November 15, 2017

Algebra II Final 2017

1. Let Z be a ring of rational integers, Z[z| the polynomial ring in = over Z and
Z|x,y] the polynomial ring in = and y over Z. Show the following. (25pts)

U(Z)={1,-1}.
(9(z,y)), then f(x,y) = g(z,y) or

)

)

(¢) For the unit groups, U(Z|z,y]) = U(Z]z])

(d) For f(z,y),9(z,y) € Z[z,y], if (f(z,y))
f(x,y) = —g(x,y).

(e) For a nonzero polynomial f(z,y) € Z[xz,y], if (f(z,y)) is a prime ideal, then

f(z,y) is irreducible, ie., f(z,y) = g(x,y)h(z,y) for g(x,y), h(z,y) € Z]x,y]
implies g(x,y) = +1 or h(z,y) = £1.

2. Let Zs[z] be the polynomial ring over Z3, p(x) a polynomial in Zj[x] of degree
n >0 and R = Z[x]/(p(x)). Show the following. (25pts)

(a) R={co+cz+-+co12" '+ {p(x) | co,c1,. .. cn1 € Z3}.

(b) There are exactly 3" elements in R.

(c¢) If R is an integral domain, then it is a field.

(d) R is an integral domain if and only if p(z) is irreducible over Zj.
)

(e) If p(x) = 2* + x + 2, then R is a field with 81 elements.

3. Let R and S be commutative rings with unity 1, and ¢ : R — S a ring homomor-
phism such that ¢(1) = 1. Show the following. (25pts)

(a) If B is an ideal of S, then A= ¢! (B) = {z € R| ¢(z) € B} is an ideal of R.
(b) If B is a prime ideal of S, then A = ¢~!(B) is a prime ideal of R.
(c) Let R= Zz,y], S=Z[z] and ¢ : R — S (f(z,y) — f(x,0)). Then Ker¢ is a

prime ideal but not a maximal ideal.
(d) (y) is a prime ideal but not maximal in R = Z[z, y|.

(e) Z|x,y] is not a principal ideal domain.

4. Let R={a+by/-3|a,be Z} C C and y=1++/—3 € R, where C is the complex
number field. Show the following. (25pts)

(a) R is an integral domain.
(b) U(R) ={1,-1}.

is an irreducible element.
(

(c
d

)
)
)
)
(e)

5
() is not a prime ideal.
R i

is not a unique factorization domain.
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Solutions to Algebra II Final 2017

1. Let Z be a ring of rational integers, Z[z| the polynomial ring in = over Z and
Z|x,y] the polynomial ring in = and y over Z. Show the following. (25pts)

(a)

Z[x] is an integral domain.

Claim. If R is an integral domain, then the polynomial ring R[x| is an integral
domain.

Proof. For nonzero polynomials f(x) = an2™+- - -+am, g(x) = byx"+- - -+bg
with a,, # 0 and b, # 0, f(z)g(x) = anb,x™*" + lower terms. Since R is an

integral domain, a,,b, # 0 and f(x)g(x) # 0. |
Solution. Since Z is an integral domain, by the claim above, Z[z] is an
integral domain. ]

Z[x,y] is an integral domain.

Solution. Since every polynomial f(x,y) € Z[z,y] can be written as f(x,y) =
fo@) ™+ fro1(y)x= -+ fo(x), where f,(y), fu2(v), ..., foly) € Z[y]. Hence

Z[z,y] is a polynomial ring in x over Z[y|. Since Z[y| is an integral domain
by (a) and by the claim above, (Z[y])[z] = Z[z,y] is an integral domain. =
For the unit groups, U(Z|z,y]) = U(Z[z]) = U(Z) = {1,—1}.

Claim. If R is an integral domain, then U(R[z]) = U(R).

Pmof. U(R[z]) D U(R) is clear. For nonzero polynomials f( ) = apa™ +

ot apm, g(x) = b+ - -+by with a,, # 0 and b, # 0, suppose 1 = f(x)g(z) =
amb 2™t + lower terms. This is possible only if m = n = 0 and a,,b, = 1.
Hence U(R[z]) C U(R). u

Solution. By the observation in the solution of (b) and the claim above,
U(Z[z,y]) = U((Zly)[z]) = U(Zly]) = U(2).

Similarly, U(Z|x]) = U(Z). Since ab = 1 for a,b € Z implies a,b € {1, -1},
the assertion follows.

For f(x,y),9(x,y) € Zlz,y], if (f(z,y)) = (9(z,y)), then f(z,y) = g(x,y) or
fz,y) = —g(z,y).

