
Quiz 1 September 14, 2005

Division: ID#: Name:

1. Let R be any ring. Suppose that a, b are elements of R.

(a) Show that a · 0 = 0.

(b) Show that a · (−b) = −(ab).

2. A ring is called Boolean if r2 := r · r = r for all r ∈ R. If R is a Boolean ring, prove
that 2r := r + r = 0 and that R is necessarily commutative.

Message: Any requests?



Solutions to Quiz 1 September 14, 2005

1. Let R be any ring. Suppose that a, b are elements of R.

(a) Show that a · 0 = 0.

Solution:

0 = a · 0 + (−(a · 0)) = a · (0 + 0) + (−(a · 0)) = a · 0 + a · 0 + (−(a · 0)) = a · 0.

(b) Show that a · (−b) = −(ab).

Solution:
a · b + a · (−b) = a · (b + (−b)) = a · 0 = 0

by (a). By adding −(a · b) on both hand sides, we have

a · (−b) = −(ab).

2. A ring is called Boolean if r2 := r · r = r for all r ∈ R. If R is a Boolean ring, prove
that 2r := r + r = 0 and that R is necessarily commutative.

Solution: Let r, s ∈ R.

r + s = (r + s)2 = r2 + r · s + s · r + s2 = r + s + r · s + s · r.

Hence by adding the additive inverse of r + s to both hand sides, we obtain

r · s + s · r = 0.

By setting r = s, we have

0 = r2 + r2 = r + r = 2r.

Hence in particular r · s+ r · s = 2(r · r) = 0. So r · s = −(r · s). Now it follows from
the equation above we have r · s = s · r.
Thus R is commutative.



Quiz 2 September 26

Division: ID#: Name:

1. Let I be a two-sided ideal of a ring R. For x, x′, y and y′ ∈ R show that the
following holds.

(x + I = x′ + I) ∧ (y + I = y′ + I) ⇒ xy + I = x′y′ + I.

2. Let θ : R → S be a ring homomorphism, and J a two-sided ideal of S. Show that
θ−1(J) = {x ∈ R | θ(x) ∈ J} is a two-sided ideal of R.

Message: Requests? Questions?



Solutions to Quiz 2 September 26, 2005

1. Let I be a two-sided ideal of a ring R. For x, x′, y and y′ ∈ R show that the
following holds.

(x + I = x′ + I) ∧ (y + I = y′ + I) ⇒ xy + I = x′y′ + I.

Solution: First recall that if H is a subgroup of a group G. Then aH = bH if
and only if a−1b ∈ H. Hence x+ I = x′ + I if and only if −x+x′ ∈ I. That is there
is an element a ∈ I such that x′ = x + a. Similarly there is an element b ∈ I such
that y′ = y + b. Since I is a two-sided ideal, xb ∈ I and ay ∈ I. So

−xy + x′y′ = −xy + (x + a)(y + b) = xb + ay ∈ I.

Hence xy + I = x′y′ + I as desired.

2. Let θ : R → S be a ring homomorphism, and J a two-sided ideal of S. Show that
θ−1(J) = {x ∈ R | θ(x) ∈ J} is a two-sided ideal of R.

Solution: Let x, y ∈ θ−1(J), and r ∈ R. Then θ(x) ∈ J , θ(y) ∈ J and θ(r) ∈ S.
Hence we have

θ(x + y) = θ(x) + θ(y) ∈ J, so x + y ∈ θ−1(J)

θ(rx) = θ(r)θ(x) ∈ J, so rx ∈ θ−1(J)

θ(xr) = θ(x)θ(r) ∈ J, so xr ∈ θ−1(J)

Therefore θ−1(θ) is a two-sided ideal.



Quiz 3 October 3, 2005

Division: ID#: Name:

1. Prove that a finite integral domain is a field.

2. Let x, y and z be integers. Suppose 6z2 = x2 + y2. Show that x = y = z = 0.

Message: Requests? Questions?



Solutions to Quiz 3

1. Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain. Since an integral domain is a com-
mutative ring with identity, it suffices to show that every nonzero element has its
(multiplicative) inverse. Let a be a nonzero element of R. Let ℓa is a mapping
defined by:

ℓa : R −→ R (x 7→ ax).

