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Algebra II Final 2014
If R is a commutative ring with unity 1, then U(R) denotes the set of units, i.e.,

invertible elements. In an integral domain D, a non-zero non-unit element α ∈ D is
irreducible if α = βγ with β, γ ∈ D implies β ∈ U(D) or γ ∈ U(D). For a1, a2, . . . , an ∈ R,
〈a1, a2, . . . , an〉 denotes the smallest ideal of R containing a1, a2, . . . , an. Then

〈a1, a2, . . . , an〉 = {r1a1 + r2a2 + · · · + rnan | r1, r2, . . . , rn ∈ R}.

When you apply a theorem, state it clearly. You may quote the following facts, if
necessary.

I. If R is an integral domain, then

(a) the polynomial ring R[x] over R is an integral domain;

(b) the unit group U(R[x]) = U(R).

II. Let F be a field and F [x] the polynomial ring over F .

(a) F [x] is a principal ideal domain.

(b) Let I be a nonzero ideal in F [x]. Let h(x) is a monic1 nonzero polynomial in
I of smallest degree. Then I = 〈h(x)〉.

Problems

1. Let n = 135 = 5 · 33. For Z135, show the following. (25pts)

(a) How many zero divisors are there in Z135? Show that Z135 is not a field.

(b) Show that Z135 ≈ Z5 ⊕ Z27.

(Consider: φ : Z → Z5 ⊕Z27 (m 7→ (m (mod 5),m (mod 27)). You may use
the fact that Z/nZ ≈ Zn.)

(c) Show that any ideal A of Z5 ⊕ Z27 is a principal ideal, i.e, there exists a ∈
Z5 ⊕ Z27 such that A = 〈a〉.

(d) Find all idempotents e such that with e2 = e in Z135, and corresponding
elements in Z5 ⊕ Z27.

(e) Find all ring homomorphisms from Z135 to itself.

1the leading coefficient is 1



2. Let R = Z[
√
−1] = {a + b

√
−1 | a, b ∈ Z} ⊂ C, and R[x] polynomial ring over R.

Prove the following. You may assume that R is a subring of C and is a principal
ideal domain. (25pts)

(a) Show that U(R) = {1,−1,
√
−1,−

√
−1}.

(b) Let α = a+ b
√
−1. If a2 + b2 is a prime number, then α is irreducible.

(c) Let f(x), g(x) ∈ R[x] and let A = 〈f(x)〉 and B = 〈g(x)〉 be ideals of R[x].
Show that A = B if and only if there exists u ∈ U(R) such that f(x) = u ·g(x).

(d) x is an irreducible element in R[x].

(e) R[x] is not a principal ideal domain.

3. Let R = {a + b
√
−17 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−17) = a2 + 17b2. Show

the following. (25pts)

(a) R is a subring of C.

(b) U(R) = {−1, 1}, and α ∈ R is a unit if and only if N(α) = 1.

(c) 2 is an irreducible element of R.

(d) 〈2〉 is not a prime ideal of R.

(e) R is not a unique factorization domain.

4. Let 3
√

2 be a root of x3 − 2 in R. Let ψ : Q[x] → C (f(x) 7→ f( 3
√

2)). Show the
following. (25pts)

(a) Find a prime number p such that x3 − 2 ∈ Zp[x] is irreducible.

(b) Ker(ψ) = 〈x3 − 2〉.
(c) Im(ψ) = {a+ b 3

√
2 + c( 3

√
2)2 | a, b, c ∈ Q}.

(d) Im(ψ) is a field.

(e) Find the splitting field of x3 − 2 in C.
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Solutions to Algebra II Final 2014

1. Let n = 135 = 5 · 33. For Z135, show the following. (25pts)

(a) How many zero divisors are there in Z135? Show that Z135 is not a field.

