Algebra II Final 2014

If R is a commutative ring with unity 1 , then $U(R)$ denotes the set of units, i.e., invertible elements. In an integral domain D, a non-zero non-unit element $\alpha \in D$ is irreducible if $\alpha=\beta \gamma$ with $\beta, \gamma \in D$ implies $\beta \in U(D)$ or $\gamma \in U(D)$. For $a_{1}, a_{2}, \ldots, a_{n} \in R$, $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ denotes the smallest ideal of R containing $a_{1}, a_{2}, \ldots, a_{n}$. Then

$$
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n} \mid r_{1}, r_{2}, \ldots, r_{n} \in R\right\} .
$$

When you apply a theorem, state it clearly. You may quote the following facts, if necessary.
I. If R is an integral domain, then
(a) the polynomial ring $R[x]$ over R is an integral domain;
(b) the unit group $U(R[x])=U(R)$.
II. Let F be a field and $F[x]$ the polynomial ring over F.
(a) $F[x]$ is a principal ideal domain.
(b) Let I be a nonzero ideal in $F[x]$. Let $h(x)$ is a monic ${ }^{1}$ nonzero polynomial in I of smallest degree. Then $I=\langle h(x)\rangle$.

Problems

1. Let $n=135=5 \cdot 3^{3}$. For \boldsymbol{Z}_{135}, show the following.
(a) How many zero divisors are there in \boldsymbol{Z}_{135} ? Show that \boldsymbol{Z}_{135} is not a field.
(b) Show that $\boldsymbol{Z}_{135} \approx \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$.
(Consider: $\phi: \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}(m \mapsto(m(\bmod 5), m(\bmod 27))$. You may use the fact that $\boldsymbol{Z} / n \boldsymbol{Z} \approx \boldsymbol{Z}_{n}$.)
(c) Show that any ideal A of $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$ is a principal ideal, i.e, there exists $a \in$ $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$ such that $A=\langle a\rangle$.
(d) Find all idempotents e such that with $e^{2}=e$ in \boldsymbol{Z}_{135}, and corresponding elements in $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$.
(e) Find all ring homomorphisms from \boldsymbol{Z}_{135} to itself.

[^0]2. Let $R=\boldsymbol{Z}[\sqrt{-1}]=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and $R[x]$ polynomial ring over R. Prove the following. You may assume that R is a subring of \boldsymbol{C} and is a principal ideal domain.
(25pts)
(a) Show that $U(R)=\{1,-1, \sqrt{-1},-\sqrt{-1}\}$.
(b) Let $\alpha=a+b \sqrt{-1}$. If $a^{2}+b^{2}$ is a prime number, then α is irreducible.
(c) Let $f(x), g(x) \in R[x]$ and let $A=\langle f(x)\rangle$ and $B=\langle g(x)\rangle$ be ideals of $R[x]$. Show that $A=B$ if and only if there exists $u \in U(R)$ such that $f(x)=u \cdot g(x)$.
(d) x is an irreducible element in $R[x]$.
(e) $R[x]$ is not a principal ideal domain.
3. Let $R=\{a+b \sqrt{-17} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-17})=a^{2}+17 b^{2}$. Show the following.
(25pts)
(a) R is a subring of \boldsymbol{C}.
(b) $U(R)=\{-1,1\}$, and $\alpha \in R$ is a unit if and only if $N(\alpha)=1$.
(c) 2 is an irreducible element of R.
(d) $\langle 2\rangle$ is not a prime ideal of R.
(e) R is not a unique factorization domain.
4. Let $\sqrt[3]{2}$ be a root of $x^{3}-2$ in \boldsymbol{R}. Let $\psi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\sqrt[3]{2}))$. Show the following.
(25pts)
(a) Find a prime number p such that $x^{3}-2 \in \boldsymbol{Z}_{p}[x]$ is irreducible.
(b) $\operatorname{Ker}(\psi)=\left\langle x^{3}-2\right\rangle$.
(c) $\operatorname{Im}(\psi)=\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \boldsymbol{Q}\right\}$.
(d) $\operatorname{Im}(\psi)$ is a field.
(e) Find the splitting field of $x^{3}-2$ in \boldsymbol{C}.

