Algebra II Final 2010

1. Let R be an integral domain. For $a \in R,\langle a\rangle=\{r a \mid r \in R\}$. Show the following. (25pts)
(a) For $a, b \in R$, the following are equivalent.
(i) $\langle a\rangle=\langle b\rangle$.
(ii) There exists a unit, i.e., invertible element, $u \in R$ such that $b=u a$.
(b) The following are equivalent.
(i) R is a field.
(ii) For every nonzero $a \in R,\langle a\rangle=R$.
(c) If R has finitely many elements, then R is a field.
2. Let n be an arbitrary positive integer such that $n \geq 2$. Show the following.
(a) If $\phi: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{n}$ is a ring homomorphism, there is $e \in \boldsymbol{Z}_{n}$ such that $e^{2}=e$ and $\phi(a)=a e$.
(b) If $e \in \boldsymbol{Z}_{n}$ satisfies $e^{2}=e$, then $\phi: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{n}(a \mapsto a e)$ is a ring homomorphism.
(c) How many ring homomorphisms are there from \boldsymbol{Z}_{45} into \boldsymbol{Z}_{45}.
3. Let $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
(a) Show that R is an integral domain and $R=\{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Z}[t]\}$.
(b) Show that for $\alpha \in R, \alpha \in U(R)$ if and only if $N(\alpha)=1$.
(c) Show that 2 is an irreducible element.
(d) Show that $\langle 2\rangle$ is not a prime ideal.
(e) Show that R is not a unique factorization domain. (Use only the definition of unique factorization domains.)
4. Let $\alpha \in \boldsymbol{C}$ and let $p(x) \in \boldsymbol{Z}[x]$ a monic irreducible polynomial over \boldsymbol{Z} of degree n such that $p(\alpha)=0$. We consider a ring homomorphism $\phi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\alpha))$. (25pts)
(a) Show that $\operatorname{Ker} \phi=\langle p(x)\rangle$.
(b) Show that $\operatorname{Im} \phi$ is a field.
(c) If $\beta \in \boldsymbol{C}$ satisfies $p(\beta)=0$, then $\boldsymbol{Q}(\alpha) \approx \boldsymbol{Q}(\beta)$.
(d) Suppose $q(x) \in \boldsymbol{Q}[x]$ is irreducible over \boldsymbol{Q} of degree m, if $\operatorname{gcd}(n, m)=1$, then $q(x)$ is irreducible over $\boldsymbol{Q}(\alpha)$.

Solutions to Algebra II Final 2010

1. Let R be an integral domain. For $a \in R,\langle a\rangle=\{r a \mid r \in R\}$. Show the following. (25pts)
(a) For $a, b \in R$, the following are equivalent.
(i) $\langle a\rangle=\langle b\rangle$.
(ii) There exists a unit, i.e., invertible element, $u \in R$ such that $b=u a$.

Solution. (i) \rightarrow (ii) Since R has identity, $b=1 b \in\langle b\rangle=\langle a\rangle$. So there is $u \in R$ such that $b=u a$. Similarly, $a=1 a \in\langle a\rangle=\langle b\rangle$, there exists $v \in R$ such that $a=v b$, If $b=0$, then $a=0$. So $b=0=1 \cdot 0=1 \cdot a$. We may assume that $b \neq 0$. Now $0=b-b=b-u a=b-u v b=(1-u v) b$. Since R is an integral domain and $b \neq 0$, $1=u v$ and u is a unit. Note that integral domains are commutative.
(ii) \rightarrow (i) Since $b=u a \in\langle a\rangle,\langle b\rangle \subset\langle a\rangle$. Since u is a unit, $a=u^{-1} b \in\langle b\rangle$. Hence $\langle a\rangle \subset\langle b\rangle$. Thus $\langle a\rangle=\langle b\rangle$.
(b) The following are equivalent.
(i) R is a field.
(ii) For every nonzero $a \in R,\langle a\rangle=R$.

Solution. (i) \rightarrow (ii) Since R is a field, every nonzero element a is a unit. So a^{-1} is also a unit and $1=a^{-1} a$. Hence by (a) (ii) \rightarrow (i), $\langle a\rangle=\langle 1\rangle=R$.
(ii) \rightarrow (i) Let a be a nonzero element of R. Then by assumption, $\langle a\rangle=R$. Since $1 \in R$, there is $b \in R$ such that $1=b a$. Since R is commutative, a is a unit. Since a is arbitrary nonzero element of R, R is a field.
(c) If R has finitely many elements, then R is a field.