Solution. There are ϕ(135) = ϕ(33 · 5) = 32(3− 1)(5− 1) = 23 · 32 = 72 units,
which are nonnegative integers at most 134 which are coprime to 135. Since all
nonzero non-unit elements are zero divisors in a finite commutative ring with
1, there are 135− 72− 1 = 62 zero devisors. Since a field does not have a zero
divisor, Z135 is not a field.

(b) Show that Z135 ≈ Z5 ⊕ Z27.

(Consider: φ : Z → Z5 ⊕Z27 (m 7→ (m (mod 5),m (mod 27)). You may use
the fact that Z/nZ ≈ Zn.)

Solution. Kerφ = 5Z ∩ 27Z = 135Z as 5 and 27 are cop rime. So Z/135Z
is isomorphic to a subring of Z5 ⊕ Z27 by isomorphism theorem. Since

135 = |Z/135Z| = |φ(Z/135Z)| ≤ |Z5 ⊕ Z27| = 135,

φ is onto. Therefore Z135 ≈ Z/135Z ≈ Z5 ⊕ Z27.

(c) Show that any ideal A of Z5 ⊕ Z27 is a principal ideal, i.e, there exists a ∈
Z5 ⊕ Z27 such that A = 〈a〉.
Solution. Since Z135 is cyclic, its Abelian subgroups are cyclic. Since every
ideal is a subgroup, it is generated by a single element, and it can be written
as 〈a〉 for some a ∈ Z135. Hence, every ideal of Z135 is a principal ideal.

(d) Find all idempotents e such that with e2 = e in Z135, and corresponding
elements in Z5 ⊕ Z27.

Solution. In Z5 and Z27, 0 and 1 are the only idempotents. Note that
0 = e2 − e = e(e − 1) and if e is an integer, pn divides e(e − 1) if and only if
pn | e or pn | e− 1. Hence, 0 ↔ (0, 0), 1 ↔ (1, 1), 81 ↔ (1, 0), and 55 ↔ (0, 1)
are the only idempotents.

(e) Find all ring homomorphisms from Z135 to itself.

Solution. Since φ(1) = φ(1 · 1) = φ(1)2, φ(1) is an idempotent. Hence
φ(1) ∈ {0, 1, 55.81}. Therefore, φ(n) = nφ(0), and φ(x) = 0, x, 55x or 81x.
Conversely, these are ring homomorphisms.

2. Let R = Z[
√
−1] = {a + b

√
−1 | a, b ∈ Z} ⊂ C, and R[x] polynomial ring over R.

Prove the following. You may assume that R is a subring of C and is a principal
ideal domain. (25pts)
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(a) Show that U(R) = {1,−1,
√
−1,−

√
−1}.

Solution. It is clear that U(R) ⊃ {1,−1,
√
−1,−

√
−1}. Let α = a+ b

√
−1 ∈

R[
√
−1]. First claim that α ∈ U(R) iff N(α) = 1, where N(α) = a2 + b2. If

N(α) = 1, then (a + b
√
−1)(a− b

√
−1) = 1, and a− b

√
−1 = (a + b

√
−1)−1.

Thus α ∈ U(R). Conversely, suppose α ∈ U(R). Then there exists β ∈ R such
that αβ = 1. Now 1 = N(1) = N(αβ) = N(α)N(β). Since N(α) = a2 + b2,
N(α) is a positive integer. Hence N(α) = 1. Now it is clear that a2 + b2 = 1
implies that α = a+ b

√
−1 = 1,−1,

√
−1, or −

√
−1.

(b) Let α = a+ b
√
−1. If a2 + b2 is a prime number, then α is irreducible.

Solution. Suppose N(α) = a2 + b2 = p, and α = βγ for some β, γ ∈ R.
Then p = N(α) = N(βγ) = N(β)N(γ). Since N(β) and N(γ) are nonnegative
integers and p a prime, either N(β) = 1 or N(γ) = 1. As we showed in (a),
β ∈ U(R) or γ ∈ U(R).

