Quiz 1

ID\#: Name:

1. Let R be any ring. Suppose that a, b are elements of R.
(a) Show that $a \cdot 0=0$.
(b) Show that $a \cdot(-b)=-(a b)$.
2. A ring is called Boolean if $r^{2}:=r \cdot r=r$ for all $r \in R$. If R is a Boolean ring, prove that $2 r:=r+r=0$ and that R is necessarily commutative.

Solutions to Quiz 1

1. Let R be any ring. Suppose that a, b are elements of R.
(a) Show that $a \cdot 0=0$.

Solution:

$0=a \cdot 0+(-(a \cdot 0))=a \cdot(0+0)+(-(a \cdot 0))=a \cdot 0+a \cdot 0+(-(a \cdot 0))=a \cdot 0$.
(b) Show that $a \cdot(-b)=-(a b)$.

Solution:

$$
a \cdot b+a \cdot(-b)=a \cdot(b+(-b))=a \cdot 0=0
$$

by (a). By adding $-(a \cdot b)$ on both hand sides, we have

$$
a \cdot(-b)=-(a b) .
$$

2. A ring is called Boolean if $r^{2}:=r \cdot r=r$ for all $r \in R$. If R is a Boolean ring, prove that $2 r:=r+r=0$ and that R is necessarily commutative.

Solution: Let $r, s \in R$.

$$
r+s=(r+s)^{2}=r^{2}+r \cdot s+s \cdot r+s^{2}=r+s+r \cdot s+s \cdot r .
$$

Hence by adding the additive inverse of $r+s$ to both hand sides, we obtain

$$
r \cdot s+s \cdot r=0
$$

By setting $r=s$, we have

$$
0=r^{2}+r^{2}=r+r=2 r .
$$

Hence in particular $r \cdot s+r \cdot s=2(r \cdot r)=0$. So $r \cdot s=-(r \cdot s)$. Now it follows from the equation above we have $r \cdot s=s \cdot r$.

Thus R is commutative.

Quiz 2

Division:
ID\#:

Name:

1. Let I be a two-sided ideal of a ring R. For x, x^{\prime}, y and $y^{\prime} \in R$ show that the following holds.

$$
\left(x+I=x^{\prime}+I\right) \wedge\left(y+I=y^{\prime}+I\right) \Rightarrow x y+I=x^{\prime} y^{\prime}+I .
$$

2. Let $\theta: R \rightarrow S$ be a ring homomorphism, and J a two-sided ideal of S. Show that $\theta^{-1}(J)=\{x \in R \mid \theta(x) \in J\}$ is a two-sided ideal of R.

Solutions to Quiz 2

1. Let I be a two-sided ideal of a ring R. For x, x^{\prime}, y and $y^{\prime} \in R$ show that the following holds.

$$
\left(x+I=x^{\prime}+I\right) \wedge\left(y+I=y^{\prime}+I\right) \Rightarrow x y+I=x^{\prime} y^{\prime}+I .
$$

Solution: First recall that if H is a subgroup of a group G. Then $a H=b H$ if and only if $a^{-1} b \in H$. Hence $x+I=x^{\prime}+I$ if and only if $-x+x^{\prime} \in I$. That is there is an element $a \in I$ such that $x^{\prime}=x+a$. Similarly there is an element $b \in I$ such that $y^{\prime}=y+b$. Since I is a two-sided ideal, $x b \in I$ and $a y \in I$. So

$$
-x y+x^{\prime} y^{\prime}=-x y+(x+a)(y+b)=x b+a y \in I .
$$

Hence $x y+I=x^{\prime} y^{\prime}+I$ as desired.
2. Let $\theta: R \rightarrow S$ be a ring homomorphism, and J a two-sided ideal of S. Show that $\theta^{-1}(J)=\{x \in R \mid \theta(x) \in J\}$ is a two-sided ideal of R.

