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Algebra II Final 2010

1. Let R be an integral domain. For a € R, (a) = {ra | r € R}. Show the following. (25pts)

(a) For a,b € R, the following are equivalent.

(i) (a) = (b).

(ii) There exists a unit, i.e., invertible element, u € R such that b = ua.
(b) The following are equivalent.

(i) R is a field.
(ii) For every nonzero a € R, (a) = R.

(c) If R has finitely many elements, then R is a field.

2. Let n be an arbitrary positive integer such that n > 2. Show the following. (15pts)
(a) If ¢ : Z,, — Z, is a ring homomorphism, there is e € Z, such that e? = e and
¢(a) = ae.
(b) If e € Z,, satisfies €2 = e, then ¢ : Z,, — Z,, (a ~ ae) is a ring homomorphism.

(¢) How many ring homomorphisms are there from Z,5 into Z 5.

3. Let R={a+b/=5]a,be Z} C C, and let N(a + by/—5) = a? + 5b°. (35pts)

(a) Show that R is an integral domain and R = {f(v/=5) | f | f(t) € Z[t]}.

(b) Show that for & € R, o € U(R) if and only if N(«a) =

(c) Show that 2 is an irreducible element.

(d)

(e) Show that R is not a unique factorization domain. (Use only the definition of unique
factorization domains.)

Show that (2) is not a prime ideal.

4. Let a € C and let p(x) € Z[z] a monic irreducible polynomial over Z of degree n such
that p(ar) = 0. We consider a ring homomorphism ¢ : Q[z] — C (f(z) — f(a)). (25pts)
(a) Show that Ker¢ = (p(z)).
(b) Show that Im¢ is a field.
(c) If 8 € C satisfies p(3) = 0, then Q(a) = Q([).
)

(d) Suppose g(x) € Q|[z] is irreducible over Q of degree m, if gecd(n, m) = 1, then ¢(z) is
irreducible over Q(«).
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1. Let R be an integral domain. For a € R, (a) = {ra | r € R}. Show the following. (25pts)

(a)

For a,b € R, the following are equivalent.

(i) (a) = (b)-

(ii) There exists a unit, i.e., invertible element, u € R such that b = ua.

Solution. (i)—(ii) Since R has identity, b = 1b € (b) = (a). So there is u € R such
that b = wa. Similarly, a = la € (a) = (b), there exists v € R such that a = vb,
Ifb=0,thena=0. Sob=0=1-0=1-a. We may assume that b # 0. Now
0=b—b=0b—ua=>b—uvb= (1 —wuv)b. Since R is an integral domain and b # 0,

1 = wv and u is a unit. Note that integral domains are commutative. [ |
(ii)—(i) Since b = ua € {(a), (b) C (a). Since u is a unit, a = u='b € (b). Hence
{(a) C (b). Thus (a) = (b). ]

The following are equivalent.

(i) R is a field.

(ii) For every nonzero a € R, (a) = R.

Solution. (i)—(ii) Since R is a field, every nonzero element a is a unit. So a™! is

also a unit and 1 = a~!a. Hence by (a) (ii)—(i), (a) = (1) = R. ]
(ii))—(i) Let a be a nonzero element of R. Then by assumption, (a) = R. Since
1 € R, there is b € R such that 1 = ba. Since R is commutative, a is a unit. Since a
is arbitrary nonzero element of R, R is a field. ]

If R has finitely many elements, then R is a field.

Solution. Let a be a nonzero element of R. Let ¢ : R — R (z — za). Since
¢(z) = ¢(y) implies 0 = za — ya = (r — y)a and a is a nonzero element in an integral
domain, x = y. Thus ¢ is an injection. Since R has finitely many elements, ¢ is a
surjection as well. Thus R = Im¢ = {za | z € R} = (a). Now by (b) (ii)—(i), R is a
field. [ |

2. Let n be an arbitrary positive integer such that n > 2. Show the following. (15pts)

(a)

If $ : Z, — Z, is a ring homomorphism, there is e € Z, such that e? = e and
¢(a) = ae.