Solution. Let a be a nonzero element of R. Let $\phi: R \rightarrow R(x \mapsto x a)$. Since $\phi(x)=\phi(y)$ implies $0=x a-y a=(x-y) a$ and a is a nonzero element in an integral domain, $x=y$. Thus ϕ is an injection. Since R has finitely many elements, ϕ is a surjection as well. Thus $R=\operatorname{Im} \phi=\{x a \mid x \in R\}=\langle a\rangle$. Now by (b) (ii) \rightarrow (i), R is a field.
2. Let n be an arbitrary positive integer such that $n \geq 2$. Show the following.
(a) If $\phi: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{n}$ is a ring homomorphism, there is $e \in \boldsymbol{Z}_{n}$ such that $e^{2}=e$ and $\phi(a)=a e$.
Solution. 1 is the identity element in \boldsymbol{Z}_{n}. Let $e=\phi(1)$. Then $e=\phi(1)=\phi(1 \cdot 1)=$ $\phi(1) \phi(1)=e^{2}$. Moreover if $a \in \boldsymbol{Z}_{n}$, then a can be regarded as a nonnegative integer, $\phi(a)=\phi(a 1)=a \phi(1)=a e$. Note that $a 1$ is the sum of a 1's in \boldsymbol{Z}_{n}.
(b) If $e \in \boldsymbol{Z}_{n}$ satisfies $e^{2}=e$, then $\phi: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{n}(a \mapsto a e)$ is a ring homomorphism.

Solution. $\phi(a+b)=(a+b) e=a e+b e=\phi(a)+\phi(b)$, and $\phi(a b)=a b e=a b e e=$ aebe $=\phi(a) \phi(b)$. Hence ϕ is a ring homomorphism.
(c) How many ring homomorphisms are there from \boldsymbol{Z}_{45} into \boldsymbol{Z}_{45}.

Solution. By (a) and (b), $\phi(1)$ is an idempotent, i.e., an element $e \in \boldsymbol{Z}_{n}$ such that $e^{2}=e$ and for each e, there is a ring homomorphism such that $\phi(1)=e$. Thus there is a one-to-one correspondence between a ring homomorphism from \boldsymbol{Z}_{n} to itself and
an idempotent of \boldsymbol{Z}_{n}. So the number of ring homomorphisms from \boldsymbol{Z}_{45} into \boldsymbol{Z}_{45} is equal to the number of idempotents in \boldsymbol{Z}_{45}. Set $f=1-e$. Then $f^{2}=f$ and since $e f=e(1-e)=0,45 \mid e f$ and e and $f=1-e$ are coprime. So if $3 \mid e$, then $9 \mid e$. Thus we may assume that $5 \mid e$ and $9 \mid f$ or $9 \mid e$ and $5 \mid f$. Thus $5 x+9 y=1$ and $e=5 x$ or $e=9 y$. They are $\{0,1,10,36\}$.
3. Let $R=\{a+b \sqrt{-5} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
(35pts)
(a) Show that R is an integral domain and $R=\{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Z}[t]\}$.

Solution. Let $\phi: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-5}))$. Let $f(t) \in \boldsymbol{Z}[t]$. Then there exist $q(t)$, $r(t) \in \boldsymbol{Z}[t]$ such that $f(t)=q(t)\left(t^{2}+5\right)+r(t)$ with $\operatorname{deg}(r(t)) \leq 1$. Since $\phi(f(t))=$ $r(\sqrt{-5})$, and $r(t)$ is of degree at most 1 , and can be written as $r(t)=a+b \sqrt{-5}$ and $r(\sqrt{-5})=a+b \sqrt{-5}$ for some $a, b \in \boldsymbol{Z}$.

$$
\operatorname{Im} \phi=\{f(\sqrt{-5}) \mid f(t) \in \boldsymbol{Z}[t]\}=\{r(\sqrt{-5}) \mid r(t) \in \boldsymbol{Z}[t], \operatorname{deg} r(t) \leq 1\}=R .
$$

Since $R=\operatorname{Im} \phi$ is a subring of a field \boldsymbol{C} containing 1 , it is a commutative ring with identity having no zero divisors. Thus R is an integral domain.
(b) Show that for $\alpha \in R, \alpha \in U(R)$ if and only if $N(\alpha)=1$.

