Algebra II Final 2006

In the following, when R is a commutative ring with $1,\langle a\rangle=\{r \cdot a \mid r \in R\}$, which is denoted by (a) in the textbook.

1. Let R be an integral domain.
(a) Let $a, b \in R$. Show that the following are equivalent.
(i) $a \mid b$ and $b \mid a$.
(ii) $\langle a\rangle=\langle b\rangle$.
(iii) $a \approx b$, i.e., there exists $u \in U(R)$ such that $b=u a$, where u is a unit of R.
(b) Show that the polynomial ring $R[t]$ is an integral domain.
(c) Show that $U(R[t])=U(R)$.
(d) Let p be a nonzero element in R such that $p \notin U(R)$. Suppose $\langle p\rangle$ is a prime ideal. Show that p is an irreducible element.
2. Let $\boldsymbol{Q}[t]$, the polynomial ring over the rational number field \boldsymbol{Q}. Let $f(t)=t^{5}+6 t-$ 12. Let α be the unique real root of $f(t)=0$, and $\boldsymbol{Q}[\alpha]=\{g(\alpha) \mid g(t) \in \boldsymbol{Q}[t]\}$. (30pts)
(a) Show that $f(t)$ is an irreducible element in an integral domain $\boldsymbol{Q}[t]$.
(b) Let $\theta: \boldsymbol{Q}[t] \rightarrow \boldsymbol{Q}[\alpha] \subset \boldsymbol{R}(g(t) \mapsto g(\alpha))$. Show that $\operatorname{Ker}(\theta)=\langle f(t)\rangle$.
(c) Show that $\boldsymbol{Q}[\alpha]$ is a field.
3. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\}$.
(a) Show that $2,1+\sqrt{-3}$ and $1-\sqrt{-3}$ are irreducible elements in R.
(b) Show that R is not a UFD.
4. Using a theorem that states that if R is a UFD, then the polynomial ring $R[t]$ in t over R is a UFD, show that the polynomial ring $R\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ in $t_{1}, t_{2}, \ldots, t_{n}$ over R is a UFD.

Solutions to Algebra II Final 2006

1. Let R be an integral domain.
(40pts)
(a) Let $a, b \in R$. Show that the following are equivalent.
(i) $a \mid b$ and $b \mid a$.
(ii) $\langle a\rangle=\langle b\rangle$.
(iii) $a \approx b$, i.e., there exists $u \in U(R)$ such that $b=u a$, where u is a unit of R.

Solution. (i) \rightarrow (ii): Since $a \mid b$ and $b \mid a$, there exist $c, d \in R$ such that $b=a c$ and $a=b d$. Hence $b \in\langle a\rangle$ and $a \in\langle b\rangle$. Therefore $\langle b\rangle \subseteq\langle a\rangle$ and $\langle a\rangle \subseteq\langle b\rangle$. Thus $\langle a\rangle=\langle b\rangle$.
(ii) \rightarrow (iii): Since $\langle a\rangle=\langle b\rangle$, if $a=0$, then $b=0$ and we can take 1 for u. Assume that $a \neq 0$. Since $a, b \in\langle a\rangle=\langle b\rangle$, there exist $u, v \in R$ such that $a=v b, b=u a$. Hence $a=v b=v u a$ and $a(1-v u)=0$. Since R is an integral domain and $a \neq 0,1=v u=u v$ and $u \in U(R)$. Thus $b=u a$ with $u \in U(R)$. (iii) \rightarrow (i): Let $b=u a$ with $u \in U(R)$. Then $a \mid b$. Since $a=u^{-1} b, b \mid a$.
(b) Show that the polynomial ring $R[t]$ is an integral domain.

Solution. Since R is an integral domain, $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ holds for $f, g \in R[t]$. If $f \cdot g=0$, then $-\infty=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. Hence either $\operatorname{deg}(f)=-\infty$ or $\operatorname{deg}(g)=-\infty$. Therefore either $f=0$ or $g=0$ and $R[t]$ is an integral domain.
(c) Show that $U(R[t])=U(R)$.

