Algebra II Final 2005

- 1. Let R be an integral domain and $a, b \in R$. Show that the following are equivalent.
 - (a) $(a) \subseteq (b)$ and $(b) \subseteq (a)$.
 - (b) There exists $u \in U(R)$ such that b = ua.
- 2. Find all units and zero divisors of Z_{18} .
- 3. Let a, b be elements in an integral domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$. Show the following.
 - (a) Let a and b be elements of a principal ideal domain R. Then a and b have a greatest common divisor d which has the form d = ax + by with $x, y \in R$.
 - (b) If R is a principal ideal domain and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.
- 4. Let $\mathbf{Z}[t]$ be a polynomial ring in t over the ring of rational integers \mathbf{Z} . Let

$$\phi: \mathbf{Z}[t] \longrightarrow \mathbf{C} \ (f(t) \mapsto f(\sqrt{-1})).$$

(You may assume that ϕ is a ring homomorphism.)

- (a) Show that $\mathbf{Z}[t]$ is an integral domain.
- (b) Let $R = \text{Im}(\phi)$. Show that $R = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}$, and R is an integral domain.
- (c) Show that $I = \text{Ker}\phi$ is an ideal of $\mathbf{Z}[t]$. Show also that I is a prime ideal but not a maximal ideal.
- (d) Determine U(R).
- (e) Show that 3 is a primitive element of R, but 2 is not.
- (f) Determine whether (5), the ideal generated by 5, is a prime ideal in R.

Solutions to Algebra II Final 2005

- 1. Let R be an integral domain and $a, b \in R$. Show that the following are equivalent.
 - (a) $(a) \subseteq (b)$ and $(b) \subseteq (a)$.
 - (b) There exists $u \in U(R)$ such that b = ua.

Solution. (a) \rightarrow (b): Since (a) = (b), if a = 0, then b = 0 and we can take 1 for u. Assume that $a \neq 0$. Since $a, b \in (a) = (b)$, there exist $u, v \in R$ such that a = vb, b = ua. Hence a = vb = vua and a(1 - vu) = 0. Since R is an integral domain and $a \neq 0$, 1 = vu = uv and $u \in U(R)$. Thus b = ua with $u \in U(R)$.

(b) \rightarrow (a): Let b = ua with $u \in U(R)$. Then $b \in (a)$. Since $a = u^{-1}b$, we have $a \in (b)$ as well. Hence $(a) \subseteq (b)$ and $(b) \subseteq (a)$.

2. Find all units and zero divisors of Z_{18} .

Solution.

units: [1], [5], [7], [11], [13], [17]. **zero divisors:** [2], [3], [4], [6], [8], [9], [10], [12], [14], [15], [16].

- 3. Let a, b be elements in an integral domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$. Show the following.
 - (a) Let a and b be elements of a principal ideal domain R. Then a and b have a greatest common divisor d which has the form d = ax + by with $x, y \in R$.

Solution. Recall that since R is an integral domain the following hold for $a, b \in R$:

$$a \mid b \Leftrightarrow (b) \subseteq (a).$$

Since $I = \{ax + by \mid x, y \in R\} = (a) + (b)$ is an ideal of an integral domain R, there exists $d \in R$ such that I = (d). Since $d \in I$, there exist $x, y \in R$ such that d = ax + by. Since $(a) \subseteq (d)$ and $(b) \subseteq (d)$, $d \mid a$ and $d \mid b$.

Suppose $c \mid a$ and $c \mid b$, then $(a) \subseteq (c)$ and $(b) \subseteq (c)$. Hence

$$(d) = I = (a) + (b) \subseteq (c).$$

Thus $c \mid d$. Therefore d is a greatest common divisor of a and b.

(b) If R is a principal ideal domain and $p \mid bc$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

Let $I = \{px + by \mid x, y \in R\}$. Since R is a principal ideal domain, there exists $d \in R$ such that I = (d) and d is a greatest common divisor of p and b. In particular, $d \mid p$ and there exists $e \in R$ such that p = de. Since p is irreducible, either $d \in U(R)$ or $e \in U(R)$. Hence either I = R or I = (p). Suppose I = (p). Since $(b) \subseteq I = (p)$, $p \mid b$. Suppose I = R. Then there exist $x, y \in R$ such that 1 = px + by. Now c = pcx + bcy. Since $p \mid bc$ by assumption, and $p \mid pcx$, we have $p \mid c$. Thus $p \mid b$ or $p \mid c$.