Solution: Let $x, y \in \theta^{-1}(J)$, and $r \in R$. Then $\theta(x) \in J, \theta(y) \in J$ and $\theta(r) \in S$. Hence we have

$$
\begin{aligned}
\theta(x+y) & =\theta(x)+\theta(y) \in J, \quad \text { so } x+y \in \theta^{-1}(J) \\
\theta(r x) & =\theta(r) \theta(x) \in J, \text { so } r x \in \theta^{-1}(J) \\
\theta(x r) & =\theta(x) \theta(r) \in J, \quad \text { so } x r \in \theta^{-1}(J)
\end{aligned}
$$

Therefore $\theta^{-1}(\theta)$ is a two-sided ideal.

Quiz 3

Division:
ID\#:

1. Prove that a finite integral domain is a field.
2. Let x, y and z be integers. Suppose $6 z^{2}=x^{2}+y^{2}$. Show that $x=y=z=0$.

Solutions to Quiz 3

1. Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain. Since an integral domain is a commutative ring with identity, it suffices to show that every nonzero element has its (multiplicative) inverse. Let a be a nonzero element of R. Let ℓ_{a} is a mapping defined by:

$$
\ell_{a}: R \longrightarrow R(x \mapsto a x) .
$$

Then ℓ_{a} is an injection. In fact if $\ell_{a}(x)=\ell_{a}(y)$, then $a x=a y$ or $a(x-y)=0$. Since $a \neq 0$ and R is an integral domain, $x-y=0$. Hence $x=y$. Thus ℓ_{a} is an injection.
Since R is finite, ℓ_{a} is surjective as well. Hence there is an element $b \in R$ such that $\ell_{a}(b)=1$, and $a b=1$. Since R is commutative, $a b=b a=1$ and b is an inverse of a. Therefore R is a field.
2. Let x, y and z be integers. Suppose $6 z^{2}=x^{2}+y^{2}$. Show that $x=y=z=0$.

Solution: Suppose at least one of x, y and z is nonzero. Choose x, y and z so that max $\{|x|,|y|,|z|\}$ is minimum. Suppose there is a common divisor $d>1$. Let $x=d x_{1}, y=d y_{1}$ and $z=d z_{1}$. Then

$$
6 d^{2} z_{1}^{2}=d^{2} x_{1}^{2}+d^{2} y_{1}^{2}=d^{2}\left(x_{1}^{2}+y_{1}^{2}\right) .
$$

By dividing through d^{2}, we have $6 z_{1}^{2}=x_{1}^{2}+y_{1}^{2}$. This contradicts the minimality of $\max \{|x|,|y|,|z|\}$. Hence x, y and z are coprime.
Now we consider in $\boldsymbol{Z}_{3}=\{[0],[1],[2]\}$. Note that

$$
[x]^{2},[y]^{2} \in\left\{[0]^{2},[1]^{2},[2]^{2}\right\}=\{[0],[1]\} .
$$

On the other hand,

$$
[0]=[6][z]^{2}=\left[6 z^{2}\right]=\left[x^{2}+y^{2}\right]=[x]^{2}+[y]^{2} .
$$

Hence the only possibility is that $[x]=[y]=[0]$. So x and y are divisible by 3 . Since $6 z^{2}=x^{2}+y^{2}, 6 z^{2}$ is divisible by 9 and z^{2} is divisible by 3 . Thus 3 is a common divisor of x, y and z. This is a contradiction.

Take-Home Midterm pue :.00 am. October re, enos

Division: ID\#: Name:

