Algebra I: Final 2018

ID\#:
Quote the following when necessary.
A. Subgroup H of a group G :

$$
H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H .
$$

B. Order of an Element: Let g be an element of a group G. Then $\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G. If there is a positive integer m such that $g^{m}=e$, where e is the identity element of $G,|g|=\min \left\{m \mid g^{m}=e, m \in \mathbb{N}\right\}$ and $|g|=|\langle g\rangle|$. Moreover, for any integer $n,|g|$ divides n if and only if $g^{n}=e$.
C. Lagrange's Theorem: If H is a subgroup of a finite group G, then $|G|=|G: H||H|$.
D. Normal Subgroup: A subgroup H of a group G is normal if $g H^{-1}=H$ for all $g \in G$. If H is a normal subgroup of G, then G / H becomes a group with respect to the binary operation $(g H)\left(g^{\prime} H\right)=g g^{\prime} H$.
E. Direct Product: If $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m n} \approx \mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ and $U(m n) \approx U(m) \oplus U(n)$.
F. Isomorphism Theorem: If $\alpha: G \rightarrow \bar{G}$ is a group homomorphism, $\operatorname{Ker}(\alpha)=\{x \in G \mid$ $\left.\alpha(x)=e_{\bar{G}}\right\}$, where $e_{\bar{G}}$ is the identity element of \bar{G}. Then $G / \operatorname{Ker}(\alpha) \approx \alpha(G)$.
G. Sylow's Theorem: For a finite group G and a prime p, let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups of G. Then $\operatorname{Syl}_{p}(G) \neq \emptyset$. Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Syl}_{p}(G)\right|=|G: N(P)| \equiv 1$ $(\bmod p)$, where $N(P)=\left\{x \in G \mid x P x^{-1}=P\right\}$.

Other Theorems: List other theorems you applied in your solutions.

Please write your message: Comments on group theory. Suggestions for improvements of this course. Write on the back of this sheet is also welcome.

1. Let H and K be subgroups of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.
(b) $H H^{-1}=H$.
(c) If $H K \leq G$, then $H K=K H$.
(d) If $H K=K H$, then $H K \leq G$.
2. Let G be a group, H a subgroup of G, N a normal subgroup of $G, \phi: G \rightarrow G / N(x \mapsto x N)$ a function from G to a factor group G / N. Show the following.
(a) ϕ is an onto group homomorphism.
(b) $\phi(H)$ is a subgroup of G / N.
(c) Let $\bar{H}=\phi(H)$. Then $\phi^{-1}(\bar{H})=H N$.
(d) $H /(N \cap H) \approx H N / N$.
3. Answer the following questions on Abelian groups of order $24=2^{3} \cdot 3$.
(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 24. Express each as an external direct product of cyclic groups.
(b) What is the largest order of the elements of $U(35)$? Show work.
(c) Express $U(35)$ as an internal direct product of cyclic subgroups.
(d) Is $U(35)$ isomorphic to $U(72)$? Show work.
4. Let p be a prime number, and let $G=\left\{\left.\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}, a \neq 0\right.$ or $\left.b \neq 0\right\}$. Let \mathbb{R}^{*} be the multiplicative group of nonzero real numbers. Show the following.
(a) G is closed under matrix product, i.e., if $A, B \in G$, then $A B \in G$.
(b) G is a group with respect to matrix product.
(c) Suppose $\phi: G \rightarrow \mathbb{R}^{*}\left(\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right] \mapsto a+b \alpha\right)$ is a group homomorphism for some $\alpha \in \mathbb{R}^{*}$. Then $\alpha= \pm \sqrt{p}$.
(d) $G \approx H=\left\{z \in \mathbb{R}^{*} \mid z=x+y \sqrt{p}\right.$ for some $\left.x, y \in \mathbb{Q}\right\} \leq \mathbb{R}^{*}$.
5. Let G be a group of order $1225=5^{2} \cdot 7^{2}$. Let $P \in \operatorname{Syl}_{5}(G)$ and $Q \in \operatorname{Syl}_{7}(G)$. Show the following.
(a) P is a normal subgroup of G.
(b) P is Abelian.
(c) $G=P \times Q$.
(d) G has an element of order 35 .

