Hence

$$
U(R)=\{[1],[5],[7],[11],[13],[17]\}
$$

3. Find a prime ideal I of R.

Solution: Let $I=\{[0],[2],[4],[6],[8],[10],[12],[14],[16]\}$. Since $I=R \cdot[2], I$ is of form $R x$ with $x \in R$, and I is an ideal. See Quiz 2, Problem 1. Since every ideal is an additive subgroup of R, if J with $I \subset J \subset R$ is an ideal of $R,|J|$ is a divisor of $|R|=18$. Since $|I|=9$ and $I \subset J, I=J$ or $J=R$. Hence I is a maximal ideal. Therefore I is a prime ideal. (6.3.7).
$I^{\prime}=\{[0],[3],[6],[9],[12],[15]\}$ is also a prime ideal. I^{\prime} is a maximal ideal as well. It is not so difficult to check that there are no other prime ideals. So in this particular case, I is a prime ideal if and only if I is a maximal ideal.
4. Let I be the prime ideal chosen in the previous problem. Determine whether R / I is a field.
Solution: As we have seen above, I is a maximal ideal. Hence by (6.3.7) in the textbook, R / I is a field.
Note that $R / I=\{I,[1]+I\}$ and it is isomorphic to \boldsymbol{Z}_{2}, a field with two elements. $R / I^{\prime}=\left\{I^{\prime},[1]+I^{\prime},[2]+I^{\prime}\right\}$ is isomorphic to \boldsymbol{Z}_{3}. .
5. Find all proper deals of R which are not prime ideals. Note that an ideal J of R is proper if $J \neq R$.
Solution: As an additive group R is a cyclic group and all of its subgroup is cyclic. Hence all ideals of R are of form $R \cdot x$. Hence $R \cdot[0]=\{[0]\}, R \cdot[6]=\{[0],[6],[12]\}$, $R \cdot[9]=\{[0],[9]\}$.
Note that if x is a unit, $R x=R$. So we must choose non-units. Please refer to (4.1.7).

Division: ID\#: Name:

1. Let R be a ring with identity element 1 . Prove or find a counter example for the following statements.
(a) For $a, b \in R,(-a) \cdot b=(-1) \cdot a \cdot b$.
(b) There exist nonzero elements $a, b \in R, a \cdot b=0$.
(c) For elements $a, b \in R, a \cdot b-b \cdot a=0$.
(d) Let f and g be polynomials in $R[t]$. Then $\operatorname{deg}(f)+\operatorname{deg}(g) \geq \operatorname{deg}(f g)$.
2. Show that the polynomial ring $R[t, u]=(R[t])[u]$ with two indeterminates t and u over an integral domain R is an integral domain.
3. Let R be an integral domain. For $a, b \in R$, suppose $R \cdot a=R \cdot b$. Then there exists a unit $u \in U(R)$ such that $b=u a$.
4. Let R and R^{\prime} be commutative rings with identity. Suppose $\alpha: R \rightarrow R^{\prime}$ is a ring homomorphism, I is an ideal of R and J is an ideal of R^{\prime}.
(a) Show that $\alpha^{-1}(J)=\{x \in R \mid \alpha(x) \in J\}$ is an ideal of R.
(b) Show that $\alpha^{-1}(\alpha(I))=I+\operatorname{Ker}(\alpha)$.
5. Let $\boldsymbol{Z}[t]$ be a polynomial ring over \boldsymbol{Z} and $R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\}$.
(a) Let $\alpha: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-1}))$. Then α is a ring homomorphism.
(b) Show that $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$, and R is an integral domain.
(c) $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is a prime ideal of $\boldsymbol{Z}[t]$.
(d) Show that $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is not a maximal ideal of $\boldsymbol{Z}[t]$.

Solutions to Midterm

1. Let R be a ring with identity element 1 . Prove or find a counter example for the following statements.
(a) For $a, b \in R,(-a) \cdot b=(-1) \cdot a \cdot b$.

Solution: It suffices to show that $-a=(-1) \cdot a$. Recall that $0 \cdot a=0$. (See Quiz 1.)
$-a=(-a)+(1+(-1)) \cdot a=(-a)+1 \cdot a+(-1) \cdot a=(-a)+a+(-1) \cdot a=(-1) \cdot a$.
Hence $-a=(-1) \cdot a$ and $(-a) \cdot b=(-1) \cdot a \cdot b$ for all $a, b \in R$.
(b) For nonzero elements $a, b \in R, a \cdot b=0$. (I meant the following: There exist nonzero elements $a, b \in R, a \cdot b=0$.)
Solution: Let $R=\boldsymbol{Z}_{4}=\left\{[0]_{4},[1]_{4},[2]_{4},[3]_{4}\right\}$. While $[2]_{4} \neq[0]_{4}=0_{R}$, $[2]_{4} \cdot[2]_{4}=[0]_{4}=0_{R}$.
(c) For elements $a, b \in R, a \cdot b-b \cdot a=0$.

Solution: Let $R=\operatorname{Mat}_{2}(\boldsymbol{R})$ be the 2×2 matrix ring over the reals. Let

$$
a=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { and } b=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Then

$$
\begin{aligned}
a \cdot b-b \cdot a & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

(d) Let f and g be polynomials in $R[t]$. Then $\operatorname{deg}(f)+\operatorname{deg}(g) \geq \operatorname{deg}(f g)$.

