
November 15, 2017

Algebra II Final 2017

1. Let Z be a ring of rational integers, Z[x] the polynomial ring in x over Z and
Z[x, y] the polynomial ring in x and y over Z. Show the following. (25pts)

(a) Z[x] is an integral domain.

(b) Z[x, y] is an integral domain.

(c) For the unit groups, U(Z[x, y]) = U(Z[x]) = U(Z) = {1,−1}.
(d) For f(x, y), g(x, y) ∈ Z[x, y], if ⟨f(x, y)⟩ = ⟨g(x, y)⟩, then f(x, y) = g(x, y) or

f(x, y) = −g(x, y).

(e) For a nonzero polynomial f(x, y) ∈ Z[x, y], if ⟨f(x, y)⟩ is a prime ideal, then
f(x, y) is irreducible, i.e., f(x, y) = g(x, y)h(x, y) for g(x, y), h(x, y) ∈ Z[x, y]
implies g(x, y) = ±1 or h(x, y) = ±1.

2. Let Z3[x] be the polynomial ring over Z3, p(x) a polynomial in Z3[x] of degree
n > 0 and R = Z[x]/⟨p(x)⟩. Show the following. (25pts)

(a) R = {c0 + c1x+ · · ·+ cn−1x
n−1 + ⟨p(x)⟩ | c0, c1, . . . , cn−1 ∈ Z3}.

(b) There are exactly 3n elements in R.

(c) If R is an integral domain, then it is a field.

(d) R is an integral domain if and only if p(x) is irreducible over Z3.

(e) If p(x) = x4 + x+ 2, then R is a field with 81 elements.

3. Let R and S be commutative rings with unity 1, and ϕ : R → S a ring homomor-
phism such that ϕ(1) = 1. Show the following. (25pts)

(a) If B is an ideal of S, then A = ϕ−1(B) = {x ∈ R | ϕ(x) ∈ B} is an ideal of R.

(b) If B is a prime ideal of S, then A = ϕ−1(B) is a prime ideal of R.

(c) Let R = Z[x, y], S = Z[x] and ϕ : R → S (f(x, y) 7→ f(x, 0)). Then Kerϕ is a
prime ideal but not a maximal ideal.

(d) ⟨y⟩ is a prime ideal but not maximal in R = Z[x, y].

(e) Z[x, y] is not a principal ideal domain.

4. Let R = {a+b
√
−3 | a, b ∈ Z} ⊂ C and γ = 1+

√
−3 ∈ R, where C is the complex

number field. Show the following. (25pts)

(a) R is an integral domain.

(b) U(R) = {1,−1}.
(c) γ is an irreducible element.

(d) ⟨γ⟩ is not a prime ideal.

(e) R is not a unique factorization domain.
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1. Let Z be a ring of rational integers, Z[x] the polynomial ring in x over Z and
Z[x, y] the polynomial ring in x and y over Z. Show the following. (25pts)

(a) Z[x] is an integral domain.

Claim. If R is an integral domain, then the polynomial ring R[x] is an integral
domain.

Proof. For nonzero polynomials f(x) = amx
m+· · ·+am, g(x) = bnx

n+· · ·+b0
with am ̸= 0 and bn ̸= 0, f(x)g(x) = ambnx

m+n + lower terms. Since R is an
integral domain, ambn ̸= 0 and f(x)g(x) ̸= 0.

Solution. Since Z is an integral domain, by the claim above, Z[x] is an
integral domain.

(b) Z[x, y] is an integral domain.

Solution. Since every polynomial f(x, y) ∈ Z[x, y] can be written as f(x, y) =
fn(y)x

n+fn−1(y)x
−1+· · ·+f0(x), where fn(y), fn−2(y), . . . , f0(y) ∈ Z[y]. Hence

Z[x, y] is a polynomial ring in x over Z[y]. Since Z[y] is an integral domain
by (a) and by the claim above, (Z[y])[x] = Z[x, y] is an integral domain.

(c) For the unit groups, U(Z[x, y]) = U(Z[x]) = U(Z) = {1,−1}.
Claim. If R is an integral domain, then U(R[x]) = U(R).

