Algebra II Final 2008

In the following, when R is a commutative ring with 1, $\langle a \rangle = \{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

- 1. Let A be a ring with 1, which may not be commutative. Suppose xy = 0 implies, x = 0 or y = 0. Let $a, b \in A$. Show that the following are equivalent. (10pts)
 - (i) Aa = Ab.
 - (ii) There exists $u \in U(A)$ such that b = ua, where u is a unit of A.
- 2. Let $R = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, and let $N(a + b\sqrt{-1}) = a^2 + b^2$. (40pts)
 - (a) Show that R is an integral domain and $R = \{f(\sqrt{-1}) \mid f(t) \in \mathbb{Z}[t]\}.$
 - (b) Determine the elements in U(R).
 - (c) Show that R is a Euclidean domain.
 - (d) Determine whether each of $\langle 2 \rangle$, $\langle 3 \rangle$ and $\langle 5 \rangle$ is a maximal ideal. If not find all the maximal ideals containing it.
 - (e) Let $\langle \pi \rangle \neq \langle 0 \rangle$ be a prime ideal of R. Show that there exists a prime integer p such that $\mathbf{Z} \cap \langle \pi \rangle = \mathbf{Z} \cdot p$ and that $N(\pi) = p$, or p^2 . If $N(\pi) = p^2$ then $\langle p \rangle$ is a prime ideal in R and if $N(\pi) = p$ then $\langle p \rangle$ is not a prime ideal in R.
- 3. Let R be a commutative ring with 1. Two ideals I and J are said to be co-prime if I + J = R. (20pts)
 - (a) Suppose I and J are co-prime ideals of R. Show that $IJ = I \cap J$ and

$$R/IJ \simeq R/I \times R/J.$$

(b) Suppose I_1, I_2, \ldots, I_n are mutually co-prime ideals of R, i.e., I_i and I_j are co-prime if $i \neq j$. Show that for $i \in \{1, 2, \ldots, n-1\}$, $I_1I_2 \cdots I_i$ and I_{i+1} are co-prime and

$$\bigcap_{i=1}^{n} I_i = I_1 I_2 \cdots I_n$$

- 4. Let R be a commutative ring with 1 and let R[t] be the polynomial ring. Prove or disprove (by giving a counter example) the following. (20pts)
 - (a) R is an integral domain if and only if R[t] is an integral domain.
 - (b) If R is a PID, then so is R[t].
 - (c) If R[t] is a PID, then so is R.
 - (d) If R is a Euclidean domain, then so is R[t].
- 5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e., $1 \in S, 0 \notin S$ and $s, t \in S$ implies $st \in S$. Let I be an ideal of $S^{-1}R$. Show that $I = (\phi_S(R) \cap I)(S^{-1}R)$, where $\phi_S : R \to S^{-1}R$ $(a \mapsto a/1)$. Using this fact, show that if Ris a PID, then so is $S^{-1}R$. (10pts)

Solutions to Algebra II Final 2008

In the following, when R is a commutative ring with 1, $\langle a \rangle = \{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

- 1. Let A be a ring with 1, which may not be commutative. Suppose xy = 0 implies, x = 0 or y = 0. Let $a, b \in A$. Show that the following are equivalent. (10pts)
 - (i) Aa = Ab.
 - (ii) There exists $u \in U(A)$ such that b = ua, where u is a unit of A.

Solution. (i) \rightarrow (ii): Suppose Aa = Ab. Since $1 \in A$, $a \in Aa = Ab \ni b$ and there exist $c, d \in A$ such that a = cb and b = da. Hence a = cda and b = dcb. So (1 - cd)a = (1 - dc)b = 0. If a = 0, then b = da implies b = 0 and similarly if b = 0 then a = 0. So if one of a or b is zero, both are zero and a = 1b. Hence we may assume that $a \neq 0 \neq b$. Then (1 - cd)a = (1 - dc)b = 0 implies 1 = cd = dc by hypothesis and $c, d \in U(R)$. Therefore we have (ii).

(ii) \rightarrow (i). Suppose b = ua and $u \in U(R)$. Then

$$Aa = Au^{-1}b \subset Ab = Aua \subset Aa$$

and Aa = Ab.

- 2. Let $R = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, and let $N(a + b\sqrt{-1}) = a^2 + b^2$. (40pts)
 - (a) Show that R is an integral domain and $R = \{f(\sqrt{-1}) \mid f(t) \in \mathbb{Z}[t]\}$. **Solution.** Let $\phi : \mathbb{Z}[t] \to \mathbb{C}$ $(f(t) \mapsto f(\sqrt{-1}))$. Then ϕ is a ring homomorphism and $\operatorname{Im}(\phi) \supset R$, as $\phi(a+bt) = a+b\sqrt{-1}$ for all $a, b \in \mathbb{Z}$. Suppose $f(t) \in \mathbb{Z}[t]$. Then there exist a polynomial $q(t) \in \mathbb{Z}[t]$ and $a, b \in \mathbb{Z}$ such that $f(t) = q(t)(t^2+1) + a + bt$. Since

$$\phi(f(t)) = q(\sqrt{-1})(\sqrt{-1}^2 + 1) + a + b\sqrt{-1} = a + b\sqrt{-1} \in \mathbb{R},$$

 $R = \{f(\sqrt{-1}) \mid f(t) \in \mathbb{Z}[t]\}$. Now R is the image of a ring homomorphism ϕ , it is a subring of a field C. Hence there is no zero divisor and R is an integral domain.