Solutions to Algebra II Final 2014

1. Let $n=135=5 \cdot 3^{3}$. For \boldsymbol{Z}_{135}, show the following.
(a) How many zero divisors are there in \boldsymbol{Z}_{135} ? Show that \boldsymbol{Z}_{135} is not a field.

Solution. There are $\varphi(135)=\varphi\left(3^{3} \cdot 5\right)=3^{2}(3-1)(5-1)=2^{3} \cdot 3^{2}=72$ units, which are nonnegative integers at most 134 which are coprime to 135 . Since all nonzero non-unit elements are zero divisors in a finite commutative ring with 1, there are $135-72-1=62$ zero devisors. Since a field does not have a zero divisor, \boldsymbol{Z}_{135} is not a field.
(b) Show that $\boldsymbol{Z}_{135} \approx \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$.
(Consider: $\phi: \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}(m \mapsto(m(\bmod 5), m(\bmod 27))$. You may use the fact that $\boldsymbol{Z} / n \boldsymbol{Z} \approx \boldsymbol{Z}_{n}$.)
Solution. $\operatorname{Ker} \phi=5 \boldsymbol{Z} \cap 27 \boldsymbol{Z}=135 \boldsymbol{Z}$ as 5 and 27 are cop rime. So $\boldsymbol{Z} / 135 \boldsymbol{Z}$ is isomorphic to a subring of $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$ by isomorphism theorem. Since

$$
135=|\boldsymbol{Z} / 135 \boldsymbol{Z}|=|\phi(\boldsymbol{Z} / 135 \boldsymbol{Z})| \leq\left|\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}\right|=135
$$

ϕ is onto. Therefore $\boldsymbol{Z}_{135} \approx \boldsymbol{Z} / 135 \boldsymbol{Z} \approx \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$.
(c) Show that any ideal A of $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$ is a principal ideal, i.e, there exists $a \in$ $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$ such that $A=\langle a\rangle$.
Solution. Since \boldsymbol{Z}_{135} is cyclic, its Abelian subgroups are cyclic. Since every ideal is a subgroup, it is generated by a single element, and it can be written as $\langle a\rangle$ for some $a \in \boldsymbol{Z}_{135}$. Hence, every ideal of \boldsymbol{Z}_{135} is a principal ideal.
(d) Find all idempotents e such that with $e^{2}=e$ in \boldsymbol{Z}_{135}, and corresponding elements in $\boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{27}$.
Solution. In \boldsymbol{Z}_{5} and $\boldsymbol{Z}_{27}, 0$ and 1 are the only idempotents. Note that $0=e^{2}-e=e(e-1)$ and if e is an integer, p^{n} divides $e(e-1)$ if and only if $p^{n} \mid e$ or $p^{n} \mid e-1$. Hence, $0 \leftrightarrow(0,0), 1 \leftrightarrow(1,1), 81 \leftrightarrow(1,0)$, and $55 \leftrightarrow(0,1)$ are the only idempotents.
(e) Find all ring homomorphisms from \boldsymbol{Z}_{135} to itself.

Solution. Since $\phi(1)=\phi(1 \cdot 1)=\phi(1)^{2}, \phi(1)$ is an idempotent. Hence $\phi(1) \in\{0,1,55.81\}$. Therefore, $\phi(n)=n \phi(0)$, and $\phi(x)=0, x, 55 x$ or $81 x$. Conversely, these are ring homomorphisms.
2. Let $R=\boldsymbol{Z}[\sqrt{-1}]=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and $R[x]$ polynomial ring over R. Prove the following. You may assume that R is a subring of \boldsymbol{C} and is a principal ideal domain.
(25pts)
(a) Show that $U(R)=\{1,-1, \sqrt{-1},-\sqrt{-1}\}$.