Solution: Let $f=a_{m} t^{m}+a_{m-1} t^{m-1}+\cdots+a_{0}$ and $g=b_{n} t^{n}+b_{n-1} t^{n-1}+\cdots+b_{0}$. Suppose $a_{m} \neq 0 \neq b_{n}$. Then $\operatorname{deg} f=m$ and $\operatorname{deg} g=n$. Since

$$
f \cdot g=a_{m} b_{n} t^{m+n}+\left(a_{m} b_{n-1}+a_{m-1} b_{n}\right) t^{m+n-1}+\cdots+a_{0} b_{0},
$$

$\operatorname{deg}(f \cdot g) \leq m+n=\operatorname{deg} f+\operatorname{deg} g$. Note that if R is a domain, then equality holds in the equation as $a_{m} b_{n} \neq 0$.
2. Show that the polynomial ring $R[t, u]=(R[t])[u]$ with two indeterminates t and u over an integral domain R is an integral domain.
Solution: As we have seen in $1(\mathrm{~d})$, we have $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)$ if R is a domain. Hence if $f \cdot g=0$ in $R[t],-\infty=\operatorname{deg} 0=\operatorname{deg} f \cdot g=\operatorname{deg} f+\operatorname{deg} g$ implies that at least one of $\operatorname{deg} f$ or $\operatorname{deg} g$ is $-\infty$. Hence either $f=0$ or $g=0$. Thus $R[t]$ is a domain. Therefore in general, if R is a domain, $R[t]$ is a domain. Since $R[t, u]$ is a polynomial ring over a domain $R[t], R[t, u]$ is also a domain as well.
3. Let R be an integral domain. For $a, b \in R$, suppose $R \cdot a=R \cdot b$. Then there exists a unit $u \in U(R)$ such that $b=u a$.
Solution: Suppose $R \cdot a=R \cdot b$. By definition of a ring with identity, $1 \neq 0$ and $R \neq\{0\}$. See page 97. So if $a=0$, then $b=1 \cdot b \in R \cdot b=R \cdot a=\{0\}$ implies that $b=0$. In this case $a=0=1 \cdot 0=1 \cdot b$, and the assertion holds. Hence we may assume that $a \neq 0$. Since $a \in R \cdot a=R \cdot b$, there exists $r \in R$ such that $a=r \cdot b$. Similarly, since $b \in R \cdot b=R \cdot a$, there exists $s \in R$ such that $b=u \cdot a$.

$$
(r \cdot u-1) \cdot a=r \cdot u \cdot a-a=r \cdot b-a=a-a=0 .
$$

Since $a \neq 0$ and R is an integral domain, $r \cdot u-1=0$ and $r \cdot u=1$. Thus u is a unit. Note that an integral domain is commutative. Hence $b=u \cdot a$ and u is a unit, as desired.
4. Let R and R^{\prime} be commutative rings with identity. Suppose $\alpha: R \rightarrow R^{\prime}$ is a ring homomorphism, I is an ideal of R and J is an ideal of R^{\prime}.
(a) Show that $\alpha^{-1}(J)=\{x \in R \mid \alpha(x) \in J\}$ is an ideal of R.

Solution: Fist note that $\alpha(0)=0$ and $\alpha(-x)=-\alpha(x)$ as α is a homomorphism. In particular, $0 \in \alpha^{-1}(J)$ and $\alpha^{-1}(J) \neq \emptyset$. Let $a, b \in \alpha^{-1}(J)$ and $r \in R$. Then

$$
\alpha(a+b)=\alpha(a)+\alpha(b) \in J, \alpha(-a)=-\alpha(a) \in J, \quad \text { and } \alpha(r \cdot a)=\alpha(r) \cdot \alpha(a) \in J
$$

as J is an ideal in R^{\prime}. Hence $a+b \in \alpha^{-1}(J),-a \in \alpha^{-1}(J)$ and $r \cdot a \in \alpha^{-1}(J)$. Therefore $\alpha^{-1}(J)$ is an ideal in R.
(b) Show that $\alpha^{-1}(\alpha(I))=I+\operatorname{Ker}(\alpha)$.

Solution: In the following we do not need the fact that I is an ideal in R. Assume that I is a subset of R. Let $x \in I+\operatorname{Ker}(\alpha)$. Then there exists $a \in I$ and $b \in \operatorname{Ker}(\alpha)$ such that $x=a+b$. Since $\alpha(x)=\alpha(a+b)=\alpha(a)+\alpha(b)=\alpha(a) \in \alpha(I), x \in \alpha^{-1}(\alpha(I))$. Hence $I+\operatorname{Ker}(\alpha) \subset \alpha^{-1}(\alpha(I))$.
Let $x \in \alpha^{-1}(\alpha(I))$. Then by definition, $\alpha(x) \in \alpha(I)$. Hence there exists $a \in I$ such that $\alpha(x)=\alpha(a)$. Now $\alpha(x-a)=\alpha(x)-\alpha(a)=0$. Hence $x-a \in \operatorname{Ker}(\alpha)$. Let $b \in \operatorname{Ker}(\alpha)$ such that $x-a=b$. Then $x=a+b \in I+\operatorname{Ker}(\alpha)$. Thus $\alpha^{-1}(\alpha(I)) \subset$ $I+\operatorname{Ker}(\alpha)$. Therefore, $\alpha^{-1}(\alpha(I))=I+\operatorname{Ker}(\alpha)$.
5. Let $\boldsymbol{Z}[t]$ be a polynomial ring over \boldsymbol{Z} and $R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\}$.
(a) Let $\alpha: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-1}))$. Then α is a ring homomorphism.

