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Algebra II Final 2010

1. Let R be an integral domain. For a ∈ R, 〈a〉 = {ra | r ∈ R}. Show the following. (25pts)

(a) For a, b ∈ R, the following are equivalent.

(i) 〈a〉 = 〈b〉.
(ii) There exists a unit, i.e., invertible element, u ∈ R such that b = ua.

(b) The following are equivalent.

(i) R is a field.
(ii) For every nonzero a ∈ R, 〈a〉 = R.

(c) If R has finitely many elements, then R is a field.

2. Let n be an arbitrary positive integer such that n ≥ 2. Show the following. (15pts)

(a) If φ : Zn → Zn is a ring homomorphism, there is e ∈ Zn such that e2 = e and
φ(a) = ae.

(b) If e ∈ Zn satisfies e2 = e, then φ : Zn → Zn (a 7→ ae) is a ring homomorphism.

(c) How many ring homomorphisms are there from Z45 into Z45.

3. Let R = {a + b
√
−5 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−5) = a2 + 5b2. (35pts)

(a) Show that R is an integral domain and R = {f(
√
−5) | f(t) ∈ Z[t]}.

(b) Show that for α ∈ R, α ∈ U(R) if and only if N(α) = 1.

(c) Show that 2 is an irreducible element.

(d) Show that 〈2〉 is not a prime ideal.

(e) Show that R is not a unique factorization domain. (Use only the definition of unique
factorization domains.)

4. Let α ∈ C and let p(x) ∈ Z[x] a monic irreducible polynomial over Z of degree n such
that p(α) = 0. We consider a ring homomorphism φ : Q[x] → C (f(x) 7→ f(α)). (25pts)

(a) Show that Kerφ = 〈p(x)〉.
(b) Show that Imφ is a field.

(c) If β ∈ C satisfies p(β) = 0, then Q(α) ≈ Q(β).

(d) Suppose q(x) ∈ Q[x] is irreducible over Q of degree m, if gcd(n,m) = 1, then q(x) is
irreducible over Q(α).
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1. Let R be an integral domain. For a ∈ R, 〈a〉 = {ra | r ∈ R}. Show the following. (25pts)

(a) For a, b ∈ R, the following are equivalent.

(i) 〈a〉 = 〈b〉.
(ii) There exists a unit, i.e., invertible element, u ∈ R such that b = ua.

Solution. (i)→(ii) Since R has identity, b = 1b ∈ 〈b〉 = 〈a〉. So there is u ∈ R such
that b = ua. Similarly, a = 1a ∈ 〈a〉 = 〈b〉, there exists v ∈ R such that a = vb,
If b = 0, then a = 0. So b = 0 = 1 · 0 = 1 · a. We may assume that b ̸= 0. Now
0 = b − b = b − ua = b − uvb = (1 − uv)b. Since R is an integral domain and b ̸= 0,
1 = uv and u is a unit. Note that integral domains are commutative.
(ii)→(i) Since b = ua ∈ 〈a〉, 〈b〉 ⊂ 〈a〉. Since u is a unit, a = u−1b ∈ 〈b〉. Hence
〈a〉 ⊂ 〈b〉. Thus 〈a〉 = 〈b〉.

(b) The following are equivalent.

(i) R is a field.
(ii) For every nonzero a ∈ R, 〈a〉 = R.

Solution. (i)→(ii) Since R is a field, every nonzero element a is a unit. So a−1 is
also a unit and 1 = a−1a. Hence by (a) (ii)→(i), 〈a〉 = 〈1〉 = R.
(ii)→(i) Let a be a nonzero element of R. Then by assumption, 〈a〉 = R. Since
1 ∈ R, there is b ∈ R such that 1 = ba. Since R is commutative, a is a unit. Since a
is arbitrary nonzero element of R, R is a field.

(c) If R has finitely many elements, then R is a field.
Solution. Let a be a nonzero element of R. Let φ : R → R (x 7→ xa). Since
φ(x) = φ(y) implies 0 = xa− ya = (x− y)a and a is a nonzero element in an integral
domain, x = y. Thus φ is an injection. Since R has finitely many elements, φ is a
surjection as well. Thus R = Imφ = {xa | x ∈ R} = 〈a〉. Now by (b) (ii)→(i), R is a
field.

