Algebra II Final 2017

1. Let \boldsymbol{Z} be a ring of rational integers, $\boldsymbol{Z}[x]$ the polynomial ring in x over \boldsymbol{Z} and $\boldsymbol{Z}[x, y]$ the polynomial ring in x and y over \boldsymbol{Z}. Show the following.
(25pts)
(a) $\boldsymbol{Z}[x]$ is an integral domain.
(b) $\boldsymbol{Z}[x, y]$ is an integral domain.
(c) For the unit groups, $U(\boldsymbol{Z}[x, y])=U(\boldsymbol{Z}[x])=U(\boldsymbol{Z})=\{1,-1\}$.
(d) For $f(x, y), g(x, y) \in \boldsymbol{Z}[x, y]$, if $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then $f(x, y)=g(x, y)$ or $f(x, y)=-g(x, y)$.
(e) For a nonzero polynomial $f(x, y) \in \boldsymbol{Z}[x, y]$, if $\langle f(x, y)\rangle$ is a prime ideal, then $f(x, y)$ is irreducible, i.e., $f(x, y)=g(x, y) h(x, y)$ for $g(x, y), h(x, y) \in \boldsymbol{Z}[x, y]$ implies $g(x, y)= \pm 1$ or $h(x, y)= \pm 1$.
2. Let $\boldsymbol{Z}_{3}[x]$ be the polynomial ring over $\boldsymbol{Z}_{3}, p(x)$ a polynomial in $\boldsymbol{Z}_{3}[x]$ of degree $n>0$ and $R=\boldsymbol{Z}[x] /\langle p(x)\rangle$. Show the following.
(25pts)
(a) $R=\left\{c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle \mid c_{0}, c_{1}, \ldots, c_{n-1} \in \boldsymbol{Z}_{3}\right\}$.
(b) There are exactly 3^{n} elements in R.
(c) If R is an integral domain, then it is a field.
(d) R is an integral domain if and only if $p(x)$ is irreducible over \boldsymbol{Z}_{3}.
(e) If $p(x)=x^{4}+x+2$, then R is a field with 81 elements.
3. Let R and S be commutative rings with unity 1 , and $\phi: R \rightarrow S$ a ring homomorphism such that $\phi(1)=1$. Show the following.
(25pts)
(a) If B is an ideal of S, then $A=\phi^{-1}(B)=\{x \in R \mid \phi(x) \in B\}$ is an ideal of R.
(b) If B is a prime ideal of S, then $A=\phi^{-1}(B)$ is a prime ideal of R.
(c) Let $R=\boldsymbol{Z}[x, y], S=\boldsymbol{Z}[x]$ and $\phi: R \rightarrow S(f(x, y) \mapsto f(x, 0))$. Then Ker ϕ is a prime ideal but not a maximal ideal.
(d) $\langle y\rangle$ is a prime ideal but not maximal in $R=\boldsymbol{Z}[x, y]$.
(e) $\boldsymbol{Z}[x, y]$ is not a principal ideal domain.
4. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$ and $\gamma=1+\sqrt{-3} \in R$, where \boldsymbol{C} is the complex number field. Show the following.
(25pts)
(a) R is an integral domain.
(b) $U(R)=\{1,-1\}$.
(c) γ is an irreducible element.
(d) $\langle\gamma\rangle$ is not a prime ideal.
(e) R is not a unique factorization domain.

Solutions to Algebra II Final 2017

1. Let \boldsymbol{Z} be a ring of rational integers, $\boldsymbol{Z}[x]$ the polynomial ring in x over \boldsymbol{Z} and $\boldsymbol{Z}[x, y]$ the polynomial ring in x and y over \boldsymbol{Z}. Show the following.
(25pts)
(a) $\boldsymbol{Z}[x]$ is an integral domain.

