Algebra II Final 2013

If R is a commutative ring with unity 1 , then $U(R)$ denotes the set of units, i.e., invertible elements. In an integral domain D, a non-zero non-unit element $\alpha \in D$ is irreducible if $\alpha=\beta \gamma$ with $\beta, \gamma \in D$ implies $\beta \in U(D)$ or $\gamma \in U(D)$. For $a_{1}, a_{2}, \ldots, a_{n} \in R,\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ denotes the smallest ideal of R containing $a_{1}, a_{2}, \ldots, a_{n}$. Then

$$
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n} \mid r_{1}, r_{2}, \ldots, r_{n} \in R\right\} .
$$

When you quote a theorem, state it clearly. You may quote the following facts, if necessary.
I. If R is an integral domain, then
(a) the polynomial ring $R[x]$ over R is an integral domain;
(b) the unit group $U(R[x])=U(R)$.
II. Let F be a field and $F[x]$ the polynomial ring over F.
(a) $F[x]$ is a principal ideal domain.
(b) Let I be a nonzero ideal in $F[x]$. Let $h(x)$ is a monic ${ }^{1}$ nonzero polynomial in I of smallest degree. Then $I=\langle h(x)\rangle$.

Problems

1. Let $x^{2}-2, x^{2}+2$ be polynomials in $\boldsymbol{Q}[x]$. Show the following.
(a) $\boldsymbol{Q}[x]=\left\langle x^{2}-2, x^{2}+2\right\rangle$ and $\left\langle x^{2}-2\right\rangle \cap\left\langle x^{2}+2\right\rangle=\left\langle x^{4}-4\right\rangle$.
(b) Let

$$
\varphi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{Q}[x] /\left\langle x^{2}-2\right\rangle \oplus \boldsymbol{Q}[x] /\left\langle x^{2}+2\right\rangle\left(f(x) \mapsto\left(f(x)+\left\langle x^{2}-2\right\rangle, f(x)+\left\langle x^{2}+2\right\rangle\right)\right) .
$$

Then φ is an onto ring homomorphism and $\operatorname{Ker} \varphi=\left\langle x^{4}-4\right\rangle$.
(c) Both $\boldsymbol{Q}[x] /\left\langle x^{2}-2\right\rangle$ and $\boldsymbol{Q}[x] /\left\langle x^{2}+2\right\rangle$ are fields, but $\boldsymbol{Q}[x] /\left\langle x^{4}-4\right\rangle$ is not a field.

[^0]2. Prove the following.
(25pts)
(a) Find a commutative ring R with unity 1 such that the polynomial ring $R[x]$ does not satisfy $U(R[x])=U(R)$.
(b) $\boldsymbol{Z}[x, y]$ is an integral domain, and $U(\boldsymbol{Z}[x, y])=\{-1,1\}$.
(c) Let $f(x, y), g(x, y) \in \boldsymbol{Z}[x, y]$. If $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then $f(x, y)= \pm g(x, y)$.
(d) $\langle x, y\rangle$ is not a maximal ideal.
(e) $\boldsymbol{Z}[x, y]$ is not a principal ideal domain.
3. Let $R=\{a+b \sqrt{-13} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-13})=a^{2}+13 b^{2}$. Show the following.
(30pts)
(a) R is an integral domain and $R=\{f(\sqrt{-13}) \mid f(t) \in \boldsymbol{Z}[t]\}$.
(b) $U(R)=\{-1,1\}$, and $\alpha \in R$ is a unit if and only if $N(\alpha)=1$.
(c) Four elements 2, 7, 1- $\sqrt{-13}$ and $1+\sqrt{-13}$ of R are irreducible elements of R.
(d) R is not a unique factorization domain.
4. Let E be an extension field of F. Let $p(x)$ be an irreducible polynomial of degree n in $F[x]$, and α a zero of $p(x)$ in E. Let $\psi: F[x] \rightarrow E(f(x) \mapsto f(\alpha))$. Show the following. (30pts)
(a) $\operatorname{Ker} \psi=\langle p(x)\rangle$, and $\operatorname{Im} \psi=F(\alpha)$ is the smallest subfield of E containing F and α.
(b) $[F(\alpha): F]$, the dimension of $F(\alpha)$ as a vector space over F, is equal to n, the degree of $p(x)$.
(c) Every element $\beta \in F(\alpha)$ is algebraic over F, i.e.. β is a zero of a nonzero polynomial $q(x) \in F[x]$.
(d) Suppose $\gamma \in E$ is algebraic over $F(\alpha)$. Then γ is algebraic over F.