Solution: This is almost clear. See Exercise 6.2.7. Let $f(t), g(t) \in \boldsymbol{Z}[t]$. Then

$$
\begin{aligned}
\alpha(f(t)+g(t)) & =f(\sqrt{-1})+g(\sqrt{-1})=\alpha(f(t))+\alpha(g(t)), \text { and } \\
\alpha(f(t) \cdot g(t)) & =f(\sqrt{-1}) \cdot g(\sqrt{-1})=\alpha(f(t)) \cdot \alpha(g(t)) .
\end{aligned}
$$

Hence α is a ring homomorphism.
(b) Show that $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$, and R is an integral domain.

Solution: By definition, $R=\operatorname{Im}(\alpha) \subset C$. Since α is a ring homomorphism, R is a subring of a field \boldsymbol{C}. Since \boldsymbol{C} does not have a zero-divisor, R is an integral domain. Since for any nonnegative integer $n, \alpha\left(t^{2 n}\right)=\sqrt{-1}^{2 n}=(-1)^{n}$, and $\alpha\left(t^{2 n+1}\right)=$ $\sqrt{-1}^{2 n+1}=(-1)^{n} \sqrt{-1}, R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\} \subset\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$. Since $\alpha(a+b t)=a+b \sqrt{-1}$, the other inclusion, $R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\} \supset\{a+b \sqrt{-1} \mid$ $a, b \in \boldsymbol{Z}\}$ is clear. Hence we have $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$.
(c) $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is a prime ideal of $\boldsymbol{Z}[t]$.

Solution: By First Isomorphism Theorem (6.2.4), $R=\operatorname{Im}(\alpha) \simeq \boldsymbol{Z}[t] / \operatorname{Ker}(\alpha)$. Hence by (6.3.7), $\operatorname{Ker}(\alpha)$ is a prime ideal as $1 \notin \operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\alpha) \neq R$. Let $I=\boldsymbol{Z}[t]\left(t^{2}+1\right)$. Since $t^{2}+1 \in \operatorname{Ker}(\alpha)$, it is clear that $I \subset \operatorname{Ker}(\alpha)$. Let $f(t) \in \operatorname{Ker}(\alpha)$. Then there exists a polynomial $g(t)$ such that $f(t)=g(t)\left(t^{2}+1\right)+a \cdot t+b$. Since $f(t) \in \operatorname{Ker}(\alpha)$,

$$
0=\alpha(f(t))=f(\sqrt{-1})=g(\sqrt{-1})\left(\sqrt{-1}^{2}+1\right)+a \cdot \sqrt{-1}+b=a \sqrt{-1}+b
$$

Since a and b are integers, $a=b=0$ and $f(t)=g(t)\left(t^{2}+1\right)$. Therefore, $f(t) \in$ $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ and $\operatorname{Ker}(\alpha)=\boldsymbol{Z}[t]\left(t^{2}+1\right)$. Therefore, $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is a prime ideal.
(d) Show that $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is not a maximal ideal of $\boldsymbol{Z}[t]$.

Solution: Suppose $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is a maximal ideal, then $R \simeq \boldsymbol{Z}[t] / \boldsymbol{Z}[t]\left(t^{2}+1\right)$ is a field. But $2^{-1} \notin R$ and R is not a field. Hence $\boldsymbol{Z}[t]\left(t^{2}+1\right)$ is not a maximal ideal. Note that $\boldsymbol{Z}[t]\left(t^{2}+1\right) \subset \boldsymbol{Z}[t]\left(t^{2}+1\right)+\boldsymbol{Z}[t] \cdot 2 \subset \boldsymbol{Z}[t]$.

Quiz 4

1. Let R be a commutative ring with identity. Prove the following.
(a) $a \in U(R)$ if and only if $R \cdot a=R$.
(b) Let a be a nonzero element of R and $a \notin U(R)$. Then a is an irreducible element in R if and only if $R \cdot a \subset R \cdot b \subset R$ implies $R \cdot a=R \cdot b$ or $R \cdot b=R$.
2. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\}$. Let $N: R \rightarrow \boldsymbol{Z}\left(\alpha=a+b \sqrt{-3} \mapsto N(\alpha)=a^{2}+3 b^{2}\right)$.
(a) Show that R is an integral domain.
(b) Show that for $\alpha, \beta \in R, N(\alpha \cdot \beta)=N(\alpha) N(\beta)$.
(c) Show that $\alpha \in U(R) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha= \pm 1$.