Claim. If R is an integral domain, then the polynomial ring $R[x]$ is an integral domain.
Proof. For nonzero polynomials $f(x)=a_{m} x^{m}+\cdots+a_{m}, g(x)=b_{n} x^{n}+\cdots+b_{0}$ with $a_{m} \neq 0$ and $b_{n} \neq 0, f(x) g(x)=a_{m} b_{n} x^{m+n}+$ lower terms. Since R is an integral domain, $a_{m} b_{n} \neq 0$ and $f(x) g(x) \neq 0$.
Solution. Since \boldsymbol{Z} is an integral domain, by the claim above, $\boldsymbol{Z}[x]$ is an integral domain.
(b) $\boldsymbol{Z}[x, y]$ is an integral domain.

Solution. Since every polynomial $f(x, y) \in \boldsymbol{Z}[x, y]$ can be written as $f(x, y)=$ $f_{n}(y) x^{n}+f_{n-1}(y) x^{-1}+\cdots+f_{0}(x)$, where $f_{n}(y), f_{n-2}(y), \ldots, f_{0}(y) \in \boldsymbol{Z}[y]$. Hence $\boldsymbol{Z}[x, y]$ is a polynomial ring in x over $\boldsymbol{Z}[y]$. Since $\boldsymbol{Z}[y]$ is an integral domain by (a) and by the claim above, $(\boldsymbol{Z}[y])[x]=\boldsymbol{Z}[x, y]$ is an integral domain.
(c) For the unit groups, $U(\boldsymbol{Z}[x, y])=U(\boldsymbol{Z}[x])=U(\boldsymbol{Z})=\{1,-1\}$.

Claim. If R is an integral domain, then $U(R[x])=U(R)$.
Proof. $U(R[x]) \supset U(R)$ is clear. For nonzero polynomials $f(x)=a_{m} x^{m}+$ $\cdots+a_{m}, g(x)=b_{n} x^{n}+\cdots+b_{0}$ with $a_{m} \neq 0$ and $b_{n} \neq 0$, suppose $1=f(x) g(x)=$ $a_{m} b_{n} x^{m+n}+$ lower terms. This is possible only if $m=n=0$ and $a_{m} b_{n}=1$. Hence $U(R[x]) \subset U(R)$.
Solution. By the observation in the solution of (b) and the claim above,

$$
U(\boldsymbol{Z}[x, y])=U((\boldsymbol{Z}[y])[x])=U(\boldsymbol{Z}[y])=U(\boldsymbol{Z})
$$

Similarly, $U(\boldsymbol{Z}[x])=U(\boldsymbol{Z})$. Since $a b=1$ for $a, b \in \boldsymbol{Z}$ implies $a, b \in\{1,-1\}$, the assertion follows.
(d) For $f(x, y), g(x, y) \in \boldsymbol{Z}[x, y]$, if $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then $f(x, y)=g(x, y)$ or $f(x, y)=-g(x, y)$.
Solution. Suppose $\langle f(x, y)\rangle=\langle g(x, y)\rangle$. If $f(x, y)=0$, then $g(x, y)=$ 0 . Hence $f(x, y)=g(x, y)$ in this case. Suppose that $f(x, y) \neq 0$. Since $f(x, y) \in\langle g(x, y)\rangle, f(x, y)=h(x, y) g(x, y)$ for some $h(x, y) \in \boldsymbol{Z}[x, y]$. Similarly, it follows from $g(x, y) \in\langle f(x, y)\rangle$ that there is $k(x, y) \in \boldsymbol{Z}[x, y]$ such that $g(x, y)=k(x, y) f(x, y)$. Hence $f(x, y)(1-h(x, y) k(x, y))=0$. Since $f(x, y) \neq 0$ and $\boldsymbol{Z}[x, y]$ is an integral domain by (b), $h(x, y) k(x, y)=1$ and $h(x, y) \in U(\boldsymbol{Z}[x, y])=\{1,-1\}$ by (c). Since $f(x, y)=h(x, y) g(x, y)$, $f(x, y)=g(x, y)$ or $f(x, y)=-g(x, y)$.
(e) For a nonzero polynomial $f(x, y) \in \boldsymbol{Z}[x, y]$, if $\langle f(x, y)\rangle$ is a prime ideal, then $f(x, y)$ is irreducible, i.e., $f(x, y)=g(x, y) h(x, y)$ for $g(x, y), h(x, y) \in \boldsymbol{Z}[x, y]$ implies $g(x, y)= \pm 1$ or $h(x, y)= \pm 1$.