Solution. Since complex conjugates $\bar{\alpha}, \bar{\beta}$ of $\alpha, \beta \in \boldsymbol{C}$ satisfy $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$ and $N(a+$ $b \sqrt{-5})=a^{2}+5 b^{2}=(a+b \sqrt{-5}) \overline{(a+b \sqrt{-5})}, N(\alpha \beta)=\alpha \beta \overline{\alpha \beta}=\alpha \bar{\alpha} \beta \bar{\beta}=N(\alpha) N(\beta)$. Now if $\alpha \in U(R)$, then there is $\beta \in R$ such that $\alpha \beta=1$. Hence $N(\alpha) N(\beta)=$ $N(\alpha \beta)=N(1)=1$. Since both $N(\alpha)$ and $N(\beta)$ are nonnegative integers, $N(\alpha)=1$. Conversely, if $N(\alpha)=1$ for $\alpha=a+b \sqrt{-5}$, then $\alpha \bar{\alpha}=N(\alpha)=1$ and $\bar{\alpha}=a-b \sqrt{-5} \in$ R is the inverse of α and $\alpha \in U(R)$. It is also easy to see that $N(\alpha)=a^{2}+5 b^{2}=1$ if and only if $\alpha= \pm 1$. So the converse part is clear.
(c) Show that 2 is an irreducible element.

Solution. Suppose $2=\alpha \beta$ with $\alpha, \beta \in R \backslash U(R)$. Then $4=N(2)=N(\alpha) N(\beta)$ and $N(\alpha) \neq 1, N(\beta) \neq 1$ by (b). The only possible case is $N(\alpha)=N(\beta)=2$. But this is impossible as 2 cannot be expressed as the form $a^{2}+5 b^{2}$ for some integers a, b. Therefore if $2=\alpha \beta$, either α or β is a unit and 2 is an irreducible element.
(d) Show that $\langle 2\rangle$ is not a prime ideal.

Solution. First $1 \pm \sqrt{-5} \in R$ and $(1+\sqrt{-5})(1-\sqrt{-5})=6=3 \cdot 2 \in\langle 2\rangle$. If $1 \pm \sqrt{-5} \in\langle 2\rangle$, there exists $\alpha \in R$ such that $1 \pm \sqrt{-5}=2 \alpha$. Then $6=N(1 \pm \sqrt{-5})=$ $N(2 \alpha)=N(2) N(\alpha)=4 N(\alpha)$. Since $N(\alpha)$ is a positive integer, this is impossible. Therefore $1 \pm \sqrt{-5} \notin\langle 2\rangle$ and $\langle 2\rangle$ is not a prime ideal.
(e) Show that R is not a unique factorization domain. (Use only the definition of unique factorization domains.)
Solution. As in the proof of (d), $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, Since 2 is an irreducible element in $R, 2$ must divide $1+\sqrt{-5}$ or $1-\sqrt{-5}$. But it is shown that this is not the case as $1 \pm \sqrt{-5} \notin\langle 2\rangle$. Therefore, R is not a unique factorization domain.
4. Let $\alpha \in \boldsymbol{C}$ and let $p(x) \in \boldsymbol{Z}[x]$ a monic irreducible polynomial over \boldsymbol{Z} of degree n such that $p(\alpha)=0$. We consider a ring homomorphism $\phi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\alpha))$. (25pts)
(a) Show that $\operatorname{Ker} \phi=\langle p(x)\rangle$.

Solution. Since $p(x)$ is nonzero, $\operatorname{Ker} \phi \neq 0$ as $p(x) \in \operatorname{Ker} \phi$. By Gauss' lemma, $p(x)$ is irreducible over \boldsymbol{Q}.

We claim that $\boldsymbol{Q}[x]$ is a principal ideal domain. Let I be an ideal of $\boldsymbol{Q}[x]$. Since 0 ideal is a principal ideal generated by 0 , assume I is nonzero. Let $q(x)$ be a nonzero polynomial in I of least degree. Let $f(x) \in I$ and let $f(x)=g(x) q(x)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg} q(x)$. Since $f(x), q(x) \in I, r(x)=f(x)-g(x) q(x) \in I$. By the choice of $q(x), r(x)=0$. So $f(x) \in I$ implies $q(x) \mid f(x)$ and $I=\langle q(x)\rangle$. This shows that $\boldsymbol{Q}[x]$ is a principal ideal domain.
Now we apply the fact for the ideal $\operatorname{Ker} \phi$. If $q(x)$ is a nonzero element of $\operatorname{Ker} \phi$ of least degree, then $q(x) \mid p(x)$ and $q(x)$ is a nonzero constant multiple of $p(x)$ as $p(x)$ is irreducible over \boldsymbol{Q}, and $p(x)$ has the same property as $q(x)$. Thus $\operatorname{Ker} \phi=\langle p(x)\rangle$.
(b) Show that $\operatorname{Im} \phi$ is a field.