Solutions to Quiz 4

1. Let R be a commutative ring with identity. Prove the following.
(a) $a \in U(R)$ if and only if $R \cdot a=R$.

Solution: Suppose $a \in U(R)$. Then for every $x \in R, x=x\left(a^{-1} a\right)=\left(x a^{-1}\right) a \in R \cdot a$. Hence $R \subset R \cdot a$. Therefore $R \cdot a=R$. Conversely assume $R \cdot a=R$. Since $1 \in R=R \cdot a$, there exists $b \in R$ such that $b \cdot a=1$. Since R is commutative, $a \in U(R)$.
N.B. This directly follows from Problem 3 in Take Home Midterm by setting $b=1$.
(b) Let a be a nonzero element of R and $a \notin U(R)$. Then a is an irreducible element in R if and only if $R \cdot a \subset R \cdot b \subset R$ implies $R \cdot a=R \cdot b$ or $R \cdot b=R$.
Solution: Suppose a is irreducible and $R \cdot a \subset R \cdot b \subset R$. Since $a \in R \cdot a \subset R \cdot b$, there exists $c \in R$ such that $a=c \cdot b$. Since a is irreducible, $c \in U(R)$ or $b \in U(R)$. If $c \in U(R)$ by Problem 3 in Take Home Midterm, $R \cdot a=R \cdot b$. If $b \in U(R)$, then $R \cdot b=R$ by Problem 1. Hence $R \cdot a \subset R \cdot b \subset R$ implies $R \cdot a=R \cdot b$ or $R \cdot b=R$ in this case.
Conversely suppose $a=c \cdot b$ with $c, b \in R$. Since $a \in R \cdot b, R \cdot a \subset R \cdot b \subset R$. Now by our assumption, $R \cdot a=R \cdot b$ or $R \cdot b=R$. If $R \cdot b=R$, then by Problem $1, b \in U(R)$. On the other hand if $R \cdot a=R \cdot b$, then by Problem 3 in Take Home Midterm, there exists $u \in U(R)$ such that $a=u \cdot b$. Since $a=b \cdot c, 0=a-a=b \cdot(u-c)$. If $b=0$, then $R \cdot a=R \cdot b=\{0\}$ which is absurd as $a \neq 0$. Hence $u=c$ as R is an integral domain. Therefore, $a=c \cdot b$ with $c, b \in R$ implies $b \in U(R)$ or $c \in U(R)$ and a is irreducible.
2. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\}$. Let $N: R \rightarrow \boldsymbol{Z}\left(\alpha=a+b \sqrt{-3} \mapsto N(\alpha)=a^{2}+3 b^{2}\right)$.
(a) Show that R is an integral domain.

Solution: As in Problem 5 (a), (b) in Take Home Midterm, $\alpha: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto$ $f(\sqrt{-3})$) is a ring homomorphism. Hence its image R is a subring of \boldsymbol{C}. Since \boldsymbol{C} does not have a zero divisor, R is an integral domain.
(b) Show that for $\alpha, \beta \in R, N(\alpha \cdot \beta)=N(\alpha) N(\beta)$.

Solution: Let $\alpha=a+b \sqrt{-3}$ and $\beta=c+d \sqrt{-3}$. Then

$$
\begin{aligned}
N(\alpha \cdot \beta) & =N((a c-3 b d)+(a d+b c) \sqrt{-3}))=(a c-3 b d)^{2}+3(a d+b c)^{2} \\
& =a^{2} c^{2}-6 a b c d+9 b^{2} d^{2}+3 a^{2} d^{2}+6 a b c d+3 b^{2} c^{2} \\
& =\left(a^{2}+3 b^{2}\right)\left(c^{2}+3 d^{2}\right)=N(\alpha) N(\beta)
\end{aligned}
$$

The fact also follows from the property of complex conjugate as $\overline{\alpha \cdot \beta}=\bar{\alpha} \bar{\beta}$ and $N(\alpha)=\alpha \cdot \bar{\alpha}$.
(c) Show that $\alpha \in U(R) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha= \pm 1$.

Solution: Suppose $\alpha \in U(R)$. Then $\alpha \beta=1$ implies $N(\alpha) N(\beta)=N(1)=1$. Since $N(\alpha)$ and $N(\beta)$ are both nonnegative integers, $N(\alpha)=1$. Conversely if $N(\alpha)=1$, then $\alpha \cdot \bar{\alpha}=N(\alpha)=1$. Hence, $\alpha \in U(R)$. Since $N(\alpha)=a^{2}+3 b^{2}$. it is clear that $N(\alpha)=1$ if and only if $\alpha= \pm 1$.

Quiz 5

Due: 10:00 a.m. October 25, 2006
Division:
ID\#:
Name:

1. Let R be an integral domain, and p a nonzero element in R. Show the following.
(a) If $I=\langle p\rangle$ is a prime ideal, then p is an irreducible element.
(b) If R is a principal ideal domain and p is an irreducible element, then $I=\langle p\rangle$ is a maximal ideal.
2. Let $R=\boldsymbol{Z}[t]$, the polynomial ring over \boldsymbol{Z}. Show the following.
(a) $U(R)=\{ \pm 1\}$ and t is an irreducible element in R.
(b) Let $\alpha: R=\boldsymbol{Z}[t] \rightarrow \boldsymbol{Z}(f(t) \mapsto f(0))$. Then α is a surjective homomorphism and $\operatorname{Ker}(\alpha)=\boldsymbol{Z}[t] \cdot t$.
(c) R is not a principal ideal domain.