(b) Determine the elements in U(R).

Solution. First note that for $\alpha, \beta \in R$, $N(\alpha\beta) = \alpha\beta\overline{\alpha\beta} = \alpha\overline{\alpha}\beta\overline{\beta} = N(\alpha)N(\beta)$. We claim that $U(R) = \{\pm 1, \pm \sqrt{-1}\}$. It is clear that $U(R) \supset \{\pm 1, \pm \sqrt{-1}\}$. Let $\alpha = a + b\sqrt{-1} \in U(R)$ and $\alpha\beta = 1$ for some $\beta \in R$. Then $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta)$. Since $N(\alpha) = a^2 + b^2 \ge 0$, $a^2 + b^2 = 1$ and $(a, b) = (\pm 1, 0)$ and $(0, \pm 1)$ are the only solutions. Thus we have our claim.

(c) Show that R is a Euclidean domain.

Solution. Let $\delta(\alpha) = N(\alpha)$ for $\alpha \in R$. It is clear that if $\alpha, \beta \in R$ are nonzero, $N(\alpha), N(\beta) \geq 1$. Thus $N(\alpha\beta) \geq N(\alpha)$. Let $\alpha, \beta \in R$ with $\beta \neq 0$. Then there exist $a, b \in \mathbf{Q}$ such that $\alpha/\beta = a + b\sqrt{-1}$. Then we can choose $c, d \in \mathbf{Z}$ such that $|a - c| \leq \frac{1}{2}$ and $|b - d| \leq \frac{1}{2}$. Let $\gamma = c + d\sqrt{-1} \in R$. Then

$$\alpha/\beta = \gamma + (a-c) + (b-d)\sqrt{-1}$$
 with $(a-c)^2 + (b-d)^2 \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2} < 1$

Hence $\alpha = \beta \gamma + \beta((a-c) + (b-d)\sqrt{-1})$ with $\beta((a-c) + (b-d)\sqrt{-1}) \in R$ and $N(\beta((a-c) + (b-d)\sqrt{-1})) < N(\beta)$. Therefore R is a Euclidean domain.

(d) Determine whether each of $\langle 2 \rangle$, $\langle 3 \rangle$ and $\langle 5 \rangle$ is a maximal ideal. If not find all the maximal ideals containing it.

Solution. Note that since R is a Euclidean domain, it is a principal ideal domain and a unique factorization domain. Hence $0 \neq \alpha \in R$ is an irreducible element of R if and only if $\langle \alpha \rangle$ is a maximal ideal.

Let p be a prime integer. Suppose $p = \alpha\beta$ with $\alpha, \beta \in R$. Then $p^2 = N(p) = N(\alpha)N(\beta)$. Hence if p is not irreducible and $\alpha, \beta \notin U(R)$, then $N(\alpha) = N(\beta) = p$. So if $\alpha = a + b\sqrt{-1}$, then $p = a^2 + b^2$. Clearly 3 is not expressible as a sum of two squares of integers. 3 is irreducible and $\langle 3 \rangle$ is a maximal ideal.

On the other hand, $2 = (1+\sqrt{-1})(1-\sqrt{-1})$ and $5 = (1+2\sqrt{-1})(1-2\sqrt{-1}), \langle 1+\sqrt{-1} \rangle$ and $\langle 1-\sqrt{-1} \rangle$ are maximal ideals containing $\langle 2 \rangle$ and $\langle 1+2\sqrt{-1} \rangle$ and $\langle 1-2\sqrt{-1} \rangle$ are maximal ideals containing $\langle 2 \rangle$. Note that the generators of these ideals are irreducible elements as their norms, i.e., the value of N, are prime numbers. Moreover, there are no other maximal ideals containing $\langle 2 \rangle$ and $\langle 5 \rangle$ because if R is a principal ideal domain and hence a unique factorization domain.

(e) Let ⟨π⟩ ≠ ⟨0⟩ be a prime ideal of R. Show that there exists a prime integer p such that Z ∩ ⟨π⟩ = Z ⋅ p and that N(π) = p, or p². If N(π) = p² then ⟨p⟩ is a prime ideal in R and if N(π) = p then ⟨p⟩ is not a prime ideal in R.
Solution. Since R is a principal ideal domain, π is an irreducible element. Clearly Z ∩ ⟨π⟩ is a prime ideal of Z. Hence there exists a prime integer p such that Z ∩ ⟨π⟩ =

 $Z \cap \langle \pi \rangle$ is a prime ideal of Z. Hence there exists a prime integer p such that $Z \cap \langle \pi \rangle = Z \cdot p$. Since $p \in \langle \pi \rangle$, there exists $\alpha \in R$ such that $p = \alpha \pi$. Hence $p^2 = N(\alpha)N(\pi)$. If $N(\pi) = p$, then p is not irreducible and $\langle p \rangle$ is not a prime ideal in R, while if $N(\pi) = p^2$ then $\langle p \rangle$ is a prime ideal in R as p itself is irreducible.

