Algebra II Final 2008

In the following, when R is a commutative ring with $1,\langle a\rangle=\{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

1. Let A be a ring with 1 , which may not be commutative. Suppose $x y=0$ implies, $x=0$ or $y=0$. Let $a, b \in A$. Show that the following are equivalent.
(10pts)
(i) $A a=A b$.
(ii) There exists $u \in U(A)$ such that $b=u a$, where u is a unit of A.
2. Let $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-1})=a^{2}+b^{2}$.
(40pts)
(a) Show that R is an integral domain and $R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\}$.
(b) Determine the elements in $U(R)$.
(c) Show that R is a Euclidean domain.
(d) Determine whether each of $\langle 2\rangle,\langle 3\rangle$ and $\langle 5\rangle$ is a maximal ideal. If not find all the maximal ideals containing it.
(e) Let $\langle\pi\rangle \neq\langle 0\rangle$ be a prime ideal of R. Show that there exists a prime integer p such that $\boldsymbol{Z} \cap\langle\pi\rangle=\boldsymbol{Z} \cdot p$ and that $N(\pi)=p$, or p^{2}. If $N(\pi)=p^{2}$ then $\langle p\rangle$ is a prime ideal in R and if $N(\pi)=p$ then $\langle p\rangle$ is not a prime ideal in R.
3. Let R be a commutative ring with 1 . Two ideals I and J are said to be co-prime if $I+J=R$.
(20pts)
(a) Suppose I and J are co-prime ideals of R. Show that $I J=I \cap J$ and

$$
R / I J \simeq R / I \times R / J .
$$

(b) Suppose $I_{1}, I_{2}, \ldots, I_{n}$ are mutually co-prime ideals of R, i.e., I_{i} and I_{j} are co-prime if $i \neq j$. Show that for $i \in\{1,2, \ldots, n-1\}, I_{1} I_{2} \cdots I_{i}$ and I_{i+1} are co-prime and

$$
\bigcap_{i=1}^{n} I_{i}=I_{1} I_{2} \cdots I_{n} .
$$

4. Let R be a commutative ring with 1 and let $R[t]$ be the polynomial ring. Prove or disprove (by giving a counter example) the following.
(a) R is an integral domain if and only if $R[t]$ is an integral domain.
(b) If R is a PID, then so is $R[t]$.
(c) If $R[t]$ is a PID, then so is R.
(d) If R is a Euclidean domain, then so is $R[t]$.
5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e., $1 \in S, 0 \notin S$ and $s, t \in S$ implies $s t \in S$. Let I be an ideal of $S^{-1} R$. Show that $I=\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)$, where $\phi_{S}: R \rightarrow S^{-1} R(a \mapsto a / 1)$. Using this fact, show that if R is a PID, then so is $S^{-1} R$.

Solutions to Algebra II Final 2008

In the following, when R is a commutative ring with $1,\langle a\rangle=\{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

1. Let A be a ring with 1 , which may not be commutative. Suppose $x y=0$ implies, $x=0$ or $y=0$. Let $a, b \in A$. Show that the following are equivalent.
(10pts)
(i) $A a=A b$.
(ii) There exists $u \in U(A)$ such that $b=u a$, where u is a unit of A.

Solution. (i) \rightarrow (ii): Suppose $A a=A b$. Since $1 \in A, a \in A a=A b \ni b$ and there exist $c, d \in A$ such that $a=c b$ and $b=d a$. Hence $a=c d a$ and $b=d c b$. So $(1-c d) a=$ $(1-d c) b=0$. If $a=0$, then $b=d a$ implies $b=0$ and similarly if $b=0$ then $a=0$. So if one of a or b is zero, both are zero and $a=1 b$. Hence we may assume that $a \neq 0 \neq b$. Then $(1-c d) a=(1-d c) b=0$ implies $1=c d=d c$ by hypothesis and $c, d \in U(R)$. Therefore we have (ii).
(ii) \rightarrow (i). Suppose $b=u a$ and $u \in U(R)$. Then

$$
A a=A u^{-1} b \subset A b=A u a \subset A a
$$

and $A a=A b$.
2. Let $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\} \subset \boldsymbol{C}$, and let $N(a+b \sqrt{-1})=a^{2}+b^{2}$.
(40pts)
(a) Show that R is an integral domain and $R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\}$.