Algebra I: Solutions to Final 2018

1. Let H be a subgroup of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.

Soln. Since $H \leq G, H \neq \emptyset$. Let $a \in H$. Then, $a^{-1} \in H$ and $e=a a^{-1} \in H$.
Suppose $a H=b H$. Since $e \in H, a H=b H$ implies that $b=b e \in b H=a H$. Hence, there exists $h \in H$ such that $b=a h$. Therefore, by multiplying a^{-1} to both hand sides from the left, $a^{-1} b=h \in H$.
Conversely, let $a^{-1} b=h \in H$. Then, $b=a h$ and

$$
b H=a h H \subseteq a H=a e H=a h h^{-1} H=a a^{-1} b h^{-1} H \subseteq b H .
$$

Therefore, $a H=b H$.
(b) $H H^{-1}=H$.

Soln. Since H is a subgroup,

$$
H=\left(H^{-1}\right)^{-1} \subseteq H^{-1}=e H^{-1} \subseteq H H^{-1} \subseteq H
$$

Therefore $H=H^{-1}=H H^{-1}$.
(c) If $H K \leq G$, then $H K=K H$.

Soln. Since $H K, H$ and K are subgroups of G, by the proof of (b),

$$
H K=(H K)^{-1}=K^{-1} H^{-1}=K H .
$$

(d) If $H K=K H$, then $H K \leq G$.

Soln. We use the Two Step Subgroup Test. By the proof of (b),

$$
H K H K=H H K K=H K, \quad(H K)^{-1}=K^{-1} H^{-1}=K H=H K .
$$

Hence, $H K \leq G$.
2. Let G be a group, H a subgroup of G, N a normal subgroup of $G, \phi: G \rightarrow G / N(x \mapsto x N)$ a function from G to a factor group G / N. Show the following.
(20 pts)
(a) ϕ is an onto group homomorphism.

Soln. Let $x, y \in G$. Since $(x N)(y N)=x y N$, we have $\phi(x y)=x y N=(x N)(y N)=$ $\phi(x) \phi(y)$. Therefore, ϕ is operation preserving. Since every element of G / N has a form $x N$ with $x \in G, x N=\phi(x)$ and ϕ is onto.
(b) $\phi(H)$ is a subgroup of G / N.

Soln. First, note that N is the identity element in $G / N, \phi(e)=e N=N$ and $\phi\left(x^{-1}\right)=x^{-1} N=(x N)^{-1}=\phi(x)^{-1}$. Let $\phi(h), \phi\left(h^{\prime}\right) \in \phi(H)$ with $h, h^{\prime} \in H$. Then $\phi(h) \phi\left(h^{\prime}\right)^{-1}=\phi(h) \phi\left(h^{\prime-1}\right)=\phi\left(h h^{\prime-1}\right) \in \phi(H)$. Therefore, by the One-StepSubgroup Test, $\phi(H) \leq G / N$.
(c) Let $\bar{H}=\phi(H)$. Then $\phi^{-1}(\bar{H})=H N$.

Soln. Let $h n \in H N$ with $h \in H$ and $n \in N$. Then, $\phi(h n)=h n N=h N \in$ $\phi(H)=\bar{H}$ by $1(\mathrm{a})$, as $(h n)^{-1} h=n^{-1} h^{-1} h=n^{-1} \in N$. Hence, $H N \subseteq \phi^{-1}(\bar{H})$. If $x \in \phi^{-1}(\bar{H}), \phi(x) \in \bar{H}=\phi(H)$. Hence, there exists $h \in H$ such that $\phi(x)=\phi(h)$. Then $x N=h N$ and $h^{-1} x \in N$ by 1 (a). Let $h^{-1} x=n \in N$. Then $x=h n \in H N$ and $\phi^{-1}(\bar{H}) \subseteq H N$. Therefore, $\phi^{-1}(\bar{H})=H N$.
(d) $H /(N \cap H) \approx H N / N$.