1. Let R be a ring with identity element. Prove or find a counter example for the following statements.
(a) For $a, b \in R,(-a)(-b)=a b$, where $-a$ and $-b$ are additive inverses of a and b respectively.
(b) For a, b and $c \in R$ with $c \neq 0, a c=b c$ implies $a=b$.
(c) If there are elements $a, b \in R$ such that $a b=1$, then the element b is not a left zero divisor.
(d) Let f and g be polynomials in $R[t]$. Then $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)$.
2. Let R be a ring with identity such that $R a=R$ for every nonzero element $a \in R$. Show that R is a division ring. (R may not be commutative.)
3. Let I and J be two-sided ideals of a commutative ring R with identity.
(a) Show that $I J$ is a two-sided ideal contained in $I \cap J$. Recall that $I J$ consists of sums of products of elements of I and J, i.e., elements of the form $\sum_{i} a_{i} b_{i}$, where $a_{i} \in I, b_{i} \in J$.
(b) Show that if $I+J=R$, then $I J=I \cap J$.
4. Let $\boldsymbol{Q}[t]$ be a polynomial ring over \boldsymbol{Q} and $R=\{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Q}[t]\}$.
(a) Show that $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Q}\}$, and R is a field.
(b) $\boldsymbol{Q}[t]\left(t^{2}+5\right)$ is a maximal ideal of $\boldsymbol{Q}[t]$.
5. Let p be an odd prime number. If an equation $p z^{2}=x^{2}+y^{2}$ has solutions x, y and $z \in \boldsymbol{Z}$ such that $(x, y, z) \neq(0,0,0)$, then 4 divides $p-1$. (Hint: First prove that 4 divides $p-1$ if and only if $[-1]_{p}$ is a square of an element in \boldsymbol{Z}_{p}.)

Solutions to Midterm

1. Let R be a ring with identity element. Prove or find a counter example for the following statements.
(a) For $a, b \in R,(-a)(-b)=a b$, where $-a$ and $-b$ are additive inverses of a and b respectively.
Solution: For all $a \in R, 0=a 0+(-a 0)=a(0+0)+(-a 0)=a 0+a 0+$ $(-a 0)=a 0+0=a 0$. Hence $a 0=0$. Similarly, $0 a=0$ for all $a \in R$.

$$
\begin{aligned}
& (-a)(-b)+(-a b)=(-a)(-b)+0 b+(-a b) \\
& =(-a)(-b)+((-a)+a) b+(-a b)=(-a)(-b)+(-a) b+a b+(-a b) \\
& =(-a)((-b)+b)+0=(-a) 0=0 .
\end{aligned}
$$

Hence $(-a)(-b)$ is the additive inverse of $-a b$, which is $a b$.
(b) For a, b and $c \in R$ with $c \neq 0, a c=b c$ implies $a=b$.

Solution: Let $R=\boldsymbol{Z}_{4}=\{[0],[1],[2],[3]\}$, and $a=[2], b=[0], c=[2]$. Then $a c=b c=[0]$, while $a \neq b$.
(c) If there are elements $a, b \in R$ such that $a b=1$, then the element b is not a left zero divisor.
Solution: Let $c \in R$ be an element satisfying $b c=0$. Then

$$
c=1 c=(a b) c=a(b c)=a 0=0 .
$$

Hence $c=0$. Therefore b cannot be a left zero divisor.
(d) Let f and g be polynomials in $R[t]$. Then $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)$.

Solution: Let $R=\boldsymbol{Z}_{4}$ and $f=g=[2]$. Then $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ and $\operatorname{deg}(f g)=\operatorname{deg}(0)=-\infty$. Hence $\operatorname{deg}(f)+\operatorname{deg}(g) \neq \operatorname{deg}(f g)$ in this case.
2. Let R be a ring with identity such that $R a=R$ for every nonzero element $a \in R$. Show that R is a division ring. (R may not be commutative.)

Solution: Let a be a nonzero element of R. It suffices to show that a has a multiplicative inverse. If $1=0, a=a 1=a 0=0$ and $R=\{0\}$. Hence we may assume that $1 \neq 0$. Since $1 \in R=R a$ by assumption, there exists $b \in R$ such that $1=b a$. Since $1 \neq 0, b \neq 0$. By assumption, $1 \in R=R b$ and there exists $c \in R$ such that $1=c b$. Now $a=1 a=(c b) a=c(b a)=c 1=c$. Hence $1=c b=a b$. Since $b a=1, b$ is a multilicative inverse of a.
3. Let I and J be two-sided ideals of a commutative ring R with identity.
(a) Show that $I J$ is a two-sided ideal contained in $I \cap J$. Recall that $I J$ consists of sums of products of elements of I and J, i.e., elements of the form $\sum_{i} a_{i} b_{i}$, where $a_{i} \in I, b_{i} \in J$.
Solution: Let $x \in I J$ and $y \in I J$. Then by the definition of $I J$, there exist $a_{i}, a_{j}^{\prime} \in I$ and $b_{i}, b_{j}^{\prime} \in J$ such that $x=\sum_{i} a_{i} b_{i}, y=\sum_{j} a_{j}^{\prime} b_{j}^{\prime}$. Suppose $r, s \in R$.