Proof. U(R[x]) ⊃ U(R) is clear. For nonzero polynomials f(x) = amx
m +

· · ·+am, g(x) = bnx
n+· · ·+b0 with am ̸= 0 and bn ̸= 0, suppose 1 = f(x)g(x) =

ambnx
m+n + lower terms. This is possible only if m = n = 0 and ambn = 1.

Hence U(R[x]) ⊂ U(R).

Solution. By the observation in the solution of (b) and the claim above,

U(Z[x, y]) = U((Z[y])[x]) = U(Z[y]) = U(Z).

Similarly, U(Z[x]) = U(Z). Since ab = 1 for a, b ∈ Z implies a, b ∈ {1,−1},
the assertion follows.

(d) For f(x, y), g(x, y) ∈ Z[x, y], if ⟨f(x, y)⟩ = ⟨g(x, y)⟩, then f(x, y) = g(x, y) or
f(x, y) = −g(x, y).

Solution. Suppose ⟨f(x, y)⟩ = ⟨g(x, y)⟩. If f(x, y) = 0, then g(x, y) =
0. Hence f(x, y) = g(x, y) in this case. Suppose that f(x, y) ̸= 0. Since
f(x, y) ∈ ⟨g(x, y)⟩, f(x, y) = h(x, y)g(x, y) for some h(x, y) ∈ Z[x, y]. Sim-
ilarly, it follows from g(x, y) ∈ ⟨f(x, y)⟩ that there is k(x, y) ∈ Z[x, y] such
that g(x, y) = k(x, y)f(x, y). Hence f(x, y)(1 − h(x, y)k(x, y)) = 0. Since
f(x, y) ̸= 0 and Z[x, y] is an integral domain by (b), h(x, y)k(x, y) = 1
and h(x, y) ∈ U(Z[x, y]) = {1,−1} by (c). Since f(x, y) = h(x, y)g(x, y),
f(x, y) = g(x, y) or f(x, y) = −g(x, y).

(e) For a nonzero polynomial f(x, y) ∈ Z[x, y], if ⟨f(x, y)⟩ is a prime ideal, then
f(x, y) is irreducible, i.e., f(x, y) = g(x, y)h(x, y) for g(x, y), h(x, y) ∈ Z[x, y]
implies g(x, y) = ±1 or h(x, y) = ±1.
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Solution. Suppose g(x, y)h(x, y) = f(x, y) ∈ ⟨f(x, y)⟩ and ⟨f(x, y)⟩ is a prime
ideal. Clearly, f(x, y) ∈ ⟨g(x, y)⟩ ∩ ⟨h(x, y)⟩. Hence ⟨f(x, y)⟩ ⊂ ⟨g(x, y)⟩ ∩
⟨h(x, y)⟩. Since ⟨f(x, y)⟩ is a prime ideal, g(x, y) ∈ ⟨f(x, y)⟩ or h(x, y) ∈
⟨f(x, y)⟩. Hence ⟨g(x, y)⟩ ⊂ ⟨f(x, y)⟩ or ⟨h(x, y)⟩ ⊂ ⟨f(x, y)⟩. Therefore,
⟨g(x, y)⟩ = ⟨f(x, y)⟩ or ⟨h(x, y)⟩ = ⟨f(x, y)⟩. By (d), f(x, y) = ±g(x, y)
or f(x, y) = ±h(x, y). Since f(x, y) = g(x, y)h(x, y) and f(x, y) is nonzero,
g(x, y) = ±1 or h(x, y) = ±1.

2. Let Z3[x] be the polynomial ring over Z3, p(x) a polynomial in Z3[x] of degree
n > 0 and R = Z[x]/⟨p(x)⟩. Show the following. (25pts)

(a) R = {c0 + c1x+ · · ·+ cn−1x
n−1 + ⟨p(x)⟩ | c0, c1, . . . , cn−1 ∈ Z3}.