4. Let $\mathbf{Z}[t]$ be a polynomial ring in t over the ring of rational integers \mathbf{Z} . Let

$$\phi: \mathbf{Z}[t] \longrightarrow \mathbf{C} \ (f(t) \mapsto f(\sqrt{-1})).$$

(You may assume that ϕ is a ring homomorphism.)

- (a) Show that Z[t] is an integral domain.
 Solution. Since Z is an integral domain and every polynomial ring over an integral domain is an integral domain, Z[t] is an integral domain.
 (Let 0 ≠ f = f₀ + f₁t + ··· + f_mt^m and 0 ≠ g = g₀ + g₁t + ··· + g_ntⁿ with f_m ≠ 0 and g_n ≠ 0. Then f ⋅ g = f₀g₀ + (f₀g₁ + g₀f₁)t + ··· + f_mg_nt^{m+n}. Since Z is an integral domain, f_mg_n ≠ 0. Hence f ⋅ g ≠ 0. Thus Z[t] is an integral domain.)
- (b) Let R = Im(φ). Show that R = {a + b√-1 | a, b ∈ Z}, and R is an integral domain. Solution. Since R is the image of a ring homomorphism, R is a subring of a field C. Since a field does not have a zero divisor, R is an integral domain. Since (√-1)^m ∈ {1, -1, √-1, -√-1}, φ(f(t)) = f(√-1) ∈ {a + b√-1 | a, b ∈ Z}. On the other hand, φ(a + bt) = a + b√-1. Hence R = {a + b√-1 | a, b ∈ Z}.
- (c) Show that $I = \text{Ker}\phi$ is an ideal of $\mathbf{Z}[t]$. Show also that I is a prime ideal but not a maximal ideal.

Solution. Since ϕ is a ring homomorphism, its kernel is an ideal. By the isomorphism theorem, $\mathbf{Z}[t]/I = \mathbf{Z}[t]/\text{Ker}(\phi) \simeq \text{Im}(\phi) = R$. R is an integral domain as was shown in the previous problem. But R is not a field as $2^{-1} \notin R$. Hence I is a prime ideal but not a maximal ideal. Note that if I is an ideal of a commutative ring R, then R/I is an integral domain if and only if I is a prime ideal. Moreovere, R/I is a field if and only if I is a maximal ideal.

(d) Determine U(R).

Solution. Let $N(a + b\sqrt{-1}) = (a + b\sqrt{-1})(a + b\sqrt{-1}) = a^2 + b^2$. Then for all $\alpha, \beta \in R$, $N(\alpha\beta) = N(\alpha)N(\beta)$. If $\alpha = a + b\sqrt{-1} \in R$ is a unit, then there exists $\beta \in R$ such that $\alpha\beta = 1$. Then $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta)$.Since $N(\alpha) = a^2 + b^2$ is a nonnegative integer and so is $N(\beta)$, $N(\alpha) = 1$. Thus $a^2 + b^2 = 1$ and $\alpha \in \{1, -1, \sqrt{-1}, -\sqrt{-1}\}$. Since $\{1, -1, \sqrt{-1}, -\sqrt{-1}\} \subseteq U(R)$, we have $U(R) = \{1, -1, \sqrt{-1}, -\sqrt{-1}\}$. In particular, $\alpha \in U(R) \Leftrightarrow N(\alpha) = 1$.

- (e) Show that 3 is a primitive (irreducible) element of R, but 2 is not.
 Solution. Suppose 3 = αβ with α, β ∈ R \ U(R). Then 9 = N(3) = N(αβ) = N(α)N(β). Since N(α) ≠ 1 and N(β) ≠ 1, N(α) = N(β) = 3. Let α = a + b√-1. Then 3 = a² + b². But this is impossible. Hence 3 is an irredubible element.
 2 = (1 + √-1)(1 √-1) and N(1 + √-1) = N(1 √-1) = 2 ≠ 1. Hence 1 + √-1, 1 √-1 ∉ U(R). Hence 2 is not irreducible.
- (f) Determine whether (5), the ideal generated by 5, is a prime ideal in R. **Solution.** $(2 + \sqrt{-1})(2 - \sqrt{-1}) = 5 \in (5)$. Let $\alpha \in \{2 + \sqrt{-1}, 2 - \sqrt{-1}\}$ and $\alpha \in (5)$. Then $\alpha = 5\beta$ for some $\beta \in R$. Then $5 = N(\alpha) = N(5\beta) = N(5)N(\beta) = 25N(\beta)$. This is impossible. Hence (5) is not a prime ideal.