Algebra II Final 2015

If R is a commutative ring with unity 1 , then $U(R)$ denotes the set of units, i.e., invertible elements. In an integral domain D, a non-zero non-unit element $\alpha \in D$ is irreducible if $\alpha=\beta \gamma$ with $\beta, \gamma \in D$ implies $\beta \in U(D)$ or $\gamma \in U(D)$. For $a_{1}, a_{2}, \ldots, a_{n} \in R$, $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ denotes the smallest ideal of R containing $a_{1}, a_{2}, \ldots, a_{n}$. Then

$$
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n} \mid r_{1}, r_{2}, \ldots, r_{n} \in R\right\} .
$$

When you apply a theorem, state it clearly. You may quote the following facts, if necessary.
I. If R is an integral domain, then
(a) the polynomial ring $R[x]$ over R is an integral domain;
(b) the unit group $U(R[x])=U(R)$.
II. Let F be a field and $F[x]$ the polynomial ring over F.
(a) $F[x]$ is a principal ideal domain.
(b) Let I be a non-zero ideal in $F[x]$. Let $h(x)$ is a monic ${ }^{1}$ nonzero polynomial in I of smallest degree. Then $I=\langle h(x)\rangle$.

Problems

1. Let R be a commutative ring with unity 1 .
(a) Write the condition that R becomes an integral domain, and the definition of prime ideals.
(b) Show that R is an integral domain if and only if $\{0\}$ is a prime ideal.
(c) Let R be an integral domain. Show that for $a, b \in R,\langle a\rangle=\langle b\rangle$ if and only if there is a unit $u \in U(R)$ such that $b=u a$.
(d) Let R be an integral domain and p a non-zero element such that $\langle p\rangle$ is a prime ideal. Show that p is irreducible.
(e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show that P is a maximal ideal.

[^0]2. Let R be a finite commutative ring with unity 1 .
(a) Show that every non-zero element of R is either a zero divisor or a unit.
(b) If R is an integral domain, then it is a field.
(c) If R is an integral domain, then the set $S=\{n \in N \mid n \cdot 1=0\}$ is not empty and $p=\min S$ is a prime number.
(d) Suppose $R=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{0}, c_{1}, c_{2} \in \boldsymbol{Z}_{2}\right\}$, a commutative ring contain$\operatorname{ing} \boldsymbol{Z}_{2}$, and $\alpha^{3}+\alpha+1=0$. Write a multiplication table (with respect to multiplication).
(e) Let R be as in (d). show that (i) R is a field and that (ii) $\beta^{8}=\beta$ for all $\beta \in R$.
3. Let R be an integral domain, $R[x]$ and $R[x, y]$ rings of polynomials over R. (25pts)
(a) Show that $U(R[x, y])=U(R)$.
(b) Let $f(x, y), g(x, y) \in R[x, y]$. Show that if $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then there exists $a \in U(R)$ such that $f(x, y)=a \cdot g(x, y)$.
(c) Show that $R[x, y]$ is not a principal ideal domain.
(d) $A=\{f(x) \in R[x] \mid f(0)=0\}$ is a prime ideal.
(e) A in (d) is a maximal ideal if and only if R is a field.
4. Let $a \in \boldsymbol{C}$ be a zero of a nonzero polynomial $p(x)$ in $\boldsymbol{Q}[x]$. Let $\psi: \boldsymbol{Q}[x] \rightarrow$ $\boldsymbol{C}(f(x) \mapsto f(a))$. Show the following.
(25pts)
(a) $\operatorname{Im}(\psi)$ a subring of \boldsymbol{C} and $\operatorname{Ker}(\psi)$ is an ideal of $\boldsymbol{Q}[x]$.
(b) If $\operatorname{Ker}(\psi)=\langle p(x)\rangle$, then $p(x)$ is irreducible over \boldsymbol{Q} and $\operatorname{Im}(\psi)$ is a field.

For (c), (d), (e), suppose $p(x)=x^{7}+7 x+14, \gamma \in \boldsymbol{R}$ is a zero of $p(x)$, and $E=\boldsymbol{Q}(\gamma)$.
(c) Show that $[E: \boldsymbol{Q}]=7$.
(d) Let F be a subfield of E containing \boldsymbol{Q}. Then $F=\boldsymbol{Q}$ or $F=E$.
(e) E is not the splitting field of $p(x)$ contained in \boldsymbol{C}.