Solution. Let f(x) ∈ Z3[x]. Since Z3 is a field, Z3[x] is a Euclidian domain
and there exist q(x), r(x) ∈ Z3[x] such that deg r(x) < deg p(x) = n such
that f(x) = q(x)p(x) + r(x). Since there exist c0, c1, . . . , cn−1 ∈ Z3 such that
r(x) = c0 + c1x+ · · ·+ cn−1x

n−1,

f(x) + ⟨p(x)⟩ = r(x) + q(x)p(x) + ⟨p(x)⟩ = c0 + c1x+ · · ·+ cn−1x
n−1 + ⟨p(x)⟩.

Thus R = {c0 + c1x+ · · ·+ cn−1x
n−1 + ⟨p(x)⟩ | c0, c1, . . . , cn−1 ∈ Z3}.

(b) There are exactly 3n elements in R.

Solution. Suppose c0 + c1x + · · · + cn−1x
n−1 + ⟨p(x)⟩ = c′0 + c′1x + · · · +

c′n−1x
n−1 + ⟨p(x)⟩. Then

(c0 − c′0) + (c1 − c′1)x+ · · ·+ (cn−1 − c′n−1)x
n−1 ∈ ⟨p(x)⟩.

Since deg p(x) = n, this is possible only when c0 = c′0, c1 = c′1, . . . , cn−1 = c′n−1,
and the expression c0+ c1x+ · · ·+ cn−1x

n−1+ ⟨p(x)⟩ is unique. Thus, there are
3n choices of c0, c1, . . . , cn−1 ∈ Z3 and there are exactly 3n elements in R.

(c) If R is an integral domain, then it is a field.

Solution. R is a finite commutative ring with unity. Suppose R is an integral
domain. If α ∈ R is a nonzero element, then an additive homomorphism

λα : R → R (β 7→ αβ)

is one-to-one as Kerλα = {0}. Note that 0 = λα(β) = αβ implies that β = 0
as α is nonzero and R is an integral domain. Since R is finite, |λα(R)| = |R|
implies that λα is onto and there exists β ∈ R such that αβ = 1. Hence R is a
field.

(d) R is an integral domain if and only if p(x) is irreducible over Z3.

Solution. If q(x)r(x) ∈ ⟨p(x)⟩, then

(q(x) + ⟨p(x)⟩)(r(x) + ⟨p(x)⟩) = q(x)r(x) + ⟨p(x)⟩ = ⟨p(x)⟩.

Hence if R is an integral domain, q(x) ∈ ⟨p(x)⟩ or r(x) ∈ ⟨p(x)⟩. In particular,
if q(x)r(x) = p(x), then p(x) divides either q(x) or r(x) and p(x) is irreducible.
Conversely, if p(x) is irreducible, p(x) divides q(x) or r(x) as Z3[x] is a unique
factorization domain. Therefore, q(x) ∈ ⟨p(x)⟩ or r(x) ∈ ⟨p(x)⟩ and ⟨p(x)⟩ is
a prime ideal.

2



(e) If p(x) = x4 + x+ 2, then R is a field with 81 elements.

Solution. We claim that p(x) is irreducible. Since p(0) = p(2) = 2, p(1) = 1
and p(x) does not have a factor of degree one. Let x4 + x + 2 = (x2 + ax +
b)(x2 + cx+ d) be a product of irreducible polynomials of degree two. We may
assume b = 1 and d = 2. Then a = 0 and c ̸= 0 by irreducibility. This is
impossible as a+ c is the coefficient of x3 in p(x).

3. Let R and S be commutative rings with unity 1, and ϕ : R → S a ring homomor-
phism such that ϕ(1) = 1. Show the following. (25pts)

(a) If B is an ideal of S, then A = ϕ−1(B) = {x ∈ R | ϕ(x) ∈ B} is an ideal of R.

Solution. Let x, y ∈ A and r ∈ R. Then ϕ(x − y) = ϕ(x) − ϕ(y) ∈ B and
ϕ(rx) = ϕ(r)ϕ(x) ∈ B. Hence A is an ideal.

(b) If B is a prime ideal of S, then A = ϕ−1(B) is a prime ideal of R.

