Algebra II Final 2005

1. Let R be an integral domain and $a, b \in R$. Show that the following are equivalent.
(a) $(a) \subseteq(b)$ and $(b) \subseteq(a)$.
(b) There exists $u \in U(R)$ such that $b=u a$.
2. Find all units and zero divisors of \boldsymbol{Z}_{18}.
3. Let a, b be elements in an integral domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.
Show the following.
(a) Let a and b be elements of a principal ideal domain R. Then a and b have a greatest common divisor d which has the form $d=a x+b y$ with $x, y \in R$.
(b) If R is a principal ideal domain and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.
4. Let $\boldsymbol{Z}[t]$ be a polynomial ring in t over the ring of rational integers \boldsymbol{Z}. Let

$$
\phi: \boldsymbol{Z}[t] \longrightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-1})) .
$$

(You may assume that ϕ is a ring homomorphism.)
(a) Show that $\boldsymbol{Z}[t]$ is an integral domain.
(b) Let $R=\operatorname{Im}(\phi)$. Show that $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$, and R is an integral domain.
(c) Show that $I=\operatorname{Ker} \phi$ is an ideal of $\boldsymbol{Z}[t]$. Show also that I is a prime ideal but not a maximal ideal.
(d) Determine $U(R)$.
(e) Show that 3 is a primitive element of R, but 2 is not.
(f) Determine whether (5), the ideal generated by 5 , is a prime ideal in R.

Solutions to Algebra II Final 2005

1. Let R be an integral domain and $a, b \in R$. Show that the following are equivalent.
(a) $(a) \subseteq(b)$ and $(b) \subseteq(a)$.
(b) There exists $u \in U(R)$ such that $b=u a$.

Solution. $\quad(\mathrm{a}) \rightarrow(\mathrm{b})$: Since $(a)=(b)$, if $a=0$, then $b=0$ and we can take 1 for u. Assume that $a \neq 0$. Since $a, b \in(a)=(b)$, there exist $u, v \in R$ such that $a=v b, b=u a$. Hence $a=v b=v u a$ and $a(1-v u)=0$. Since R is an integral domain and $a \neq 0,1=v u=u v$ and $u \in U(R)$. Thus $b=u a$ with $u \in U(R)$.
(b) \rightarrow (a): Let $b=u a$ with $u \in U(R)$. Then $b \in(a)$. Since $a=u^{-1} b$, we have $a \in(b)$ as well. Hence $(a) \subseteq(b)$ and $(b) \subseteq(a)$.
2. Find all units and zero divisors of \boldsymbol{Z}_{18}.

Solution.

units: [1], [5], [7], [11], [13], [17].
zero divisors: [2], [3], [4], [6], [8], [9], [10], [12], [14], [15], [16].
3. Let a, b be elements in an integral domain R. A greatest common divisor of a and b is a ring element d such that (i) $d \mid a$ and $d \mid b$; (ii) if $c \mid a$ and $c \mid b$ for some $c \in R$, then $c \mid d$.
Show the following.
(a) Let a and b be elements of a principal ideal domain R. Then a and b have a greatest common divisor d which has the form $d=a x+b y$ with $x, y \in R$.
Solution. Recall that since R is an integral domain the following hold for $a, b \in R$:

$$
a \mid b \Leftrightarrow(b) \subseteq(a) .
$$

Since $I=\{a x+b y \mid x, y \in R\}=(a)+(b)$ is an ideal of an integral domain R, there exists $d \in R$ such that $I=(d)$. Since $d \in I$, there exist $x, y \in R$ such that $d=a x+b y$. Since $(a) \subseteq(d)$ and $(b) \subseteq(d), d \mid a$ and $d \mid b$.
Suppose $c \mid a$ and $c \mid b$, then $(a) \subseteq(c)$ and $(b) \subseteq(c)$. Hence

$$
(d)=I=(a)+(b) \subseteq(c) .
$$

Thus $c \mid d$. Therefore d is a greatest common divisor of a and b.
(b) If R is a principal ideal domain and $p \mid b c$ where $p, b, c \in R$ and p is irreducible, then $p \mid b$ or $p \mid c$.

Let $I=\{p x+b y \mid x, y \in R\}$. Since R is a principal ideal domain, there exists $d \in R$ such that $I=(d)$ and d is a greatest common divisor of p and b. In particular, $d \mid p$ and there exists $e \in R$ such that $p=d e$. Since p is irreducible, either $d \in U(R)$ or $e \in U(R)$. Hence either $I=R$ or $I=(p)$. Suppose $I=(p)$. Since $(b) \subseteq I=(p), p \mid b$. Suppose $I=R$. Then there exist $x, y \in R$ such that $1=p x+b y$. Now $c=p c x+b c y$. Since $p \mid b c$ by assumption, and $p \mid p c x$, we have $p \mid c$. Thus $p \mid b$ or $p \mid c$.
4. Let $\boldsymbol{Z}[t]$ be a polynomial ring in t over the ring of rational integers \boldsymbol{Z}. Let

$$
\phi: \boldsymbol{Z}[t] \longrightarrow \boldsymbol{C}(f(t) \mapsto f(\sqrt{-1})) .
$$

(You may assume that ϕ is a ring homomorphism.)
(a) Show that $\boldsymbol{Z}[t]$ is an integral domain.