Solution. 1 is the identity element in Z,,. Let e = ¢(1). Then e =¢(1) =¢(1-1) =
#(1)¢p(1) = e%. Moreover if a € Z,,, then a can be regarded as a nonnegative integer,
¢(a) = ¢(al) = ap(1) = ae. Note that al is the sum of a 1’s in Z,. ]

If e € Z, satisfies €2 = ¢, then ¢ : Z,, — Z, (a — ae) is a ring homomorphism.
Solution. ¢(a +b) = (a + b)e = ae + be = ¢(a) + ¢(b), and ¢(ab) = abe = abee =
aebe = ¢(a)p(b). Hence ¢ is a ring homomorphism. [
How many ring homomorphisms are there from Z45 into Z45.

Solution. By (a) and (b), ¢(1) is an idempotent, i.e., an element e € Z,, such that

e? = e and for each e, there is a ring homomorphism such that ¢(1) = e. Thus there

is a one-to-one correspondence between a ring homomorphism from Z,, to itself and



an idempotent of Z,,. So the number of ring homomorphisms from Z,5 into Zg45 is
equal to the number of idempotents in Z45. Set f = 1 —e. Then f2 = f and since
ef =e(l—e)=0,45|ef and e and f = 1 — e are coprime. So if 3 | e, then 9 | e.
Thus we may assume that 5| eand 9| for 9| eand 5| f. Thus 5z 4+ 9y = 1 and
e =5z or e = 9y. They are {0,1,10,36}. [

3. Let R={a+by/=5]a,be Z} C C, and let N(a + by/—5) = a? + 5b°. (35pts)

(a)

Show that R is an integral domain and R = {f(v/=5) | f(t) € Z[t]}.

Solution. Let ¢ : Z[t] — C(f(t) — f(v/=5)). Let f(t) € Z[t]. Then there exist ¢(t),
r(t) € Z[t] such that f(t) = q(t)(t* +5) 4+ r(t) with deg(r(t)) < 1. Since ¢(f(t)) =
r(v/=5), and r(t) is of degree at most 1, and can be written as r(t) = a + by/—5 and
r(v/—=5) = a + by/—5 for some a,b € Z.

Im¢ = {f(V=5) | f(t) € Z[t]} = {r(vV=5) | r(t) € Z[t], degr(t) <1} = R.

Since R = Im¢ is a subring of a field C' containing 1, it is a commutative ring with
identity having no zero divisors. Thus R is an integral domain. [ |

Show that for a € R, a € U(R) if and only if N(a) = 1.
Solution. Since complex conjugates @, 3 of a, 8 € C satisfy a3 = af and N(a +

byv/—5) = a? + 5b% = (a + by/=5)(a + by/=5), N(aB) = afaf = aaBB = N(a)N(f).
Now if & € U(R), then there is § € R such that af = 1. Hence N(a)N(f5) =
N(af) = N(1) = 1. Since both N(«) and N(3) are nonnegative integers, N(a) = 1.
Conversely, if N(a) =1 for « = a+by/=5, then ad = N(a) =l and @ = a—by/-5 €
R is the inverse of a and a € U(R). It is also easy to see that N(a) = a® + 5b% = 1
if and only if = 1. So the converse part is clear. [ |

Show that 2 is an irreducible element.

Solution. Suppose 2 = off with o, 5 € R\ U(R). Then 4 = N(2) = N(a)N(8) and
N(a) # 1, N(B) # 1 by (b). The only possible case is N(«a) = N(f) = 2. But this
is impossible as 2 cannot be expressed as the form a? + 5b for some integers a, b.
Therefore if 2 = a3, either « or § is a unit and 2 is an irreducible element. [ |

Show that (2) is not a prime ideal.

Solution. First 1 +£+/~5 € R and (1 ++v/=5)(1 —+v/-5) =6 = 3-2 € (2). If
14+/=5 € (2), there exists o € R such that 14+/—5 = 2. Then 6 = N(14++/-5) =
N(2a) = N(2)N(«) = 4N (). Since N(«) is a positive integer, this is impossible.
Therefore 1 4 /=5 & (2) and (2) is not a prime ideal. ]
Show that R is not a unique factorization domain. (Use only the definition of unique
factorization domains.)