Solutions to Quiz 5

1. Let R be an integral domain, and p a nonzero element in R. Show the following.
(a) If $I=\langle p\rangle$ is a prime ideal, then p is an irreducible element.

Solution: Since I is a prime ideal, $I \neq R$. Hence p is not a unit. (Quiz $41(\mathrm{a})$) Suppose $p=a \cdot b$. Since $a \cdot b \in\langle p\rangle=I$ and I is a prime ideal, $a \in I$ or $b \in I$. Since $I=\langle p\rangle, p \mid a$ or $p \mid b$. If $p \mid a$, then there exists $u \in R$ such that $a=p \cdot u$ and that $p=p \cdot u \cdot b$. Hence $p \cdot(1-u \cdot b)=0$. Since $p \neq 0$ and R is an integral domain, we have $u \cdot b=1$. Thus $b \in U(R)$. If $p \mid b$, we similarly obtain $a \in U(R)$. Therefore, p is irreducible.
(b) If R is a principal ideal domain and p is an irreducible element, then $I=\langle p\rangle$ is a maximal ideal.
Solution: Suppose J is an ideal such that $I \subset J \subset R$. Since R is a PID, there exists $a \in R$ such that $J=\langle a\rangle$. Since $p \in I \subset J=\langle a\rangle$, there exists $b \in R$ such that $p=a \cdot b$. Hence either $a \in U(R)$ or $b \in U(R)$ and $\langle a\rangle=\langle p\rangle$. Therefore $J=\langle a\rangle=I$ or $J=R$, and I is a maximal ideal.
2. Let $R=\boldsymbol{Z}[t]$, the polynomial ring over \boldsymbol{Z}. Show the following.
(a) $U(R)=\{ \pm 1\}$ and t is an irreducible element in R.

Solution: Suppose $f \cdot g=1$. Then $0=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. (Note that this formula holds as \boldsymbol{Z} is an integral domain.) Hence both f and g are in \boldsymbol{Z}. Hence $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ and $f, g \in\{ \pm 1\}$. Thus $U(R)=\{ \pm 1\} . t$ is nonzero and $t \notin U(R)$. If $t=f \cdot g$ in R, then $1=\operatorname{deg}(t)=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. Hence we may assume that $f \in \boldsymbol{Z}$ and $g=a \cdot t+b$ where $a, b \in \boldsymbol{Z}$ and $a \neq 0$. Then $f \cdot a=1$ and $f \in U(R)$. Therefore, t is irreducible.
(b) Let $\alpha: R=\boldsymbol{Z}[t] \rightarrow \boldsymbol{Z}(f(t) \mapsto f(0))$. Then α is a surjective homomorphism and $\operatorname{Ker}(\alpha)=\boldsymbol{Z}[t] \cdot t$.
Solution: It is clear that α is a ring homomorphism. It is also clear that $\operatorname{Ker}(\alpha)=$ $\boldsymbol{Z}[t] \cdot t$. (Let $\operatorname{Ker}(\alpha) \ni f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ and observe that $a_{0}=0$.)
(c) R is not a principal ideal domain.

Solution: \quad Since $R / \operatorname{Ker}(\alpha) \simeq \boldsymbol{Z}$ and \boldsymbol{Z} is not a field, $\operatorname{Ker}(\alpha)$ is not a maximal ideal. If R is a principal ideal, the ideal $I=\langle t\rangle$ is an ideal generated by an irreducible element. Therefore by $1(\mathrm{~b}), I$ is maximal. This is a contradiction. Thus, R is not a PID.

Quiz 6

Name:

Let R be an integral domain and P a prime ideal of R. Set $S=R \backslash P=\{x \in R \mid x \notin P\}$. We define a relation on $R \times S$ by the following: $(a, s) \sim(b, t) \Leftrightarrow a \cdot t-b \cdot s=0$. Let $a / s=\{(b, t) \in$ $R \times S \mid(a, s) \sim(b, t)\}$. Show the following.

1. $0 \notin S, 1 \in S$ and $s, t \in S$ implies $s \cdot t \in S$.
2. The relation \sim on $R \times S$ is an equivalence relation.
3. Let $S^{-1} R=\{a / s \mid a \in R \wedge s \in S\}$, the set of all equivalence classes. Define

$$
a / s+b / t=(a \cdot t+b \cdot s) /(s \cdot t) \text { and }(a / s) \cdot(b / t)=(a \cdot b) /(s \cdot t) .
$$

Then these binary operations are well-defined and $S^{-1} R$ is an integral domain.
4. Let $P^{*}=\{p / s \mid p \in P, s \in S\} \subset S^{-1} R$. Then P^{*} is the only maximal ideal in $S^{-1} R$.

Solutions to Quiz 6

Let R be an integral domain and P a prime ideal of R. Set $S=R \backslash P=\{x \in R \mid x \notin P\}$. We define a relation on $R \times S$ by the following: $(a, s) \sim(b, t) \Leftrightarrow a \cdot t-b \cdot s=0$. Let $a / s=$ $\{(b, t) \in R \times S \mid(a, s) \sim(b, t)\}$. Show the following.