Then ℓa is an injection. In fact if ℓa(x) = ℓa(y), then ax = ay or a(x−y) = 0. Since
a ̸= 0 and R is an integral domain, x− y = 0. Hence x = y. Thus ℓa is an injection.

Since R is finite, ℓa is surjective as well. Hence there is an element b ∈ R such that
ℓa(b) = 1, and ab = 1. Since R is commutative, ab = ba = 1 and b is an inverse of
a. Therefore R is a field.

2. Let x, y and z be integers. Suppose 6z2 = x2 + y2. Show that x = y = z = 0.

Solution: Suppose at least one of x, y and z is nonzero. Choose x, y and z so
that max{|x|, |y|, |z|} is minimum. Suppose there is a common divisor d > 1. Let
x = dx1, y = dy1 and z = dz1. Then

6d2z2
1 = d2x2

1 + d2y2
1 = d2(x2

1 + y2
1).

By dividing through d2, we have 6z2
1 = x2

1 + y2
1. This contradicts the minimality of

max{|x|, |y|, |z|}. Hence x, y and z are coprime.

Now we consider in Z3 = {[0], [1], [2]}. Note that

[x]2, [y]2 ∈ {[0]2, [1]2, [2]2} = {[0], [1]}.

On the other hand,

[0] = [6][z]2 = [6z2] = [x2 + y2] = [x]2 + [y]2.

Hence the only possibility is that [x] = [y] = [0]. So x and y are divisible by 3. Since
6z2 = x2 + y2, 6z2 is divisible by 9 and z2 is divisible by 3. Thus 3 is a common
divisor of x, y and z. This is a contradiction.



Take-Home Midterm Due: 9:00 a.m. October 12, 2005

Division: ID#: Name:

1. Let R be a ring with identity element. Prove or find a counter example for the
following statements.

(a) For a, b ∈ R, (−a)(−b) = ab, where −a and −b are additive inverses of a and
b respectively.

(b) For a, b and c ∈ R with c ̸= 0, ac = bc implies a = b.

(c) If there are elements a, b ∈ R such that ab = 1, then the element b is not a left
zero divisor.

(d) Let f and g be polynomials in R[t]. Then deg(f) + deg(g) = deg(fg).



2. Let R be a ring with identity such that Ra = R for every nonzero element a ∈ R.
Show that R is a division ring. (R may not be commutative.)

3. Let I and J be two-sided ideals of a commutative ring R with identity.

(a) Show that IJ is a two-sided ideal contained in I ∩ J . Recall that IJ consists
of sums of products of elements of I and J , i.e., elements of the form

∑
i aibi,

where ai ∈ I, bi ∈ J .

(b) Show that if I + J = R, then IJ = I ∩ J .



4. Let Q[t] be a polynomial ring over Q and R = {f(
√
−5) | f(t) ∈ Q[t]}.

(a) Show that R = {a + b
√
−5 | a, b ∈ Q}, and R is a field.

(b) Q[t](t2 + 5) is a maximal ideal of Q[t].

5. Let p be an odd prime number. If an equation pz2 = x2 + y2 has solutions x, y and
z ∈ Z such that (x, y, z) ̸= (0, 0, 0), then 4 divides p − 1. (Hint: First prove that 4
divides p − 1 if and only if [−1]p is a square of an element in Zp.)

Message: Requests? Questions?



Solutions to Midterm October 15, 2005

1. Let R be a ring with identity element. Prove or find a counter example for the
following statements.

(a) For a, b ∈ R, (−a)(−b) = ab, where −a and −b are additive inverses of a and
b respectively.

Solution: For all a ∈ R, 0 = a0 + (−a0) = a(0 + 0) + (−a0) = a0 + a0 +
(−a0) = a0 + 0 = a0. Hence a0 = 0. Similarly, 0a = 0 for all a ∈ R.

