Algebra II Final 2017

- 1. Let Z be a ring of rational integers, Z[x] the polynomial ring in x over Z and Z[x, y] the polynomial ring in x and y over Z. Show the following. (25pts)
 - (a) $\boldsymbol{Z}[x]$ is an integral domain.
 - (b) $\boldsymbol{Z}[x, y]$ is an integral domain.
 - (c) For the unit groups, $U(\mathbf{Z}[x, y]) = U(\mathbf{Z}[x]) = U(\mathbf{Z}) = \{1, -1\}.$
 - (d) For $f(x,y), g(x,y) \in \mathbb{Z}[x,y]$, if $\langle f(x,y) \rangle = \langle g(x,y) \rangle$, then f(x,y) = g(x,y) or f(x,y) = -g(x,y).
 - (e) For a nonzero polynomial $f(x, y) \in \mathbb{Z}[x, y]$, if $\langle f(x, y) \rangle$ is a prime ideal, then f(x, y) is irreducible, i.e., f(x, y) = g(x, y)h(x, y) for $g(x, y), h(x, y) \in \mathbb{Z}[x, y]$ implies $g(x, y) = \pm 1$ or $h(x, y) = \pm 1$.
- 2. Let $\mathbf{Z}_3[x]$ be the polynomial ring over \mathbf{Z}_3 , p(x) a polynomial in $\mathbf{Z}_3[x]$ of degree n > 0 and $R = \mathbf{Z}[x]/\langle p(x) \rangle$. Show the following. (25pts)
 - (a) $R = \{c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + \langle p(x) \rangle \mid c_0, c_1, \dots, c_{n-1} \in \mathbb{Z}_3\}.$
 - (b) There are exactly 3^n elements in R.
 - (c) If R is an integral domain, then it is a field.
 - (d) R is an integral domain if and only if p(x) is irreducible over \mathbb{Z}_3 .
 - (e) If $p(x) = x^4 + x + 2$, then R is a field with 81 elements.
- 3. Let R and S be commutative rings with unity 1, and $\phi : R \to S$ a ring homomorphism such that $\phi(1) = 1$. Show the following. (25pts)
 - (a) If B is an ideal of S, then $A = \phi^{-1}(B) = \{x \in R \mid \phi(x) \in B\}$ is an ideal of R.
 - (b) If B is a prime ideal of S, then $A = \phi^{-1}(B)$ is a prime ideal of R.
 - (c) Let $R = \mathbf{Z}[x, y]$, $S = \mathbf{Z}[x]$ and $\phi : R \to S$ $(f(x, y) \mapsto f(x, 0))$. Then Ker ϕ is a prime ideal but not a maximal ideal.
 - (d) $\langle y \rangle$ is a prime ideal but not maximal in $R = \mathbf{Z}[x, y]$.
 - (e) $\boldsymbol{Z}[x, y]$ is not a principal ideal domain.
- 4. Let $R = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ and $\gamma = 1 + \sqrt{-3} \in R$, where \mathbb{C} is the complex number field. Show the following. (25pts)
 - (a) R is an integral domain.
 - (b) $U(R) = \{1, -1\}.$
 - (c) γ is an irreducible element.
 - (d) $\langle \gamma \rangle$ is not a prime ideal.
 - (e) R is not a unique factorization domain.

Solutions to Algebra II Final 2017

- 1. Let Z be a ring of rational integers, Z[x] the polynomial ring in x over Z and Z[x, y] the polynomial ring in x and y over Z. Show the following. (25pts)
 - (a) $\boldsymbol{Z}[x]$ is an integral domain.

Claim. If R is an integral domain, then the polynomial ring R[x] is an integral domain.

Proof. For nonzero polynomials $f(x) = a_m x^m + \dots + a_m$, $g(x) = b_n x^n + \dots + b_0$ with $a_m \neq 0$ and $b_n \neq 0$, $f(x)g(x) = a_m b_n x^{m+n} +$ lower terms. Since R is an integral domain, $a_m b_n \neq 0$ and $f(x)g(x) \neq 0$.

Solution. Since Z is an integral domain, by the claim above, Z[x] is an integral domain.

(b) $\boldsymbol{Z}[x, y]$ is an integral domain.

Solution. Since every polynomial $f(x, y) \in \mathbb{Z}[x, y]$ can be written as $f(x, y) = f_n(y)x^n + f_{n-1}(y)x^{-1} + \cdots + f_0(x)$, where $f_n(y), f_{n-2}(y), \ldots, f_0(y) \in \mathbb{Z}[y]$. Hence $\mathbb{Z}[x, y]$ is a polynomial ring in x over $\mathbb{Z}[y]$. Since $\mathbb{Z}[y]$ is an integral domain by (a) and by the claim above, $(\mathbb{Z}[y])[x] = \mathbb{Z}[x, y]$ is an integral domain.

