Quiz 1 Division: ID#: Name:

- 1. Let R be any ring. Suppose that a, b are elements of R.
 - (a) Show that $a \cdot 0 = 0$.

(b) Show that $a \cdot (-b) = -(ab)$.

2. A ring is called *Boolean* if $r^2 := r \cdot r = r$ for all $r \in R$. If R is a Boolean ring, prove that 2r := r + r = 0 and that R is necessarily commutative.

- 1. Let R be any ring. Suppose that a, b are elements of R.
 - (a) Show that $a \cdot 0 = 0$. **Solution:** $0 = a \cdot 0 + (-(a \cdot 0)) = a \cdot (0 + 0) + (-(a \cdot 0)) = a \cdot 0 + a \cdot 0 + (-(a \cdot 0)) = a \cdot 0$.
 - (b) Show that $a \cdot (-b) = -(ab)$. Solution:

$$a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0$$

by (a). By adding $-(a \cdot b)$ on both hand sides, we have

$$a \cdot (-b) = -(ab).$$

2. A ring is called *Boolean* if $r^2 := r \cdot r = r$ for all $r \in R$. If R is a Boolean ring, prove that 2r := r + r = 0 and that R is necessarily commutative.

Solution: Let $r, s \in R$.

$$r + s = (r + s)^{2} = r^{2} + r \cdot s + s \cdot r + s^{2} = r + s + r \cdot s + s \cdot r.$$

Hence by adding the additive inverse of r + s to both hand sides, we obtain

$$r \cdot s + s \cdot r = 0.$$

By setting r = s, we have

$$0 = r^2 + r^2 = r + r = 2r.$$

Hence in particular $r \cdot s + r \cdot s = 2(r \cdot r) = 0$. So $r \cdot s = -(r \cdot s)$. Now it follows from the equation above we have $r \cdot s = s \cdot r$.

Thus R is commutative.

Quiz	2	
Division:	ID#:	Name:

1. Let I be a two-sided ideal of a ring R. For x, x', y and $y' \in R$ show that the following holds.

$$(x+I = x'+I) \land (y+I = y'+I) \Rightarrow xy+I = x'y'+I.$$

2. Let $\theta : R \to S$ be a ring homomorphism, and J a two-sided ideal of S. Show that $\theta^{-1}(J) = \{x \in R \mid \theta(x) \in J\}$ is a two-sided ideal of R.

1. Let I be a two-sided ideal of a ring R. For x, x', y and $y' \in R$ show that the following holds.

$$(x+I = x'+I) \land (y+I = y'+I) \Rightarrow xy+I = x'y'+I.$$

Solution: First recall that if H is a subgroup of a group G. Then aH = bH if and only if $a^{-1}b \in H$. Hence x + I = x' + I if and only if $-x + x' \in I$. That is there is an element $a \in I$ such that x' = x + a. Similarly there is an element $b \in I$ such that y' = y + b. Since I is a two-sided ideal, $xb \in I$ and $ay \in I$. So

$$-xy + x'y' = -xy + (x+a)(y+b) = xb + ay \in I.$$

Hence xy + I = x'y' + I as desired.

2. Let $\theta : R \to S$ be a ring homomorphism, and J a two-sided ideal of S. Show that $\theta^{-1}(J) = \{x \in R \mid \theta(x) \in J\}$ is a two-sided ideal of R.

Solution: Let $x, y \in \theta^{-1}(J)$, and $r \in R$. Then $\theta(x) \in J$, $\theta(y) \in J$ and $\theta(r) \in S$. Hence we have

$$\begin{array}{rcl} \theta(x+y) &=& \theta(x) + \theta(y) \in J, & \mathrm{so} \ x+y \in \theta^{-1}(J) \\ \theta(rx) &=& \theta(r)\theta(x) \in J, & \mathrm{so} \ rx \in \theta^{-1}(J) \\ \theta(xr) &=& \theta(x)\theta(r) \in J, & \mathrm{so} \ xr \in \theta^{-1}(J) \end{array}$$

Therefore $\theta^{-1}(\theta)$ is a two-sided ideal.