Solution. Let $\phi: \boldsymbol{Z}[t] \rightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-1}))$. Then ϕ is a ring homomorphism and $\operatorname{Im}(\phi) \supset R$, as $\phi(a+b t)=a+b \sqrt{-1}$ for all $a, b \in \boldsymbol{Z}$. Suppose $f(t) \in \boldsymbol{Z}[t]$. Then there exist a polynomial $q(t) \in \boldsymbol{Z}[t]$ and $a, b \in \boldsymbol{Z}$ such that $f(t)=q(t)\left(t^{2}+1\right)+a+b t$. Since

$$
\phi(f(t))=q(\sqrt{-1})\left(\sqrt{-1}^{2}+1\right)+a+b \sqrt{-1}=a+b \sqrt{-1} \in R,
$$

$R=\{f(\sqrt{-1}) \mid f(t) \in \boldsymbol{Z}[t]\}$. Now R is the image of a ring homomorphism ϕ, it is a subring of a field \boldsymbol{C}. Hence there is no zero divisor and R is an integral domain.
(b) Determine the elements in $U(R)$.

Solution. First note that for $\alpha, \beta \in R, N(\alpha \beta)=\alpha \beta \overline{\alpha \beta}=\alpha \bar{\alpha} \beta \bar{\beta}=N(\alpha) N(\beta)$. We claim that $U(R)=\{ \pm 1, \pm \sqrt{-1}\}$. It is clear that $U(R) \supset\{ \pm 1, \pm \sqrt{-1}\}$. Let $\alpha=a+b \sqrt{-1} \in U(R)$ and $\alpha \beta=1$ for some $\beta \in R$. Then $1=N(1)=N(\alpha \beta)=$ $N(\alpha) N(\beta)$. Since $N(\alpha)=a^{2}+b^{2} \geq 0, a^{2}+b^{2}=1$ and $(a, b)=(\pm 1,0)$ and $(0, \pm 1)$ are the only solutions. Thus we have our claim.
(c) Show that R is a Euclidean domain.

Solution. Let $\delta(\alpha)=N(\alpha)$ for $\alpha \in R$. It is clear that if $\alpha, \beta \in R$ are nonzero, $N(\alpha), N(\beta) \geq 1$. Thus $N(\alpha \beta) \geq N(\alpha)$. Let $\alpha, \beta \in R$ with $\beta \neq 0$. Then there exist $a, b \in \boldsymbol{Q}$ such that $\alpha / \beta=a+b \sqrt{-1}$. Then we can choose $c, d \in \boldsymbol{Z}$ such that $|a-c| \leq \frac{1}{2}$ and $|b-d| \leq \frac{1}{2}$. Let $\gamma=c+d \sqrt{-1} \in R$. Then

$$
\alpha / \beta=\gamma+(a-c)+(b-d) \sqrt{-1} \text { with }(a-c)^{2}+(b-d)^{2} \leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2}<1,
$$

