Algebra II Final 2006

In the following, when R is a commutative ring with 1, $\langle a \rangle = \{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

1. Let R be an integral domain.

(40 pts)

- (a) Let $a, b \in R$. Show that the following are equivalent.
 - (i) $a \mid b$ and $b \mid a$.
 - (ii) $\langle a \rangle = \langle b \rangle$.
 - (iii) $a \approx b$, i.e., there exists $u \in U(R)$ such that b = ua, where u is a unit of R.
- (b) Show that the polynomial ring R[t] is an integral domain.
- (c) Show that U(R[t]) = U(R).
- (d) Let p be a nonzero element in R such that $p \notin U(R)$. Suppose $\langle p \rangle$ is a prime ideal. Show that p is an irreducible element.
- 2. Let $\boldsymbol{Q}[t]$, the polynomial ring over the rational number field \boldsymbol{Q} . Let $f(t) = t^5 + 6t 12$. Let α be the unique real root of f(t) = 0, and $\boldsymbol{Q}[\alpha] = \{g(\alpha) \mid g(t) \in \boldsymbol{Q}[t]\}$. (30pts)
 - (a) Show that f(t) is an irreducible element in an integral domain Q[t].
 - (b) Let $\theta : \mathbf{Q}[t] \to \mathbf{Q}[\alpha] \subset \mathbf{R} \ (g(t) \mapsto g(\alpha))$. Show that $\operatorname{Ker}(\theta) = \langle f(t) \rangle$.
 - (c) Show that $\boldsymbol{Q}[\alpha]$ is a field.
- 3. Let $R = \{a + b\sqrt{-3} \mid a, b \in \mathbf{Z}\}.$

(20 pts)

- (a) Show that 2, $1 + \sqrt{-3}$ and $1 \sqrt{-3}$ are irreducible elements in R.
- (b) Show that R is not a UFD.
- 4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in t over R is a UFD, show that the polynomial ring $R[t_1, t_2, \ldots, t_n]$ in t_1, t_2, \ldots, t_n over R is a UFD. (10pts)

Solutions to Algebra II Final 2006

- 1. Let R be an integral domain.
 - (a) Let $a, b \in R$. Show that the following are equivalent.
 - (i) $a \mid b$ and $b \mid a$.
 - (ii) $\langle a \rangle = \langle b \rangle$.
 - (iii) $a \approx b$, i.e., there exists $u \in U(R)$ such that b = ua, where u is a unit of R.

Solution. (i) \rightarrow (ii): Since $a \mid b$ and $b \mid a$, there exist $c, d \in R$ such that b = ac and a = bd. Hence $b \in \langle a \rangle$ and $a \in \langle b \rangle$. Therefore $\langle b \rangle \subseteq \langle a \rangle$ and $\langle a \rangle \subseteq \langle b \rangle$. Thus $\langle a \rangle = \langle b \rangle$.

(ii) \rightarrow (iii): Since $\langle a \rangle = \langle b \rangle$, if a = 0, then b = 0 and we can take 1 for u. Assume that $a \neq 0$. Since $a, b \in \langle a \rangle = \langle b \rangle$, there exist $u, v \in R$ such that a = vb, b = ua. Hence a = vb = vua and a(1 - vu) = 0. Since R is an integral domain and $a \neq 0, 1 = vu = uv$ and $u \in U(R)$. Thus b = ua with $u \in U(R)$. (iii) \rightarrow (i): Let b = ua with $u \in U(R)$. Then $a \mid b$. Since $a = u^{-1}b, b \mid a$.

- (b) Show that the polynomial ring R[t] is an integral domain. **Solution.** Since R is an integral domain, $\deg(f \cdot g) = \deg(f) + \deg(g)$ holds for $f, g \in R[t]$. If $f \cdot g = 0$, then $-\infty = \deg(f \cdot g) = \deg(f) + \deg(g)$. Hence either $\deg(f) = -\infty$ or $\deg(g) = -\infty$. Therefore either f = 0 or g = 0 and R[t] is an integral domain.
- (c) Show that U(R[t]) = U(R). **Solution.** It is clear that $U(R[t]) \supseteq U(R)$. Suppose $1 = f \cdot g$. Then $0 = \deg(1) = \deg(f \cdot g) = \deg(f) + \deg(g)$. Hence $\deg(f) = \deg(g) = 0$. Therefore $f, g \in R$. Since $f \cdot g = 1, f \in U(R)$.
- (d) Let p be a nonzero element in R such that $p \notin U(R)$. Suppose $\langle p \rangle$ is a prime ideal. Show that p is an irreducible element. **Solution.** Suppose $p = a \cdot b$. Then $\langle p \rangle \subseteq \langle a \rangle$, and $\langle p \rangle \subseteq \langle b \rangle$. Since $\langle p \rangle$ is a prime ideal, either $a \in \langle p \rangle$ or $b \in \langle p \rangle$. Thus either $\langle a \rangle \subseteq \langle p \rangle$ or $\langle b \rangle \subseteq \langle p \rangle$. Therefore, either $\langle a \rangle = \langle p \rangle$ or $\langle b \rangle = \langle p \rangle$. Now by 1, either $b \in U(R)$ or $a \in U(R)$.