Solution. It is clear that $U(R) \supset\{1,-1, \sqrt{-1},-\sqrt{-1}\}$. Let $\alpha=a+b \sqrt{-1} \in$ $R[\sqrt{-1}]$. First claim that $\alpha \in U(R)$ iff $N(\alpha)=1$, where $N(\alpha)=a^{2}+b^{2}$. If $N(\alpha)=1$, then $(a+b \sqrt{-1})(a-b \sqrt{-1})=1$, and $a-b \sqrt{-1}=(a+b \sqrt{-1})^{-1}$. Thus $\alpha \in U(R)$. Conversely, suppose $\alpha \in U(R)$. Then there exists $\beta \in R$ such that $\alpha \beta=1$. Now $1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta)$. Since $N(\alpha)=a^{2}+b^{2}$, $N(\alpha)$ is a positive integer. Hence $N(\alpha)=1$. Now it is clear that $a^{2}+b^{2}=1$ implies that $\alpha=a+b \sqrt{-1}=1,-1, \sqrt{-1}$, or $-\sqrt{-1}$.
(b) Let $\alpha=a+b \sqrt{-1}$. If $a^{2}+b^{2}$ is a prime number, then α is irreducible.

Solution. Suppose $N(\alpha)=a^{2}+b^{2}=p$, and $\alpha=\beta \gamma$ for some $\beta, \gamma \in R$. Then $p=N(\alpha)=N(\beta \gamma)=N(\beta) N(\gamma)$. Since $N(\beta)$ and $N(\gamma)$ are nonnegative integers and p a prime, either $N(\beta)=1$ or $N(\gamma)=1$. As we showed in (a), $\beta \in U(R)$ or $\gamma \in U(R)$.
(c) Let $f(x), g(x) \in R[x]$ and let $A=\langle f(x)\rangle$ and $B=\langle g(x)\rangle$ be ideals of $R[x]$. Show that $A=B$ if and only if there exists $u \in U(R)$ such that $f(x)=u \cdot g(x)$.
Solution. First note by I (b) that $U(R[x])=U(R)$ as $R \subset \boldsymbol{C}$ is an integral domain. Suppose $A=B$. If $A=B=\{0\}$, then $f(x)=g(x)=0$ and we can take $u=1 \in U(R)$. Assume that $A=B \neq\{0\}$. In particular, $f(x) \neq 0 \neq g(x)$. Then $f(x) \in\langle f(x)\rangle=A=B=\langle g(x)\rangle \ni g(x)$. Hence there exist $h(x), k(x) \in R[x]$ such that $f(x)=h(x) g(x)$ and $g(x)=k(x) f(x)$. Therefore,

$$
0=f(x)-h(x) g(x)=f(x)-h(x) k(x) f(x)=(1-h(x) k(x)) f(x) .
$$

Since $R[x]$ is an integral domain and $f(x) \neq 0,1=h(x) k(x)$ and $h(x) \in$ $U(R[x])=U(R)$. Since $f(x)=h(x) g(x)$, there exists $u \in U(R)$ such that $f(x)=u \cdot g(x)$.
Conversely, suppose there exists $u \in U(R)$ such that $f(x)=u \cdot g(x)$. Then

$$
\langle f(x)\rangle=\langle u \cdot g(x)\rangle \subset\langle g(x)\rangle=\left\langle u^{-1} \cdot f(x)\right\rangle \subset\langle f(x)\rangle
$$

and $A=\langle f(x)\rangle=\langle g(x)\rangle=B$.
(d) x is an irreducible element in $R[x]$.

Solution. Suppose $x=u(x) v(x)$. Then comparing degrees, either $u(x)$ or $v(x)$ is a nonzero constant, and the other is of degree 1 . Let $u(x)=u \in R$. Since $0=u v(0), v(0)=0$ and $v(x)=v x$ for some nonzero constant $v \in R$. Thus $x=u v x$ and $u \in U(R)=U(R[x])$. Therefore, x is irreducible.
(e) $R[x]$ is not a principal ideal domain.

