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Algebra II Final 2008
In the following, when R is a commutative ring with 1, 〈a〉 = {r ·a | r ∈ R}, which is denoted

by (a) in the textbook.

1. Let A be a ring with 1, which may not be commutative. Suppose xy = 0 implies, x = 0
or y = 0. Let a, b ∈ A. Show that the following are equivalent. (10pts)

(i) Aa = Ab.

(ii) There exists u ∈ U(A) such that b = ua, where u is a unit of A.

2. Let R = {a + b
√
−1 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−1) = a2 + b2. (40pts)

(a) Show that R is an integral domain and R = {f(
√
−1) | f(t) ∈ Z[t]}.

(b) Determine the elements in U(R).

(c) Show that R is a Euclidean domain.

(d) Determine whether each of 〈2〉, 〈3〉 and 〈5〉 is a maximal ideal. If not find all the
maximal ideals containing it.

(e) Let 〈π〉 ̸= 〈0〉 be a prime ideal of R. Show that there exists a prime integer p such
that Z ∩ 〈π〉 = Z · p and that N(π) = p, or p2. If N(π) = p2 then 〈p〉 is a prime ideal
in R and if N(π) = p then 〈p〉 is not a prime ideal in R.

3. Let R be a commutative ring with 1. Two ideals I and J are said to be co-prime if
I + J = R. (20pts)

(a) Suppose I and J are co-prime ideals of R. Show that IJ = I ∩ J and

R/IJ ≅ R/I × R/J.

(b) Suppose I1, I2, . . . , In are mutually co-prime ideals of R, i.e., Ii and Ij are co-prime
if i ̸= j. Show that for i ∈ {1, 2, . . . , n − 1}, I1I2 · · · Ii and Ii+1 are co-prime and

n∩
i=1

Ii = I1I2 · · · In.

4. Let R be a commutative ring with 1 and let R[t] be the polynomial ring. Prove or disprove
(by giving a counter example) the following. (20pts)

(a) R is an integral domain if and only if R[t] is an integral domain.

(b) If R is a PID, then so is R[t].

(c) If R[t] is a PID, then so is R.

(d) If R is a Euclidean domain, then so is R[t].

5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e.,
1 ∈ S, 0 ̸∈ S and s, t ∈ S implies st ∈ S. Let I be an ideal of S−1R. Show that
I = (φS(R)∩ I)(S−1R), where φS : R → S−1R (a 7→ a/1). Using this fact, show that if R
is a PID, then so is S−1R. (10pts)
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Solutions to Algebra II Final 2008
In the following, when R is a commutative ring with 1, 〈a〉 = {r ·a | r ∈ R}, which is denoted

by (a) in the textbook.

1. Let A be a ring with 1, which may not be commutative. Suppose xy = 0 implies, x = 0
or y = 0. Let a, b ∈ A. Show that the following are equivalent. (10pts)

(i) Aa = Ab.
(ii) There exists u ∈ U(A) such that b = ua, where u is a unit of A.

Solution. (i)→ (ii): Suppose Aa = Ab. Since 1 ∈ A, a ∈ Aa = Ab ∋ b and there exist
c, d ∈ A such that a = cb and b = da. Hence a = cda and b = dcb. So (1 − cd)a =
(1 − dc)b = 0. If a = 0, then b = da implies b = 0 and similarly if b = 0 then a = 0. So if
one of a or b is zero, both are zero and a = 1b. Hence we may assume that a ̸= 0 ̸= b. Then
(1 − cd)a = (1 − dc)b = 0 implies 1 = cd = dc by hypothesis and c, d ∈ U(R). Therefore
we have (ii).

(ii)→(i). Suppose b = ua and u ∈ U(R). Then

Aa = Au−1b ⊂ Ab = Aua ⊂ Aa

and Aa = Ab.

2. Let R = {a + b
√
−1 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−1) = a2 + b2. (40pts)

(a) Show that R is an integral domain and R = {f(
√
−1) | f(t) ∈ Z[t]}.