Solutions to Algebra II Final 2013

1. Let $x^{2}-2, x^{2}+2$ be polynomials in $\boldsymbol{Q}[x]$. Show the following.
(a) $\boldsymbol{Q}[x]=\left\langle x^{2}-2, x^{2}+2\right\rangle$ and $\left\langle x^{2}-2\right\rangle \cap\left\langle x^{2}+2\right\rangle=\left\langle x^{4}-4\right\rangle$.

Solution. Since $1=\frac{1}{4}\left(x^{2}+2\right)-\frac{1}{4}\left(x^{2}-2\right) \in\left\langle x^{2}-2, x^{2}+2\right\rangle$, for any $f(x) \in \boldsymbol{Q}[x]$,
$f(x)=f(x) \cdot 1 \in\left\langle x^{2}-2, x^{2}+2\right\rangle$. Thus $\boldsymbol{Q}[x]=\left\langle x^{2}-2, x^{2}+2\right\rangle$.
Since $x^{4}-4=\left(x^{2}-2\right)\left(x^{2}+2\right),\left\langle x^{2}-2\right\rangle \cap\left\langle x^{2}+2\right\rangle \supset\left\langle x^{4}-4\right\rangle$.
Let $h(x) \in\left\langle x^{2}-2\right\rangle \cap\left\langle x^{2}+2\right\rangle$. Then $h(x)=f(x)\left(x^{2}-2\right)=g(x)\left(x^{2}+2\right)$ for some $f(x), g(x) \in \boldsymbol{Q}[x]$. Now

$$
\begin{aligned}
h(x) & =h(x) \cdot 1=\frac{1}{4} h(x)\left(x^{2}+2\right)-\frac{1}{4} h(x)\left(x^{2}-2\right) \\
& =\frac{1}{4} f(x)\left(x^{2}-2\right)\left(x^{2}+2\right)-\frac{1}{4} g(x)\left(x^{2}+2\right)\left(x^{2}-2\right) \in\left\langle x^{4}-4\right\rangle .
\end{aligned}
$$

(b) Let

$$
\varphi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{Q}[x] /\left\langle x^{2}-2\right\rangle \oplus \boldsymbol{Q}[x] /\left\langle x^{2}+2\right\rangle\left(f(x) \mapsto\left(f(x)+\left\langle x^{2}-2\right\rangle, f(x)+\left\langle x^{2}+2\right\rangle\right)\right) .
$$

Then φ is an onto ring homomorphism and $\operatorname{Ker} \varphi=\left\langle x^{4}-4\right\rangle$.
Solution. φ is clearly a ring homomorphism. Since $\operatorname{Ker} \varphi=\left\langle x^{2}-2\right\rangle \cap\left\langle x^{2}+2\right\rangle=$ $\left\langle x^{4}-4\right\rangle$, it suffices to show φ is onto. Let $f(x), g(x) \in \boldsymbol{Q}[x]$. Then

$$
\begin{aligned}
\varphi & \left(\frac{1}{4} f(x)\left(x^{2}+2\right)-\frac{1}{4} g(x)\left(x^{2}-2\right)\right) \\
& =\left(\frac{1}{4} f(x)\left(x^{2}+2\right)+\left\langle x^{2}-2\right\rangle,-\frac{1}{4} g(x)\left(x^{2}-2\right)+\left\langle x^{2}+2\right\rangle\right) \\
& =\left(\left(1+\frac{1}{4}\left(x^{2}-2\right)\right) f(x)+\left\langle x^{2}-2\right\rangle,\left(1-\frac{1}{4}\left(x^{2}+2\right)\right) g(x)+\left\langle x^{2}+2\right\rangle\right) \\
& =\left(f(x)+\left\langle x^{2}-2\right\rangle, g(x)+\left\langle x^{2}+2\right\rangle\right) .
\end{aligned}
$$

Therefore φ is an onto ring homomorphism.
(c) Both $\boldsymbol{Q}[x] /\left\langle x^{2}-2\right\rangle$ and $\boldsymbol{Q}[x] /\left\langle x^{2}+2\right\rangle$ are fields, but $\boldsymbol{Q}[x] /\left\langle x^{4}-4\right\rangle$ is not a field.