Then

$$
\begin{aligned}
x+y & =\sum_{i} a_{i} b_{i}+\sum_{j} a_{j}^{\prime} b_{j}^{\prime} \in I J \\
r x & =r \sum_{i} a_{i} b_{i}=\sum_{i}\left(r a_{i}\right) b_{i} \in I J
\end{aligned}
$$

Hence $I J$ is a two-sided ideal. Since both I and J are two-sided ideals, $a_{i} b_{i} \in$ $I \cap J$ for each i and $x=\sum_{i} a_{i} b_{i} \in I \cap J$. Therefore $I J \subseteq I \cap J$.
(b) Show that if $I+J=R$, then $I J=I \cap J$.

Solution: Since $I J \subseteq I \cap J$, it suffices to show that $I \cap J \subseteq I J$. Since $1 \in R=I+J$, there exist $a \in I$ and $b \in J$ such that $1=a+b$. Let $x \in I \cap J$. Then

$$
x=1 x=(a+b) x=a x+b x=a x+x b \in I J .
$$

Note that $x \in J$ implies $a x \in I J$ and $x \in I$ implies $x b \in I J$. Therefore $I \cap J \subseteq I J$ and $I J=I \cap J$.
4. Let $\boldsymbol{Q}[t]$ be a polynomial ring over \boldsymbol{Q} and $R=\{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Q}[t]\}$.
(a) Show that $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Q}\}$, and R is a field.

Solution: Let $\phi: \boldsymbol{Q}[t] \rightarrow \boldsymbol{C},(f(t) \mapsto f(\sqrt{-5}))$, where \boldsymbol{C} denote the complex number field. Since $(\sqrt{-5})^{2}=-5 \in \boldsymbol{Q}, \operatorname{Im}(\phi) \subseteq R$. Since $f(a+b t)=a+b \sqrt{-5}$, $\operatorname{Im}(\phi)=R$. Clearly ϕ is a ring homomorphism. Since the image of a ring homomorphism is a subring, R is a ring. If $a+b \sqrt{-5} \in R$ is a nonzero element, $a \neq 0$ or $b \neq 0$ and $(a-b \sqrt{-5}) /\left(a^{2}+5 b^{2}\right)$ is an inverse of $a+b \sqrt{-5}$. Hence R is a field.
(b) $\boldsymbol{Q}[t]\left(t^{2}+5\right)$ is a maximal ideal of $\boldsymbol{Q}[t]$.