(−a)(−b) + (−ab) = (−a)(−b) + 0b + (−ab)

= (−a)(−b) + ((−a) + a)b + (−ab) = (−a)(−b) + (−a)b + ab + (−ab)

= (−a)((−b) + b) + 0 = (−a)0 = 0.

Hence (−a)(−b) is the additive inverse of −ab, which is ab.

(b) For a, b and c ∈ R with c ̸= 0, ac = bc implies a = b.

Solution: Let R = Z4 = {[0], [1], [2], [3]}, and a = [2], b = [0], c = [2]. Then
ac = bc = [0], while a ̸= b.

(c) If there are elements a, b ∈ R such that ab = 1, then the element b is not a left
zero divisor.

Solution: Let c ∈ R be an element satisfying bc = 0. Then

c = 1c = (ab)c = a(bc) = a0 = 0.

Hence c = 0. Therefore b cannot be a left zero divisor.

(d) Let f and g be polynomials in R[t]. Then deg(f) + deg(g) = deg(fg).

Solution: Let R = Z4 and f = g = [2]. Then deg(f) = deg(g) = 0 and
deg(fg) = deg(0) = −∞. Hence deg(f) + deg(g) ̸= deg(fg) in this case.

2. Let R be a ring with identity such that Ra = R for every nonzero element a ∈ R.
Show that R is a division ring. (R may not be commutative.)

Solution: Let a be a nonzero element of R. It suffices to show that a has a
multiplicative inverse. If 1 = 0, a = a1 = a0 = 0 and R = {0}. Hence we may
assume that 1 ̸= 0. Since 1 ∈ R = Ra by assumption, there exists b ∈ R such that
1 = ba. Since 1 ̸= 0, b ̸= 0. By assumption, 1 ∈ R = Rb and there exists c ∈ R
such that 1 = cb. Now a = 1a = (cb)a = c(ba) = c1 = c. Hence 1 = cb = ab. Since
ba = 1, b is a multilicative inverse of a.

3. Let I and J be two-sided ideals of a commutative ring R with identity.

(a) Show that IJ is a two-sided ideal contained in I ∩ J . Recall that IJ consists
of sums of products of elements of I and J , i.e., elements of the form

∑
i aibi,

where ai ∈ I, bi ∈ J .

Solution: Let x ∈ IJ and y ∈ IJ . Then by the definition of IJ , there exist
ai, a′

j ∈ I and bi, b′j ∈ J such that x =
∑

i aibi, y =
∑

j a′
jb

′
j. Suppose r, s ∈ R.



Then

x + y =
∑

i

aibi +
∑

j

a′
jb

′
j ∈ IJ

rx = r
∑

i

aibi =
∑

i

(rai)bi ∈ IJ

Hence IJ is a two-sided ideal. Since both I and J are two-sided ideals, aibi ∈
I ∩ J for each i and x =

∑
i aibi ∈ I ∩ J . Therefore IJ ⊆ I ∩ J .

(b) Show that if I + J = R, then IJ = I ∩ J .

Solution: Since IJ ⊆ I ∩ J , it suffices to show that I ∩ J ⊆ IJ . Since
1 ∈ R = I + J , there exist a ∈ I and b ∈ J such that 1 = a + b. Let x ∈ I ∩ J .
Then

x = 1x = (a + b)x = ax + bx = ax + xb ∈ IJ.

Note that x ∈ J implies ax ∈ IJ and x ∈ I implies xb ∈ IJ . Therefore
I ∩ J ⊆ IJ and IJ = I ∩ J .

4. Let Q[t] be a polynomial ring over Q and R = {f(
√
−5) | f(t) ∈ Q[t]}.

(a) Show that R = {a + b
√
−5 | a, b ∈ Q}, and R is a field.

Solution: Let φ : Q[t] → C, (f(t) 7→ f(
√
−5)), where C denote the complex

number field. Since (
√
−5)2 = −5 ∈ Q, Im(φ) ⊆ R. Since f(a+bt) = a+b

√
−5,

Im(φ) = R. Clearly φ is a ring homomorphism. Since the image of a ring
homomorphism is a subring, R is a ring. If a + b

√
−5 ∈ R is a nonzero

element, a ̸= 0 or b ̸= 0 and (a − b
√
−5)/(a2 + 5b2) is an inverse of a + b

√
−5.