Solution. Suppose (f(x,y)) = (g(x,y)). If f(z,y) = 0, then g(x,y) =
0. Hence f(z,y) = ¢g(x,y) in this case. Suppose that f(x,y) # 0. Since
f(x,y) € (9(z,9)), f(z,y) = h(z,y)g(z,y) for some h(z,y) € Z[r,y|]. Sim-
ilarly, it follows from g(z,y) € (f(x,y)) that there is k(z,y) € Z]z,y] such
that g(z,y) = k(z,y)f(z,y). Hence f(z,y)(1 — h(z,y)k(z,y)) = 0. Since
f(z,y) # 0 and ZJz,y] is an integral domain by (b), ( Y k(z,y) =

wd e y) & U(Zal) — (Lot} by (o Stnce Slas) = Mo.g1o(os)
u

fx,y) = gla,y) or f(z,y) = —g(z,y).
For a nonzero polynomial f(z,y) € Z[z,y], if (f(x,y)) is a prime ideal, then
y) (

f(z,y) is irreducible, ie., f(z, y)h(z,y) for g(z,y), h(z,y) € Zlz,y]
implies g(x,y) = +1 or h( )



Solution. Suppose g(z,y)h(z,y) = f(z,y) € (f(x,y)) and (f(x,y)) is a prime
ideal. Clearly, f(z,y) € (g(z,y)) N (h ( y)). Hence (f(z,y)) C {g(z,y)) N
(h(z,y)). Since (f(z,y)) is a prime 1dea1 g(x,y) € (f(x,y)) or h(z,y) €
(f(z.y)). Hence (g(z,y)) C (f(z,y)) or (h(z,y)) C (f(z,y)). Therefore,
(9(z,y)) = (f(z,y)) or (h(z,y)) ==<f@?y» By (d), f(z,y) = *g(z,y)
or f(x,y) = £h(z,y). Since f(z,y) = g(x,y)h(z,y) and f(z,y) is nonzero,
g(x,y) = 1 or h(z,y) = £1. u

2. Let Zs[z] be the polynomial ring over Z3, p(x) a polynomial in Zj[x] of degree
n >0 and R = Z[x]/(p(x)). Show the following. (25pts)

(a)

R={co+cix+ -+ cp12" '+ (p(x)) | co,c1, ... a1 € Z3}.

Solution. Let f(x) € Z3[z]|. Since Z3 is a field, Z3[z] is a Euclidian domain
and there exist q(z),r(z) € Zs[z| such that degr(z) < degp(x) = n such
that f(x) = q(x)p(x) + r(x). Since there exist co,cy,...,c,—1 € Z3 such that
r(x) =co+ciw+-+cpa™

f(@) + (p(x)) = r(z) + q(x)p(x) + (p(x)) = co+ 1z + -+ + e + (p(x)).

Thus R={co+c1x+ -+ co 12"+ (p(x)) | co,c1, .-, Ccn1 € Z3}. ]
There are exactly 3" elements in R.

Solution. Suppose ¢y + c1z + -+ + ¢, + (p(x)) = ¢h + dx + - +
c 2"t + (p(z)). Then

(co — o) + (e1 = )z + -+ (o1 — € 1)2" " € (p(a)).

Since deg p(x) = n, this is possible only when cq = ¢, c1 = ¢, ..., cho1 = ¢,
and the expression ¢+ 12+ -+ -+ ¢, 12"+ (p(z)) is unique. Thus, there are
3™ choices of ¢y, c1,...,c,-1 € Z3 and there are exactly 3" elements in R. =

If R is an integral domain, then it is a field.

Solution. R is a finite commutative ring with unity. Suppose R is an integral
domain. If @ € R is a nonzero element, then an additive homomorphism

Ao : R— R (B~ ap)

is one-to-one as Ker\, = {0}. Note that 0 = A\,(f) = «f implies that § =0

as « is nonzero and R is an integral domain. Since R is finite, |\,(R)| = |R]
implies that A\, is onto and there exists § € R such that af = 1. Hence R is a
field. ]

R is an integral domain if and only if p(z) is irreducible over Zj.
Solution. If ¢(z)r(z) € (p(x)), then

(q(z) + (p(2)))(r(z) + (p(x))) = q(x)r(z) + (p(x)) = (p(x)).

Hence if R is an integral domain, ¢(z) € (p(x)) or r(x) € (p(x)). In particular,
if ¢(z)r(z) = p(x), then p(x) divides either ¢(x) or r(x) and p(x) is irreducible.
Conversely, if p(x) is irreducible, p(x) divides ¢(x) or r(z) as Z3[x] is a unique
factorization domain. Therefore, g(z) € (p(z)) or r(z) € (p(x)) and (p(z)) is
a prime ideal. n



(e) If p(x) = 2* + x + 2, then R is a field with 81 elements.