Solution. Let φ : Z[t] → C (f(t) 7→ f(
√
−1)). Then φ is a ring homomorphism and

Im(φ) ⊃ R, as φ(a+bt) = a+b
√
−1 for all a, b ∈ Z. Suppose f(t) ∈ Z[t]. Then there

exist a polynomial q(t) ∈ Z[t] and a, b ∈ Z such that f(t) = q(t)(t2 + 1) + a + bt.
Since

φ(f(t)) = q(
√
−1)(

√
−1

2
+ 1) + a + b

√
−1 = a + b

√
−1 ∈ R,

R = {f(
√
−1) | f(t) ∈ Z[t]}. Now R is the image of a ring homomorphism φ, it is a

subring of a field C. Hence there is no zero divisor and R is an integral domain.
(b) Determine the elements in U(R).

Solution. First note that for α, β ∈ R, N(αβ) = αβαβ = ααββ = N(α)N(β).
We claim that U(R) = {±1,±

√
−1}. It is clear that U(R) ⊃ {±1,±

√
−1}. Let

α = a + b
√
−1 ∈ U(R) and αβ = 1 for some β ∈ R. Then 1 = N(1) = N(αβ) =

N(α)N(β). Since N(α) = a2 + b2 ≥ 0, a2 + b2 = 1 and (a, b) = (±1, 0) and (0,±1)
are the only solutions. Thus we have our claim.

(c) Show that R is a Euclidean domain.
Solution. Let δ(α) = N(α) for α ∈ R. It is clear that if α, β ∈ R are nonzero,
N(α), N(β) ≥ 1. Thus N(αβ) ≥ N(α). Let α, β ∈ R with β ̸= 0. Then there
exist a, b ∈ Q such that α/β = a + b

√
−1. Then we can choose c, d ∈ Z such that

|a − c| ≤ 1
2 and |b − d| ≤ 1

2 . Let γ = c + d
√
−1 ∈ R. Then

α/β = γ + (a − c) + (b − d)
√
−1 with (a − c)2 + (b − d)2 ≤ 1

4
+

1
4

=
1
2

< 1,

Hence α = βγ + β((a − c) + (b − d)
√
−1) with β((a − c) + (b − d)

√
−1) ∈ R and

N(β((a − c) + (b − d)
√
−1)) < N(β). Therefore R is a Euclidean domain.
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(d) Determine whether each of 〈2〉, 〈3〉 and 〈5〉 is a maximal ideal. If not find all the
maximal ideals containing it.
Solution. Note that since R is a Euclidean domain, it is a principal ideal domain
and a unique factorization domain. Hence 0 ̸= α ∈ R is an irreducible element of R
if and only if 〈α〉 is a maximal ideal.
Let p be a prime integer. Suppose p = αβ with α, β ∈ R. Then p2 = N(p) =
N(α)N(β). Hence if p is not irreducible and α, β ̸∈ U(R), then N(α) = N(β) = p.
So if α = a + b

√
−1, then p = a2 + b2. Clearly 3 is not expressible as a sum of two

squares of integers. 3 is irreducible and 〈3〉 is a maximal ideal.
On the other hand, 2 = (1+

√
−1)(1−

√
−1) and 5 = (1+2

√
−1)(1−2

√
−1), 〈1+

√
−1〉

and 〈1−
√
−1〉 are maximal ideals containing 〈2〉 and 〈1+2

√
−1〉 and 〈1−2

√
−1〉 are

maximal ideals containing 〈2〉. Note that the generators of these ideals are irreducible
elements as their norms, i.e., the value of N , are prime numbers. Moreover, there
are no other maximal ideals containing 〈2〉 and 〈5〉 because if R is a principal ideal
domain and hence a unique factorization domain.

(e) Let 〈π〉 ̸= 〈0〉 be a prime ideal of R. Show that there exists a prime integer p such
that Z ∩ 〈π〉 = Z · p and that N(π) = p, or p2. If N(π) = p2 then 〈p〉 is a prime ideal
in R and if N(π) = p then 〈p〉 is not a prime ideal in R.
Solution. Since R is a principal ideal domain, π is an irreducible element. Clearly
Z∩〈π〉 is a prime ideal of Z. Hence there exists a prime integer p such that Z∩〈π〉 =
Z · p. Since p ∈ 〈π〉, there exists α ∈ R such that p = απ. Hence p2 = N(α)N(π).
If N(π) = p, then p is not irreducible and 〈p〉 is not a prime ideal in R, while if
N(π) = p2 then 〈p〉 is a prime ideal in R as p itself is irreducible.

