Algebra II Final 2010

- 1. Let R be an integral domain. For $a \in R$, $\langle a \rangle = \{ra \mid r \in R\}$. Show the following. (25pts)
 - (a) For $a, b \in R$, the following are equivalent.
 - (i) $\langle a \rangle = \langle b \rangle$.
 - (ii) There exists a unit, i.e., invertible element, $u \in R$ such that b = ua.
 - (b) The following are equivalent.
 - (i) R is a field.
 - (ii) For every nonzero $a \in R$, $\langle a \rangle = R$.
 - (c) If R has finitely many elements, then R is a field.
- 2. Let n be an arbitrary positive integer such that $n \ge 2$. Show the following. (15pts)
 - (a) If $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ is a ring homomorphism, there is $e \in \mathbb{Z}_n$ such that $e^2 = e$ and $\phi(a) = ae$.
 - (b) If $e \in \mathbb{Z}_n$ satisfies $e^2 = e$, then $\phi : \mathbb{Z}_n \to \mathbb{Z}_n (a \mapsto ae)$ is a ring homomorphism.
 - (c) How many ring homomorphisms are there from Z_{45} into Z_{45} .
- 3. Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, and let $N(a + b\sqrt{-5}) = a^2 + 5b^2$. (35pts)
 - (a) Show that R is an integral domain and $R = \{f(\sqrt{-5}) \mid f(t) \in \mathbb{Z}[t]\}.$
 - (b) Show that for $\alpha \in R$, $\alpha \in U(R)$ if and only if $N(\alpha) = 1$.
 - (c) Show that 2 is an irreducible element.
 - (d) Show that $\langle 2 \rangle$ is not a prime ideal.
 - (e) Show that R is not a unique factorization domain. (Use only the definition of unique factorization domains.)
- 4. Let $\alpha \in C$ and let $p(x) \in \mathbb{Z}[x]$ a monic irreducible polynomial over \mathbb{Z} of degree n such that $p(\alpha) = 0$. We consider a ring homomorphism $\phi : \mathbb{Q}[x] \to \mathbb{C}$ $(f(x) \mapsto f(\alpha))$. (25pts)
 - (a) Show that $\operatorname{Ker}\phi = \langle p(x) \rangle$.
 - (b) Show that $\text{Im}\phi$ is a field.
 - (c) If $\beta \in C$ satisfies $p(\beta) = 0$, then $Q(\alpha) \approx Q(\beta)$.
 - (d) Suppose $q(x) \in \mathbf{Q}[x]$ is irreducible over \mathbf{Q} of degree m, if gcd(n, m) = 1, then q(x) is irreducible over $\mathbf{Q}(\alpha)$.

Solutions to Algebra II Final 2010

- 1. Let R be an integral domain. For $a \in R$, $\langle a \rangle = \{ra \mid r \in R\}$. Show the following. (25pts)
 - (a) For $a, b \in R$, the following are equivalent.
 - (i) $\langle a \rangle = \langle b \rangle$.
 - (ii) There exists a unit, i.e., invertible element, $u \in R$ such that b = ua.

Solution. (i) \rightarrow (ii) Since *R* has identity, $b = 1b \in \langle b \rangle = \langle a \rangle$. So there is $u \in R$ such that b = ua. Similarly, $a = 1a \in \langle a \rangle = \langle b \rangle$, there exists $v \in R$ such that a = vb, If b = 0, then a = 0. So $b = 0 = 1 \cdot 0 = 1 \cdot a$. We may assume that $b \neq 0$. Now 0 = b - b = b - ua = b - uvb = (1 - uv)b. Since *R* is an integral domain and $b \neq 0$, 1 = uv and *u* is a unit. Note that integral domains are commutative.

(ii) \rightarrow (i) Since $b = ua \in \langle a \rangle$, $\langle b \rangle \subset \langle a \rangle$. Since u is a unit, $a = u^{-1}b \in \langle b \rangle$. Hence $\langle a \rangle \subset \langle b \rangle$. Thus $\langle a \rangle = \langle b \rangle$.

- (b) The following are equivalent.
 - (i) R is a field.
 - (ii) For every nonzero $a \in R$, $\langle a \rangle = R$.