Solutions to Algebra II Final 2015

1. Let R be a commutative ring with unity 1 .
(a) Write the condition that R becomes an integral domain, and the definition of prime ideals.
Solution. R is an integral domain if R does not have a zero divisor, i.e., if $a b=0$ implies $a=0$ or $b=0$ for $a, b \in R$. A nonempty subset A of R is a prime ideal if (i) A is a proper ideal, i.e., $A \neq R$ and for all $a, b \in A$ and $r \in R$, $a-b \in A$ and $r a \in A$, and if (ii) for $a, b \in R, a b \in A$ implies $a \in A$ or $b \in A$.
(b) Show that R is an integral domain if and only if $\{0\}$ is a prime ideal.

Solution. First note that $0 \neq 1 \in R,\{0\}$ is a proper ideal. Suppose R is an integral domain and $a b \in\{0\}$ for $a, b \in R$. Then $a b=0$ and $a=0$ or $b=0$. Thus $a \in\{0\}$ or $b \in\{0\}$ and $\{0\}$ is a prime ideal.
Next assume that $\{0\}$ is a prime ideal. If $a b=0$ for some $a, b \in R$. Then $a b \in\{0\}$. Since $\{0\}$ is a prime ideal, $a \in\{0\}$ or $b \in\{0\}$, i.e., $a=0$ or $b=0$.
(c) Let R be an integral domain. Show that for $a, b \in R,\langle a\rangle=\langle b\rangle$ if and only if there is a unit $u \in U(R)$ such that $b=u a$.
Solution. Suppose $b=u a$ for some unit u. Then $a=u^{-1} b$. Hence $b=u a \in$ $\langle a\rangle$ and $\langle b\rangle \subseteq\langle a\rangle$. Moreover, $a=u^{-1} b \in\langle b\rangle$ and $\langle a\rangle \subseteq\langle b\rangle$. Hence $\langle a\rangle=\langle b\rangle$. Conversely assume that $\langle a\rangle=\langle b\rangle$. Since $b \in\langle b\rangle=\langle a\rangle, b=u a$ for some $u \in R$. Similarly, $a \in\langle a\rangle=\langle b\rangle, a=v b$ for some $v \in R$. In particular, if $b=0$, then $a=0$, in which case $b=0=1 a$ and the assertion holds. Assume $b \neq 0$. Since $b=u a=u v b,(1-u v) b=0.1=u v$ and $u \in U(R)$. Hence the assertion holds.
(d) Let R be an integral domain and p a non-zero element such that $\langle p\rangle$ is a prime ideal. Show that p is irreducible.
Solution. Since $p \neq 0$ and $\langle p\rangle \neq\langle 1\rangle$, by (b), p is not a unit of R. Suppose $p=a b$. Then $a b \in\langle p\rangle$ and $\langle p\rangle$ is a prime ideal, $a \in\langle p\rangle$ or $b \in\langle p\rangle$. By symmetry we may assume that $a \in\langle p\rangle$. Then $a=p q=a b q$ for some $q \in R$. Since $a(1-b q)=0$ and $a \neq 0, b q=1$ and b is a unit. Thus p is irreducible.
(e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show that P is a maximal ideal.
Solution. Since R is a principal ideal domain, there exists $P=\langle p\rangle$. Since $P \neq\{0\}, p \neq 0$. Since P is a prime ideal, p is irreducible by (d). Suppose $P \subseteq Q \subset R$, i.e., Q is a proper ideal containing P. Since R is a principal ideal domain, $Q=\langle q\rangle$ for some non-zero non-unit element $q \in Q$. Since $p \in\langle p\rangle=$ $P \subseteq Q=\langle q\rangle$. Thus there exists $r \in R$ such that $p=r q$. Since p is irreducible and q is a non-unit element, r is a unit and by (c), $P=\langle p\rangle=\langle q\rangle=Q$ and P is a maximal ideal.
2. Let R be a finite commutative ring with unity 1 .
(a) Show that every non-zero element of R is either a zero divisor or a unit.

Solution. Let a be a non-zero element of R. Assume that a is not a zerodivisor. Let $\phi: R \rightarrow R(x \mapsto a x)$. Then $a x=a y$ implies $a(x-y)=0$ and we have $x=y$. Therefore, ϕ is one-to-one. Since R is a finite ring, ϕ is a bijection, and there exist $b \in R$ such that $1=\phi(b)=a b$. Therefore, a is a unit.
(b) If R is an integral domain, then it is a field.