October 3, 2005

1. Prove that a finite integral domain is a field.

2. Let x, y and z be integers. Suppose $6z^2 = x^2 + y^2$. Show that x = y = z = 0.

1. Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain. Since an integral domain is a commutative ring with identity, it suffices to show that every nonzero element has its (multiplicative) inverse. Let a be a nonzero element of R. Let ℓ_a is a mapping defined by:

$$\ell_a: R \longrightarrow R \ (x \mapsto ax).$$

Then ℓ_a is an injection. In fact if $\ell_a(x) = \ell_a(y)$, then ax = ay or a(x - y) = 0. Since $a \neq 0$ and R is an integral domain, x - y = 0. Hence x = y. Thus ℓ_a is an injection. Since R is finite, ℓ_a is surjective as well. Hence there is an element $b \in R$ such that $\ell_a(b) = 1$, and ab = 1. Since R is commutative, ab = ba = 1 and b is an inverse of a. Therefore R is a field.

2. Let x, y and z be integers. Suppose $6z^2 = x^2 + y^2$. Show that x = y = z = 0.

Solution: Suppose at least one of x, y and z is nonzero. Choose x, y and z so that $\max\{|x|, |y|, |z|\}$ is minimum. Suppose there is a common divisor d > 1. Let $x = dx_1, y = dy_1$ and $z = dz_1$. Then

$$6d^2z_1^2 = d^2x_1^2 + d^2y_1^2 = d^2(x_1^2 + y_1^2).$$

By dividing through d^2 , we have $6z_1^2 = x_1^2 + y_1^2$. This contradicts the minimality of $\max\{|x|, |y|, |z|\}$. Hence x, y and z are coprime.

Now we consider in $Z_3 = \{[0], [1], [2]\}$. Note that

$$[x]^2, [y]^2 \in \{[0]^2, [1]^2, [2]^2\} = \{[0], [1]\}.$$

On the other hand,

$$[0] = [6][z]^2 = [6z^2] = [x^2 + y^2] = [x]^2 + [y]^2.$$

Hence the only possibility is that [x] = [y] = [0]. So x and y are divisible by 3. Since $6z^2 = x^2 + y^2$, $6z^2$ is divisible by 9 and z^2 is divisible by 3. Thus 3 is a common divisor of x, y and z. This is a contradiction.

Take-Home Midterm Due: 9:00 a.m. October 12, 2005

Division: ID#: Name:

- 1. Let R be a ring with identity element. Prove or find a counter example for the following statements.
 - (a) For $a, b \in R$, (-a)(-b) = ab, where -a and -b are additive inverses of a and b respectively.

(b) For a, b and $c \in R$ with $c \neq 0$, ac = bc implies a = b.

(c) If there are elements $a, b \in R$ such that ab = 1, then the element b is not a left zero divisor.

(d) Let f and g be polynomials in R[t]. Then $\deg(f) + \deg(g) = \deg(fg)$.

2. Let R be a ring with identity such that Ra = R for every nonzero element $a \in R$. Show that R is a division ring. (R may not be commutative.)

- 3. Let I and J be two-sided ideals of a commutative ring R with identity.
 - (a) Show that IJ is a two-sided ideal contained in $I \cap J$. Recall that IJ consists of sums of products of elements of I and J, i.e., elements of the form $\sum_i a_i b_i$, where $a_i \in I$, $b_i \in J$.

(b) Show that if I + J = R, then $IJ = I \cap J$.

- 4. Let $\boldsymbol{Q}[t]$ be a polynomial ring over \boldsymbol{Q} and $R = \{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Q}[t]\}.$
 - (a) Show that $R = \{a + b\sqrt{-5} \mid a, b \in \mathbf{Q}\}$, and R is a field.

(b) $\boldsymbol{Q}[t](t^2+5)$ is a maximal ideal of $\boldsymbol{Q}[t]$.

5. Let p be an odd prime number. If an equation $pz^2 = x^2 + y^2$ has solutions x, y and $z \in \mathbb{Z}$ such that $(x, y, z) \neq (0, 0, 0)$, then 4 divides p - 1. (Hint: First prove that 4 divides p - 1 if and only if $[-1]_p$ is a square of an element in \mathbb{Z}_p .)

Solutions to Midterm

- 1. Let R be a ring with identity element. Prove or find a counter example for the following statements.
 - (a) For $a, b \in R$, (-a)(-b) = ab, where -a and -b are additive inverses of a and b respectively.

Solution: For all $a \in R$, 0 = a0 + (-a0) = a(0+0) + (-a0) = a0 + a0 + (-a0) = a0 + 0 = a0. Hence a0 = 0. Similarly, 0a = 0 for all $a \in R$.

$$\begin{aligned} (-a)(-b) + (-ab) &= (-a)(-b) + 0b + (-ab) \\ &= (-a)(-b) + ((-a) + a)b + (-ab) = (-a)(-b) + (-a)b + ab + (-ab) \\ &= (-a)((-b) + b) + 0 = (-a)0 = 0. \end{aligned}$$

Hence (-a)(-b) is the additive inverse of -ab, which is ab.