3. Let R be a commutative ring with 1. Two ideals I and J are said to be co-prime if
I + J = R. (20pts)

(a) Suppose I and J are co-prime ideals of R. Show that IJ = I ∩ J and

R/IJ ≅ R/I × R/J.

Solution. Since both I and J are ideals, IJ ⊂ I ∩J . Let x ∈ I ∩J . Since I +J = R,
there exist u ∈ I and v ∈ J such that u + v = 1. Now x = x1 = ux + xv ∈ IJ and
hence IJ = I ∩ J .
Let φ : R 7→ R/I ×R/J (x 7→ (x+ I, x+J)). Clearly the kernel of φ is I ∩J which is
equal to IJ . Hence it suffices to show that φ is onto. Let (x+ I, y + j) ∈ R/I ×R/J .
Now as u + v = 1 with u ∈ I and v ∈ J ,

φ(uy + vx) = (uy + vx + I, uy + vx + J) = (vx + I, uy + J)
= ((1 − u)x + I, (1 − v)y + J) = (x + I, y + J).

Therefore φ is onto and the above isomorphism is established.

(b) Suppose I1, I2, . . . , In are mutually co-prime ideals of R, i.e., Ii and Ij are co-prime
if i ̸= j. Show that for i ∈ {1, 2, . . . , n − 1}, I1I2 · · · Ii and Ii+1 are co-prime and

n∩
i=1

Ii = I1I2 · · · In.
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Solution. We prove by induction. If i = 1, there is nothing to prove by (a). Suppose
the assertion holds when i − 1 ≥ 1. Let J = I1I2 · · · Ii−1 and J ′ = I1I2 · · · Ii−2Ii.
Then by induction hypothesis J + Ii+1 = R, and J ′ + Ii+1 = R. Therefore there
exist x ∈ J , x′ ∈ J ′ and y, y′ ∈ Ii+1 such that x + y = 1 and x′ + y′ = 1. Now
1 = (x + y)(x′ + y′) = xx′ + xy′ + x′y + yy′ ∈ I1I2 · · · Ii + Ii+1.
Now by (a) and induction the last assertion holds.

4. Let R be a commutative ring with 1 and let R[t] be the polynomial ring. Prove or disprove
(by giving a counter example) the following. (20pts)

(a) R is an integral domain if and only if R[t] is an integral domain.
Solution. Let 0 ̸= f = a0 + a1t + · · · + amtm with am ̸= 0 and 0 ̸= g = b0 + b1t +
· · · + bntn with bn ̸= 0. Then fg = a0b0 + · · · + ambntm+n with ambn ̸= 0 as R is an
integral domain. Hence R[t] is an integral domain.

(b) If R is a PID, then so is R[t].
Solution. Let R = Z. Then R is a Euclidean domain and hence it is a PID. But
Z[t] is not a PID as t is an irreducible element in Z[t] but Z[t]/〈t〉 ≅ Z is not a field.
Note that if Z[t] is a PID, the ideal generated by an irreducible element is maximal.

(c) If R[t] is a PID, then so is R.
Solution. R[t] is a PID if and only if R is a field. Hence R is a PID.

(d) If R is a Euclidean domain, then so is R[t].
Solution. Let R = Z. Then as we have seen above, Z[t] is not a PID. So it is not a
Euclidean dommain.

5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e.,
1 ∈ S, 0 ̸∈ S and s, t ∈ S implies st ∈ S. Let I be an ideal of S−1R. Show that
I = (φS(R)∩ I)(S−1R), where φS : R → S−1R (a 7→ a/1). Using this fact, show that if R
is a PID, then so is S−1R. (10pts)

Solution. Clearly I ⊃ (φS(R)∩I)(S−1R). Suppose a/s ∈ I. Then a = s(a/s) ∈ I. Hence
a/1 ∈ φS(R). Thus I ⊂ (φS(R) ∩ I)(S−1R) and I = (φS(R) ∩ I)(S−1R).

Suppose R is a PID. Then φ−1
S (I) is an ideal of R and generated by an element a ∈ R. So

〈a〉 = φ−1
S (I) and φS(〈a〉) = φS(R) ∩ I. Hence

I = (φS(R) ∩ I)(S−1R) = 〈a〉S−1R.

Therefore S−1R is a PID.
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