2. Let n be an arbitrary positive integer such that n ≥ 2. Show the following. (15pts)

(a) If φ : Zn → Zn is a ring homomorphism, there is e ∈ Zn such that e2 = e and
φ(a) = ae.
Solution. 1 is the identity element in Zn. Let e = φ(1). Then e = φ(1) = φ(1 · 1) =
φ(1)φ(1) = e2. Moreover if a ∈ Zn, then a can be regarded as a nonnegative integer,
φ(a) = φ(a1) = aφ(1) = ae. Note that a1 is the sum of a 1’s in Zn.

(b) If e ∈ Zn satisfies e2 = e, then φ : Zn → Zn (a 7→ ae) is a ring homomorphism.
Solution. φ(a + b) = (a + b)e = ae + be = φ(a) + φ(b), and φ(ab) = abe = abee =
aebe = φ(a)φ(b). Hence φ is a ring homomorphism.

(c) How many ring homomorphisms are there from Z45 into Z45.
Solution. By (a) and (b), φ(1) is an idempotent, i.e., an element e ∈ Zn such that
e2 = e and for each e, there is a ring homomorphism such that φ(1) = e. Thus there
is a one-to-one correspondence between a ring homomorphism from Zn to itself and
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an idempotent of Zn. So the number of ring homomorphisms from Z45 into Z45 is
equal to the number of idempotents in Z45. Set f = 1 − e. Then f2 = f and since
ef = e(1 − e) = 0, 45 | ef and e and f = 1 − e are coprime. So if 3 | e, then 9 | e.
Thus we may assume that 5 | e and 9 | f or 9 | e and 5 | f . Thus 5x + 9y = 1 and
e = 5x or e = 9y. They are {0, 1, 10, 36}.

3. Let R = {a + b
√
−5 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−5) = a2 + 5b2. (35pts)

(a) Show that R is an integral domain and R = {f(
√
−5) | f(t) ∈ Z[t]}.

Solution. Let φ : Z[t] → C (f(t) 7→ f(
√
−5)). Let f(t) ∈ Z[t]. Then there exist q(t),

r(t) ∈ Z[t] such that f(t) = q(t)(t2 + 5) + r(t) with deg(r(t)) ≤ 1. Since φ(f(t)) =
r(
√
−5), and r(t) is of degree at most 1, and can be written as r(t) = a + b

√
−5 and

r(
√
−5) = a + b

√
−5 for some a, b ∈ Z.

Imφ = {f(
√
−5) | f(t) ∈ Z[t]} = {r(

√
−5) | r(t) ∈ Z[t], deg r(t) ≤ 1} = R.

Since R = Imφ is a subring of a field C containing 1, it is a commutative ring with
identity having no zero divisors. Thus R is an integral domain.

(b) Show that for α ∈ R, α ∈ U(R) if and only if N(α) = 1.
Solution. Since complex conjugates ᾱ, β̄ of α, β ∈ C satisfy αβ = ᾱβ̄ and N(a +
b
√
−5) = a2 + 5b2 = (a + b

√
−5)(a + b

√
−5), N(αβ) = αβαβ = αᾱββ̄ = N(α)N(β).

Now if α ∈ U(R), then there is β ∈ R such that αβ = 1. Hence N(α)N(β) =
N(αβ) = N(1) = 1. Since both N(α) and N(β) are nonnegative integers, N(α) = 1.
Conversely, if N(α) = 1 for α = a+b

√
−5, then αᾱ = N(α) = 1 and ᾱ = a−b

√
−5 ∈

R is the inverse of α and α ∈ U(R). It is also easy to see that N(α) = a2 + 5b2 = 1
if and only if α = ±1. So the converse part is clear.

(c) Show that 2 is an irreducible element.
Solution. Suppose 2 = αβ with α, β ∈ R \ U(R). Then 4 = N(2) = N(α)N(β) and
N(α) ̸= 1, N(β) ̸= 1 by (b). The only possible case is N(α) = N(β) = 2. But this
is impossible as 2 cannot be expressed as the form a2 + 5b2 for some integers a, b.
Therefore if 2 = αβ, either α or β is a unit and 2 is an irreducible element.

(d) Show that 〈2〉 is not a prime ideal.
Solution. First 1 ±

√
−5 ∈ R and (1 +

√
−5)(1 −

√
−5) = 6 = 3 · 2 ∈ 〈2〉. If

1±
√
−5 ∈ 〈2〉, there exists α ∈ R such that 1±

√
−5 = 2α. Then 6 = N(1±

√
−5) =

N(2α) = N(2)N(α) = 4N(α). Since N(α) is a positive integer, this is impossible.
Therefore 1 ±

√
−5 ̸∈ 〈2〉 and 〈2〉 is not a prime ideal.