1. $0 \notin S, 1 \in S$ and $s, t \in S$ implies $s \cdot t \in S$.

Solution: Since $0 \in P, 0 \notin S$. Since $P \neq R, 1 \notin P$ and $1 \in S$. Suppose $s \cdot t \notin S$. Then $s \cdot t \in P$. Since P is a prime ideal, either $s \in P$ or $t \in P$. Hence $s \notin S$ or $t \notin S$. This shows the contraposition of the fact that $s, t \in S$ implies $s \cdot t \in S$. Thus we have all the assertions.
2. The relation \sim on $R \times S$ is an equivalence relation.

Solution: (i) Since $a \cdot s-a \cdot s=0,(a, s) \sim(a, s)$ for all $a \in R, s \in S$.
(ii) Suppose $(a, s) \sim(b, t)$. Then $a \cdot t-b \cdot s=0$. Hence $b \cdot s-a \cdot t=0$, which implies $(b, t) \sim(a, s)$.
(iii) Suppose $(a, s) \sim(b, t)$ and $(b, t) \sim(c, u)$. Then we have $a \cdot t-b \cdot s=b \cdot u-c \cdot t=0$. Since

$$
\begin{aligned}
(a \cdot u-c \cdot s) \cdot t & =a \cdot t \cdot u-c \cdot t \cdot s=a \cdot t \cdot u-b \cdot s \cdot u+b \cdot u \cdot s-c \cdot t \cdot s \\
& =(a \cdot t-b \cdot s) \cdot u+(b \cdot u-c \cdot t) \cdot s=0,
\end{aligned}
$$

$a \cdot u-c \cdot s=0$ as R is an integral domain and $t \in S, 0 \notin S$. we have $(a, s) \sim(c, u)$.
Therefore the relation \sim is an equivalence relation.
3. Let $S^{-1} R=\{a / s \mid a \in R \wedge s \in S\}$, the set of all equivalence classes. Define

$$
a / s+b / t=(a \cdot t+b \cdot s) /(s \cdot t) \text { and }(a / s) \cdot(b / t)=(a \cdot b) /(s \cdot t) .
$$

Then these binary operations are well-defined and $S^{-1} R$ is an integral domain.
Solution: Suppose $(a, s) \sim\left(a^{\prime}, s^{\prime}\right)$ and $(b, t) \sim\left(b^{\prime}, t^{\prime}\right)$. We show that

$$
\begin{aligned}
& (a \cdot t+b \cdot s, s \cdot t) \sim\left(a^{\prime} \cdot t^{\prime}+b^{\prime} \cdot s^{\prime}, s^{\prime} \cdot t^{\prime}\right), \text { and }(a \cdot b, s \cdot t) \sim\left(a^{\prime} \cdot b^{\prime}, s^{\prime} \cdot t^{\prime}\right) . \\
& (a \cdot t+b \cdot s)\left(s^{\prime} \cdot t^{\prime}\right)-\left(a^{\prime} \cdot t^{\prime}+b^{\prime} \cdot s^{\prime}\right)(s \cdot t) \\
& =\left(a \cdot s^{\prime} \cdot t \cdot t^{\prime}-a^{\prime} \cdot s \cdot t \cdot t^{\prime}\right)+\left(b \cdot t^{\prime} \cdot s \cdot s^{\prime}-b^{\prime} \cdot t \cdot s \cdot s^{\prime}\right) \\
& =\left(a \cdot s^{\prime}-a^{\prime} \cdot s\right) \cdot t \cdot t^{\prime}+\left(b \cdot t^{\prime}-b^{\prime} \cdot t\right) \cdot s \cdot s^{\prime}=0, \\
& \begin{aligned}
a \cdot b \cdot s^{\prime} \cdot t^{\prime}-a^{\prime} \cdot b^{\prime} \cdot s \cdot t & =a \cdot b \cdot s^{\prime} \cdot t^{\prime}-a^{\prime} \cdot b \cdot s \cdot t^{\prime}+a^{\prime} \cdot b \cdot s \cdot t^{\prime}-a^{\prime} \cdot b^{\prime} \cdot s \cdot t \\
& =\left(a \cdot s^{\prime}-a^{\prime} \cdot s\right) \cdot b \cdot t^{\prime}+a^{\prime} \cdot s \cdot\left(b \cdot t^{\prime}-b^{\prime} \cdot t\right)=0 .
\end{aligned}
\end{aligned}
$$

Hence binary operations are well-defined. Now other properties of commutative rings with identity are easy to prove. Note that for all $s \in S, 0 / s=0 / 1=0_{S^{-1} R}$ and $s / s=1 / 1=$ $1_{S^{-1} R}$. Moreover if $(a / s) \cdot(b / t)=0 / 1$. Then $0=a \cdot b \cdot 1-s \cdot t \cdot 0=a \cdot b$. Since R is an integral domain, we have $a=0$ or $b=0$, and $S^{-1} R$ is an integral domain.
4. Let $P^{*}=\{p / s \mid p \in P, s \in S\} \subset S^{-1} R$. Then P^{*} is the only maximal ideal in $S^{-1} R$.