Solution: Let $I=\boldsymbol{Q}[t]\left(t^{2}+5\right)$. By construction, it is an ideal of $\boldsymbol{Q}[t]$. Since $t^{2}+5 \in \operatorname{Ker}(\phi)$ and $\operatorname{Ker}(\phi)$ is an ideal, $I \subseteq \operatorname{Ker}(\phi)$. Let $f(t) \in \operatorname{Ker}(\phi)$. Then there exists $q(t) \in \boldsymbol{Q}[t]$ such that $f(t)=q(t)\left(t^{2}+5\right)+b t+a$ for some $a, b \in \boldsymbol{Q}$. Since $f(t) \in \operatorname{Ker}(\phi), 0=f(\sqrt{-5})=a+b \sqrt{-5}$. Therefore $a=b=0$. (To see this fact, for example take a product with $a-b \sqrt{-5}$ to get $a^{2}+5 b^{2}=0$.) So $f(t)=q(t)\left(t^{2}+5\right) \in I$. Therefore $I=\operatorname{Ker}(\phi)$. By an isomorphism theorem, $\boldsymbol{Q}[t] / I \simeq R$. Since R is a field, I is a maximal ideal.
5. Let p be an odd prime number. If an equation $p z^{2}=x^{2}+y^{2}$ has solutions x, y and $z \in \boldsymbol{Z}$ such that $(x, y, z) \neq(0,0,0)$, then 4 divides $p-1$. (Hint: First prove that 4 divides $p-1$ if and only if $[-1]_{p}$ is a square of an element in \boldsymbol{Z}_{p}.)
Solution: First we show that if $[-1]$ is a square of an element in \boldsymbol{Z}_{p}, then $p-1$ is divisible by 4 . Suppose $[a]^{2}=[-1]$. Then the order of $[a]$ in \boldsymbol{Z}_{p}^{*} is of order 4. Hence $4=|\langle[a]\rangle|$ divides the order $p-1$ of \boldsymbol{Z}_{p}^{*}.
Suppose the equation $p z^{2}=x^{2}+y^{2}$ has solutions x, y and $z \in \boldsymbol{Z}$ such that $(x, y, z) \neq$ $(0,0,0)$. Suppose both x and y are divisible by p. Then p^{2} divides $p z^{2}$ and z is divisible by p. And $(x / p, y / p, z / p)$ is a soluton to the equation. So after dividing x, y and z through by a power of p, we may assume that either x or y is not divisible by p. Then in $\boldsymbol{Z}_{p},[x]^{2}+[y]^{2}=0$ and $[x] \neq 0$ or $[y] \neq 0$. Suppose $[x] \neq 0$. Then $[-1]=\left([y][x]^{-1}\right)^{2}$, and $[-1]$ is a square in \boldsymbol{Z}_{p}. So $p-1$ is divisible by 4

Quiz 4

October 17, 2005
Division:
Division: ID\#: Name:

1. Let R be a commutative ring with identity. Prove the following.
(a) $0 \mid a$ if and only if $a=0$.
(b) If $a \mid b$ and $a \mid c$, then $a \mid b x+c y$ for all $x, y \in R$.
(c) If u is a unit, then $a \mid u$ if and only if a is a unit.
2. Let R be an integral domain, and $R[t]$ the ring of polynomials in t over R. Show that $U(R[t])=U(R)$.

Solutions to Quiz 4

1. Let R be a commutative ring with identity. Prove the following.
(a) $0 \mid a$ if and only if $a=0$.

Solution: Suppose $0 \mid a$. Then there exists $b \in R$ such that $a=0 b$. Hence $a=0$. Conversely, suppose $a=0$. Then $0=0 a$ and $0 \mid a$.
(b) If $a \mid b$ and $a \mid c$, then $a \mid b x+c y$ for all $x, y \in R$.

Solution: By assumption, there exist $d, e \in R$ such that $b=a d, c=a e$. Hence $b x+c y=a d x+a e y=a(d x+e y)$. Therefore $a \mid b x+c y$ fore all x, $y \in R$.
(c) If u is a unit, then $a \mid u$ if and only if a is a unit.

Solution: Suppose $a \mid u$. Then there exists $b \in R$ such that $u=a b$. Since u is a unit, $1=a b u^{-1}$. Thus a is a unit with $b u^{-1}$ as its inverse. Note that R is commutative. Conversely if a is a unit. Then $u=a\left(a^{-1}\right) u$, and $a \mid u$.
2. Let R be an integral domain, and $R[t]$ the ring of polynomials in t over R. Show that $U(R[t])=U(R)$.
Solution: Let $f, g \in R[t]$ such that $f \cdot g=1$. Then $f \neq 0$ and $g \neq 0$. In particular $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$. Since R is an integral domain, the formula $\operatorname{deg}(f \cdot g)=$ $\operatorname{deg}(f)+\operatorname{deg}(g)$ holds. Since $0=\operatorname{deg}(1)=\operatorname{deg}(f \cdot g)$ and $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$, we have $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ and $f, g \in R$. Since $f \cdot g=1, f, g \in U(R)$. The other includion $U(R) \subseteq U(R[t])$ is clear. Therefore $U(R[t])=U(R)$

Quiz 5

Division:

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.

Show the following.

1. Let a and b be elements of an integral domain R. Let $I=\{a x+b y \mid x, y \in R\}$. If there is an element $d \in R$ such that $I=\langle d\rangle$, then d is a greatest commond divisor of a and b.
2. If R is a principal ideal domain and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

Solutions to Quiz 5

Let a, b be elements in a domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.