Solution. $x^{2}-2$ and $x^{2}+2$ are irreducible over \boldsymbol{Q} as $\pm \sqrt{2}, \pm \sqrt{-2} \notin \boldsymbol{Q}$. (One can also apply the Eisenstein's criterion and the Gauss' lemma.) Since $\boldsymbol{Q}[x]$ is a principal ideal domain, every irreducible polynomial generates a maximal ideal. Hence both $\boldsymbol{Q}[x] /\left\langle x^{2}-2\right\rangle$ and $\boldsymbol{Q}[x] /\left\langle x^{2}+2\right\rangle$ are fields. Since $\left\langle x^{4}-4\right\rangle$ is properly contained in $\left\langle x^{2}-2\right\rangle,\left\langle x^{4}-4\right\rangle$ is not a maximal ideal. Hence $\boldsymbol{Q}[x] /\left\langle x^{4}-4\right\rangle$ is not a field.
2. Prove the following.
(25pts)
(a) Find a commutative ring R with unity 1 such that the polynomial ring $R[x]$ does not satisfy $U(R[x])=U(R)$.
Solution. Let $R=\boldsymbol{Z}_{4}$. Since $(2 x+1)(-2 x+1)=1,2 x+1 \in U\left(\boldsymbol{Z}_{4}[x]\right)$. Clealy $2 x+1 \notin U\left(\boldsymbol{Z}_{4}\right)$.
(b) $\boldsymbol{Z}[x, y]$ is an integral domain, and $U(\boldsymbol{Z}[x, y])=\{-1,1\}$.

Solution. Since \boldsymbol{Z} is an integral domain, $\boldsymbol{Z}[x]$ is an integral domain by I (a). Thus again by the same result, $\boldsymbol{Z}[x, y]=(\boldsymbol{Z}[x])[y]$ is an integral domain. Now by I (b), $U(\boldsymbol{Z}[x, y])=U((\boldsymbol{Z}[x])[y])=U(\boldsymbol{Z}[x])=U(\boldsymbol{Z})=\{1,-1\}$.
(c) Let $f(x, y), g(x, y) \in \boldsymbol{Z}[x, y]$. If $\langle f(x, y)\rangle=\langle g(x, y)\rangle$, then $f(x, y)= \pm g(x, y)$.

Solution. If $f(x, y)$ or $g(x, y)$ is zero, both are zero and the assertion is clear. Since $f(x, y) \in\langle g(x, y)\rangle$, there exists $h(x, y) \in \boldsymbol{Z}[x, y]$ such that $f(x, y)=h(x, y) g(x, y)$. Similarly, since $g(x, y) \in\langle f(x, y)\rangle$, there exists $k(x, y) \in \boldsymbol{Z}[x, y]$ such that $g(x, y)=$ $k(x, y) f(x, y)$. Then

$$
f(x, y)=h(x, y) g(x, y)=h(x, y) k(x, y) f(x, y) .
$$

So $f(x, y)(1-h(x, y) k(x, y))=0$. Since $f(x, y) \neq 0, h(x, y) k(x, y)=1$ and $h(x, y) \in$ $U(\boldsymbol{Z}[x, y])=\{1,-1\}$. Therefore $f(x, y)= \pm g(x, y)$.
(d) $\langle x, y\rangle$ is not a maximal ideal.