Solution. Suppose $g(x, y) h(x, y)=f(x, y) \in\langle f(x, y)\rangle$ and $\langle f(x, y)\rangle$ is a prime ideal. Clearly, $f(x, y) \in\langle g(x, y)\rangle \cap\langle h(x, y)\rangle$. Hence $\langle f(x, y)\rangle \subset\langle g(x, y)\rangle \cap$ $\langle h(x, y)\rangle$. Since $\langle f(x, y)\rangle$ is a prime ideal, $g(x, y) \in\langle f(x, y)\rangle$ or $h(x, y) \in$ $\langle f(x, y)\rangle$. Hence $\langle g(x, y)\rangle \subset\langle f(x, y)\rangle$ or $\langle h(x, y)\rangle \subset\langle f(x, y)\rangle$. Therefore, $\langle g(x, y)\rangle=\langle f(x, y)\rangle$ or $\langle h(x, y)\rangle=\langle f(x, y)\rangle$. By $(\mathrm{d}), f(x, y)= \pm g(x, y)$ or $f(x, y)= \pm h(x, y)$. Since $f(x, y)=g(x, y) h(x, y)$ and $f(x, y)$ is nonzero, $g(x, y)= \pm 1$ or $h(x, y)= \pm 1$.
2. Let $\boldsymbol{Z}_{3}[x]$ be the polynomial ring over $\boldsymbol{Z}_{3}, p(x)$ a polynomial in $\boldsymbol{Z}_{3}[x]$ of degree $n>0$ and $R=\boldsymbol{Z}[x] /\langle p(x)\rangle$. Show the following.
(25pts)
(a) $R=\left\{c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle \mid c_{0}, c_{1}, \ldots, c_{n-1} \in \boldsymbol{Z}_{3}\right\}$.

Solution. Let $f(x) \in \boldsymbol{Z}_{3}[x]$. Since \boldsymbol{Z}_{3} is a field, $\boldsymbol{Z}_{3}[x]$ is a Euclidian domain and there exist $q(x), r(x) \in \boldsymbol{Z}_{3}[x]$ such that $\operatorname{deg} r(x)<\operatorname{deg} p(x)=n$ such that $f(x)=q(x) p(x)+r(x)$. Since there exist $c_{0}, c_{1}, \ldots, c_{n-1} \in \boldsymbol{Z}_{3}$ such that $r(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$,
$f(x)+\langle p(x)\rangle=r(x)+q(x) p(x)+\langle p(x)\rangle=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle$.
Thus $R=\left\{c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle \mid c_{0}, c_{1}, \ldots, c_{n-1} \in \boldsymbol{Z}_{3}\right\}$.
(b) There are exactly 3^{n} elements in R.

Solution. Suppose $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle=c_{0}^{\prime}+c_{1}^{\prime} x+\cdots+$ $c_{n-1}^{\prime} x^{n-1}+\langle p(x)\rangle$. Then

$$
\left(c_{0}-c_{0}^{\prime}\right)+\left(c_{1}-c_{1}^{\prime}\right) x+\cdots+\left(c_{n-1}-c_{n-1}^{\prime}\right) x^{n-1} \in\langle p(x)\rangle .
$$

Since $\operatorname{deg} p(x)=n$, this is possible only when $c_{0}=c_{0}^{\prime}, c_{1}=c_{1}^{\prime}, \ldots, c_{n-1}=c_{n-1}^{\prime}$, and the expression $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+\langle p(x)\rangle$ is unique. Thus, there are 3^{n} choices of $c_{0}, c_{1}, \ldots, c_{n-1} \in \boldsymbol{Z}_{3}$ and there are exactly 3^{n} elements in R.
(c) If R is an integral domain, then it is a field.