Show the following.

1. Let a and b be elements of an integral domain R. Let $I=\{a x+b y \mid x, y \in R\}$. If there is an element $d \in R$ such that $I=\langle d\rangle$, then d is a greatest commond divisor of a and b.

Solution: Recall that since R is an integral domain the following hold for $a, b \in R$:
(i) $a \mid b \Leftrightarrow\langle b\rangle \subseteq\langle a\rangle$.
(ii) $(a \mid b) \wedge(b \mid a) \Leftrightarrow(\exists u \in U(R))[b=u a]$.

Since $I=\langle a\rangle+\langle b\rangle=\langle d\rangle,\langle a\rangle \subseteq\langle d\rangle$ and $\langle b\rangle \subseteq\langle d\rangle$. Hence by (i) above we have $d \mid a$ and $d \mid b$.
Suppose $c \mid a$ and $c \mid b$, then $\langle a\rangle \subseteq\langle c\rangle$ and $\langle b\rangle \subseteq\langle c\rangle$. Hence

$$
\langle d\rangle=I=\langle a\rangle+\langle b\rangle \subseteq\langle c\rangle .
$$

Thus $c \mid d$. Therefore d is a greatest common divisor of a and b.
2. If R is a principal ideal domain and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.
Solution: Let $I=\{p x+b y \mid x, y \in R\}$. Since R is a principal ideal domain, there exists $d \in R$ such that $I=\langle d\rangle$ and d is a greatest common divisor of p and b. In particular, $d \mid p$ and there exists $e \in R$ such that $p=d e$. Since p is irreducible, either $d \in U(R)$ or $e \in U(R)$. Hence either $I=R$ or $I=\langle p\rangle$. Suppose $I=\langle p\rangle$. Since $\langle b\rangle \subseteq I=\langle p\rangle, p \mid b$. Suppose $I=R$. Then there exist $x, y \in R$ such that $1=p x+b y$. Now $c=p c x+b c y$. Since $p \mid b c$ by assumption, and $p \mid p c x$, we have $p \mid c$. Thus $p \mid b$ or $p \mid c$.

Quiz 6

Division:
ID\#:

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if $\langle p\rangle$ is a prime ideal, then p is irreducible.
2. Let $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Z}\}$. For $\alpha=a+b \sqrt{-5}$, let $N(\alpha)=\alpha \bar{\alpha}=(a+$ $b \sqrt{-5})(a-\sqrt{-5})=a^{2}+5 b^{2}$. You may assume that R is a subring of \boldsymbol{C} and an integral domain. Note that $N(\alpha \beta)=N(\alpha) N(\beta)$ for $\alpha, \beta \in R$.
(a) Show that for $\alpha=a+b \sqrt{-5} \in R$,

$$
\alpha \in U(R) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha \in\{1,-1\} .
$$

(b) Show that 2 is an irreducible element in R.

Solutions to Quiz 6

1. Let R be an integral domain. Let p be a non-zero element of R. Show that if $\langle p\rangle$ is a prime ideal, then p is irreducible.

Solution: Suppose $p=a b$ for some $a, b \in R$. Clearly a and b are non-zero, $a \mid p$ and $b \mid p$. Since $\langle p\rangle$ is a prime ideal and $a b=p \in\langle p\rangle$, either $a \in\langle p\rangle$ or $b \in\langle p\rangle$. These imply $p \mid a$ or $p \mid b$ respectively. Since $a \mid p$ and $b \mid p, p=a u$ or $p=b v$ for some $u, v \in U(R)$. If $p=a u$ then $0=a(u-b)$. Since $a \neq 0, b=u$ is a unit. If $p=b v$, then $a=v$ is a unit. Therefore p is irreducible.
2. Let $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Z}\}$. For $\alpha=a+b \sqrt{-5}$, let $N(\alpha)=\alpha \bar{\alpha}=(a+$ $b \sqrt{-5})(a-\sqrt{-5})=a^{2}+5 b^{2}$. You may assume that R is a subring of \boldsymbol{C} and an integral domain. Note that $N(\alpha \beta)=N(\alpha) N(\beta)$ for $\alpha, \beta \in R$.
(a) Show that for $\alpha=a+b \sqrt{-5} \in R$,

$$
\alpha \in U(R) \Leftrightarrow N(\alpha)=1 \Leftrightarrow \alpha \in\{1,-1\} .
$$