- (b) For a, b and $c \in R$ with $c \neq 0$, ac = bc implies a = b. **Solution:** Let $R = \mathbb{Z}_4 = \{[0], [1], [2], [3]\}$, and a = [2], b = [0], c = [2]. Then ac = bc = [0], while $a \neq b$.
- (c) If there are elements $a, b \in R$ such that ab = 1, then the element b is not a left zero divisor.

Solution: Let $c \in R$ be an element satisfying bc = 0. Then

$$c = 1c = (ab)c = a(bc) = a0 = 0.$$

Hence c = 0. Therefore b cannot be a left zero divisor.

- (d) Let f and g be polynomials in R[t]. Then $\deg(f) + \deg(g) = \deg(fg)$. Solution: Let $R = \mathbb{Z}_4$ and f = g = [2]. Then $\deg(f) = \deg(g) = 0$ and $\deg(fg) = \deg(0) = -\infty$. Hence $\deg(f) + \deg(g) \neq \deg(fg)$ in this case.
- 2. Let R be a ring with identity such that Ra = R for every nonzero element $a \in R$. Show that R is a division ring. (R may not be commutative.)

Solution: Let *a* be a nonzero element of *R*. It suffices to show that *a* has a multiplicative inverse. If 1 = 0, a = a1 = a0 = 0 and $R = \{0\}$. Hence we may assume that $1 \neq 0$. Since $1 \in R = Ra$ by assumption, there exists $b \in R$ such that 1 = ba. Since $1 \neq 0$, $b \neq 0$. By assumption, $1 \in R = Rb$ and there exists $c \in R$ such that 1 = cb. Now a = 1a = (cb)a = c(ba) = c1 = c. Hence 1 = cb = ab. Since ba = 1, *b* is a multilicative inverse of *a*.

- 3. Let I and J be two-sided ideals of a commutative ring R with identity.
 - (a) Show that IJ is a two-sided ideal contained in $I \cap J$. Recall that IJ consists of sums of products of elements of I and J, i.e., elements of the form $\sum_i a_i b_i$, where $a_i \in I$, $b_i \in J$.

Solution: Let $x \in IJ$ and $y \in IJ$. Then by the definition of IJ, there exist $a_i, a'_j \in I$ and $b_i, b'_j \in J$ such that $x = \sum_i a_i b_i, y = \sum_j a'_j b'_j$. Suppose $r, s \in R$.

Then

$$x + y = \sum_{i} a_{i}b_{i} + \sum_{j} a'_{j}b'_{j} \in IJ$$
$$rx = r\sum_{i} a_{i}b_{i} = \sum_{i} (ra_{i})b_{i} \in IJ$$

Hence IJ is a two-sided ideal. Since both I and J are two-sided ideals, $a_i b_i \in I \cap J$ for each i and $x = \sum_i a_i b_i \in I \cap J$. Therefore $IJ \subseteq I \cap J$.

(b) Show that if I + J = R, then $IJ = I \cap J$. Solution: Since $IJ \subseteq I \cap J$, it suffices to show that $I \cap J \subseteq IJ$. Since $1 \in R = I + J$, there exist $a \in I$ and $b \in J$ such that 1 = a + b. Let $x \in I \cap J$. Then

$$x = 1x = (a+b)x = ax + bx = ax + xb \in IJ.$$

Note that $x \in J$ implies $ax \in IJ$ and $x \in I$ implies $xb \in IJ$. Therefore $I \cap J \subseteq IJ$ and $IJ = I \cap J$.

- 4. Let $\boldsymbol{Q}[t]$ be a polynomial ring over \boldsymbol{Q} and $R = \{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Q}[t]\}$.
 - (a) Show that $R = \{a + b\sqrt{-5} \mid a, b \in \mathbf{Q}\}$, and R is a field.
 - Solution: Let $\phi : \mathbf{Q}[t] \to \mathbf{C}$, $(f(t) \mapsto f(\sqrt{-5}))$, where \mathbf{C} denote the complex number field. Since $(\sqrt{-5})^2 = -5 \in \mathbf{Q}$, $\operatorname{Im}(\phi) \subseteq R$. Since $f(a+bt) = a+b\sqrt{-5}$, $\operatorname{Im}(\phi) = R$. Clearly ϕ is a ring homomorphism. Since the image of a ring homomorphism is a subring, R is a ring. If $a + b\sqrt{-5} \in R$ is a nonzero element, $a \neq 0$ or $b \neq 0$ and $(a - b\sqrt{-5})/(a^2 + 5b^2)$ is an inverse of $a + b\sqrt{-5}$. Hence R is a field.
 - (b) $\boldsymbol{Q}[t](t^2+5)$ is a maximal ideal of $\boldsymbol{Q}[t]$.