Solution. Let $\pi: R[x] \rightarrow R(f(x) \mapsto f(0))$. Then π is a ring homomorphism and $\operatorname{Ker} \pi=\langle x\rangle$. Since π is onto, $R[x] /\langle x\rangle \approx R$. Suppose $R[x]$ is a principal ideal domain. Since x is an irreducible element in a principal ideal domain, $\langle x\rangle$ is a maximal ideal and $R[x] /\langle x\rangle \approx R$ is a field. Since $U(R)=\{1,-1, \sqrt{-1},-\sqrt{-1}\} \neq R \backslash\{0\}, R$ is not a field, a contradiction.
3. Let $R=\{a+b \sqrt{-17} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-17})=a^{2}+17 b^{2}$. Show the following.
(a) R is a subring of \boldsymbol{C}.

Solution. For all $a, b, c, d \in \boldsymbol{R},(a+b \sqrt{-17})-(c+d \sqrt{-17})=(a-c)+(b-$ d) $\sqrt{-17}$, and $(a+b \sqrt{-17})(c+d \sqrt{-17})=a c-17 b d+(a d+b c) \sqrt{-17} \in R$ as $a c-17 c d, a d+b d \in R$. Hence R is a subring of \boldsymbol{C}.
(b) $U(R)=\{-1,1\}$, and $\alpha \in R$ is a unit if and only if $N(\alpha)=1$.

Solution. Suppose $\alpha=a+b \sqrt{-17} \in U(R)$. Then there exists $\beta \in U(R)$ such that $\alpha \beta=1$. As $1=N(\alpha \beta)=N(\alpha) N(\beta)$ and $N(\alpha)$ is a nonnegative integer, $N(\alpha)=1$. Conversely if $N(\alpha)=1$, then $(a+b \sqrt{-17})(a-b \sqrt{-17})=1$ and $\alpha=a+b \sqrt{-17} \in U(R)$. Now it is clear that $\{1,-1\} \subset U(R)$ and $a^{2}+17 b^{2}=N(\alpha)=1$ if and only if $\alpha= \pm 1$.
(c) 2 is an irreducible element of R.

Solution. Suppose $2=\alpha \beta$ with $\alpha, \beta \in R$. Then $4=N(2)=N(\alpha \beta)=$ $N(\alpha) N(\beta)$. So if $N(\alpha) \neq 1 \neq N(\beta)$, then $N(\alpha)=N(\beta)=2$, which is absurd as $N(\alpha)=a^{2}+17 b^{2}$ cannot express 2 when $a, b \in \boldsymbol{Z}$. Therefore, $N(\alpha)=1$ or $N(\beta)=1$ and $\alpha \in U(R)$ or $\beta \in U(R)$ as shown in (b).
(d) $\langle 2\rangle$ is not a prime ideal of R.

Solution. $(1+\sqrt{-17})(1-\sqrt{-17})=18 \in\langle 2\rangle$. However, if $1 \pm \sqrt{-17}=2 \alpha$, then $18=N(1 \pm \sqrt{-17})=N(2) N(\alpha)=4 N(\alpha)$. This is a contradiction as $N(\alpha)$ is an integer.
(e) R is not a unique factorization domain.

Solution. If R is a unique factorization domain, every irreducible element generates a prime ideal. By (d), this is not the case.
4. Let $\sqrt[3]{2}$ be a root of $x^{3}-2$ in \boldsymbol{R}. Let $\psi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\sqrt[3]{2}))$. Show the following.
(25pts)
(a) Find a prime number p such that $x^{3}-2 \in \boldsymbol{Z}_{p}[x]$ is irreducible.