Solution. (i) \rightarrow (ii) Since *R* is a field, every nonzero element *a* is a unit. So a^{-1} is also a unit and $1 = a^{-1}a$. Hence by (a) (ii) \rightarrow (i), $\langle a \rangle = \langle 1 \rangle = R$.

(ii) \rightarrow (i) Let *a* be a nonzero element of *R*. Then by assumption, $\langle a \rangle = R$. Since $1 \in R$, there is $b \in R$ such that 1 = ba. Since *R* is commutative, *a* is a unit. Since *a* is arbitrary nonzero element of *R*, *R* is a field.

(c) If R has finitely many elements, then R is a field.

Solution. Let *a* be a nonzero element of *R*. Let $\phi : R \to R$ ($x \mapsto xa$). Since $\phi(x) = \phi(y)$ implies 0 = xa - ya = (x - y)a and *a* is a nonzero element in an integral domain, x = y. Thus ϕ is an injection. Since *R* has finitely many elements, ϕ is a surjection as well. Thus $R = \text{Im}\phi = \{xa \mid x \in R\} = \langle a \rangle$. Now by (b) (ii) \rightarrow (i), *R* is a field.

- 2. Let n be an arbitrary positive integer such that $n \ge 2$. Show the following. (15pts)
 - (a) If $\phi : \mathbf{Z}_n \to \mathbf{Z}_n$ is a ring homomorphism, there is $e \in \mathbf{Z}_n$ such that $e^2 = e$ and $\phi(a) = ae$.

Solution. 1 is the identity element in \mathbb{Z}_n . Let $e = \phi(1)$. Then $e = \phi(1) = \phi(1 \cdot 1) = \phi(1)\phi(1) = e^2$. Moreover if $a \in \mathbb{Z}_n$, then a can be regarded as a nonnegative integer, $\phi(a) = \phi(a1) = a\phi(1) = ae$. Note that a1 is the sum of a 1's in \mathbb{Z}_n .

- (b) If $e \in \mathbb{Z}_n$ satisfies $e^2 = e$, then $\phi : \mathbb{Z}_n \to \mathbb{Z}_n (a \mapsto ae)$ is a ring homomorphism. **Solution.** $\phi(a+b) = (a+b)e = ae + be = \phi(a) + \phi(b)$, and $\phi(ab) = abe = abee = aebe = \phi(a)\phi(b)$. Hence ϕ is a ring homomorphism.
- (c) How many ring homomorphisms are there from \mathbb{Z}_{45} into \mathbb{Z}_{45} . **Solution.** By (a) and (b), $\phi(1)$ is an idempotent, i.e., an element $e \in \mathbb{Z}_n$ such that $e^2 = e$ and for each e, there is a ring homomorphism such that $\phi(1) = e$. Thus there is a one-to-one correspondence between a ring homomorphism from \mathbb{Z}_n to itself and

an idempotent of \mathbb{Z}_n . So the number of ring homomorphisms from \mathbb{Z}_{45} into \mathbb{Z}_{45} is equal to the number of idempotents in \mathbb{Z}_{45} . Set f = 1 - e. Then $f^2 = f$ and since ef = e(1 - e) = 0, $45 \mid ef$ and e and f = 1 - e are coprime. So if $3 \mid e$, then $9 \mid e$. Thus we may assume that $5 \mid e$ and $9 \mid f$ or $9 \mid e$ and $5 \mid f$. Thus 5x + 9y = 1 and e = 5x or e = 9y. They are $\{0, 1, 10, 36\}$.

- 3. Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, and let $N(a + b\sqrt{-5}) = a^2 + 5b^2$. (35pts)
 - (a) Show that R is an integral domain and $R = \{f(\sqrt{-5}) \mid f(t) \in \mathbb{Z}[t]\}$. **Solution.** Let $\phi : \mathbb{Z}[t] \to \mathbb{C}(f(t) \mapsto f(\sqrt{-5}))$. Let $f(t) \in \mathbb{Z}[t]$. Then there exist q(t), $r(t) \in \mathbb{Z}[t]$ such that $f(t) = q(t)(t^2 + 5) + r(t)$ with $\deg(r(t)) \leq 1$. Since $\phi(f(t)) = r(\sqrt{-5})$, and r(t) is of degree at most 1, and can be written as $r(t) = a + b\sqrt{-5}$ and $r(\sqrt{-5}) = a + b\sqrt{-5}$ for some $a, b \in \mathbb{Z}$.

$$\operatorname{Im}\phi = \{ f(\sqrt{-5}) \mid f(t) \in \mathbf{Z}[t] \} = \{ r(\sqrt{-5}) \mid r(t) \in \mathbf{Z}[t], \ \deg r(t) \le 1 \} = R.$$

Since $R = \text{Im}\phi$ is a subring of a field C containing 1, it is a commutative ring with identity having no zero divisors. Thus R is an integral domain.