Solution: Let $I = \mathbf{Q}[t](t^2 + 5)$. By construction, it is an ideal of $\mathbf{Q}[t]$. Since $t^2 + 5 \in \operatorname{Ker}(\phi)$ and $\operatorname{Ker}(\phi)$ is an ideal, $I \subseteq \operatorname{Ker}(\phi)$. Let $f(t) \in \operatorname{Ker}(\phi)$. Then there exists $q(t) \in \mathbf{Q}[t]$ such that $f(t) = q(t)(t^2 + 5) + bt + a$ for some $a, b \in \mathbf{Q}$. Since $f(t) \in \operatorname{Ker}(\phi)$, $0 = f(\sqrt{-5}) = a + b\sqrt{-5}$. Therefore a = b = 0. (To see this fact, for example take a product with $a - b\sqrt{-5}$ to get $a^2 + 5b^2 = 0$.) So $f(t) = q(t)(t^2 + 5) \in I$. Therefore $I = \operatorname{Ker}(\phi)$. By an isomorphism theorem, $\mathbf{Q}[t]/I \simeq R$. Since R is a field, I is a maximal ideal.

5. Let p be an odd prime number. If an equation $pz^2 = x^2 + y^2$ has solutions x, y and $z \in \mathbb{Z}$ such that $(x, y, z) \neq (0, 0, 0)$, then 4 divides p - 1. (Hint: First prove that 4 divides p - 1 if and only if $[-1]_p$ is a square of an element in \mathbb{Z}_p .)

Solution: First we show that if [-1] is a square of an element in \mathbb{Z}_p , then p-1 is divisible by 4. Suppose $[a]^2 = [-1]$. Then the order of [a] in \mathbb{Z}_p^* is of order 4. Hence $4 = |\langle [a] \rangle|$ divides the order p-1 of \mathbb{Z}_p^* .

Suppose the equation $pz^2 = x^2 + y^2$ has solutions x, y and $z \in \mathbb{Z}$ such that $(x, y, z) \neq (0, 0, 0)$. Suppose both x and y are divisible by p. Then p^2 divides pz^2 and z is divisible by p. And (x/p, y/p, z/p) is a soluton to the equation. So after dividing x, y and z through by a power of p, we may assume that either x or y is not divisible by p. Then in \mathbb{Z}_p , $[x]^2 + [y]^2 = 0$ and $[x] \neq 0$ or $[y] \neq 0$. Suppose $[x] \neq 0$. Then $[-1] = ([y][x]^{-1})^2$, and [-1] is a square in \mathbb{Z}_p . So p-1 is divisible by 4

Quiz 4 Division: ID#: Name:

- 1. Let R be a commutative ring with identity. Prove the following.
 - (a) $0 \mid a$ if and only if a = 0.

(b) If $a \mid b$ and $a \mid c$, then $a \mid bx + cy$ for all $x, y \in R$.

(c) If u is a unit, then $a \mid u$ if and only if a is a unit.

2. Let R be an integral domain, and R[t] the ring of polynomials in t over R. Show that U(R[t]) = U(R).

- 1. Let R be a commutative ring with identity. Prove the following.
 - (a) $0 \mid a$ if and only if a = 0. **Solution:** Suppose $0 \mid a$. Then there exists $b \in R$ such that a = 0b. Hence a = 0. Conversely, suppose a = 0. Then 0 = 0a and $0 \mid a$.

(b) If a | b and a | c, then a | bx + cy for all x, y ∈ R.
Solution: By assumption, there exist d, e ∈ R such that b = ad, c = ae. Hence bx + cy = adx + aey = a(dx + ey). Therefore a | bx + cy fore all x, y ∈ R.

(c) If u is a unit, then $a \mid u$ if and only if a is a unit. **Solution:** Suppose $a \mid u$. Then there exists $b \in R$ such that u = ab. Since u is a unit, $1 = abu^{-1}$. Thus a is a unit with bu^{-1} as its inverse. Note that R is commutative. Conversely if a is a unit. Then $u = a(a^{-1})u$, and $a \mid u$.