Solution. Let $\pi: \boldsymbol{Z}[x, y] \rightarrow \boldsymbol{Z}(f(x, y) \mapsto f(0,0))$. Then π is onto. Moreover, $\operatorname{Ker} \pi \supset\langle x, y\rangle$ and $\operatorname{Ker} \pi \cap \boldsymbol{Z}=\{0\}$. Hence $\operatorname{Ker} \pi=\langle x, y\rangle$. Therefore $\boldsymbol{Z}[x, y] /\langle x, y\rangle \approx$ \boldsymbol{Z}. Since \boldsymbol{Z} is not a field, $\langle x, y\rangle$ is not a maximal ideal.
(e) $\boldsymbol{Z}[x, y]$ is not a principal ideal domain.

Solution. Suppose $\langle x, y\rangle=\langle h(x, y)\rangle$. Since $x=h(x, y) f(x, y)$ and $y=h(x, y) g(x, y)$ for some $f(x, y), g(x, y) \in \boldsymbol{Z}[x, y], h(x, y)=h \in \boldsymbol{Z}$ by considering the degree of $h(x, y)$ in x and y. This is a contradition as $\langle x, y\rangle \neq \boldsymbol{Z}[x, y]$. Note that $\langle x, y\rangle=$ $\{f(x, y) x+g(x, y) y \mid f(x, y), g(x, y) \in \boldsymbol{Z}[x, y]\}$.
3. Let $R=\{a+b \sqrt{-13} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-13})=a^{2}+13 b^{2}$. Show the following.
(30pts)
(a) R is an integral domain and $R=\{f(\sqrt{-13}) \mid f(t) \in \boldsymbol{Z}[t]\}$.

Solution. Let $\phi: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-13}))$. Then clearly ϕ is a nonzero ring homomorphism and $\phi(1)=1$. So $\operatorname{Im} \phi=\{f(\sqrt{-13}) \mid f(t) \in \boldsymbol{Z}[t]\}$ is a subring of \boldsymbol{C}. Since \boldsymbol{C} is a field, there is no zero-divisor and $\operatorname{Im} \phi$ is an integral domain. Thus it remains to show that $\operatorname{Im} \phi=R$. Since $a+b \sqrt{-13}=\phi(a+b t), \operatorname{Im} \phi \supset R$. Let $f(t) \in$ $\boldsymbol{Z}[t]$. Then there exist $q(t) \in \boldsymbol{Z}[t]$ and $a, b \in \boldsymbol{Z}$ such that $f(t)=q(t)\left(x^{2}+13\right)+a+b t$ as $x^{2}+13$ is a monic polynomial of degree 2. Now $\phi(f(t))=f(\sqrt{-13})=a+b \sqrt{-13} \in R$.
(b) $U(R)=\{-1,1\}$, and $\alpha \in R$ is a unit if and only if $N(\alpha)=1$.

Solution. Since $N(\alpha)=\alpha \cdot \bar{\alpha}, N(\alpha \beta)=\alpha \beta \overline{\alpha \beta}=\alpha \bar{\alpha} \beta \bar{\beta}=N(\alpha) N(\beta)$. Suppose $\alpha \beta=1$. Then $1=N(1)=N(\alpha) N(\beta)$. Since $N(\alpha), N(\beta)$ are nonnegative integers by definition, $N(\alpha)=1$. Conversely if $N(\alpha)=1$, then $\bar{\alpha}=\alpha^{-1}$. Let $\alpha=a+b \sqrt{-13}$ with $a, b \in Z$. If $N(\alpha)=1$, then $a^{2}+13 b^{2}=1$. The only possibilities are $\alpha= \pm 1$. Since $1,-1$ are units, this prove assertions.
(c) Four elements 2, 7, $1-\sqrt{-13}$ and $1+\sqrt{-13}$ of R are irreducible elements of R.

Solution. Let $\alpha \in\{2,7,1-\sqrt{-13}, 1+\sqrt{-13}\}$. Then $N(\alpha) \in\{4,49,14\}$. Since 2,7 cannot be expressed as $a^{2}+13 b^{2}$ for some $a, b \in \boldsymbol{Z}, \alpha$ is irreducible. Note that if $\alpha=\beta \gamma$ with $N(\beta) \neq 1, N(\gamma) \neq 1$, then $N(\alpha)=N(\beta) N(\gamma)$ and $N(\beta), N(\gamma) \in\{2,7\}$.
(d) R is not a unique factorization domain.