Solution. As in the proof of (d), 2:3 = (1++/=5)(1—+/=5), Since 2 is an irreducible
element in R, 2 must divide 1 + /=5 or 1 — /—5. But it is shown that this is not
the case as 1 ++/—5 & (2). Therefore, R is not a unique factorization domain. [

4. Let a € C and let p(z) € Z[z| a monic irreducible polynomial over Z of degree n such
that p(a) = 0. We consider a ring homomorphism ¢ : Q[z] — C (f(z) — f(a)). (25pts)

(a)

Show that Ker¢ = (p(x)).

Solution. Since p(x) is nonzero, Ker¢ # 0 as p(z) € Ker¢. By Gauss’ lemma, p(z)
is irreducible over Q.



We claim that Q]z] is a principal ideal domain. Let I be an ideal of Q[z]. Since 0
ideal is a principal ideal generated by 0, assume I is nonzero. Let ¢(z) be a nonzero
polynomial in I of least degree. Let f(z) € I and let f(z) = g(z)q(x) + r(z) with
degr(x) < degq(z). Since f(x),q(z) € I, r(z) = f(x) — g(x)q(x) € I. By the choice
of q(z), r(z) = 0. So f(x) € I implies q(z) | f(x) and I = (g(x)). This shows that
QIz] is a principal ideal domain.

Now we apply the fact for the ideal Ker¢. If ¢(x) is a nonzero element of Ker¢ of
least degree, then ¢(z) | p(x) and ¢(x) is a nonzero constant multiple of p(z) as p(z)
is irreducible over @, and p(z) has the same property as ¢(z). Thus Ker¢p = (p(z)).
|

Show that Im¢ is a field.

Solution. First we will show that Ker¢ = (p(x)) is a maximal ideal. Suppose
not. Then there is a proper ideal I such that Ker¢ C I and Ker¢ # I. Since
QIz] is a principal ideal domain, there is ¢(x) such that I = (¢(x)). Since p(z) €
p(@)) € I = (q(@)), a@) | p(x). As p(x) is irreducible (p(x)) = (g(z)) or q(x) is a
nonzero constant. Neither of the cases are possible. Therefore, Ker¢ is maximal. By
isomorphism theorem Q[z]/Ker¢ ~ Im¢ and the left hand side is a field as Ker¢ is a
maximal ideal. Thus Im¢ is a field. ]

If 5 € C satisfies p(3) = 0, then Q(a) = Q([).

Solution. Let ¢ : Q[x] — C (f(x) — f(8)). Then by (a) Kery) = (p(x)). Note that
by (b) Im¢ and Imz) are fields containing @ and « or 3 respectively, they are also
the smallest, Im¢ = Q(«) and Imy = Q(3). Therefore,

Q(a) = Im¢ ~ Qz]/Kerg = Qlx]/(p(z)) = Qlz]/Kery = Imy) = Q(6).

Suppose ¢(x) € Q[z] is irreducible over Q of degree m, if gecd(n,m) = 1, then ¢(z) is
irreducible over Q(«).

Solution. Let E be a splitting field of ¢(x) over Q(«) (as C' is algebraically closed,
FE can be taken inside C', but then we need to assume the Fundamental Theorem of
Algebra). Let § € E such that ¢(5) = 0. Then [Q(a) : Q] = n and [Q(S) : Q] = m.
Since the minimal polynomial g;(x) of 3 over Q(«) divides g(z), deggqi(x) < m.
Thus [Q(a, 8) : Q] = [Q(a)(3) : Q()]Q(a) : Q] = dega(x) -n < nm. Moreover,
Qe 5): Q] = [Q(F)(a) : QIIQ(B) : Q] = [Q(B)() : Qa)] -m- Hence [Q(a, )
Q] is at most m - n and divisible by m and n. Since ged(m,n) = 1, it must be
m - n. Therefore [Q(a)(f) : Q(a)] = degqi(z) = m = degq(z) and ¢1(x) divides
q(z). Hence ¢(z) is a constant multiple of ¢ (z) and irreducible over Q(«). ]
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