(c) Let f(x), g(x) ∈ R[x] and let A = 〈f(x)〉 and B = 〈g(x)〉 be ideals of R[x].
Show that A = B if and only if there exists u ∈ U(R) such that f(x) = u ·g(x).
Solution. First note by I (b) that U(R[x]) = U(R) as R ⊂ C is an integral
domain. Suppose A = B. If A = B = {0}, then f(x) = g(x) = 0 and
we can take u = 1 ∈ U(R). Assume that A = B 6= {0}. In particular,
f(x) 6= 0 6= g(x). Then f(x) ∈ 〈f(x)〉 = A = B = 〈g(x)〉 3 g(x). Hence
there exist h(x), k(x) ∈ R[x] such that f(x) = h(x)g(x) and g(x) = k(x)f(x).
Therefore,

0 = f(x) − h(x)g(x) = f(x) − h(x)k(x)f(x) = (1 − h(x)k(x))f(x).

Since R[x] is an integral domain and f(x) 6= 0, 1 = h(x)k(x) and h(x) ∈
U(R[x]) = U(R). Since f(x) = h(x)g(x), there exists u ∈ U(R) such that
f(x) = u · g(x).
Conversely, suppose there exists u ∈ U(R) such that f(x) = u · g(x). Then

〈f(x)〉 = 〈u · g(x)〉 ⊂ 〈g(x)〉 = 〈u−1 · f(x)〉 ⊂ 〈f(x)〉,

and A = 〈f(x)〉 = 〈g(x)〉 = B.

(d) x is an irreducible element in R[x].

Solution. Suppose x = u(x)v(x). Then comparing degrees, either u(x) or
v(x) is a nonzero constant, and the other is of degree 1. Let u(x) = u ∈ R.
Since 0 = uv(0), v(0) = 0 and v(x) = vx for some nonzero constant v ∈ R.
Thus x = uvx and u ∈ U(R) = U(R[x]). Therefore, x is irreducible.

(e) R[x] is not a principal ideal domain.

Solution. Let π : R[x] → R (f(x) 7→ f(0)). Then π is a ring homomor-
phism and Kerπ = 〈x〉. Since π is onto, R[x]/〈x〉 ≈ R. Suppose R[x] is
a principal ideal domain. Since x is an irreducible element in a principal
ideal domain, 〈x〉 is a maximal ideal and R[x]/〈x〉 ≈ R is a field. Since
U(R) = {1,−1,

√
−1,−

√
−1} 6= R \ {0}, R is not a field, a contradiction.
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3. Let R = {a + b
√
−17 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−17) = a2 + 17b2. Show

the following. (25pts)

(a) R is a subring of C.

Solution. For all a, b, c, d ∈ R, (a+ b
√
−17) − (c+ d

√
−17) = (a− c) + (b−

d)
√
−17, and (a + b

√
−17)(c + d

√
−17) = ac− 17bd + (ad + bc)

√
−17 ∈ R as

ac− 17cd, ad+ bd ∈ R. Hence R is a subring of C.

(b) U(R) = {−1, 1}, and α ∈ R is a unit if and only if N(α) = 1.

Solution. Suppose α = a + b
√
−17 ∈ U(R). Then there exists β ∈ U(R)

such that αβ = 1. As 1 = N(αβ) = N(α)N(β) and N(α) is a nonnegative
integer, N(α) = 1. Conversely if N(α) = 1, then (a+ b

√
−17)(a− b

√
−17) = 1

and α = a + b
√
−17 ∈ U(R). Now it is clear that {1,−1} ⊂ U(R) and

a2 + 17b2 = N(α) = 1 if and only if α = ±1.

(c) 2 is an irreducible element of R.

