
November 21, 2006

Algebra II Final 2006
In the following, when R is a commutative ring with 1, 〈a〉 = {r · a | r ∈ R}, which is

denoted by (a) in the textbook.

1. Let R be an integral domain. (40pts)

(a) Let a, b ∈ R. Show that the following are equivalent.

(i) a | b and b | a.

(ii) 〈a〉 = 〈b〉.
(iii) a ≈ b, i.e., there exists u ∈ U(R) such that b = ua, where u is a unit of R.

(b) Show that the polynomial ring R[t] is an integral domain.

(c) Show that U(R[t]) = U(R).

(d) Let p be a nonzero element in R such that p ̸∈ U(R). Suppose 〈p〉 is a prime
ideal. Show that p is an irreducible element.

2. Let Q[t], the polynomial ring over the rational number field Q. Let f(t) = t5 +6t−
12. Let α be the unique real root of f(t) = 0, and Q[α] = {g(α) | g(t) ∈ Q[t]}.
(30pts)

(a) Show that f(t) is an irreducible element in an integral domain Q[t].

(b) Let θ : Q[t] → Q[α] ⊂ R (g(t) 7→ g(α)). Show that Ker(θ) = 〈f(t)〉.
(c) Show that Q[α] is a field.

3. Let R = {a + b
√
−3 | a, b ∈ Z}. (20pts)

(a) Show that 2, 1 +
√
−3 and 1 −

√
−3 are irreducible elements in R.

(b) Show that R is not a UFD.

4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in t
over R is a UFD, show that the polynomial ring R[t1, t2, . . . , tn] in t1, t2, . . . , tn over
R is a UFD. (10pts)
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Solutions to Algebra II Final 2006

1. Let R be an integral domain. (40pts)

(a) Let a, b ∈ R. Show that the following are equivalent.

(i) a | b and b | a.

(ii) 〈a〉 = 〈b〉.
(iii) a ≈ b, i.e., there exists u ∈ U(R) such that b = ua, where u is a unit of R.

Solution. (i)→(ii): Since a | b and b | a, there exist c, d ∈ R such that b = ac
and a = bd. Hence b ∈ 〈a〉 and a ∈ 〈b〉. Therefore 〈b〉 ⊆ 〈a〉 and 〈a〉 ⊆ 〈b〉.
Thus 〈a〉 = 〈b〉.
(ii)→(iii): Since 〈a〉 = 〈b〉, if a = 0, then b = 0 and we can take 1 for u.
Assume that a ̸= 0. Since a, b ∈ 〈a〉 = 〈b〉, there exist u, v ∈ R such that
a = vb, b = ua. Hence a = vb = vua and a(1− vu) = 0. Since R is an integral
domain and a ̸= 0, 1 = vu = uv and u ∈ U(R). Thus b = ua with u ∈ U(R).

(iii)→(i): Let b = ua with u ∈ U(R). Then a | b. Since a = u−1b, b | a.

(b) Show that the polynomial ring R[t] is an integral domain.

Solution. Since R is an integral domain, deg(f · g) = deg(f) + deg(g) holds
for f, g ∈ R[t]. If f · g = 0, then −∞ = deg(f · g) = deg(f) + deg(g). Hence
either deg(f) = −∞ or deg(g) = −∞. Therefore either f = 0 or g = 0 and
R[t] is an integral domain.

(c) Show that U(R[t]) = U(R).

Solution. It is clear that U(R[t]) ⊇ U(R). Suppose 1 = f · g. Then 0 =
deg(1) = deg(f · g) = deg(f) + deg(g). Hence deg(f) = deg(g) = 0. Therefore
f, g ∈ R. Since f · g = 1, f ∈ U(R).

(d) Let p be a nonzero element in R such that p ̸∈ U(R). Suppose 〈p〉 is a prime
ideal. Show that p is an irreducible element.

Solution. Suppose p = a · b. Then 〈p〉 ⊆ 〈a〉, and 〈p〉 ⊆ 〈b〉. Since 〈p〉 is
a prime ideal, either a ∈ 〈p〉 or b ∈ 〈p〉. Thus either 〈a〉 ⊆ 〈p〉 or 〈b〉 ⊆ 〈p〉.
Therefore, either 〈a〉 = 〈p〉 or 〈b〉 = 〈p〉. Now by 1, either b ∈ U(R) or
a ∈ U(R).
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2. Let Q[t], the polynomial ring over the rational number field Q. Let f(t) = t5 +6t−
12. Let α be the unique real root of f(t) = 0, and Q[α] = {g(α) | g(t) ∈ Q[t]}.
(30pts)

(a) Show that f(t) is an irreducible element in an integral domain Q[t].

Solution. By Eisenstein’s criterion taking p = 3, f(t) is irreducible over
Z. By Gauss’ lemma, it is irreducible over Q. Since Q is a field, f(t) is an
irreducible element.

(b) Let θ : Q[t] → Q[α] ⊂ R (g(t) 7→ g(α)). Show that Ker(θ) = 〈f(t)〉.
Solution. It is clear that θ is a surjective ring homomorphism, and that
Ker(θ) ⊇ 〈f(t)〉. Since Q[t] is an Euclidean domain, Q[t] is a PID. Since
Ker(θ) is an ideal, there exists p(t) ∈ R[t] such that Ker(θ) = 〈p(t)〉 ∋ f(t).
Since f(t) is irreducible, Ker(θ) = 〈p(t)〉 = 〈f(t)〉.

(c) Show that Q[α] is a field.

Solution. By Isomorphism Theorm, Q[t]/Ker(θ) ≅ Q[α]. Since f(t) is an
irreducible element in a PID Q[t], it generates a maximal ideal. Since Ker(θ) =
〈f(t)〉, Q[t]/Ker(θ) is a field, and so is Q[α].

3. Let R = {a + b
√
−3 | a, b ∈ Z}. (20pts)

(a) Show that 2, 1 +
√
−3 and 1 −

√
−3 are irreducible elements in R.

Solution. Let N(a + b
√
−3) = a2 + 3b2. Then N(α · β) = N(α)N(β). Hence

if α · β = 1, then 1 = N(1) = N(α)N(β) and N(α) = N(β) = 1. Therefore,
U(R) = {±1}. Now 4 = N(2) = N(1±

√
−3). By definition there is no element

α = a + b
√
−3 such that N(α) = a2 + 3b2 = 2, 2, 1 +

√
−3 and 1 −

√
−3 are

irreducible elements in R.

(b) Show that R is not a UFD.

Solution. Since 2 ·2 = (1+
√
−3)(1−

√
−3) gives two distinct representations

of 4 as a product of irreducible elements which are not associate each other.
Hence R is not a UFD.

4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in t
over R is a UFD, show that the polynomial ring R[t1, t2, . . . , tn] in t1, t2, . . . , tn over
R is a UFD. (10pts)

Solution. We prove by induction on n. The theorem states the case when n = 1.
By the induction hypothesis assume that R[t1, t2, . . . , tk−1] is a UFD. Since

R[t1, t2, . . . , tk] = R[t1, t2, . . . , tk−1][tk],

R[t1, t2, . . . , tk] can be regarded as a polynomial ring in tk over a UFD R[t1, t2, . . . , tk−1].
Hence R[t1, t2, . . . , tk] is a UFD.
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