Soln. Since $\phi(H)=\phi(H N)=H N / N$ as $N \triangleleft H N$ and $\operatorname{Ker}(\phi) \cap H=H \cap N$, $H / H \cap N \approx H N / N$ by the First Isomorphism Theorem. Here, the theorem is applied to the group homomorphism ϕ restricted to H.
3. Answer the following questions on Abelian groups of order $24=2^{3} \cdot 3$.
(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 24. Express each as an external direct product of cyclic groups.
Soln. There are three isomorphism classes.

$$
\mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \approx \mathbb{Z}_{24}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{12}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{6}
$$

(b) What is the largest order of the elements of $U(35)$? Show work.

Soln. By E,

$$
U(35) \approx U(5) \oplus U(7) \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{6} \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}, \quad \text { as } U(5)=\langle 2\rangle, U(7)=\langle 3\rangle
$$

Hence $U(35)$ is isomorphic to the second type in (b) and the largest order of the elements of $U(35)$ is 12 .
(c) Express $U(35)$ as an internal direct product of cyclic subgroups.

Soln. Since none of $2,4,8,16,32=3,6$ is 1 , the order of 2 in $U(35)$ is 12 and the unique element of order 2 in $\langle 2\rangle$ is 6 and not $34, U(35)=\langle 34\rangle \times\langle 2\rangle \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{12}$.
(d) Is $U(35)$ isomorphic to $U(72)$? Show work.

Soln. Since every nonidentity element of $U(8)=\{1,3,5,7,9\}$ is of order $2, U(72) \approx$ $U(8) \oplus U(9) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{6} \not \approx U(35)$.
4. Let p be a prime number, and let $G=\left\{\left.\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}, a \neq 0\right.$ or $\left.b \neq 0\right\}$. Let \mathbb{R}^{*} be the multiplicative group of nonzero real numbers. Show the following.
(a) G is closed under matrix product, i.e., if $A, B \in G$, then $A B \in G$.

Soln. Let $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $J=\left[\begin{array}{ll}0 & p \\ 1 & 0\end{array}\right]$. Then $J^{2}=p I$ and $G=\{a I+b J \mid a, b \in$ $\mathbb{Q}, a \neq 0$ or $b \neq 0\}$. Let $A=a I+a^{\prime} J$ and $B=b I+b^{\prime} J$. Since $\operatorname{det}(A)=a^{2}-a^{\prime 2} p$ and $\sqrt{p} \notin \mathbb{Q}, \operatorname{det}(A) \neq 0$ if and only if $a \neq 0$ or $a^{\prime} \neq 0$. Similarly, $\operatorname{det}(B) \neq 0$. Thus $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \neq 0$ and

$$
A B=\left(a I+a^{\prime} J\right)\left(b I+b^{\prime} J\right)=\left(a b+a^{\prime} b^{\prime} p\right) I+\left(a b^{\prime}+a^{\prime} b\right) J \in G
$$

Therefore, G is closed under matrix product.
(b) G is a group with respect to matrix product.