- 3. Let R be a commutative ring with 1. Two ideals I and J are said to be co-prime if I + J = R. (20pts)
 - (a) Suppose I and J are co-prime ideals of R. Show that $IJ = I \cap J$ and

$$R/IJ \simeq R/I \times R/J.$$

Solution. Since both I and J are ideals, $IJ \subset I \cap J$. Let $x \in I \cap J$. Since I+J=R, there exist $u \in I$ and $v \in J$ such that u+v=1. Now $x=x1=ux+xv \in IJ$ and hence $IJ=I \cap J$.

Let $\phi : R \mapsto R/I \times R/J$ $(x \mapsto (x+I, x+J))$. Clearly the kernel of ϕ is $I \cap J$ which is equal to IJ. Hence it suffices to show that ϕ is onto. Let $(x+I, y+j) \in R/I \times R/J$. Now as u + v = 1 with $u \in I$ and $v \in J$,

$$\phi(uy + vx) = (uy + vx + I, uy + vx + J) = (vx + I, uy + J)$$

= ((1 - u)x + I, (1 - v)y + J) = (x + I, y + J).

Therefore ϕ is onto and the above isomorphism is established.

(b) Suppose I_1, I_2, \ldots, I_n are mutually co-prime ideals of R, i.e., I_i and I_j are co-prime if $i \neq j$. Show that for $i \in \{1, 2, \ldots, n-1\}$, $I_1I_2 \cdots I_i$ and I_{i+1} are co-prime and

$$\bigcap_{i=1}^{n} I_i = I_1 I_2 \cdots I_n$$

Solution. We prove by induction. If i = 1, there is nothing to prove by (a). Suppose the assertion holds when $i - 1 \ge 1$. Let $J = I_1 I_2 \cdots I_{i-1}$ and $J' = I_1 I_2 \cdots I_{i-2} I_i$. Then by induction hypothesis $J + I_{i+1} = R$, and $J' + I_{i+1} = R$. Therefore there exist $x \in J$, $x' \in J'$ and $y, y' \in I_{i+1}$ such that x + y = 1 and x' + y' = 1. Now $1 = (x + y)(x' + y') = xx' + xy' + x'y + yy' \in I_1 I_2 \cdots I_i + I_{i+1}$. Now by (a) and induction the last assertion holds.

- 4. Let R be a commutative ring with 1 and let R[t] be the polynomial ring. Prove or disprove (by giving a counter example) the following. (20pts)
 - (a) R is an integral domain if and only if R[t] is an integral domain. **Solution.** Let $0 \neq f = a_0 + a_1t + \dots + a_mt^m$ with $a_m \neq 0$ and $0 \neq g = b_0 + b_1t + \dots + b_nt^n$ with $b_n \neq 0$. Then $fg = a_0b_0 + \dots + a_mb_nt^{m+n}$ with $a_mb_n \neq 0$ as R is an integral domain. Hence R[t] is an integral domain.
 - (b) If R is a PID, then so is R[t].
 Solution. Let R = Z. Then R is a Euclidean domain and hence it is a PID. But Z[t] is not a PID as t is an irreducible element in Z[t] but Z[t]/⟨t⟩ ≃ Z is not a field. Note that if Z[t] is a PID, the ideal generated by an irreducible element is maximal.
 - (c) If R[t] is a PID, then so is R.
 Solution. R[t] is a PID if and only if R is a field. Hence R is a PID.
 - (d) If R is a Euclidean domain, then so is R[t].
 Solution. Let R = Z. Then as we have seen above, Z[t] is not a PID. So it is not a Euclidean dommain.
- 5. Let R be a commutative ring with 1 and let S be a multiplicative subset of R, i.e., $1 \in S, 0 \notin S$ and $s, t \in S$ implies $st \in S$. Let I be an ideal of $S^{-1}R$. Show that $I = (\phi_S(R) \cap I)(S^{-1}R)$, where $\phi_S : R \to S^{-1}R$ $(a \mapsto a/1)$. Using this fact, show that if R is a PID, then so is $S^{-1}R$. (10pts)

Solution. Clearly $I \supset (\phi_S(R) \cap I)(S^{-1}R)$. Suppose $a/s \in I$. Then $a = s(a/s) \in I$. Hence $a/1 \in \phi_S(R)$. Thus $I \subset (\phi_S(R) \cap I)(S^{-1}R)$ and $I = (\phi_S(R) \cap I)(S^{-1}R)$.

Suppose R is a PID. Then $\phi_S^{-1}(I)$ is an ideal of R and generated by an element $a \in R$. So $\langle a \rangle = \phi_S^{-1}(I)$ and $\phi_S(\langle a \rangle) = \phi_S(R) \cap I$. Hence

$$I = (\phi_S(R) \cap I)(S^{-1}R) = \langle a \rangle_{S^{-1}R}.$$

Therefore $S^{-1}R$ is a PID.

4