(c) For the unit groups, $U(\mathbf{Z}[x, y]) = U(\mathbf{Z}[x]) = U(\mathbf{Z}) = \{1, -1\}.$

Claim. If R is an integral domain, then U(R[x]) = U(R).

Proof. $U(R[x]) \supset U(R)$ is clear. For nonzero polynomials $f(x) = a_m x^m + \cdots + a_m, g(x) = b_n x^n + \cdots + b_0$ with $a_m \neq 0$ and $b_n \neq 0$, suppose $1 = f(x)g(x) = a_m b_n x^{m+n} +$ lower terms. This is possible only if m = n = 0 and $a_m b_n = 1$. Hence $U(R[x]) \subset U(R)$.

Solution. By the observation in the solution of (b) and the claim above,

$$U(\boldsymbol{Z}[x,y]) = U((\boldsymbol{Z}[y])[x]) = U(\boldsymbol{Z}[y]) = U(\boldsymbol{Z}).$$

Similarly, $U(\mathbf{Z}[x]) = U(\mathbf{Z})$. Since ab = 1 for $a, b \in \mathbf{Z}$ implies $a, b \in \{1, -1\}$, the assertion follows.

- (d) For $f(x,y), g(x,y) \in \mathbb{Z}[x,y]$, if $\langle f(x,y) \rangle = \langle g(x,y) \rangle$, then f(x,y) = g(x,y) or f(x,y) = -g(x,y).
 - **Solution.** Suppose $\langle f(x,y) \rangle = \langle g(x,y) \rangle$. If f(x,y) = 0, then g(x,y) = 0. Hence f(x,y) = g(x,y) in this case. Suppose that $f(x,y) \neq 0$. Since $f(x,y) \in \langle g(x,y) \rangle$, f(x,y) = h(x,y)g(x,y) for some $h(x,y) \in \mathbb{Z}[x,y]$. Similarly, it follows from $g(x,y) \in \langle f(x,y) \rangle$ that there is $k(x,y) \in \mathbb{Z}[x,y]$ such that g(x,y) = k(x,y)f(x,y). Hence f(x,y)(1 h(x,y)k(x,y)) = 0. Since $f(x,y) \neq 0$ and $\mathbb{Z}[x,y]$ is an integral domain by (b), h(x,y)k(x,y) = 1 and $h(x,y) \in U(\mathbb{Z}[x,y]) = \{1,-1\}$ by (c). Since f(x,y) = h(x,y)g(x,y), f(x,y) = g(x,y) or f(x,y) = -g(x,y).
- (e) For a nonzero polynomial $f(x, y) \in \mathbf{Z}[x, y]$, if $\langle f(x, y) \rangle$ is a prime ideal, then f(x, y) is irreducible, i.e., f(x, y) = g(x, y)h(x, y) for $g(x, y), h(x, y) \in \mathbf{Z}[x, y]$ implies $g(x, y) = \pm 1$ or $h(x, y) = \pm 1$.

Solution. Suppose $g(x, y)h(x, y) = f(x, y) \in \langle f(x, y) \rangle$ and $\langle f(x, y) \rangle$ is a prime ideal. Clearly, $f(x, y) \in \langle g(x, y) \rangle \cap \langle h(x, y) \rangle$. Hence $\langle f(x, y) \rangle \subset \langle g(x, y) \rangle \cap \langle h(x, y) \rangle$. Since $\langle f(x, y) \rangle$ is a prime ideal, $g(x, y) \in \langle f(x, y) \rangle$ or $h(x, y) \in \langle f(x, y) \rangle$. Hence $\langle g(x, y) \rangle \subset \langle f(x, y) \rangle$ or $\langle h(x, y) \rangle \subset \langle f(x, y) \rangle$. Therefore, $\langle g(x, y) \rangle = \langle f(x, y) \rangle$ or $\langle h(x, y) \rangle = \langle f(x, y) \rangle$ or $\langle h(x, y) \rangle = \langle f(x, y) \rangle$. Therefore, $\langle g(x, y) \rangle = \pm h(x, y)$. Since f(x, y) = g(x, y)h(x, y) and $f(x, y) = \pm g(x, y)$ or $g(x, y) = \pm 1$ or $h(x, y) = \pm 1$.