Hence R is a field.

(b) Q[t](t2 + 5) is a maximal ideal of Q[t].

Solution: Let I = Q[t](t2 + 5). By construction, it is an ideal of Q[t]. Since
t2 + 5 ∈ Ker(φ) and Ker(φ) is an ideal, I ⊆ Ker(φ). Let f(t) ∈ Ker(φ). Then
there exists q(t) ∈ Q[t] such that f(t) = q(t)(t2 +5)+ bt+a for some a, b ∈ Q.
Since f(t) ∈ Ker(φ), 0 = f(

√
−5) = a + b

√
−5. Therefore a = b = 0. (To see

this fact, for example take a product with a − b
√
−5 to get a2 + 5b2 = 0.) So

f(t) = q(t)(t2 + 5) ∈ I. Therefore I = Ker(φ). By an isomorphism theorem,
Q[t]/I ≅ R. Since R is a field, I is a maximal ideal.

5. Let p be an odd prime number. If an equation pz2 = x2 + y2 has solutions x, y and
z ∈ Z such that (x, y, z) ̸= (0, 0, 0), then 4 divides p − 1. (Hint: First prove that 4
divides p − 1 if and only if [−1]p is a square of an element in Zp.)

Solution: First we show that if [−1] is a square of an element in Zp, then p− 1 is
divisible by 4. Suppose [a]2 = [−1]. Then the order of [a] in Z∗

p is of order 4. Hence
4 = |〈[a]〉| divides the order p − 1 of Z∗

p.

Suppose the equation pz2 = x2+y2 has solutions x, y and z ∈ Z such that (x, y, z) ̸=
(0, 0, 0). Suppose both x and y are divisible by p. Then p2 divides pz2 and z is
divisible by p. And (x/p, y/p, z/p) is a soluton to the equation. So after dividing x,
y and z through by a power of p, we may assume that either x or y is not divisible
by p. Then in Zp, [x]2 + [y]2 = 0 and [x] ̸= 0 or [y] ̸= 0. Suppose [x] ̸= 0. Then
[−1] = ([y][x]−1)2, and [−1] is a square in Zp. So p − 1 is divisible by 4



Quiz 4 October 17, 2005

Division: ID#: Name:

1. Let R be a commutative ring with identity. Prove the following.

(a) 0 | a if and only if a = 0.

(b) If a | b and a | c, then a | bx + cy for all x, y ∈ R.

(c) If u is a unit, then a | u if and only if a is a unit.

2. Let R be an integral domain, and R[t] the ring of polynomials in t over R. Show
that U(R[t]) = U(R).

Message: : Requests? Questions?



Solutions to Quiz 4 October 17, 2005

1. Let R be a commutative ring with identity. Prove the following.

(a) 0 | a if and only if a = 0.

Solution: Suppose 0 | a. Then there exists b ∈ R such that a = 0b. Hence
a = 0. Conversely, suppose a = 0. Then 0 = 0a and 0 | a.

(b) If a | b and a | c, then a | bx + cy for all x, y ∈ R.

Solution: By assumption, there exist d, e ∈ R such that b = ad, c = ae.
Hence bx + cy = adx + aey = a(dx + ey). Therefore a | bx + cy fore all x,
y ∈ R.

(c) If u is a unit, then a | u if and only if a is a unit.

Solution: Suppose a | u. Then there exists b ∈ R such that u = ab. Since u
is a unit, 1 = abu−1. Thus a is a unit with bu−1 as its inverse. Note that R is
commutative. Conversely if a is a unit. Then u = a(a−1)u, and a | u.