Hence $\alpha=\beta \gamma+\beta((a-c)+(b-d) \sqrt{-1})$ with $\beta((a-c)+(b-d) \sqrt{-1}) \in R$ and $N(\beta((a-c)+(b-d) \sqrt{-1}))<N(\beta)$. Therefore R is a Euclidean domain.
(d) Determine whether each of $\langle 2\rangle,\langle 3\rangle$ and $\langle 5\rangle$ is a maximal ideal. If not find all the maximal ideals containing it.
Solution. Note that since R is a Euclidean domain, it is a principal ideal domain and a unique factorization domain. Hence $0 \neq \alpha \in R$ is an irreducible element of R if and only if $\langle\alpha\rangle$ is a maximal ideal.
Let p be a prime integer. Suppose $p=\alpha \beta$ with $\alpha, \beta \in R$. Then $p^{2}=N(p)=$ $N(\alpha) N(\beta)$. Hence if p is not irreducible and $\alpha, \beta \notin U(R)$, then $N(\alpha)=N(\beta)=p$. So if $\alpha=a+b \sqrt{-1}$, then $p=a^{2}+b^{2}$. Clearly 3 is not expressible as a sum of two squares of integers. 3 is irreducible and $\langle 3\rangle$ is a maximal ideal.
On the other hand, $2=(1+\sqrt{-1})(1-\sqrt{-1})$ and $5=(1+2 \sqrt{-1})(1-2 \sqrt{-1}),\langle 1+\sqrt{-1}\rangle$ and $\langle 1-\sqrt{-1}\rangle$ are maximal ideals containing $\langle 2\rangle$ and $\langle 1+2 \sqrt{-1}\rangle$ and $\langle 1-2 \sqrt{-1}\rangle$ are maximal ideals containing $\langle 2\rangle$. Note that the generators of these ideals are irreducible elements as their norms, i.e., the value of N, are prime numbers. Moreover, there are no other maximal ideals containing $\langle 2\rangle$ and $\langle 5\rangle$ because if R is a principal ideal domain and hence a unique factorization domain.
(e) Let $\langle\pi\rangle \neq\langle 0\rangle$ be a prime ideal of R. Show that there exists a prime integer p such that $\boldsymbol{Z} \cap\langle\pi\rangle=\boldsymbol{Z} \cdot p$ and that $N(\pi)=p$, or p^{2}. If $N(\pi)=p^{2}$ then $\langle p\rangle$ is a prime ideal in R and if $N(\pi)=p$ then $\langle p\rangle$ is not a prime ideal in R.
Solution. Since R is a principal ideal domain, π is an irreducible element. Clearly $\boldsymbol{Z} \cap\langle\pi\rangle$ is a prime ideal of \boldsymbol{Z}. Hence there exists a prime integer p such that $\boldsymbol{Z} \cap\langle\pi\rangle=$ $\boldsymbol{Z} \cdot p$. Since $p \in\langle\pi\rangle$, there exists $\alpha \in R$ such that $p=\alpha \pi$. Hence $p^{2}=N(\alpha) N(\pi)$. If $N(\pi)=p$, then p is not irreducible and $\langle p\rangle$ is not a prime ideal in R, while if $N(\pi)=p^{2}$ then $\langle p\rangle$ is a prime ideal in R as p itself is irreducible.
3. Let R be a commutative ring with 1 . Two ideals I and J are said to be co-prime if $I+J=R$.
(20pts)
(a) Suppose I and J are co-prime ideals of R. Show that $I J=I \cap J$ and

$$
R / I J \simeq R / I \times R / J .
$$

Solution. Since both I and J are ideals, $I J \subset I \cap J$. Let $x \in I \cap J$. Since $I+J=R$, there exist $u \in I$ and $v \in J$ such that $u+v=1$. Now $x=x 1=u x+x v \in I J$ and hence $I J=I \cap J$.
Let $\phi: R \mapsto R / I \times R / J(x \mapsto(x+I, x+J))$. Clearly the kernel of ϕ is $I \cap J$ which is equal to $I J$. Hence it suffices to show that ϕ is onto. Let $(x+I, y+j) \in R / I \times R / J$. Now as $u+v=1$ with $u \in I$ and $v \in J$,

$$
\begin{aligned}
\phi(u y+v x) & =(u y+v x+I, u y+v x+J)=(v x+I, u y+J) \\
& =((1-u) x+I,(1-v) y+J)=(x+I, y+J) .
\end{aligned}
$$