- 2. Let $\mathbf{Z}_3[x]$ be the polynomial ring over \mathbf{Z}_3 , p(x) a polynomial in $\mathbf{Z}_3[x]$ of degree n > 0 and $R = \mathbf{Z}[x]/\langle p(x) \rangle$. Show the following. (25pts)
 - (a) $R = \{c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + \langle p(x) \rangle \mid c_0, c_1, \dots, c_{n-1} \in \mathbb{Z}_3\}.$ Solution. Let $f(x) \in \mathbb{Z}_3[x]$. Since \mathbb{Z}_3 is a field, $\mathbb{Z}_3[x]$ is a Euclidian domain and there exist $q(x), r(x) \in \mathbb{Z}_3[x]$ such that $\deg r(x) < \deg p(x) = n$ such that f(x) = q(x)p(x) + r(x). Since there exist $c_0, c_1, \dots, c_{n-1} \in \mathbb{Z}_3$ such that $r(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1},$

$$f(x) + \langle p(x) \rangle = r(x) + q(x)p(x) + \langle p(x) \rangle = c_0 + c_1x + \dots + c_{n-1}x^{n-1} + \langle p(x) \rangle.$$

Thus
$$R = \{c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + \langle p(x) \rangle \mid c_0, c_1, \dots, c_{n-1} \in \mathbb{Z}_3\}.$$

(b) There are exactly 3^n elements in R.

Solution. Suppose $c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + \langle p(x) \rangle = c'_0 + c'_1 x + \dots + c'_{n-1} x^{n-1} + \langle p(x) \rangle$. Then

$$(c_0 - c'_0) + (c_1 - c'_1)x + \dots + (c_{n-1} - c'_{n-1})x^{n-1} \in \langle p(x) \rangle.$$

Since deg p(x) = n, this is possible only when $c_0 = c'_0, c_1 = c'_1, \ldots, c_{n-1} = c'_{n-1}$, and the expression $c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} + \langle p(x) \rangle$ is unique. Thus, there are 3^n choices of $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Z}_3$ and there are exactly 3^n elements in R.

(c) If R is an integral domain, then it is a field.

Solution. R is a finite commutative ring with unity. Suppose R is an integral domain. If $\alpha \in R$ is a nonzero element, then an additive homomorphism

$$\lambda_{\alpha}: R \to R \ (\beta \mapsto \alpha\beta)$$

is one-to-one as $\operatorname{Ker}\lambda_{\alpha} = \{0\}$. Note that $0 = \lambda_{\alpha}(\beta) = \alpha\beta$ implies that $\beta = 0$ as α is nonzero and R is an integral domain. Since R is finite, $|\lambda_{\alpha}(R)| = |R|$ implies that λ_{α} is onto and there exists $\beta \in R$ such that $\alpha\beta = 1$. Hence R is a field.

(d) R is an integral domain if and only if p(x) is irreducible over \mathbb{Z}_3 . Solution. If $q(x)r(x) \in \langle p(x) \rangle$, then

$$(q(x) + \langle p(x) \rangle)(r(x) + \langle p(x) \rangle) = q(x)r(x) + \langle p(x) \rangle = \langle p(x) \rangle.$$

Hence if R is an integral domain, $q(x) \in \langle p(x) \rangle$ or $r(x) \in \langle p(x) \rangle$. In particular, if q(x)r(x) = p(x), then p(x) divides either q(x) or r(x) and p(x) is irreducible. Conversely, if p(x) is irreducible, p(x) divides q(x) or r(x) as $\mathbf{Z}_3[x]$ is a unique factorization domain. Therefore, $q(x) \in \langle p(x) \rangle$ or $r(x) \in \langle p(x) \rangle$ and $\langle p(x) \rangle$ is a prime ideal.

- (e) If $p(x) = x^4 + x + 2$, then R is a field with 81 elements. **Solution.** We claim that p(x) is irreducible. Since p(0) = p(2) = 2, p(1) = 1and p(x) does not have a factor of degree one. Let $x^4 + x + 2 = (x^2 + ax + b)(x^2 + cx + d)$ be a product of irreducible polynomials of degree two. We may assume b = 1 and d = 2. Then a = 0 and $c \neq 0$ by irreducibility. This is impossible as a + c is the coefficient of x^3 in p(x).
- 3. Let R and S be commutative rings with unity 1, and $\phi : R \to S$ a ring homomorphism such that $\phi(1) = 1$. Show the following. (25pts)
 - (a) If B is an ideal of S, then $A = \phi^{-1}(B) = \{x \in R \mid \phi(x) \in B\}$ is an ideal of R. Solution. Let $x, y \in A$ and $r \in R$. Then $\phi(x - y) = \phi(x) - \phi(y) \in B$ and $\phi(rx) = \phi(r)\phi(x) \in B$. Hence A is an ideal.
 - (b) If B is a prime ideal of S, then $A = \phi^{-1}(B)$ is a prime ideal of R. **Solution.** By (a), A is an ideal. If A = R, $1 \in A = \phi^{-1}(B)$ and $\phi(1) = 1 \in B$. Thus B = S, which is not the case as a prime ideal is proper. Suppose $xy \in A$. Then $\phi(x)\phi(y) = \phi(xy) \in B$. Since B is a prime ideal, $\phi(x) \in B$ or $\phi(y) \in B$. Thus $x \in \phi^{-1}(B) = A$ or $y \in \phi^{-1}(B) = A$. Thus A is a prime ideal.
 - (c) Let $R = \mathbf{Z}[x, y]$, $S = \mathbf{Z}[x]$ and $\phi : R \to S(f(x, y) \mapsto f(x, 0))$. Then Ker ϕ is a prime ideal but not a maximal ideal.