Solution: Suppose $\alpha \in U(R)$. Then there exists $\beta=c+d \sqrt{-5} \in R$ such that $\alpha \beta=1$. Since $1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta)$ and both $N(\alpha)$ and $N(\beta)$ are non-negative integers, $N(\alpha)=1$. Since $N(\alpha)=a^{2}+5 b^{2}, N(\alpha)=1$ if and only if $\alpha= \pm 1$. It is clear that $\{1,-1\} \subset U(R)$.
(b) Show that 2 is an irreducible element in R.

Solution: Suppose $2=\alpha \beta$, where $\alpha, \beta \in R$. Then $4=N(2)=N(\alpha \beta)=$ $N(\alpha) N(\beta)$. If $\alpha \notin U(R)$ and $\beta \notin U(R)$, then $N(\alpha)=2$ as it is a non-negative integer. Since $N(\alpha)=a^{2}+5 b^{2}$ and 2 cannot be expressed in this form, this is impossible. Therefore either $\alpha \in U(R)$ or $\beta \in U(R)$.

Quiz 7

Name:
fact:
the following you may use the following fact:
If R is a UFD and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

1. Prove Eisenstain's Criterion:

Let R be a unique factorization domain and let $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$. Then f is irreducible over R.
2. Apply Eisenstein's Criterion to prove that $2 t^{5}-3 t+15$ is irreducible over \boldsymbol{Z}.
3. Prove that $t^{4}+t^{3}+t^{2}+t+1$ is irreducible over \boldsymbol{Z}.

Solutions to Quiz 7

In the following you may use the following fact:
If R is a UFD and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

1. Prove Eisenstain's Criterion:

Let R be a unique factorization domain and let $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ be a polynomial over R. Suppose that there is an irreducible element p of R such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}$, but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$. Then f is irreducible over R.

See Page 132 in the textbook.
2. Apply Eisenstein's Criterion to prove that $2 t^{5}-3 t+15$ is irreducible over \boldsymbol{Z}.

Solution: Since \boldsymbol{Z} is a ED, it is a PID, and so is a UFD. Hence we can apply Eisenstein's Criterion. Take $p=3$ as an irreducible element in Eisenstein's Criterion. Then

$$
3\left|15=a_{0}, 3\right|-3=a_{1}, 3 \mid 0=a_{2}=a_{3}=a_{4}, 3 \nmid 2=a_{5}, 9 \nmid 15=a_{0} .
$$

Hence the polynomial $2 t^{5}-3 t+15$ is irreducible over \boldsymbol{Z}. If we apply Gauss' Lemma, we know that $2 t^{5}-3 t+15$ is irreducible over \boldsymbol{Q}.
3. Prove that $t^{4}+t^{3}+t^{2}+t+1$ is irreducible over \boldsymbol{Z}.

Solution: Let $f(t)=t^{4}+t^{3}+t^{2}+t+1$ and $g(t)=f(t+1)$. Then

$$
\begin{aligned}
g(t) & =(t+1)^{4}+(t+1)^{3}+(t+1)^{2}+(t+1)+1=\frac{(t+1)^{5}-1}{t} \\
& =t^{4}+\binom{5}{1} t^{3}+\binom{5}{2} t^{2}+\binom{5}{3} t+\binom{5}{4} \\
& =t^{4}+5 t^{3}+10 t^{2}+10 t+5 .
\end{aligned}
$$

Now apply Eisenstein's Criterion by setting $p=5$. Then $g(t)$ is irreducible over \boldsymbol{Z}. Since $f(t+1)=g(t), f(t)$ is irreducible as well. Note that if $f(t)=r(t) s(t)$, then $g(t)=f(t+1)=r(t+1) s(t+1)$.