2. Let R be an integral domain, and R[t] the ring of polynomials in t over R. Show
that U(R[t]) = U(R).

Solution: Let f , g ∈ R[t] such that f · g = 1. Then f ̸= 0 and g ̸= 0. In
particular deg(f), deg(g) ≥ 0. Since R is an integral domain, the formula deg(f ·g) =
deg(f) + deg(g) holds. Since 0 = deg(1) = deg(f · g) and deg(f), deg(g) ≥ 0, we
have deg(f) = deg(g) = 0 and f , g ∈ R. Since f · g = 1, f , g ∈ U(R). The other
includion U(R) ⊆ U(R[t]) is clear. Therefore U(R[t]) = U(R)



Quiz 5 October 26, 2005

Division: ID#: Name:

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring
element d such that (i) d | a and d | b; (ii) if c | a and c | b for some c ∈ R, then c | d.

Show the following.

1. Let a and b be elements of an integral domain R. Let I = {ax + by | x, y ∈ R}. If
there is an element d ∈ R such that I = 〈d〉, then d is a greatest commond divisor
of a and b.

2. If R is a principal ideal domain and p | bc where p, b, c ∈ R and p is irreducible,
then p | b or p | c.

Message: Requests? Questions?



Solutions to Quiz 5 May 15, 2005

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring
element d such that (i) d | a and d | b; (ii) if c | a and c | b for some c ∈ R, then c | d.

Show the following.

1. Let a and b be elements of an integral domain R. Let I = {ax + by | x, y ∈ R}. If
there is an element d ∈ R such that I = 〈d〉, then d is a greatest commond divisor
of a and b.

Solution: Recall that since R is an integral domain the following hold for a, b ∈ R:

(i) a | b ⇔ 〈b〉 ⊆ 〈a〉.
(ii) (a | b) ∧ (b | a) ⇔ (∃u ∈ U(R))[b = ua].

Since I = 〈a〉+ 〈b〉 = 〈d〉, 〈a〉 ⊆ 〈d〉 and 〈b〉 ⊆ 〈d〉. Hence by (i) above we have d | a
and d | b.

Suppose c | a and c | b, then 〈a〉 ⊆ 〈c〉 and 〈b〉 ⊆ 〈c〉. Hence

〈d〉 = I = 〈a〉 + 〈b〉 ⊆ 〈c〉.

Thus c | d. Therefore d is a greatest common divisor of a and b.

2. If R is a principal ideal domain and p | bc where p, b, c ∈ R and p is irreducible,
then p | b or p | c.

Solution: Let I = {px+ by | x, y ∈ R}. Since R is a principal ideal domain, there
exists d ∈ R such that I = 〈d〉 and d is a greatest common divisor of p and b. In
particular, d | p and there exists e ∈ R such that p = de. Since p is irreducible,
either d ∈ U(R) or e ∈ U(R). Hence either I = R or I = 〈p〉. Suppose I = 〈p〉.
Since 〈b〉 ⊆ I = 〈p〉, p | b. Suppose I = R. Then there exist x, y ∈ R such that
1 = px + by. Now c = pcx + bcy. Since p | bc by assumption, and p | pcx, we have
p | c. Thus p | b or p | c.



Quiz 6 November 2, 2005

Division: ID#: Name:

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if 〈p〉 is
a prime ideal, then p is irreducible.

2. Let R = {a + b
√
−5 | a, b ∈ Z}. For α = a + b

√
−5, let N(α) = αα = (a +

b
√
−5)(a −

√
−5) = a2 + 5b2. You may assume that R is a subring of C and an

integral domain. Note that N(αβ) = N(α)N(β) for α, β ∈ R.

(a) Show that for α = a + b
√
−5 ∈ R,

α ∈ U(R) ⇔ N(α) = 1 ⇔ α ∈ {1,−1}.

(b) Show that 2 is an irreducible element in R.

Message: Requests? Questions?



Solutions to Quiz 6 November 2, 2005

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if 〈p〉 is
a prime ideal, then p is irreducible.

Solution: Suppose p = ab for some a, b ∈ R. Clearly a and b are non-zero, a | p
and b | p. Since 〈p〉 is a prime ideal and ab = p ∈ 〈p〉, either a ∈ 〈p〉 or b ∈ 〈p〉.
These imply p | a or p | b respectively. Since a | p and b | p, p = au or p = bv for
some u, v ∈ U(R). If p = au then 0 = a(u − b). Since a ̸= 0, b = u is a unit. If
p = bv, then a = v is a unit. Therefore p is irreducible.