Solution. Let a be a non-zero element of R. Since R is an integral domain, a is not a zero divisor. Hence by (a), a is a unit. Since R is a commutative ring with unity and every non-zero element of R is a unit, R is a field.
(c) If R is an integral domain, then the set $S=\{n \in N \mid n \cdot 1=0\}$ is not empty and $p=\min S$ is a prime number.
Solution. Let $T=\{n \cdot 1 \mid n \in \boldsymbol{N}\}$. Since $T \subseteq R$ and R is a finite set, there are $m, n \in \boldsymbol{N}$ with $n>m$ such that $n \cdot 1=m \cdot 1$. Hence $(n-m) \cdot 1=0$ with $n-m \in \boldsymbol{N}$ and $S \neq \emptyset$. Let $p=\min S$. Then p is a positive integer and $p \neq 1$ as $1 \neq 0$. Suppose p is a composite, i.e., $p=a b$ with $1<a, b<p$. Then $0=p \cdot 1=a b \cdot 1=(a \cdot 1)(b \cdot 1)$ and $a \cdot 1=0$ or $b \cdot 1=0$ as R is an integral domain. This contradicts the choice of p, which is the smallest element in S.
(d) Suppose $R=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{0}, c_{1}, c_{2} \in \boldsymbol{Z}_{2}\right\}$, a commutative ring containing \boldsymbol{Z}_{2}, and $\alpha^{3}+\alpha+1=0$. Write a multiplication table (with respect to multiplication).
Solution. Since $\alpha^{3}+\alpha+1=0$ and $c_{0}, c_{1}, c_{2} \in \boldsymbol{Z}_{2}, \alpha^{3}=1+\alpha$. Hence $\alpha^{4}=\alpha \cdot \alpha^{3}=\alpha+\alpha^{2}$ and $\alpha^{5}=1+\alpha+\alpha^{2}, \ldots$.

	α^{i}	0	1	α	$1+\alpha$	α^{2}	$1+\alpha^{2}$	$\alpha+\alpha^{2}$	$1+\alpha+\alpha^{2}$
0		0	0	0	0	0	0	0	0
1	α^{0}	0	1	α	$1+\alpha$	α^{2}	$1+\alpha^{2}$	$\alpha+\alpha^{2}$	$1+\alpha+\alpha^{2}$
α	α^{1}	0	α	α^{2}	$\alpha+\alpha^{2}$	$1+\alpha$	1	$1+\alpha+\alpha^{2}$	$1+\alpha^{2}$
$1+\alpha$	α^{3}	0	$1+\alpha$	$\alpha+\alpha^{2}$	$1+\alpha^{2}$	$1+\alpha+\alpha^{2}$	α^{2}	1	α
α^{2}	α^{2}	0	α^{2}	$1+\alpha$	$1+\alpha+\alpha^{2}$	$\alpha+\alpha^{2}$	α	$1+\alpha^{2}$	1
$1+\alpha^{2}$	α^{6}	0	$1+\alpha^{2}$	1	α^{2}	α	$1+\alpha+\alpha^{2}$	$1+\alpha$	$\alpha+\alpha^{2}$
$\alpha+\alpha^{2}$	α^{4}	0	$\alpha+\alpha^{2}$	$1+\alpha+\alpha^{2}$	1	$1+\alpha^{2}$	$1+\alpha$	α	α^{2}
$1+\alpha+\alpha^{2}$	α^{5}	0	$1+\alpha+\alpha^{2}$	$1+\alpha^{2}$	α	1	$\alpha+\alpha^{2}$	α^{2}	$1+\alpha$

(e) Let R be as in (d). show that (i) R is a field and that (ii) $\beta^{8}=\beta$ for all $\beta \in R$.

Solution. Since in each row of non-zero element, 1 appears, R is a field. Since $\alpha^{7}=1$ and $R \backslash\{0\}$ is generated by α multiplicatively, $\beta^{7}=1$ for every non-zero element of R. Thus $\beta^{8}=\beta$ for all elements of R.
3. Let R be an integral domain, $R[x]$ and $R[x, y]$ rings of polynomials over R. (25pts)
(a) Show that $U(R[x, y])=U(R)$.

Solution. Since $R[x, y]=(R[x])[y]$, by I (b), $U(R[x, y])=U(R[x])=U(R)$.
(b) Let $f(x, y), g(x, y) \in R[x, y]$. Show that if $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then there exists $a \in U(R)$ such that $f(x, y)=a \cdot g(x, y)$.
Solution. By (a) and Problem 1 (c), there exists $a \in U(R)$ such that $f(x, y)=$ $a \cdot g(x, y)$.
(c) Show that $R[x, y]$ is not a principal ideal domain.

Solution. Let $\phi: R[x, y] \rightarrow R[x](f(x, y) \mapsto f(x, 0))$. Then ϕ is an onto ring homomorphism. Let $A=\operatorname{Ker}(\phi)$. Then $R[x, y] / A \approx R[x]$. Since $R[x]$
is an integral domain by I (a), A is a prime ideal. Since $y \in A$, and $1 \notin A$, A is an nonzero proper ideal. Suppose by way of contradiction, $R[x, y]$ is a principal ideal domain. Then by Problem 1 (e), A is a maximal ideal and $R[x, y] / A \approx R[x]$ is a field. This is a contradiction as $U(R[x])=U(R)$ and x is not a unit.
(d) $A=\{f(x) \in R[x] \mid f(0)=0\}$ is a prime ideal.