Solution. It is clear that $U(R[t]) \supseteq U(R)$. Suppose $1=f \cdot g$. Then $0=$ $\operatorname{deg}(1)=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. Hence $\operatorname{deg}(f)=\operatorname{deg}(g)=0$. Therefore $f, g \in R$. Since $f \cdot g=1, f \in U(R)$.
(d) Let p be a nonzero element in R such that $p \notin U(R)$. Suppose $\langle p\rangle$ is a prime ideal. Show that p is an irreducible element.
Solution. Suppose $p=a \cdot b$. Then $\langle p\rangle \subseteq\langle a\rangle$, and $\langle p\rangle \subseteq\langle b\rangle$. Since $\langle p\rangle$ is a prime ideal, either $a \in\langle p\rangle$ or $b \in\langle p\rangle$. Thus either $\langle a\rangle \subseteq\langle p\rangle$ or $\langle b\rangle \subseteq\langle p\rangle$. Therefore, either $\langle a\rangle=\langle p\rangle$ or $\langle b\rangle=\langle p\rangle$. Now by 1, either $b \in U(R)$ or $a \in U(R)$.
2. Let $\boldsymbol{Q}[t]$, the polynomial ring over the rational number field \boldsymbol{Q}. Let $f(t)=t^{5}+6 t-$ 12. Let α be the unique real root of $f(t)=0$, and $\boldsymbol{Q}[\alpha]=\{g(\alpha) \mid g(t) \in \boldsymbol{Q}[t]\}$. (30pts)
(a) Show that $f(t)$ is an irreducible element in an integral domain $\boldsymbol{Q}[t]$.

Solution. By Eisenstein's criterion taking $p=3, f(t)$ is irreducible over \boldsymbol{Z}. By Gauss' lemma, it is irreducible over \boldsymbol{Q}. Since \boldsymbol{Q} is a field, $f(t)$ is an irreducible element.
(b) Let $\theta: \boldsymbol{Q}[t] \rightarrow \boldsymbol{Q}[\alpha] \subset \boldsymbol{R}(g(t) \mapsto g(\alpha))$. Show that $\operatorname{Ker}(\theta)=\langle f(t)\rangle$.

Solution. It is clear that θ is a surjective ring homomorphism, and that $\operatorname{Ker}(\theta) \supseteq\langle f(t)\rangle$. Since $\boldsymbol{Q}[t]$ is an Euclidean domain, $\boldsymbol{Q}[t]$ is a PID. Since $\operatorname{Ker}(\theta)$ is an ideal, there exists $p(t) \in R[t]$ such that $\operatorname{Ker}(\theta)=\langle p(t)\rangle \ni f(t)$. Since $f(t)$ is irreducible, $\operatorname{Ker}(\theta)=\langle p(t)\rangle=\langle f(t)\rangle$.
(c) Show that $\boldsymbol{Q}[\alpha]$ is a field.

Solution. By Isomorphism Theorm, $\boldsymbol{Q}[t] / \operatorname{Ker}(\theta) \simeq \boldsymbol{Q}[\alpha]$. Since $f(t)$ is an irreducible element in a PID $\boldsymbol{Q}[t]$, it generates a maximal ideal. Since $\operatorname{Ker}(\theta)=$ $\langle f(t)\rangle, \boldsymbol{Q}[t] / \operatorname{Ker}(\theta)$ is a field, and so is $\boldsymbol{Q}[\alpha]$.
3. Let $R=\{a+b \sqrt{-3} \mid a, b \in \boldsymbol{Z}\}$.
(a) Show that $2,1+\sqrt{-3}$ and $1-\sqrt{-3}$ are irreducible elements in R.

Solution. Let $N(a+b \sqrt{-3})=a^{2}+3 b^{2}$. Then $N(\alpha \cdot \beta)=N(\alpha) N(\beta)$. Hence if $\alpha \cdot \beta=1$, then $1=N(1)=N(\alpha) N(\beta)$ and $N(\alpha)=N(\beta)=1$. Therefore, $U(R)=\{ \pm 1\}$. Now $4=N(2)=N(1 \pm \sqrt{-3})$. By definition there is no element $\alpha=a+b \sqrt{-3}$ such that $N(\alpha)=a^{2}+3 b^{2}=2,2,1+\sqrt{-3}$ and $1-\sqrt{-3}$ are irreducible elements in R.
(b) Show that R is not a UFD.

Solution. Since $2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})$ gives two distinct representations of 4 as a product of irreducible elements which are not associate each other. Hence R is not a UFD.
4. Using a theorem that states that if R is a UFD, then the polynomial ring $R[t]$ in t over R is a UFD, show that the polynomial ring $R\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ in $t_{1}, t_{2}, \ldots, t_{n}$ over R is a UFD.
(10pts)
Solution. We prove by induction on n. The theorem states the case when $n=1$. By the induction hypothesis assume that $R\left[t_{1}, t_{2}, \ldots, t_{k-1}\right]$ is a UFD. Since

$$
R\left[t_{1}, t_{2}, \ldots, t_{k}\right]=R\left[t_{1}, t_{2}, \ldots, t_{k-1}\right]\left[t_{k}\right]
$$

$R\left[t_{1}, t_{2}, \ldots, t_{k}\right]$ can be regarded as a polynomial ring in t_{k} over a UFD $R\left[t_{1}, t_{2}, \ldots, t_{k-1}\right]$. Hence $R\left[t_{1}, t_{2}, \ldots, t_{k}\right]$ is a UFD.