Solution. R is a finite commutative ring with unity. Suppose R is an integral domain. If $\alpha \in R$ is a nonzero element, then an additive homomorphism

$$
\lambda_{\alpha}: R \rightarrow R(\beta \mapsto \alpha \beta)
$$

is one-to-one as $\operatorname{Ker} \lambda_{\alpha}=\{0\}$. Note that $0=\lambda_{\alpha}(\beta)=\alpha \beta$ implies that $\beta=0$ as α is nonzero and R is an integral domain. Since R is finite, $\left|\lambda_{\alpha}(R)\right|=|R|$ implies that λ_{α} is onto and there exists $\beta \in R$ such that $\alpha \beta=1$. Hence R is a field.
(d) R is an integral domain if and only if $p(x)$ is irreducible over \boldsymbol{Z}_{3}.

Solution. If $q(x) r(x) \in\langle p(x)\rangle$, then

$$
(q(x)+\langle p(x)\rangle)(r(x)+\langle p(x)\rangle)=q(x) r(x)+\langle p(x)\rangle=\langle p(x)\rangle .
$$

Hence if R is an integral domain, $q(x) \in\langle p(x)\rangle$ or $r(x) \in\langle p(x)\rangle$. In particular, if $q(x) r(x)=p(x)$, then $p(x)$ divides either $q(x)$ or $r(x)$ and $p(x)$ is irreducible. Conversely, if $p(x)$ is irreducible, $p(x)$ divides $q(x)$ or $r(x)$ as $\boldsymbol{Z}_{3}[x]$ is a unique factorization domain. Therefore, $q(x) \in\langle p(x)\rangle$ or $r(x) \in\langle p(x)\rangle$ and $\langle p(x)\rangle$ is a prime ideal.
(e) If $p(x)=x^{4}+x+2$, then R is a field with 81 elements.

Solution. We claim that $p(x)$ is irreducible. Since $p(0)=p(2)=2, p(1)=1$ and $p(x)$ does not have a factor of degree one. Let $x^{4}+x+2=\left(x^{2}+a x+\right.$ $b)\left(x^{2}+c x+d\right)$ be a product of irreducible polynomials of degree two. We may assume $b=1$ and $d=2$. Then $a=0$ and $c \neq 0$ by irreducibility. This is impossible as $a+c$ is the coefficient of x^{3} in $p(x)$.
3. Let R and S be commutative rings with unity 1 , and $\phi: R \rightarrow S$ a ring homomorphism such that $\phi(1)=1$. Show the following.
(a) If B is an ideal of S, then $A=\phi^{-1}(B)=\{x \in R \mid \phi(x) \in B\}$ is an ideal of R.

Solution. Let $x, y \in A$ and $r \in R$. Then $\phi(x-y)=\phi(x)-\phi(y) \in B$ and $\phi(r x)=\phi(r) \phi(x) \in B$. Hence A is an ideal.
(b) If B is a prime ideal of S, then $A=\phi^{-1}(B)$ is a prime ideal of R.

Solution. By (a), A is an ideal. If $A=R, 1 \in A=\phi^{-1}(B)$ and $\phi(1)=1 \in B$. Thus $B=S$, which is not the case as a prime ideal is proper. Suppose $x y \in A$. Then $\phi(x) \phi(y)=\phi(x y) \in B$. Since B is a prime ideal, $\phi(x) \in B$ or $\phi(y) \in B$. Thus $x \in \phi^{-1}(B)=A$ or $y \in \phi^{-1}(B)=A$. Thus A is a prime ideal.
(c) Let $R=\boldsymbol{Z}[x, y], S=\boldsymbol{Z}[x]$ and $\phi: R \rightarrow S(f(x, y) \mapsto f(x, 0))$. Then $\operatorname{Ker} \phi$ is a prime ideal but not a maximal ideal.
Solution. First note that ϕ is a ring homomorphism. Since $\boldsymbol{Z}[x]$ is an integral domain by $1(a),\langle 0\rangle$ is a prime ideal. Hence by $(c), \operatorname{Ker} \phi$ is a prime ideal. Since for $f(x) \in \boldsymbol{Z}[x], \phi(f(x))=f(x), \phi$ is onto. By the isomorphism theorem, $\boldsymbol{Z}[x, y] / \operatorname{Ker} \phi \approx \boldsymbol{Z}[x]$. Since $U(\boldsymbol{Z}[x])=\{1,-1\}$ by $1(\mathrm{c}), \boldsymbol{Z}[x]$ is not a field. Hence, $\operatorname{Ker} \phi$ is not a maximal ideal.
(d) $\langle y\rangle$ is a prime ideal but not maximal in $R=\boldsymbol{Z}[x, y]$.

