November 21, 2006

Algebra II Final 2006

In the following, when R is a commutative ring with 1, (a) = {r-a | r € R}, which is
denoted by (a) in the textbook.

1. Let R be an integral domain. (40pts)

(a) Let a,b € R. Show that the following are equivalent.
(i) a | band b | a.
(ii) (a) = (b).

(iii) a = b, i.e., there exists u € U(R) such that b = ua, where u is a unit of R.
(b) Show that the polynomial ring RJt] is an integral domain.
(c¢) Show that U(R[t]) = U(R).

(d) Let p be a nonzero element in R such that p ¢ U(R). Suppose (p) is a prime
ideal. Show that p is an irreducible element.

2. Let Q|[t], the polynomial ring over the rational number field Q. Let f(t) = t°+ 6t —
12. Let a be the unique real root of f(t) = 0, and Qo] = {g(a) | g(t) € Q[t]}.
(30pts)

(a) Show that f(t) is an irreducible element in an integral domain Q|[t].
(b) Let 6: Q[t] — Qo] C R (g(t) — g(a)). Show that Ker(0) = (f(¢)).
(c) Show that Q[a] is a field.

3. Let R={a+by/—-3]|a,be Z}. (20pts)

(a) Show that 2, 14 +/—3 and 1 — +/—3 are irreducible elements in R.
(b) Show that R is not a UFD.

4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in ¢
over R is a UFD, show that the polynomial ring Rl[t,ts,...,t,] in tq, to, ..., , over
R is a UFD. (10pts)
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Solutions to Algebra II Final 2006

1. Let R be an integral domain. (40pts)

(a)

Let a,b € R. Show that the following are equivalent.

(i) a|band b | a.

(i) (a) = ().
(i) a = b, i.e., there exists u € U(R) such that b = ua, where u is a unit of R.
Solution. (i)—(ii): Since a | b and b | a, there exist ¢, d € R such that b = ac
and a = bd. Hence b € (a) and a € (b). Therefore (b) C (a) and (a) C (b).
Thus (a) = (b).

(ii)—(iii): Since (a) = (b), if @ = 0, then b = 0 and we can take 1 for w.
Assume that a # 0. Since a, b € (a) = (b), there exist u, v € R such that

a = vb, b = ua. Hence a = vb = vua and a(1 —vu) = 0. Since R is an integral
domain and a # 0, 1 = vu = wv and u € U(R). Thus b = ua with v € U(R).

(iii)—(i): Let b = ua with u € U(R). Then a | b. Since a = u~'b, b | a. ]

Show that the polynomial ring R[t] is an integral domain.

Solution. Since R is an integral domain, deg(f - g) = deg(f) + deg(g) holds
for f,g € R[t]. If f-g =0, then —oo = deg(f - g) = deg(f) + deg(g). Hence
either deg(f) = —oo or deg(g) = —oo. Therefore either f = 0 or g = 0 and
RJt] is an integral domain. u

Show that U(R]t]) = U(R).
Solution. It is clear that U(R[t]) D U(R). Suppose 1 = f-g. Then 0 =
H

deg(1) = deg(f - g) = deg(f) + deg(g). Hence deg(f) = deg(g) = 0. Therefore
f,g € R. Since f-g=1, f € UR). |

Let p be a nonzero element in R such that p ¢ U(R). Suppose (p) is a prime
ideal. Show that p is an irreducible element.

Solution. Suppose p = a-b. Then (p) C (a), and (p) C (b). Since (p) is
a prime ideal, either a € (p) or b € (p). Thus either (a) C (p) or (b) C (p).
Therefore, either (a) = (p) or (b) = (p). Now by 1, either b € U(R) or
acU(R). |



2. Let Q|[t], the polynomial ring over the rational number field Q. Let f(t) = t°+ 6t —
12. Let a be the unique real root of f(t) = 0, and Qo] = {g(a) | g(t) € Q[t]}.
(30pts)

(a) Show that f(t) is an irreducible element in an integral domain Q|[t].

Solution. By Eisenstein’s criterion taking p = 3, f(¢) is irreducible over
Z. By Gauss’ lemma, it is irreducible over Q. Since Q is a field, f(t) is an
irreducible element. [

(b) Let 6: Q[t] — Q[a] C R (g(t) — g(a)). Show that Ker(8) = (f(t)).
Solution. It is clear that 6 is a surjective ring homomorphism, and that
Ker(6) O (f(t)). Since Q[t] is an Euclidean domain, Q[t] is a PID. Since
Ker(f) is an ideal, there exists p(t) € R[t] such that Ker(0) = (p(t)) > f(¢).
Since f(t) is irreducible, Ker(0) = (p(t)) = (f(¢)). n

(c) Show that Q[a] is a field.

Solution. By Isomorphism Theorm, Q[t]/Ker(0) ~ Qla]. Since f(t) is an
irreducible element in a PID Q[t], it generates a maximal ideal. Since Ker() =
(f(t)), Q[t]/Ker(0) is a field, and so is Q[a]. |

3. Let R={a+by—-3]|a,be Z}. (20pts)

(a) Show that 2, 1+ /=3 and 1 — /=3 are irreducible elements in R.
Solution. Let N(a + byv/—3) = a® + 3b%. Then N(a - ) = N(a)N(3). Hence
if - =1, then 1= N(1) = N(a)N(B) and N(«a) = N(B) = 1. Therefore,
U(R) = {£1}. Now 4 = N(2) = N(1++/=3). By definition there is no element
a = a+ by/—3 such that N(a) = a®+ 30> =2,2, 1 + /-3 and 1 — /-3 are

irreducible elements in R. ]

(b) Show that R is not a UFD.

Solution. Since 2-2 = (1++/—3)(1—+/—3) gives two distinct representations
of 4 as a product of irreducible elements which are not associate each other.
Hence R is not a UFD. [ ]

4. Using a theorem that states that if R is a UFD, then the polynomial ring R[t] in ¢
over R is a UFD, show that the polynomial ring R[t1,ts,...,t,] in ty, ta, ..., ¢, over
R is a UFD. (10pts)

Solution. We prove by induction on n. The theorem states the case when n = 1.
By the induction hypothesis assume that R[ty,ts,...,tx_1] is a UFD. Since

R[t17t27 s 7tk] = R[t17t2> s 7tk71”tk]7

Rlty,ta, ..., 1] can be regarded as a polynomial ring in ¢, over a UFD R|[tq, o, ... tx_1].
Hence R[tl, tQ, R ,tk] is a UFD. |