Therefore ϕ is onto and the above isomorphism is established.
(b) Suppose $I_{1}, I_{2}, \ldots, I_{n}$ are mutually co-prime ideals of R, i.e., I_{i} and I_{j} are co-prime if $i \neq j$. Show that for $i \in\{1,2, \ldots, n-1\}, I_{1} I_{2} \cdots I_{i}$ and I_{i+1} are co-prime and

$$
\bigcap_{i=1}^{n} I_{i}=I_{1} I_{2} \cdots I_{n} .
$$

Solution. We prove by induction. If $i=1$, there is nothing to prove by (a). Suppose the assertion holds when $i-1 \geq 1$. Let $J=I_{1} I_{2} \cdots I_{i-1}$ and $J^{\prime}=I_{1} I_{2} \cdots I_{i-2} I_{i}$. Then by induction hypothesis $J+I_{i+1}=R$, and $J^{\prime}+I_{i+1}=R$. Therefore there exist $x \in J, x^{\prime} \in J^{\prime}$ and $y, y^{\prime} \in I_{i+1}$ such that $x+y=1$ and $x^{\prime}+y^{\prime}=1$. Now $1=(x+y)\left(x^{\prime}+y^{\prime}\right)=x x^{\prime}+x y^{\prime}+x^{\prime} y+y y^{\prime} \in I_{1} I_{2} \cdots I_{i}+I_{i+1}$.
Now by (a) and induction the last assertion holds.
4. Let R be a commutative ring with 1 and let $R[t]$ be the polynomial ring. Prove or disprove (by giving a counter example) the following.
(20pts)
(a) R is an integral domain if and only if $R[t]$ is an integral domain.

Solution. Let $0 \neq f=a_{0}+a_{1} t+\cdots+a_{m} t^{m}$ with $a_{m} \neq 0$ and $0 \neq g=b_{0}+b_{1} t+$ $\cdots+b_{n} t^{n}$ with $b_{n} \neq 0$. Then $f g=a_{0} b_{0}+\cdots+a_{m} b_{n} t^{m+n}$ with $a_{m} b_{n} \neq 0$ as R is an integral domain. Hence $R[t]$ is an integral domain.
(b) If R is a PID, then so is $R[t]$.

Solution. Let $R=\boldsymbol{Z}$. Then R is a Euclidean domain and hence it is a PID. But $\boldsymbol{Z}[t]$ is not a PID as t is an irreducible element in $\boldsymbol{Z}[t]$ but $\boldsymbol{Z}[t] /\langle t\rangle \simeq \boldsymbol{Z}$ is not a field. Note that if $\boldsymbol{Z}[t]$ is a PID, the ideal generated by an irreducible element is maximal.
(c) If $R[t]$ is a PID, then so is R.

Solution. $R[t]$ is a PID if and only if R is a field. Hence R is a PID.
(d) If R is a Euclidean domain, then so is $R[t]$.

Solution. Let $R=\boldsymbol{Z}$. Then as we have seen above, $\boldsymbol{Z}[t]$ is not a PID. So it is not a Euclidean dommain.
5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e., $1 \in S, 0 \notin S$ and $s, t \in S$ implies $s t \in S$. Let I be an ideal of $S^{-1} R$. Show that $I=\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)$, where $\phi_{S}: R \rightarrow S^{-1} R(a \mapsto a / 1)$. Using this fact, show that if R is a PID, then so is $S^{-1} R$.
(10pts)
Solution. Clearly $I \supset\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)$. Suppose $a / s \in I$. Then $a=s(a / s) \in I$. Hence $a / 1 \in \phi_{S}(R)$. Thus $I \subset\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)$ and $I=\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)$.
Suppose R is a PID. Then $\phi_{S}^{-1}(I)$ is an ideal of R and generated by an element $a \in R$. So $\langle a\rangle=\phi_{S}^{-1}(I)$ and $\phi_{S}(\langle a\rangle)=\phi_{S}(R) \cap I$. Hence

$$
I=\left(\phi_{S}(R) \cap I\right)\left(S^{-1} R\right)=\langle a\rangle_{S^{-1} R}
$$

Therefore $S^{-1} R$ is a PID.