2. Let R = {a + b
√
−5 | a, b ∈ Z}. For α = a + b

√
−5, let N(α) = αα = (a +

b
√
−5)(a −

√
−5) = a2 + 5b2. You may assume that R is a subring of C and an

integral domain. Note that N(αβ) = N(α)N(β) for α, β ∈ R.

(a) Show that for α = a + b
√
−5 ∈ R,

α ∈ U(R) ⇔ N(α) = 1 ⇔ α ∈ {1,−1}.

Solution: Suppose α ∈ U(R). Then there exists β = c + d
√
−5 ∈ R such

that αβ = 1. Since 1 = N(1) = N(αβ) = N(α)N(β) and both N(α) and N(β)
are non-negative integers, N(α) = 1. Since N(α) = a2 + 5b2, N(α) = 1 if and
only if α = ±1. It is clear that {1,−1} ⊂ U(R).

(b) Show that 2 is an irreducible element in R.

Solution: Suppose 2 = αβ, where α, β ∈ R. Then 4 = N(2) = N(αβ) =
N(α)N(β). If α ̸∈ U(R) and β ̸∈ U(R), then N(α) = 2 as it is a non-negative
integer. Since N(α) = a2 + 5b2 and 2 cannot be expressed in this form, this is
impossible. Therefore either α ∈ U(R) or β ∈ U(R).



Quiz 7 November 14, 2005

Division: ID#: Name:

In the following you may use the following fact:
If R is a UFD and p | bc where p, b, c ∈ R and p is irreducible, then p | b or p | c.

1. Prove Eisenstain’s Criterion:

Let R be a unique factorization domain and let f = a0 + a1t + · · · + ant
n be a

polynomial over R. Suppose that there is an irreducible element p of R such that
p | a0, p | a1, . . . , p | an−1, but p - an and p2 - a0. Then f is irreducible over R.

2. Apply Eisenstein’s Criterion to prove that 2t5 − 3t + 15 is irreducible over Z.

3. Prove that t4 + t3 + t2 + t + 1 is irreducible over Z.

Message: Requests? Questions?



Solutions to Quiz 7 November 14, 2005

In the following you may use the following fact:
If R is a UFD and p | bc where p, b, c ∈ R and p is irreducible, then p | b or p | c.

1. Prove Eisenstain’s Criterion:

Let R be a unique factorization domain and let f = a0 + a1t + · · · + ant
n be a

polynomial over R. Suppose that there is an irreducible element p of R such that
p | a0, p | a1, . . . , p | an−1, but p - an and p2 - a0. Then f is irreducible over R.

See Page 132 in the textbook.

2. Apply Eisenstein’s Criterion to prove that 2t5 − 3t + 15 is irreducible over Z.

Solution: Since Z is a ED, it is a PID, and so is a UFD. Hence we can apply
Eisenstein’s Criterion. Take p = 3 as an irreducible element in Eisenstein’s Criterion.
Then

3 | 15 = a0, 3 | −3 = a1, 3 | 0 = a2 = a3 = a4, 3 - 2 = a5, 9 - 15 = a0.

Hence the polynomial 2t5−3t+15 is irreducible over Z. If we apply Gauss’ Lemma,
we know that 2t5 − 3t + 15 is irreducible over Q.

3. Prove that t4 + t3 + t2 + t + 1 is irreducible over Z.

Solution: Let f(t) = t4 + t3 + t2 + t + 1 and g(t) = f(t + 1). Then

g(t) = (t + 1)4 + (t + 1)3 + (t + 1)2 + (t + 1) + 1 =
(t + 1)5 − 1

t

= t4 +

(
5

1

)
t3 +

(
5

2

)
t2 +

(
5

3

)
t +

(
5

4

)
= t4 + 5t3 + 10t2 + 10t + 5.

Now apply Eisenstein’s Criterion by setting p = 5. Then g(t) is irreducible over Z.
Since f(t + 1) = g(t), f(t) is irreducible as well. Note that if f(t) = r(t)s(t), then
g(t) = f(t + 1) = r(t + 1)s(t + 1).