Solution. Let $\psi: R[x] \rightarrow R(f(x) \mapsto f(0))$, Then ψ is an onto ring homomorphism. Clearly $A=\operatorname{Ker}(\psi)$. Since $R[x] / A \approx R$ and R is an integral domain, A is a prime ideal.
(e) A in (d) is a maximal ideal if and only if R is a field.

Solution. By the isomorphism $R[x] / A \approx R, R$ is a field if and only if A is a maximal ideal.
4. Let $a \in \boldsymbol{C}$ be a zero of a nonzero polynomial $p(x)$ in $\boldsymbol{Q}[x]$. Let $\psi: \boldsymbol{Q}[x] \rightarrow$ $\boldsymbol{C}(f(x) \mapsto f(a))$. Show the following.
(a) $\operatorname{Im}(\psi)$ a subring of \boldsymbol{C} and $\operatorname{Ker}(\psi)$ is an ideal of $\boldsymbol{Q}[x]$.

Solution. ψ is a ring homomorphism. So if $\psi(f(x)), \psi(g(x)) \in \operatorname{Im}(\psi)$ with $f(x), g(x) \in \boldsymbol{Q}[x], \psi(f(x))-\psi(g(x))=f(0)-g(0)=\psi(f(x)-g(x)) \in \operatorname{Im}(\psi)$. Moreover, $\psi(f(x)) \psi(g(x))=f(0) g(0)=\psi(f(x) g(x)) \in \operatorname{Im}(\psi)$. Hence $\operatorname{Im}(\psi)$ is a subring of \boldsymbol{C}. Suppose $f(x), g(x) \in \operatorname{Ker}(\psi)$ and $h(x) \in \boldsymbol{Q}[x]$. Then $\psi(f(x)-g(x))=f(0)-g(0)=0-0=0$ and $\psi(h(x) f(x))=h(0) f(0)=$ $h(0) \cdot 0=0$. Hence $\operatorname{Ker}(\psi)$ is an ideal of $\boldsymbol{Q}[x]$.
(b) If $\operatorname{Ker}(\psi)=\langle p(x)\rangle$, then $p(x)$ is irreducible over \boldsymbol{Q} and $\operatorname{Im}(\psi)$ is a field.

Solution. Since $\boldsymbol{Q}[x] / \operatorname{Ker}(\psi) \approx \operatorname{Im}(\psi)$ and $\operatorname{Im}(\psi)$ is a subring of \boldsymbol{C} containing 1 , it is an integral domain. Hence $A=\operatorname{Ker}(\psi)$ is a prime ideal containing $p(x)$. Hence by II (a), $\boldsymbol{Q}[x]$ is a principal ideal domain and by Problem 1 (e), A is a maximal ideal. Since $\langle p(x)\rangle=A$ is a prime ideal, $p(x)$ is irreducible by Problem $1(\mathrm{~d})$ and $\boldsymbol{Q}[x] / A \approx \operatorname{Im}(\psi)$ is a field.

For (c), (d), (e), suppose $p(x)=x^{7}+7 x+14, \gamma \in \boldsymbol{R}$ is a zero of $p(x)$, and $E=\boldsymbol{Q}(\gamma)$.
(c) Show that $[E: \boldsymbol{Q}]=7$.

Solution. By Eisenstein's criterion, $p(x)$ is irreducible over \boldsymbol{Q}. Since γ is a zero of an irreducible polynomial $p(x),[E: \boldsymbol{Q}]=\operatorname{deg} p(x)=7$.
(d) Let F be a subfield of E containing \boldsymbol{Q}. Then $F=\boldsymbol{Q}$ or $F=E$.

Solution. Since $7=[E: \boldsymbol{Q}]=[E: F][F: \boldsymbol{Q}],[E: F]=1$ or $[F: \boldsymbol{Q}]=1$. Hence $F=E$ or $F=\boldsymbol{Q}$.
(e) E is not the splitting field of $p(x)$ contained in \boldsymbol{C}.

Solution. Since $p^{\prime}(x)=7 x^{6}+7>0, p(x)$ is increasing and γ is the only real zero. Hence other zeros are not real and they are not contained in $\boldsymbol{Q}(a)$ and E is not the splitting field. (The fact that \boldsymbol{C} is algebraically closed is assumed.)

[^0]: ${ }^{1}$ the leading coefficient is 1