(b) Show that for $\alpha \in R$, $\alpha \in U(R)$ if and only if $N(\alpha) = 1$.

Solution. Since complex conjugates $\bar{\alpha}, \bar{\beta}$ of $\alpha, \beta \in C$ satisfy $\overline{\alpha\beta} = \bar{\alpha}\bar{\beta}$ and $N(a + b\sqrt{-5}) = a^2 + 5b^2 = (a + b\sqrt{-5})(\overline{a + b\sqrt{-5}})$, $N(\alpha\beta) = \alpha\beta\overline{\alpha\beta} = \alpha\overline{\alpha}\beta\overline{\beta} = N(\alpha)N(\beta)$. Now if $\alpha \in U(R)$, then there is $\beta \in R$ such that $\alpha\beta = 1$. Hence $N(\alpha)N(\beta) = N(\alpha\beta) = N(1) = 1$. Since both $N(\alpha)$ and $N(\beta)$ are nonnegative integers, $N(\alpha) = 1$. Conversely, if $N(\alpha) = 1$ for $\alpha = a + b\sqrt{-5}$, then $\alpha\overline{\alpha} = N(\alpha) = 1$ and $\overline{\alpha} = a - b\sqrt{-5} \in R$ is the inverse of α and $\alpha \in U(R)$. It is also easy to see that $N(\alpha) = a^2 + 5b^2 = 1$ if and only if $\alpha = \pm 1$. So the converse part is clear.

(c) Show that 2 is an irreducible element.

Solution. Suppose $2 = \alpha\beta$ with $\alpha, \beta \in R \setminus U(R)$. Then $4 = N(2) = N(\alpha)N(\beta)$ and $N(\alpha) \neq 1, N(\beta) \neq 1$ by (b). The only possible case is $N(\alpha) = N(\beta) = 2$. But this is impossible as 2 cannot be expressed as the form $a^2 + 5b^2$ for some integers a, b. Therefore if $2 = \alpha\beta$, either α or β is a unit and 2 is an irreducible element.

(d) Show that $\langle 2 \rangle$ is not a prime ideal.

Solution. First $1 \pm \sqrt{-5} \in R$ and $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 = 3 \cdot 2 \in \langle 2 \rangle$. If $1 \pm \sqrt{-5} \in \langle 2 \rangle$, there exists $\alpha \in R$ such that $1 \pm \sqrt{-5} = 2\alpha$. Then $6 = N(1 \pm \sqrt{-5}) = N(2\alpha) = N(2)N(\alpha) = 4N(\alpha)$. Since $N(\alpha)$ is a positive integer, this is impossible. Therefore $1 \pm \sqrt{-5} \notin \langle 2 \rangle$ and $\langle 2 \rangle$ is not a prime ideal.

(e) Show that R is not a unique factorization domain. (Use only the definition of unique factorization domains.)

Solution. As in the proof of (d), $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, Since 2 is an irreducible element in R, 2 must divide $1 + \sqrt{-5}$ or $1 - \sqrt{-5}$. But it is shown that this is not the case as $1 \pm \sqrt{-5} \notin \langle 2 \rangle$. Therefore, R is not a unique factorization domain.

- 4. Let $\alpha \in C$ and let $p(x) \in \mathbb{Z}[x]$ a monic irreducible polynomial over \mathbb{Z} of degree n such that $p(\alpha) = 0$. We consider a ring homomorphism $\phi : \mathbb{Q}[x] \to \mathbb{C}$ $(f(x) \mapsto f(\alpha))$. (25pts)
 - (a) Show that $\text{Ker}\phi = \langle p(x) \rangle$. Solution. Since p(x) is nonzero, $\text{Ker}\phi \neq 0$ as $p(x) \in \text{Ker}\phi$. By Gauss' lemma, p(x) is irreducible over Q.