(e) Show that R is not a unique factorization domain. (Use only the definition of unique
factorization domains.)
Solution. As in the proof of (d), 2 ·3 = (1+

√
−5)(1−

√
−5), Since 2 is an irreducible

element in R, 2 must divide 1 +
√
−5 or 1 −

√
−5. But it is shown that this is not

the case as 1 ±
√
−5 ̸∈ 〈2〉. Therefore, R is not a unique factorization domain.

4. Let α ∈ C and let p(x) ∈ Z[x] a monic irreducible polynomial over Z of degree n such
that p(α) = 0. We consider a ring homomorphism φ : Q[x] → C (f(x) 7→ f(α)). (25pts)

(a) Show that Kerφ = 〈p(x)〉.
Solution. Since p(x) is nonzero, Kerφ ̸= 0 as p(x) ∈ Kerφ. By Gauss’ lemma, p(x)
is irreducible over Q.
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We claim that Q[x] is a principal ideal domain. Let I be an ideal of Q[x]. Since 0
ideal is a principal ideal generated by 0, assume I is nonzero. Let q(x) be a nonzero
polynomial in I of least degree. Let f(x) ∈ I and let f(x) = g(x)q(x) + r(x) with
deg r(x) < deg q(x). Since f(x), q(x) ∈ I, r(x) = f(x) − g(x)q(x) ∈ I. By the choice
of q(x), r(x) = 0. So f(x) ∈ I implies q(x) | f(x) and I = 〈q(x)〉. This shows that
Q[x] is a principal ideal domain.
Now we apply the fact for the ideal Kerφ. If q(x) is a nonzero element of Kerφ of
least degree, then q(x) | p(x) and q(x) is a nonzero constant multiple of p(x) as p(x)
is irreducible over Q, and p(x) has the same property as q(x). Thus Kerφ = 〈p(x)〉.

(b) Show that Imφ is a field.
Solution. First we will show that Kerφ = 〈p(x)〉 is a maximal ideal. Suppose
not. Then there is a proper ideal I such that Kerφ ⊂ I and Kerφ ̸= I. Since
Q[x] is a principal ideal domain, there is q(x) such that I = 〈q(x)〉. Since p(x) ∈
〈p(x)〉 ⊂ I = 〈q(x)〉, q(x) | p(x). As p(x) is irreducible 〈p(x)〉 = 〈q(x)〉 or q(x) is a
nonzero constant. Neither of the cases are possible. Therefore, Kerφ is maximal. By
isomorphism theorem Q[x]/Kerφ ≈ Imφ and the left hand side is a field as Kerφ is a
maximal ideal. Thus Imφ is a field.

(c) If β ∈ C satisfies p(β) = 0, then Q(α) ≈ Q(β).
Solution. Let ψ : Q[x] → C (f(x) 7→ f(β)). Then by (a) Kerψ = 〈p(x)〉. Note that
by (b) Imφ and Imψ are fields containing Q and α or β respectively, they are also
the smallest, Imφ = Q(α) and Imψ = Q(β). Therefore,

Q(α) = Imφ ≈ Q[x]/Kerφ = Q[x]/〈p(x)〉 = Q[x]/Kerψ ≈ Imψ = Q(β).

(d) Suppose q(x) ∈ Q[x] is irreducible over Q of degree m, if gcd(n,m) = 1, then q(x) is
irreducible over Q(α).
Solution. Let E be a splitting field of q(x) over Q(α) (as C is algebraically closed,
E can be taken inside C, but then we need to assume the Fundamental Theorem of
Algebra). Let β ∈ E such that q(β) = 0. Then [Q(α) : Q] = n and [Q(β) : Q] = m.
Since the minimal polynomial q1(x) of β over Q(α) divides q(x), deg q1(x) ≤ m.
Thus [Q(α, β) : Q] = [Q(α)(β) : Q(α)][Q(α) : Q] = deg q1(x) · n ≤ nm. Moreover,
[Q(α, β) : Q] = [Q(β)(α) : Q(α)][Q(β) : Q] = [Q(β)(α) : Q(α)] ·m. Hence [Q(α, β) :
Q] is at most m · n and divisible by m and n. Since gcd(m,n) = 1, it must be
m · n. Therefore [Q(α)(β) : Q(α)] = deg q1(x) = m = deg q(x) and q1(x) divides
q(x). Hence q(x) is a constant multiple of q1(x) and irreducible over Q(α).
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