Solution: It is clear that P^{*} is an ideal of $S^{-1} P$. If $s, t \in S$, then $s / t \in U\left(S^{-1} R\right)$ and hence $S^{-1} R \backslash P^{*}=U\left(S^{-1} R\right)$. Therefore P^{*} is the unique maximal ideal of $S^{-1} R$.

Quiz 7

Due: 10:00 a.m. November 6, 2006
Division: ID\#:
Name:
Let $R=\boldsymbol{Z}[\sqrt{10}]=\{a+b \sqrt{10} \mid a, b \in \boldsymbol{Z}\}$, and $N(a+b \sqrt{10})=a^{2}-10 b^{2}$. Show the following.

1. For $\alpha \in R, \alpha \in U(R) \Leftrightarrow N(\alpha)= \pm 1$.
2. There are infinitely many units in R. (Hint: Firstly find one, say α. Show that α^{n} are all distinct.)
3. For $\alpha \in R, N(\alpha) \neq \pm 2, \pm 3$. (Hint: Use the fact that in $\boldsymbol{Z}_{5},\left\{a^{2} \mid a \in \boldsymbol{Z}_{5}\right\}=\{[0],[1],[4]\}$.)
4. 3 is an irreducible element in R.
5. R is not a UFD. (Hint: Check whether $I=\langle 3\rangle$ is a prime ideal or not.)

Solutions to Quiz 7

Let $R=\boldsymbol{Z}[\sqrt{10}]=\{a+b \sqrt{10} \mid a, b \in \boldsymbol{Z}\}$, and $N(a+b \sqrt{10})=a^{2}-10 b^{2}$. Show the following.

1. For $\alpha \in R, \alpha \in U(R) \Leftrightarrow N(\alpha)= \pm 1$.

Solution: First note that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all elements $\alpha, \beta \in R$. Let $\beta \in R$ such that $\alpha \beta=1$. Then $N(\alpha) N(\beta)=1$. Since $N(\alpha)$ is an integer, it has to be ± 1. Conversely, if $N(\alpha)= \pm 1$ for $\alpha=a+b \sqrt{10}$. Then $(a+b \sqrt{10})(a-b \sqrt{10})=N(a+b \sqrt{10})$, and $\alpha^{-1}=N(\alpha)(a-b \sqrt{10})$.
2. There are infinitely many units in R. (Hint: Firstly find one, say α. Show that α^{n} are all distinct.)
Solution: By $1, \alpha=3-\sqrt{10} \in U(R)$. Since $|\alpha| \neq 1, \alpha^{i}=\alpha^{j}$ if and only if $i=j$. Since $\alpha^{i} \in U(R)$, there are infinitely many units in R.
3. For $\alpha \in R, N(\alpha) \neq \pm 2, \pm 3$. (Hint: Use the fact that in $\boldsymbol{Z}_{5},\left\{a^{2} \mid a \in \boldsymbol{Z}_{5}\right\}=\{[0],[1],[4]\}$.)

Solution: Since $N(a+b \sqrt{10})=a^{2}-10 b^{2} \equiv a^{2} \quad(\bmod 5), N(a+b \sqrt{10}) \in\{[0],[1],[4]\}$ $(\bmod 5)$. Hence $N(\alpha) \neq \pm 2, \pm 3$.
4. 3 is an irreducible element in R.

Solution: Since $N(3)=9$, and there is no element $\alpha \in R$ such that $N(\alpha)= \pm 3,3$ is a primitive element. Note that if $3=\alpha \cdot \beta$, then $9=N(3)=N(\alpha) N(\beta), N(\alpha)= \pm 1$ or $N(\beta)= \pm 1$. and $\alpha \in U(R)$ or $\beta \in U(R)$.
5. R is not a UFD. (Hint: Check whether $I=\langle 3\rangle$ is a prime ideal or not.)

Solution: Note that $(1+\sqrt{10})(1-\sqrt{10})=-9 \in(3)$. If $1 \pm \sqrt{10} \in(3)$, then $1 \pm \sqrt{10}=3 \cdot \alpha$ and $-9=N(1 \pm \sqrt{10})=N(3 \cdot \alpha)=N(3) N(\alpha)=9 \cdot N(\alpha)$. Thus $\alpha \in U(R)$ and $(1 \pm \sqrt{10}) / 3 \in R$, which is absurd. Hence I is not a prime ideal. Therefore, R cannot be a UFD.

Quiz 8

Let $\alpha=\sqrt[3]{2} \in \boldsymbol{R}, p(t)=t^{3}-2 \in \boldsymbol{Q}[t]$ and $R=\boldsymbol{Q}[\alpha]=\{f(\alpha) \mid f(t) \in \boldsymbol{Q}[t]\}$. Show the following.

1. $p(t)$ is irreducible over \boldsymbol{Q}, i.e., it is irreducible as a polynomial in $\boldsymbol{Q}[t]$.
2. $\langle p(t)\rangle$ is a maximal ideal in $\boldsymbol{Q}[t]$.
3. $\boldsymbol{Q}[t] /\langle p(t)\rangle \simeq R$ and that R is a field.
4. $R=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}\right\}$.
5. Find the multiplicative inverse of $1+\alpha$ and express it in the form $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$, where $a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}$.