2. Let R be an integral domain, and R[t] the ring of polynomials in t over R. Show that U(R[t]) = U(R).

Solution: Let $f, g \in R[t]$ such that $f \cdot g = 1$. Then $f \neq 0$ and $g \neq 0$. In particular deg(f), deg $(g) \geq 0$. Since R is an integral domain, the formula deg $(f \cdot g) =$ deg(f) +deg(g) holds. Since 0 =deg(1) =deg $(f \cdot g)$ and deg(f), deg $(g) \geq 0$, we have deg(f) =deg(g) = 0 and $f, g \in R$. Since $f \cdot g = 1, f, g \in U(R)$. The other includion $U(R) \subseteq U(R[t])$ is clear. Therefore U(R[t]) = U(R)

Quiz	5	
Division:	ID#:	Name:

October 26, 2005

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.

Show the following.

1. Let a and b be elements of an integral domain R. Let $I = \{ax + by \mid x, y \in R\}$. If there is an element $d \in R$ such that $I = \langle d \rangle$, then d is a greatest commond divisor of a and b.

2. If R is a principal ideal domain and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

May 15, 2005

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.

Show the following.

1. Let a and b be elements of an integral domain R. Let $I = \{ax + by \mid x, y \in R\}$. If there is an element $d \in R$ such that $I = \langle d \rangle$, then d is a greatest commond divisor of a and b.

Solution: Recall that since *R* is an integral domain the following hold for $a, b \in R$:

- (i) $a \mid b \Leftrightarrow \langle b \rangle \subseteq \langle a \rangle$.
- (ii) $(a \mid b) \land (b \mid a) \Leftrightarrow (\exists u \in U(R))[b = ua].$

Since $I = \langle a \rangle + \langle b \rangle = \langle d \rangle$, $\langle a \rangle \subseteq \langle d \rangle$ and $\langle b \rangle \subseteq \langle d \rangle$. Hence by (i) above we have $d \mid a$ and $d \mid b$.

Suppose $c \mid a$ and $c \mid b$, then $\langle a \rangle \subseteq \langle c \rangle$ and $\langle b \rangle \subseteq \langle c \rangle$. Hence

$$\langle d \rangle = I = \langle a \rangle + \langle b \rangle \subseteq \langle c \rangle.$$

Thus $c \mid d$. Therefore d is a greatest common divisor of a and b.

2. If R is a principal ideal domain and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

Solution: Let $I = \{px + by \mid x, y \in R\}$. Since R is a principal ideal domain, there exists $d \in R$ such that $I = \langle d \rangle$ and d is a greatest common divisor of p and b. In particular, $d \mid p$ and there exists $e \in R$ such that p = de. Since p is irreducible, either $d \in U(R)$ or $e \in U(R)$. Hence either I = R or $I = \langle p \rangle$. Suppose $I = \langle p \rangle$. Since $\langle b \rangle \subseteq I = \langle p \rangle$, $p \mid b$. Suppose I = R. Then there exist $x, y \in R$ such that 1 = px + by. Now c = pcx + bcy. Since $p \mid bc$ by assumption, and $p \mid pcx$, we have $p \mid c$.

November 2, 2005

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if $\langle p \rangle$ is a prime ideal, then p is irreducible.

- 2. Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$. For $\alpha = a + b\sqrt{-5}$, let $N(\alpha) = \alpha \overline{\alpha} = (a + b\sqrt{-5})(a \sqrt{-5}) = a^2 + 5b^2$. You may assume that R is a subring of \mathbb{C} and an integral domain. Note that $N(\alpha\beta) = N(\alpha)N(\beta)$ for $\alpha, \beta \in R$.
 - (a) Show that for $\alpha = a + b\sqrt{-5} \in R$,

 $\alpha \in U(R) \Leftrightarrow N(\alpha) = 1 \Leftrightarrow \alpha \in \{1, -1\}.$

(b) Show that 2 is an irreducible element in R.

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if $\langle p \rangle$ is a prime ideal, then p is irreducible.

Solution: Suppose p = ab for some $a, b \in R$. Clearly a and b are non-zero, $a \mid p$ and $b \mid p$. Since $\langle p \rangle$ is a prime ideal and $ab = p \in \langle p \rangle$, either $a \in \langle p \rangle$ or $b \in \langle p \rangle$. These imply $p \mid a$ or $p \mid b$ respectively. Since $a \mid p$ and $b \mid p, p = au$ or p = bv for some $u, v \in U(R)$. If p = au then 0 = a(u - b). Since $a \neq 0, b = u$ is a unit. If p = bv, then a = v is a unit. Therefore p is irreducible.