Solution. Since \boldsymbol{Z} is an integral domain and every polynomial ring over an integral domain is an integral domain, $\boldsymbol{Z}[t]$ is an integral domain.
(Let $0 \neq f=f_{0}+f_{1} t+\cdots+f_{m} t^{m}$ and $0 \neq g=g_{0}+g_{1} t+\cdots+g_{n} t^{n}$ with $f_{m} \neq 0$ and $g_{n} \neq 0$. Then $f \cdot g=f_{0} g_{0}+\left(f_{0} g_{1}+g_{0} f_{1}\right) t+\cdots+f_{m} g_{n} t^{m+n}$. Since \boldsymbol{Z} is an integral domain, $f_{m} g_{n} \neq 0$. Hence $f \cdot g \neq 0$. Thus $\boldsymbol{Z}[t]$ is an integral domain.)
(b) Let $R=\operatorname{Im}(\phi)$. Show that $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$, and R is an integral domain.

Solution. Since R is the image of a ring homomorphism, R is a subring of a field \boldsymbol{C}. Since a field does not have a zero divisor, R is an integral domain. Since $(\sqrt{-1})^{m} \in\{1,-1, \sqrt{-1},-\sqrt{-1}\}$, $\phi(f(t))=f(\sqrt{-1}) \in\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$. On the other hand, $\phi(a+b t)=a+b \sqrt{-1}$. Hence $R=\{a+b \sqrt{-1} \mid a, b \in \boldsymbol{Z}\}$.
(c) Show that $I=\operatorname{Ker} \phi$ is an ideal of $\boldsymbol{Z}[t]$. Show also that I is a prime ideal but not a maximal ideal.
Solution. Since ϕ is a ring homomorphism, its kernel is an ideal. By the isomorphism theorem, $\boldsymbol{Z}[t] / I=\boldsymbol{Z}[t] / \operatorname{Ker}(\phi) \simeq \operatorname{Im}(\phi)=R . R$ is an integral domain as was shown in the previous problem. But R is not a field as $2^{-1} \notin R$. Hence I is a prime ideal but not a maximal ideal. Note that if I is an ideal of a commutative ring R, then R / I is an integral domain if and only if I is a prime ideal. Moreovere, R / I is a field if and only if I is a maximal ideal.
(d) Determine $U(R)$.

Solution. Let $N(a+b \sqrt{-1})=(a+b \sqrt{-1})(\overline{a+b \sqrt{-1}})=a^{2}+b^{2}$. Then for all $\alpha, \beta \in R$, $N(\alpha \beta)=N(\alpha) N(\beta)$. If $\alpha=a+b \sqrt{-1} \in R$ is a unit, then there exists $\beta \in R$ such that $\alpha \beta=1$. Then $1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta)$.Since $N(\alpha)=a^{2}+b^{2}$ is a nonnegative integer and so is $N(\beta), N(\alpha)=1$. Thus $a^{2}+b^{2}=1$ and $\alpha \in\{1,-1, \sqrt{-1},-\sqrt{-1}\}$. Since $\{1,-1, \sqrt{-1},-\sqrt{-1}\} \subseteq U(R)$, we have $U(R)=\{1,-1, \sqrt{-1},-\sqrt{-1}\}$. In particular, $\alpha \in$ $U(R) \Leftrightarrow N(\alpha)=1$.
(e) Show that 3 is a primitive (irreducible) element of R, but 2 is not.

Solution. Suppose $3=\alpha \beta$ with $\alpha, \beta \in R \backslash U(R)$. Then $9=N(3)=N(\alpha \beta)=N(\alpha) N(\beta)$. Since $N(\alpha) \neq 1$ and $N(\beta) \neq 1, N(\alpha)=N(\beta)=3$. Let $\alpha=a+b \sqrt{-1}$. Then $3=a^{2}+b^{2}$. But this is impossible. Hence 3 is an irredubible element.
$2=(1+\sqrt{-1})(1-\sqrt{-1})$ and $N(1+\sqrt{-1})=N(1-\sqrt{-1})=2 \neq 1$. Hence $1+\sqrt{-1}, 1-\sqrt{-1} \notin$ $U(R)$. Hence 2 is not irreducible.
(f) Determine whether (5), the ideal generated by 5 , is a prime ideal in R.

Solution. $(2+\sqrt{-1})(2-\sqrt{-1})=5 \in(5)$. Let $\alpha \in\{2+\sqrt{-1}, 2-\sqrt{-1}\}$ and $\alpha \in$ (5). Then $\alpha=5 \beta$ for some $\beta \in R$. Then $5=N(\alpha)=N(5 \beta)=N(5) N(\beta)=25 N(\beta)$. This is impossible. Hence (5) is not a prime ideal.