- 2. Let $\boldsymbol{Q}[t]$, the polynomial ring over the rational number field \boldsymbol{Q} . Let $f(t) = t^5 + 6t 12$. Let α be the unique real root of f(t) = 0, and $\boldsymbol{Q}[\alpha] = \{g(\alpha) \mid g(t) \in \boldsymbol{Q}[t]\}$. (30pts)
 - (a) Show that f(t) is an irreducible element in an integral domain Q[t]. Solution. By Eisenstein's criterion taking p = 3, f(t) is irreducible over Z. By Gauss' lemma, it is irreducible over Q. Since Q is a field, f(t) is an irreducible element.
 - (b) Let $\theta : \mathbf{Q}[t] \to \mathbf{Q}[\alpha] \subset \mathbf{R} (g(t) \mapsto g(\alpha))$. Show that $\operatorname{Ker}(\theta) = \langle f(t) \rangle$. Solution. It is clear that θ is a surjective ring homomorphism, and that $\operatorname{Ker}(\theta) \supseteq \langle f(t) \rangle$. Since $\mathbf{Q}[t]$ is an Euclidean domain, $\mathbf{Q}[t]$ is a PID. Since $\operatorname{Ker}(\theta)$ is an ideal, there exists $p(t) \in R[t]$ such that $\operatorname{Ker}(\theta) = \langle p(t) \rangle \ni f(t)$. Since f(t) is irreducible, $\operatorname{Ker}(\theta) = \langle p(t) \rangle = \langle f(t) \rangle$.
 - (c) Show that $\boldsymbol{Q}[\alpha]$ is a field. **Solution.** By Isomorphism Theorm, $\boldsymbol{Q}[t]/\operatorname{Ker}(\theta) \simeq \boldsymbol{Q}[\alpha]$. Since f(t) is an irreducible element in a PID $\boldsymbol{Q}[t]$, it generates a maximal ideal. Since $\operatorname{Ker}(\theta) = \langle f(t) \rangle$, $\boldsymbol{Q}[t]/\operatorname{Ker}(\theta)$ is a field, and so is $\boldsymbol{Q}[\alpha]$.
- 3. Let $R = \{a + b\sqrt{-3} \mid a, b \in \mathbf{Z}\}.$
 - (a) Show that 2, $1 + \sqrt{-3}$ and $1 \sqrt{-3}$ are irreducible elements in R. **Solution.** Let $N(a + b\sqrt{-3}) = a^2 + 3b^2$. Then $N(\alpha \cdot \beta) = N(\alpha)N(\beta)$. Hence if $\alpha \cdot \beta = 1$, then $1 = N(1) = N(\alpha)N(\beta)$ and $N(\alpha) = N(\beta) = 1$. Therefore, $U(R) = \{\pm 1\}$. Now $4 = N(2) = N(1\pm\sqrt{-3})$. By definition there is no element $\alpha = a + b\sqrt{-3}$ such that $N(\alpha) = a^2 + 3b^2 = 2$, $2, 1 + \sqrt{-3}$ and $1 - \sqrt{-3}$ are irreducible elements in R.

(20 pts)

- (b) Show that R is not a UFD. **Solution.** Since $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ gives two distinct representations of 4 as a product of irreducible elements which are not associate each other. Hence R is not a UFD.
- 4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in t over R is a UFD, show that the polynomial ring $R[t_1, t_2, \ldots, t_n]$ in t_1, t_2, \ldots, t_n over R is a UFD. (10pts)

Solution. We prove by induction on n. The theorem states the case when n = 1. By the induction hypothesis assume that $R[t_1, t_2, \ldots, t_{k-1}]$ is a UFD. Since

$$R[t_1, t_2, \dots, t_k] = R[t_1, t_2, \dots, t_{k-1}][t_k],$$

 $R[t_1, t_2, \ldots, t_k]$ can be regarded as a polynomial ring in t_k over a UFD $R[t_1, t_2, \ldots, t_{k-1}]$. Hence $R[t_1, t_2, \ldots, t_k]$ is a UFD.