Solution. By (a), A is an ideal. If A = R, 1 ∈ A = ϕ−1(B) and ϕ(1) = 1 ∈ B.
Thus B = S, which is not the case as a prime ideal is proper. Suppose xy ∈ A.
Then ϕ(x)ϕ(y) = ϕ(xy) ∈ B. Since B is a prime ideal, ϕ(x) ∈ B or ϕ(y) ∈ B.
Thus x ∈ ϕ−1(B) = A or y ∈ ϕ−1(B) = A. Thus A is a prime ideal.

(c) Let R = Z[x, y], S = Z[x] and ϕ : R → S(f(x, y) 7→ f(x, 0)). Then Kerϕ is a
prime ideal but not a maximal ideal.

Solution. First note that ϕ is a ring homomorphism. Since Z[x] is an integral
domain by 1(a), ⟨0⟩ is a prime ideal. Hence by (c), Kerϕ is a prime ideal. Since
for f(x) ∈ Z[x], ϕ(f(x)) = f(x), ϕ is onto. By the isomorphism theorem,
Z[x, y]/Kerϕ ≈ Z[x]. Since U(Z[x]) = {1,−1} by 1(c), Z[x] is not a field.
Hence, Kerϕ is not a maximal ideal.

(d) ⟨y⟩ is a prime ideal but not maximal in R = Z[x, y].

Solution. Since every polynomial f(x, y) in Z[x, y] can be written f0(x) +
f1(x)y + · · · + fn(x)y

n for some n. If f(x, y) ∈ Kerϕ, then f0(x) = 0 and
Kerϕ = ⟨y⟩. Thus the assertion follows from (c).

(e) Z[x, y] is not a principal ideal domain.

Solution. In a principal ideal domain, every irreducible element generates a
maximal ideal. y ∈ Z[x, y] is irreducible, however ⟨y⟩ is not a maximal ideal.

You can also argue that for example ⟨x, y⟩ is not a principal ideal by showing
that ⟨x, y⟩ = ⟨f(x, y)⟩ for some f(x, y) ∈ Z[x, y] is impossible.

4. Let R = {a+b
√
−3 | a, b ∈ Z} ⊂ C and γ = 1+

√
−3 ∈ R, where C is the complex

number field. Show the following. (25pts)

(a) R is an integral domain.

Solution. Let ϕ : Z[x] → C (f(x) 7→ f(
√
−3)). Then the image of this ring

homomorphism Z[
√
−3] is a subring of C containing R. In particular, it is an

integral domain. Let f(x) ∈ Z[x] and write f(x) = q(x)(x2+3)+ a+ bx. This
is possible as x2 + 3 is monic. Since f(

√
−3) = a + b

√
−3 ∈ R, R = Z[

√
−3]

and R is an integral domain.
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(b) U(R) = {1,−1}.
Solution. Let N : R → Z (a + b

√
−3 7→ a + 3b2 = (a + b

√
−3)(a− b

√
−3)).

Then for α, β ∈ R, N(αβ) = αβαβ = ααββ = N(α)N(β). Now, if αβ = 1,
then 1 = N(α)N(β). So if α = a + b

√
−3, N(α) = 1 = a2 + 3b2. Hence

U(R) ⊂ {1,−1}. The other inclusion is clear.

(c) γ is an irreducible element.

Solution. Suppose γ = αβ. Then 4 = N(1 +
√
−3) = N(γ) = N(α)N(β). If

N(α), N(β) ̸= 1, N(α) = N(β) = 2, which is impossible as a2 + 3b2 ̸= 2 for
any integers a and b. Thus, N(α) = 1 or N(β) = 1 and α or β ∈ U(R).

(d) ⟨γ⟩ is not a prime ideal.

Solution. 2 · 2 = 4 = (1 +
√
−3)(1 −

√
−3) ∈ ⟨γ⟩. However, 2 ̸∈ ⟨γ⟩. As

otherwise, 2 = αγ for some α ∈ R. Since N(2) = N(γ), N(α) = 1 and α = ±1,
which is impossible.

(e) R is not a unique factorization domain.

Solution. In a unique factorization, every irreducible element generates a
prime ideal. This is not the case by (c) and (d).

You can also argue that 2·2 = (1+
√
−3)(1−

√
−3) and 2, 1+

√
−3 and 1−

√
−3

are mutually non associative irreducible elements. Hence, the uniqueness of
factorization fails.
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