Solution. We claim that p(z) is irreducible. Since p(0) = p(2) = 2,p(1) =1
and p(x) does not have a factor of degree one. Let 2? +x + 2 = (22 + ax +
b)(z*+ cx +d) be a product of irreducible polynomials of degree two. We may
assume b = 1 and d = 2. Then a = 0 and ¢ # 0 by irreducibility. This is
impossible as a + ¢ is the coefficient of 2% in p(z).

3. Let R and S be commutative rings with unity 1, and ¢ : R — S a ring homomor-
phism such that ¢(1) = 1. Show the following. (25pts)

(a) If B is an ideal of S, then A = ¢~ 1(B) = {x € R| ¢(z) € B} is an ideal of R.
Solution. Let z,y € A and r € R. Then ¢(x —y) = ¢(z) — ¢(y) € B and
o(rz) = ¢(r)p(x) € B. Hence A is an ideal. u

(b) If B is a prime ideal of S, then A = ¢~'(B) is a prime ideal of R.

Solution. By (a), Aisanideal. f A=R,1€ A=¢'(B)and ¢(1) =1 € B.
Thus B = S, which is not the case as a prime ideal is proper. Suppose zy € A.
Then ¢(x)p(y) = ¢(zy) € B. Since B is a prime ideal, ¢(x) € B or ¢(y) € B.
Thus x € ¢~ (B) = Aory € ¢ (B) = A. Thus A is a prime ideal. |

(c) Let R= Z[x,y|, S = Z[z] and ¢ : R — S(f(z,y) — f(2,0)). Then Ker¢ is a

prime ideal but not a maximal ideal.

Solution. First note that ¢ is a ring homomorphism. Since Z|[z] is an integral
domain by 1(a), (0) is a prime ideal. Hence by (c), Ker¢ is a prime ideal. Since
for f(z) € Z[z], ¢(f(z)) = f(z), ¢ is onto. By the isomorphism theorem,
Z[x,y]/Ker¢p ~ Z[z]. Since U(Z|z]) = {1,—1} by 1(c), Z[z] is not a field.
Hence, Ker¢ is not a maximal ideal. [

(d) (y) is a prime ideal but not maximal in R = Z[x, y|.

Solution. Since every polynomial f(z,y) in Z[z,y| can be written fo(z) +
filx)y + -+ + fao(x)y™ for some n. If f(x,y) € Kerg, then fo(x) = 0 and
Ker¢ = (y). Thus the assertion follows from (c). n

(e) Z|x,y] is not a principal ideal domain.
Solution. In a principal ideal domain, every irreducible element generates a
maximal ideal. y € Z|z,y] is irreducible, however (y) is not a maximal ideal.m
You can also argue that for example (z,y) is not a principal ideal by showing
that (z,y) = (f(z,y)) for some f(x,y) € Z[x,y| is impossible.

4. Let R={a+by—3]a,be Z} C C and vy = 14++/—3 € R, where C is the complex
number field. Show the following. (25pts)

(a) R is an integral domain.
Solution. Let ¢ : Z[z] — C (f(x) — f(v/=3)). Then the image of this ring
homomorphism Z[v/—3] is a subring of C containing R. In particular, it is an
integral domain. Let f(z) € Z[z] and write f(z) = q(z)(2* +3) + a+ bz. This
is possible as 2 + 3 is monic. Since f(v/=3) = a +by/-3 € R, R = Z[\/=3]
and R is an integral domain. [ ]



(b)

U(R) ={1,-1}.

Solution. Let N : R — Z (a + bv/=3 + a + 3b* = (a + bv/—3)(a — by/=3)).
Then for o, 8 € R, N(af) = aBafB = aaBB = N(a)N(B). Now, if a3 = 1,
then 1 = N(a)N(B). Soif a = a+ by/=3, N(a) = 1 = a* + 3b*>. Hence
U(R) C {1,—1}. The other inclusion is clear. n
v is an irreducible element.

Solution. Suppose v = af. Then 4 = N(1 ++/=3) = N(y) = N(a)N(pB). If
N(a),N(B) # 1, N(o) = N(B) = 2, which is impossible as a* 4+ 3b* # 2 for
any integers a and b. Thus, N(a) =1 or N(f) =1 and awor § € U(R). u

() is not a prime ideal.

Solution. 2-2 =4 = (14 v/=3)(1 —+/—3) € (7). However, 2 € (y). As
otherwise, 2 = a~y for some a € R. Since N(2) = N(v), N(a) =1 and o = 1,
which is impossible. ]
R is not a unique factorization domain.

Solution. In a unique factorization, every irreducible element generates a
prime ideal. This is not the case by (c) and (d). |

You can also argue that 2-2 = (14+/—3)(1—+/—3) and 2, 1++/—3 and 1—+/—3
are mutually non associative irreducible elements. Hence, the uniqueness of
factorization fails.
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