Soln. For $A=\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right], A^{-1}=\frac{1}{a^{2}-b p^{2}}\left[\begin{array}{cc}a & -b p \\ -b & a\end{array}\right] \in G$ and G is a subgroup of $\operatorname{GL}(2, \mathbb{R})$ by (a) and the Two-Step-Subgroup Test.
(c) Suppose $\phi: G \rightarrow \mathbb{R}^{*}\left(\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right] \mapsto a+b \alpha\right)$ is a group homomorphism for some $\alpha \in \mathbb{R}^{*}$. Then $\alpha= \pm \sqrt{p}$.
Soln. Since $J^{2}=p I, \phi(J)^{2}=\phi\left(J^{2}\right)=\phi(p I)=p \in \mathbb{R}^{*}$. Hence a nonzero real number $\alpha=\phi(J)$ has to be $\pm \sqrt{p}$.
(d) $G \approx H=\left\{z \in \mathbb{R}^{*} \mid z=x+y \sqrt{p}\right.$ for some $\left.x, y \in \mathbb{Q}\right\} \leq \mathbb{R}^{*}$.

Soln. Let $\psi: G \rightarrow \mathbb{R}^{*}\left(\left[\begin{array}{cc}a & b p \\ b & a\end{array}\right] \mapsto a+b \sqrt{p}\right)$. Then using the notation in (a),

$$
\begin{aligned}
\psi(A B) & =\psi\left(\left(a b+a^{\prime} b^{\prime} p\right) I+\left(a b^{\prime}+a^{\prime} b\right) J\right)=\left(a b+a^{\prime} b^{\prime} p\right)+\left(a b^{\prime}+a^{\prime} b\right) \sqrt{p} \\
& =\left(a+a^{\prime} \sqrt{p}\right)\left(b+b^{\prime} \sqrt{p}\right)=\psi(A) \psi(B)
\end{aligned}
$$

Hence ψ is a group homomorphism. By the definition of ψ, ψ is one-to-one, and onto. Therefore, ψ is an isomorphism.
5. Let G be a group of order $1225=5^{2} \cdot 7^{2}$. Let $P \in \operatorname{Syl}_{5}(G)$ and $Q \in \operatorname{Syl}_{7}(G)$. Show the following.
(a) P is a normal subgroup of G.

Soln. Since $|G: N(P)|=\left|\operatorname{Syl}_{5}(G)\right| \equiv 1(\bmod 5)$ and $|G: N(P)|$ is a divisor of 7^{2}, the only possibility is 1 . Hence $\operatorname{Syl}_{5}(G)=\{P\}$. Since $x P x^{-1} \in \operatorname{Syl}_{5}(G), x P x^{-1}=P$ for all $x \in G$ and $P \triangleleft G$.
(b) P is Abelian.

Soln. Suppose P is a group of order p^{2} for a prime p. Since P is a nontrivial p-group, $|Z(P)|=p$ or p^{2}. If $|Z(P)|=p, P / Z(P)$ is a prime order and hence cyclic. Then P is Abelian and $P=Z(P)$, a contradiction. Thus $P=Z(P)$ and P is Abelian. Since $|P|=5^{2}, P$ is of prime square order, and hence P is Abelian.
(c) $G=P \times Q$.

Soln. Since $|G: N(Q)|=\left|\operatorname{Syl}_{7}(G)\right| \equiv 1(\bmod 7)$ and $|G: N(Q)|$ is a divisor of 5^{2}, the only possibility is 1 . Hence $\operatorname{Syl}_{5}(G)=\{Q\}$. Since $x Q x^{-1} \in \operatorname{Syl}_{5}(G), x Q x^{-1}=Q$ for all $x \in G$ and $Q \triangleleft G$. Since each element of $P \cap Q$ has order dividing $|P|=5^{2}$ and $|Q|=7^{2}$ by Lagrange's Theorem, $P \cap Q=\{e\}$. Since $P Q=Q P, P Q$ is a subgroup of G by $1(\mathrm{~d})$ containing P and Q as subgroups, $|P Q|$ is divisible by $5^{2} 7^{2}$ and $P Q=G$. Therefore, $G=P \times Q$, the internal direct product of P and Q.
(d) G has an element of order 35 .

Soln. Since both P and Q are Abelian by (b), P contains an element x of order 5 and Q contains an element y of order 7. Since $G \approx P \oplus Q, G$ contains an element of order 35 corresponding to $x y$.