Solutions to Quiz 8

Let $\alpha=\sqrt[3]{2} \in \boldsymbol{R}, p(t)=t^{3}-2 \in \boldsymbol{Q}[t]$ and $R=\boldsymbol{Q}[\alpha]=\{f(\alpha) \mid f(t) \in \boldsymbol{Q}[t]\}$. Show the following.

1. $p(t)$ is irreducible over \boldsymbol{Q}, i.e., it is irreducible as a polynomial in $\boldsymbol{Q}[t]$.

Solution: Since \boldsymbol{Z} is a UFD, we can apply (7.4.9) to $p(t) \in \boldsymbol{Z}[t]$ with $p=2$. Note that $2\left|-2=a_{0}, 2\right| 0=a_{1}=a_{2}$ and that $2 \nmid 1=a_{3}, 2^{2} \nmid-2=a_{0}$. Thus $p(t)$ is irreducible over \boldsymbol{Z}. Since \boldsymbol{Q} is the field of fractions of $\boldsymbol{Z}, p(t)$ is irreducible over \boldsymbol{Q} by Gauss' Lemma (7.3.7).
2. $\langle p(t)\rangle$ is a maximal ideal in $\boldsymbol{Q}[t]$.

Solution: Since \boldsymbol{Q} is a field, $\boldsymbol{Q}[t]$ is a Euclidian domain by (7.1.3). Since every Euclidean domain is a principal ideal domain by (7.2.1), $\boldsymbol{Q}[t]$ is a principal ideal domain. Since $U(\boldsymbol{Q}[t])=\boldsymbol{Q} \backslash\{0\}$, every irreducible polynomial in $\boldsymbol{Q}[t]$ is an irreducible element in $\boldsymbol{Q}[t]$. In particular, $p(t)$ is an irreducible element in $\boldsymbol{Q}[t]$. Thus by (7.2.6), the ideal generated by an irreducible element $p(t)$ is a maximal ideal in the principal ideal domain $\boldsymbol{Q}[t]$.
3. $\boldsymbol{Q}[t] /\langle p(t)\rangle \simeq R$ and that R is a field.

Solution: Let $\theta_{\alpha}: \boldsymbol{Q}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\alpha))$. Then clearly θ_{α} is a ring homomorphism and its image is R. Since $\boldsymbol{Q}[t]$ is a principal ideal domain, and $\operatorname{Ker}\left(\theta_{\alpha}\right)$ is an ideal, there exists a polynomial $q(t) \in \boldsymbol{Q}[t]$ such that $\operatorname{Ker}\left(\theta_{\alpha}\right)=\langle q(t)\rangle$. Since $p(\alpha)=\alpha^{3}-2=0, p(t) \in$ $\operatorname{Ker}\left(\theta_{\alpha}\right)=\langle q(t)\rangle$ and $q(t) \mid p(t)$. Since $q(t) \in \operatorname{Ker}\left(\theta_{\alpha}\right), q(t)$ is not a constant. Since $p(t)$ is irreducible, $p(t)$ is a nonzero constant multiple of $q(t)$. Thus $\operatorname{Ker}\left(\theta_{\alpha}\right)=\langle q(t)\rangle=\langle p(t)\rangle$. Now by First Isomorphism Theorem (6.2.4), $\boldsymbol{Q}[t] /\langle p(t)\rangle=\boldsymbol{Q}[t] /\langle p(t)\rangle \simeq \operatorname{Im}\left(\theta_{\alpha}\right)=R$, as desired.
4. $R=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}\right\}$.

Solution: Let $f(t) \in \boldsymbol{Q}[t]$. By (7.1.3), there exists $q(t)$ and $r(t) \in \boldsymbol{Q}[t]$ such that $f(t)=q(t) p(t)+r(t)$ with $\operatorname{deg}(r(t))<\operatorname{deg}(p(t))=3$. Since $p(\alpha)=0, f(\alpha)=r(\alpha)$. Therefore, $f(\alpha)=r(\alpha) \in\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}\right\}$, as the degree of $r(t)$ is at most 2. This proves $R \subset\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}\right\}$. The other inclusion is clear by definition.
5. Find the multiplicative inverse of $1+\alpha$ and express it in the form $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$, where $a_{0}, a_{1}, a_{2} \in \boldsymbol{Q}$.
Solution: Let $\omega=(-1+\sqrt{-3}) / 2$. Then $1+\omega+\omega^{2}=0$ and $\omega^{3}=1$. Now compute

$$
(1+\alpha)(1+\alpha \omega)\left(1+\alpha \omega^{2}\right)=1+\alpha\left(1+\omega+\omega^{2}\right)+\alpha^{2}\left(1+\omega+\omega^{2}\right)+\alpha^{3}=3
$$

Hence

$$
(1+\alpha)^{-1}=\frac{1}{3}(1+\alpha \omega)\left(1+\alpha \omega^{2}\right)=\frac{1}{3}\left(1+\alpha\left(\omega+\omega^{2}\right)+\alpha^{2}\right)=\frac{1}{3}\left(1-\alpha+\alpha^{2}\right) .
$$

Therefore $a_{0}=1 / 3, a_{1}=-1 / 3$ and $a_{2}=1 / 3$.