Solution. First we will show that $\operatorname{Ker} \phi=\langle p(x)\rangle$ is a maximal ideal. Suppose not. Then there is a proper ideal I such that $\operatorname{Ker} \phi \subset I$ and $\operatorname{Ker} \phi \neq I$. Since $\boldsymbol{Q}[x]$ is a principal ideal domain, there is $q(x)$ such that $I=\langle q(x)\rangle$. Since $p(x) \in$ $\langle p(x)\rangle \subset I=\langle q(x)\rangle, q(x) \mid p(x)$. As $p(x)$ is irreducible $\langle p(x)\rangle=\langle q(x)\rangle$ or $q(x)$ is a nonzero constant. Neither of the cases are possible. Therefore, $\operatorname{Ker} \phi$ is maximal. By isomorphism theorem $\boldsymbol{Q}[x] / \operatorname{Ker} \phi \approx \operatorname{Im} \phi$ and the left hand side is a field as $\operatorname{Ker} \phi$ is a maximal ideal. Thus $\operatorname{Im} \phi$ is a field.
(c) If $\beta \in \boldsymbol{C}$ satisfies $p(\beta)=0$, then $\boldsymbol{Q}(\alpha) \approx \boldsymbol{Q}(\beta)$.

Solution. Let $\psi: \boldsymbol{Q}[x] \rightarrow \boldsymbol{C}(f(x) \mapsto f(\beta))$. Then by (a) $\operatorname{Ker} \psi=\langle p(x)\rangle$. Note that by (b) $\operatorname{Im} \phi$ and $\operatorname{Im} \psi$ are fields containing \boldsymbol{Q} and α or β respectively, they are also the smallest, $\operatorname{Im} \phi=\boldsymbol{Q}(\alpha)$ and $\operatorname{Im} \psi=\boldsymbol{Q}(\beta)$. Therefore,

$$
\boldsymbol{Q}(\alpha)=\operatorname{Im} \phi \approx \boldsymbol{Q}[x] / \operatorname{Ker} \phi=\boldsymbol{Q}[x] /\langle p(x)\rangle=\boldsymbol{Q}[x] / \operatorname{Ker} \psi \approx \operatorname{Im} \psi=\boldsymbol{Q}(\beta) .
$$

(d) Suppose $q(x) \in \boldsymbol{Q}[x]$ is irreducible over \boldsymbol{Q} of degree m, if $\operatorname{gcd}(n, m)=1$, then $q(x)$ is irreducible over $\boldsymbol{Q}(\alpha)$.
Solution. Let E be a splitting field of $q(x)$ over $\boldsymbol{Q}(\alpha)$ (as \boldsymbol{C} is algebraically closed, E can be taken inside \boldsymbol{C}, but then we need to assume the Fundamental Theorem of Algebra). Let $\beta \in E$ such that $q(\beta)=0$. Then $[\boldsymbol{Q}(\alpha): \boldsymbol{Q}]=n$ and $[\boldsymbol{Q}(\beta): \boldsymbol{Q}]=m$. Since the minimal polynomial $q_{1}(x)$ of β over $\boldsymbol{Q}(\alpha)$ divides $q(x), \operatorname{deg} q_{1}(x) \leq m$. Thus $[\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q}]=[\boldsymbol{Q}(\alpha)(\beta): \boldsymbol{Q}(\alpha)][\boldsymbol{Q}(\alpha): \boldsymbol{Q}]=\operatorname{deg} q_{1}(x) \cdot n \leq n m$. Moreover, $[\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q}]=[\boldsymbol{Q}(\beta)(\alpha): \boldsymbol{Q}(\alpha)][\boldsymbol{Q}(\beta): \boldsymbol{Q}]=[\boldsymbol{Q}(\beta)(\alpha): \boldsymbol{Q}(\alpha)] \cdot m$. Hence $[\boldsymbol{Q}(\alpha, \beta):$ $\boldsymbol{Q}]$ is at most $m \cdot n$ and divisible by m and n. Since $\operatorname{gcd}(m, n)=1$, it must be $m \cdot n$. Therefore $[\boldsymbol{Q}(\alpha)(\beta): \boldsymbol{Q}(\alpha)]=\operatorname{deg} q_{1}(x)=m=\operatorname{deg} q(x)$ and $q_{1}(x)$ divides $q(x)$. Hence $q(x)$ is a constant multiple of $q_{1}(x)$ and irreducible over $\boldsymbol{Q}(\alpha)$.