- 2. Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$. For $\alpha = a + b\sqrt{-5}$, let $N(\alpha) = \alpha \overline{\alpha} = (a + b\sqrt{-5})(a \sqrt{-5}) = a^2 + 5b^2$. You may assume that R is a subring of \mathbb{C} and an integral domain. Note that $N(\alpha\beta) = N(\alpha)N(\beta)$ for $\alpha, \beta \in R$.
 - (a) Show that for $\alpha = a + b\sqrt{-5} \in R$,

$$\alpha \in U(R) \Leftrightarrow N(\alpha) = 1 \Leftrightarrow \alpha \in \{1, -1\}.$$

Solution: Suppose $\alpha \in U(R)$. Then there exists $\beta = c + d\sqrt{-5} \in R$ such that $\alpha\beta = 1$. Since $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta)$ and both $N(\alpha)$ and $N(\beta)$ are non-negative integers, $N(\alpha) = 1$. Since $N(\alpha) = a^2 + 5b^2$, $N(\alpha) = 1$ if and only if $\alpha = \pm 1$. It is clear that $\{1, -1\} \subset U(R)$.

(b) Show that 2 is an irreducible element in R.

Solution: Suppose $2 = \alpha\beta$, where $\alpha, \beta \in R$. Then $4 = N(2) = N(\alpha\beta) = N(\alpha)N(\beta)$. If $\alpha \notin U(R)$ and $\beta \notin U(R)$, then $N(\alpha) = 2$ as it is a non-negative integer. Since $N(\alpha) = a^2 + 5b^2$ and 2 cannot be expressed in this form, this is impossible. Therefore either $\alpha \in U(R)$ or $\beta \in U(R)$.

Quiz 7 Division: ID#: Name:

November 14, 2005

In the following you may use the following fact:

If R is a UFD and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

1. Prove Eisenstain's Criterion:

Let R be a unique factorization domain and let $f = a_0 + a_1 t + \cdots + a_n t^n$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p \mid a_0, p \mid a_1, \ldots, p \mid a_{n-1}$, but $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible over R.

2. Apply Eisenstein's Criterion to prove that $2t^5 - 3t + 15$ is irreducible over Z.

3. Prove that $t^4 + t^3 + t^2 + t + 1$ is irreducible over \boldsymbol{Z} .

In the following you may use the following fact:

If R is a UFD and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

1. Prove Eisenstain's Criterion:

Let R be a unique factorization domain and let $f = a_0 + a_1 t + \cdots + a_n t^n$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p \mid a_0, p \mid a_1, \ldots, p \mid a_{n-1}$, but $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible over R.

See Page 132 in the textbook.

2. Apply Eisenstein's Criterion to prove that $2t^5 - 3t + 15$ is irreducible over \mathbf{Z} .

Solution: Since Z is a ED, it is a PID, and so is a UFD. Hence we can apply Eisenstein's Criterion. Take p = 3 as an irreducible element in Eisenstein's Criterion. Then

 $3 \mid 15 = a_0, 3 \mid -3 = a_1, 3 \mid 0 = a_2 = a_3 = a_4, 3 \nmid 2 = a_5, 9 \nmid 15 = a_0.$

Hence the polynomial $2t^5 - 3t + 15$ is irreducible over Z. If we apply Gauss' Lemma, we know that $2t^5 - 3t + 15$ is irreducible over Q.

3. Prove that $t^4 + t^3 + t^2 + t + 1$ is irreducible over Z.

Solution: Let $f(t) = t^4 + t^3 + t^2 + t + 1$ and g(t) = f(t+1). Then

$$g(t) = (t+1)^4 + (t+1)^3 + (t+1)^2 + (t+1) + 1 = \frac{(t+1)^5 - 1}{t}$$
$$= t^4 + {\binom{5}{1}}t^3 + {\binom{5}{2}}t^2 + {\binom{5}{3}}t + {\binom{5}{4}}$$
$$= t^4 + 5t^3 + 10t^2 + 10t + 5.$$

Now apply Eisenstein's Criterion by setting p = 5. Then g(t) is irreducible over \mathbf{Z} . Since f(t+1) = g(t), f(t) is irreducible as well. Note that if f(t) = r(t)s(t), then g(t) = f(t+1) = r(t+1)s(t+1).