We claim that Q[x] is a principal ideal domain. Let I be an ideal of Q[x]. Since 0 ideal is a principal ideal generated by 0, assume I is nonzero. Let q(x) be a nonzero polynomial in I of least degree. Let $f(x) \in I$ and let f(x) = g(x)q(x) + r(x) with deg $r(x) < \deg q(x)$. Since $f(x), q(x) \in I$, $r(x) = f(x) - g(x)q(x) \in I$. By the choice of q(x), r(x) = 0. So $f(x) \in I$ implies q(x) | f(x) and $I = \langle q(x) \rangle$. This shows that Q[x] is a principal ideal domain.

Now we apply the fact for the ideal Ker ϕ . If q(x) is a nonzero element of Ker ϕ of least degree, then $q(x) \mid p(x)$ and q(x) is a nonzero constant multiple of p(x) as p(x) is irreducible over Q, and p(x) has the same property as q(x). Thus Ker $\phi = \langle p(x) \rangle$.

(b) Show that $\text{Im}\phi$ is a field.

Solution. First we will show that $\operatorname{Ker}\phi = \langle p(x) \rangle$ is a maximal ideal. Suppose not. Then there is a proper ideal I such that $\operatorname{Ker}\phi \subset I$ and $\operatorname{Ker}\phi \neq I$. Since Q[x] is a principal ideal domain, there is q(x) such that $I = \langle q(x) \rangle$. Since $p(x) \in \langle p(x) \rangle \subset I = \langle q(x) \rangle$, $q(x) \mid p(x)$. As p(x) is irreducible $\langle p(x) \rangle = \langle q(x) \rangle$ or q(x) is a nonzero constant. Neither of the cases are possible. Therefore, $\operatorname{Ker}\phi$ is maximal. By isomorphism theorem $Q[x]/\operatorname{Ker}\phi \approx \operatorname{Im}\phi$ and the left hand side is a field as $\operatorname{Ker}\phi$ is a maximal ideal. Thus $\operatorname{Im}\phi$ is a field.

(c) If $\beta \in C$ satisfies $p(\beta) = 0$, then $Q(\alpha) \approx Q(\beta)$. **Solution.** Let $\psi : Q[x] \to C$ $(f(x) \mapsto f(\beta))$. Then by (a) $\operatorname{Ker} \psi = \langle p(x) \rangle$. Note that by (b) Im ϕ and Im ψ are fields containing Q and α or β respectively, they are also the smallest, $\operatorname{Im} \phi = Q(\alpha)$ and $\operatorname{Im} \psi = Q(\beta)$. Therefore,

$$Q(\alpha) = \operatorname{Im}\phi \approx Q[x]/\operatorname{Ker}\phi = Q[x]/\langle p(x) \rangle = Q[x]/\operatorname{Ker}\psi \approx \operatorname{Im}\psi = Q(\beta).$$

(d) Suppose $q(x) \in \mathbf{Q}[x]$ is irreducible over \mathbf{Q} of degree m, if gcd(n, m) = 1, then q(x) is irreducible over $\mathbf{Q}(\alpha)$.

Solution. Let *E* be a splitting field of q(x) over $Q(\alpha)$ (as *C* is algebraically closed, *E* can be taken inside *C*, but then we need to assume the Fundamental Theorem of Algebra). Let $\beta \in E$ such that $q(\beta) = 0$. Then $[Q(\alpha) : Q] = n$ and $[Q(\beta) : Q] = m$. Since the minimal polynomial $q_1(x)$ of β over $Q(\alpha)$ divides q(x), deg $q_1(x) \leq m$. Thus $[Q(\alpha, \beta) : Q] = [Q(\alpha)(\beta) : Q(\alpha)][Q(\alpha) : Q] = \deg q_1(x) \cdot n \leq nm$. Moreover, $[Q(\alpha, \beta) : Q] = [Q(\beta)(\alpha) : Q(\alpha)][Q(\beta) : Q] = [Q(\beta)(\alpha) : Q(\alpha)] \cdot m$. Hence $[Q(\alpha, \beta) : Q]$ is at most $m \cdot n$ and divisible by m and n. Since gcd(m, n) = 1, it must be $m \cdot n$. Therefore $[Q(\alpha)(\beta) : Q(\alpha)] = \deg q_1(x) = m = \deg q(x)$ and $q_1(x)$ divides q(x).

Hiroshi Suzki @ International Christian University