Solution. First note that ϕ is a ring homomorphism. Since $\mathbf{Z}[x]$ is an integral domain by 1(a), $\langle 0 \rangle$ is a prime ideal. Hence by (c), Ker ϕ is a prime ideal. Since for $f(x) \in \mathbf{Z}[x], \phi(f(x)) = f(x), \phi$ is onto. By the isomorphism theorem, $\mathbf{Z}[x,y]/\text{Ker}\phi \approx \mathbf{Z}[x]$. Since $U(\mathbf{Z}[x]) = \{1,-1\}$ by 1(c), $\mathbf{Z}[x]$ is not a field. Hence, Ker ϕ is not a maximal ideal.

- (d) $\langle y \rangle$ is a prime ideal but not maximal in $R = \mathbb{Z}[x, y]$. **Solution.** Since every polynomial f(x, y) in $\mathbb{Z}[x, y]$ can be written $f_0(x) + f_1(x)y + \cdots + f_n(x)y^n$ for some n. If $f(x, y) \in \text{Ker}\phi$, then $f_0(x) = 0$ and $\text{Ker}\phi = \langle y \rangle$. Thus the assertion follows from (c).
- (e) Z[x, y] is not a principal ideal domain.
 Solution. In a principal ideal domain, every irreducible element generates a maximal ideal. y ∈ Z[x, y] is irreducible, however ⟨y⟩ is not a maximal ideal.
 You can also argue that for example ⟨x, y⟩ is not a principal ideal by showing that ⟨x, y⟩ = ⟨f(x, y)⟩ for some f(x, y) ∈ Z[x, y] is impossible.
- 4. Let $R = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ and $\gamma = 1 + \sqrt{-3} \in R$, where \mathbb{C} is the complex number field. Show the following. (25pts)
 - (a) R is an integral domain.

Solution. Let $\phi: \mathbb{Z}[x] \to \mathbb{C}$ $(f(x) \mapsto f(\sqrt{-3}))$. Then the image of this ring homomorphism $\mathbb{Z}[\sqrt{-3}]$ is a subring of \mathbb{C} containing R. In particular, it is an integral domain. Let $f(x) \in \mathbb{Z}[x]$ and write $f(x) = q(x)(x^2+3) + a + bx$. This is possible as $x^2 + 3$ is monic. Since $f(\sqrt{-3}) = a + b\sqrt{-3} \in R$, $R = \mathbb{Z}[\sqrt{-3}]$ and R is an integral domain.

(b) $U(R) = \{1, -1\}.$

Solution. Let $N : R \to \mathbb{Z}$ $(a + b\sqrt{-3} \mapsto a + 3b^2 = (a + b\sqrt{-3})(a - b\sqrt{-3}))$. Then for $\alpha, \beta \in R$, $N(\alpha\beta) = \alpha\beta\overline{\alpha\beta} = \alpha\overline{\alpha}\beta\overline{\beta} = N(\alpha)N(\beta)$. Now, if $\alpha\beta = 1$, then $1 = N(\alpha)N(\beta)$. So if $\alpha = a + b\sqrt{-3}$, $N(\alpha) = 1 = a^2 + 3b^2$. Hence $U(R) \subset \{1, -1\}$. The other inclusion is clear.

(c) γ is an irreducible element.

Solution. Suppose $\gamma = \alpha\beta$. Then $4 = N(1 + \sqrt{-3}) = N(\gamma) = N(\alpha)N(\beta)$. If $N(\alpha), N(\beta) \neq 1, N(\alpha) = N(\beta) = 2$, which is impossible as $a^2 + 3b^2 \neq 2$ for any integers a and b. Thus, $N(\alpha) = 1$ or $N(\beta) = 1$ and α or $\beta \in U(R)$.

(d) $\langle \gamma \rangle$ is not a prime ideal.

Solution. $2 \cdot 2 = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3}) \in \langle \gamma \rangle$. However, $2 \notin \langle \gamma \rangle$. As otherwise, $2 = \alpha \gamma$ for some $\alpha \in R$. Since $N(2) = N(\gamma)$, $N(\alpha) = 1$ and $\alpha = \pm 1$, which is impossible.

(e) R is not a unique factorization domain.

Solution. In a unique factorization, every irreducible element generates a prime ideal. This is not the case by (c) and (d). You can also argue that $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ and $2, 1 + \sqrt{-3}$ and $1 - \sqrt{-3}$ are mutually non associative irreducible elements. Hence, the uniqueness of factorization fails.