Solution. By the previous problem, 2, 7, 1- $\sqrt{-13}$ and $1+\sqrt{-13}$ of R are irreducible elements of R. Since

$$
2 \cdot 7=14=(1-\sqrt{-13})(1+\sqrt{-13}),
$$

the decomposition is not unique. Note that it is easy to see that 2 is not an associate of $1 \pm \sqrt{-13}$ as the value of N is not equal.
4. Let E be an extension field of F. Let $p(x)$ be an irreducible polynomial of degree n in $F[x]$, and α a zero of $p(x)$ in E. Let $\psi: F[x] \rightarrow E(f(x) \mapsto f(\alpha))$. Show the following. (30pts)
(a) $\operatorname{Ker} \psi=\langle p(x)\rangle$, and $\operatorname{Im} \psi=F(\alpha)$ is the smallest subfield of E containing F and α.

Solution. Since $p(\alpha)=0,\langle p(x)\rangle \subset \operatorname{Ker} \psi$. Since $F[x]$ is a principal ideal domain and $p(x)$ an irreducible element, $\langle p(x)\rangle$ is a maximal ideal. Since $\psi(1)=1, \psi$ is not a zero mapping, $\operatorname{Ker} \psi \neq F[x]$. Hence $\operatorname{Ker} \psi=\langle p(x)\rangle$. Thus by an isomorphism theorem, $F[x] / \operatorname{Ker} \psi \approx \operatorname{Im} \psi \subset F(\alpha)$ and $\operatorname{Im} \psi$ is a field containing F and α. Therefore, $\operatorname{Im} \psi=F(\alpha)$.
(b) $[F(\alpha): F]$, the dimension of $F(\alpha)$ as a vector space over F, is equal to n, the degree of $p(x)$.
Solution. Let $f(x) \in F[x]$. Then there exist $q(x), r(x) \in F[x]$ such that $f(x)=$ $q(x) p(x)+r(x)$ with $r(x)=0$ or $\operatorname{deg} r(x)<n$. Since $f(\alpha)=q(\alpha) p(\alpha)+r(\alpha)=r(\alpha)$. $F(\alpha)=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{0}, a_{1}, \ldots, a_{n-1} \in F\right\}$. Now it suffices to show that $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are linearly independent. Suppose $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}=0$ for some $a_{0}, a_{1}, \ldots, a_{n-1} \in F$. Let $q(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in F[x]$. This implies $q(x)=0$, as $p(x)$ is of smallest degree among nonzero polynomials in $\langle p(x)\rangle=\operatorname{Ker} \psi$.
(c) Every element $\beta \in F(\alpha)$ is algebraic over F, i.e.. β is a zero of a nonzero polynomial $q(x) \in F[x]$.
Solution. Since $[F(\alpha): F]=n$, the set $\left\{1, \beta, \beta^{2}, \ldots, \beta^{n}\right\}$ is linearly dependent. Hence there exist $c_{0}, c_{1}, \ldots, c_{n} \in F$ not all zero such that $q(x)=c_{0}+c_{1} x+c_{2} x^{2}+$ $\cdots+c_{n} x^{n} \neq 0$ satisfies $q(\beta)=0$.
(d) Suppose $\gamma \in E$ is algebraic over $F(\alpha)$. Then γ is algebraic over F.

Solution. Let $q(x)$ be the minimal polynomial of γ over $F(\alpha)$. Then $[F(\alpha, \gamma)$: $F(\alpha)]=\operatorname{deg} q(x)$. Hence

$$
[F(\alpha, \gamma): F]=[F(\alpha, \gamma): F(\alpha)][F(\alpha): F]=\operatorname{deg} q(x) \operatorname{deg} p(x)<\infty .
$$

Let $m=\operatorname{deg} q(x) \operatorname{deg} p(x)$. Then $1, \gamma, \gamma^{2}, \ldots, \gamma^{m}$ is linearly dependent over F, and we can find a nonzero polynomial $f(x) \in F[x]$ of degree at most m, such that $f(\gamma)=0$ by the same argument employed in the previous problem. Hence γ is algebraic over F.

[^0]: ${ }^{1}$ the leading coefficient is 1