Solution. Suppose 2 = αβ with α, β ∈ R. Then 4 = N(2) = N(αβ) =
N(α)N(β). So if N(α) 6= 1 6= N(β), then N(α) = N(β) = 2, which is absurd
as N(α) = a2 + 17b2 cannot express 2 when a, b ∈ Z. Therefore, N(α) = 1 or
N(β) = 1 and α ∈ U(R) or β ∈ U(R) as shown in (b).

(d) 〈2〉 is not a prime ideal of R.

Solution. (1 +
√
−17)(1 −

√
−17) = 18 ∈ 〈2〉. However, if 1 ±

√
−17 = 2α,

then 18 = N(1 ±
√
−17) = N(2)N(α) = 4N(α). This is a contradiction as

N(α) is an integer.

(e) R is not a unique factorization domain.

Solution. If R is a unique factorization domain, every irreducible element
generates a prime ideal. By (d), this is not the case.

4. Let 3
√

2 be a root of x3 − 2 in R. Let ψ : Q[x] → C (f(x) 7→ f( 3
√

2)). Show the
following. (25pts)

(a) Find a prime number p such that x3 − 2 ∈ Zp[x] is irreducible.

Solution. We claim that x3 − 2 ∈ Z7[x] is irreducible. Since x3 − 2 is of
degree three, it suffices to show that x3 − 2 does not have a zero in Z7. Since
{a3 | a ∈ Z7} = {0, 1, 6}, x3 − 2 does not have a zero in Z7 and x3 − 2 is
irreducible.

(b) Ker(ψ) = 〈x3 − 2〉.
Solution. First by (a), x3−2 is irreducible over Z and so it is irreducible over
Q by Gauss’ lemma. Clearly, x3 −2 ∈ Ker(ψ). Since Q[x] is a polynomial ring
over a field, it is a principal ideal domain by II (a). In a principal ideal domain,
every irreducible element generates a maximal ideal. 〈x3−2〉 ⊂ Ker(ψ) implies
〈x3 − 2〉 = Ker(ψ), as 1 6∈ Ker(ψ) and Ker(ψ) 6= Q[x].
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(c) Im(ψ) = {a+ b 3
√

2 + c( 3
√

2)2 | a, b, c ∈ Q}.
Solution. Since ψ(a + bx + cx2) = a + b 3

√
2 + c( 3

√
2)2, Im(ψ) ⊃ {a + b 3

√
2 +

c( 3
√

2)2 | a, b, c ∈ Q}. Let f(x) ∈ Q[x] and f(x) = q(x)(x3−2)+a+bx+cx2 for
some q(x) ∈ Q[x] and a, b, c ∈ Q by division algorithm. Since 3

√
2 is a zero of

x3−2, ψ(f(x)) = f( 3
√

2) = a+ b 3
√

2+ c( 3
√

2)2 and Im(ψ) ⊂ {a+ b 3
√

2+ c( 3
√

2)2 |
a, b, c ∈ Q}.

(d) Im(ψ) is a field.

Solution. By isomorphism theorem, Q[x]/〈x3 − 2〉 = Q[x]/Ker(ψ) ≈ Im(ψ).
Since 〈x3 − 2〉 is a maximal ideal as stated in (b), Q[x]/〈x3 − 2〉 is a field.
Therefore, Im(ψ) is a field.

(e) Find the splitting field of x3 − 2 in C.

Solution. Since x3 − 2 = (x − 3
√

2)(x2 + 3
√

2x + ( 3
√

2)2), zeros are 3
√

2 and

(− 3
√

2 ±
√

3
√

22(−3))/2 = 3
√

2(−1 ±
√
−3)/2. Therefore, the splitting field is

Q
(

3
√

2,
3
√

2
−1 −

√
−3

2
,

3
√

2
−1 +

√
−3

2

)
= Q(

3
√

2,
√
−3).

Either expression is fine.

Let ω = (−1 +
√
−3)/2. Then ω3 = 1 and ω2 = (−1 −

√
−3)/2. So zeros are

3
√

2, 3
√

2ω, 3
√

2ω2.
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