Solution. We claim that $x^{3}-2 \in \boldsymbol{Z}_{7}[x]$ is irreducible. Since $x^{3}-2$ is of degree three, it suffices to show that $x^{3}-2$ does not have a zero in \boldsymbol{Z}_{7}. Since $\left\{a^{3} \mid a \in \boldsymbol{Z}_{7}\right\}=\{0,1,6\}, x^{3}-2$ does not have a zero in \boldsymbol{Z}_{7} and $x^{3}-2$ is irreducible.
(b) $\operatorname{Ker}(\psi)=\left\langle x^{3}-2\right\rangle$.

Solution. First by (a), $x^{3}-2$ is irreducible over \boldsymbol{Z} and so it is irreducible over \boldsymbol{Q} by Gauss' lemma. Clearly, $x^{3}-2 \in \operatorname{Ker}(\psi)$. Since $\boldsymbol{Q}[x]$ is a polynomial ring over a field, it is a principal ideal domain by II (a). In a principal ideal domain, every irreducible element generates a maximal ideal. $\left\langle x^{3}-2\right\rangle \subset \operatorname{Ker}(\psi)$ implies $\left\langle x^{3}-2\right\rangle=\operatorname{Ker}(\psi)$, as $1 \notin \operatorname{Ker}(\psi)$ and $\operatorname{Ker}(\psi) \neq \boldsymbol{Q}[x]$.
(c) $\operatorname{Im}(\psi)=\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \boldsymbol{Q}\right\}$.

Solution. Since $\psi\left(a+b x+c x^{2}\right)=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}, \operatorname{Im}(\psi) \supset\{a+b \sqrt[3]{2}+$ $\left.c(\sqrt[3]{2})^{2} \mid a, b, c \in \boldsymbol{Q}\right\}$. Let $f(x) \in \boldsymbol{Q}[x]$ and $f(x)=q(x)\left(x^{3}-2\right)+a+b x+c x^{2}$ for some $q(x) \in \boldsymbol{Q}[x]$ and $a, b, c \in \boldsymbol{Q}$ by division algorithm. Since $\sqrt[3]{2}$ is a zero of $x^{3}-2, \psi(f(x))=f(\sqrt[3]{2})=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}$ and $\operatorname{Im}(\psi) \subset\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid\right.$ $a, b, c \in \boldsymbol{Q}\}$.
(d) $\operatorname{Im}(\psi)$ is a field.

Solution. By isomorphism theorem, $\boldsymbol{Q}[x] /\left\langle x^{3}-2\right\rangle=\boldsymbol{Q}[x] / \operatorname{Ker}(\psi) \approx \operatorname{Im}(\psi)$. Since $\left\langle x^{3}-2\right\rangle$ is a maximal ideal as stated in (b), $\boldsymbol{Q}[x] /\left\langle x^{3}-2\right\rangle$ is a field. Therefore, $\operatorname{Im}(\psi)$ is a field.
(e) Find the splitting field of $x^{3}-2$ in \boldsymbol{C}.

Solution. Since $x^{3}-2=(x-\sqrt[3]{2})\left(x^{2}+\sqrt[3]{2} x+(\sqrt[3]{2})^{2}\right)$, zeros are $\sqrt[3]{2}$ and $\left(-\sqrt[3]{2} \pm \sqrt{\sqrt[3]{2^{2}}(-3)}\right) / 2=\sqrt[3]{2}(-1 \pm \sqrt{-3}) / 2$. Therefore, the splitting field is

$$
\boldsymbol{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} \frac{-1-\sqrt{-3}}{2}, \sqrt[3]{2} \frac{-1+\sqrt{-3}}{2}\right)=\boldsymbol{Q}(\sqrt[3]{2}, \sqrt{-3})
$$

Either expression is fine.
Let $\omega=(-1+\sqrt{-3}) / 2$. Then $\omega^{3}=1$ and $\omega^{2}=(-1-\sqrt{-3}) / 2$. So zeros are $\sqrt[3]{2}, \sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}$.

[^0]: ${ }^{1}$ the leading coefficient is 1