Solution. Since every polynomial $f(x, y)$ in $\boldsymbol{Z}[x, y]$ can be written $f_{0}(x)+$ $f_{1}(x) y+\cdots+f_{n}(x) y^{n}$ for some n. If $f(x, y) \in \operatorname{Ker} \phi$, then $f_{0}(x)=0$ and $\operatorname{Ker} \phi=\langle y\rangle$. Thus the assertion follows from (c).
(e) $\boldsymbol{Z}[x, y]$ is not a principal ideal domain.

Solution. In a principal ideal domain, every irreducible element generates a maximal ideal. $y \in \boldsymbol{Z}[x, y]$ is irreducible, however $\langle y\rangle$ is not a maximal ideal. You can also argue that for example $\langle x, y\rangle$ is not a principal ideal by showing that $\langle x, y\rangle=\langle f(x, y)\rangle$ for some $f(x, y) \in \boldsymbol{Z}[x, y]$ is impossible.
4. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$ and $\gamma=1+\sqrt{-3} \in R$, where \boldsymbol{C} is the complex number field. Show the following.
(25pts)
(a) R is an integral domain.

Solution. Let $\phi: \boldsymbol{Z}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\sqrt{-3}))$. Then the image of this ring homomorphism $\boldsymbol{Z}[\sqrt{-3}]$ is a subring of \boldsymbol{C} containing R. In particular, it is an integral domain. Let $f(x) \in \boldsymbol{Z}[x]$ and write $f(x)=q(x)\left(x^{2}+3\right)+a+b x$. This is possible as $x^{2}+3$ is monic. Since $f(\sqrt{-3})=a+b \sqrt{-3} \in R, R=\boldsymbol{Z}[\sqrt{-3}]$ and R is an integral domain.
(b) $U(R)=\{1,-1\}$.

Solution. Let $N: R \rightarrow \boldsymbol{Z}\left(a+b \sqrt{-3} \mapsto a+3 b^{2}=(a+b \sqrt{-3})(a-b \sqrt{-3})\right)$. Then for $\alpha, \beta \in R, N(\alpha \beta)=\alpha \beta \overline{\alpha \beta}=\alpha \bar{\alpha} \beta \bar{\beta}=N(\alpha) N(\beta)$. Now, if $\alpha \beta=1$, then $1=N(\alpha) N(\beta)$. So if $\alpha=a+b \sqrt{-3}, N(\alpha)=1=a^{2}+3 b^{2}$. Hence $U(R) \subset\{1,-1\}$. The other inclusion is clear.
(c) γ is an irreducible element.

Solution. Suppose $\gamma=\alpha \beta$. Then $4=N(1+\sqrt{-3})=N(\gamma)=N(\alpha) N(\beta)$. If $N(\alpha), N(\beta) \neq 1, N(\alpha)=N(\beta)=2$, which is impossible as $a^{2}+3 b^{2} \neq 2$ for any integers a and b. Thus, $N(\alpha)=1$ or $N(\beta)=1$ and α or $\beta \in U(R)$.
(d) $\langle\gamma\rangle$ is not a prime ideal.

Solution. $2 \cdot 2=4=(1+\sqrt{-3})(1-\sqrt{-3}) \in\langle\gamma\rangle$. However, $2 \notin\langle\gamma\rangle$. As otherwise, $2=\alpha \gamma$ for some $\alpha \in R$. Since $N(2)=N(\gamma), N(\alpha)=1$ and $\alpha= \pm 1$, which is impossible.
(e) R is not a unique factorization domain.

Solution. In a unique factorization, every irreducible element generates a prime ideal. This is not the case by (c) and (d).
You can also argue that $2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})$ and $2,1+\sqrt{-3}$ and $1-\sqrt{-3}$ are mutually non associative irreducible elements. Hence, the uniqueness of factorization fails.

