## Algebra I: Final 2017

ID\#:
Quote the following when necessary.
A. Subgroup $H$ of a group $G$ :

$$
H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H
$$

B. Order of an Element: Let $g$ be an element of a group $G$. Then $\langle g\rangle=\left\{g^{n} \mid n \in \boldsymbol{Z}\right\}$ is a subgroup of $G$. If there is a positive integer $m$ such that $g^{m}=e$, where $e$ is the identity element of $G,|g|=\min \left\{m \mid g^{m}=e, m \in \boldsymbol{N}\right\}$ and $|g|=|\langle g\rangle|$. Moreover, for any integer $n,|g|$ divides $n$ if and only if $g^{n}=e$.
C. Lagrange's Theorem: If $H$ is a subgroup of a finite group $G$, then $|G|=|G: H||H|$.
D. Normal Subgroup: A subgroup $H$ of a group $G$ is normal if $g H^{-1}=H$ for all $g \in G$. If $H$ is a normal subgroup of $G$, then $G / H$ becomes a group with respect to the binary operation $(g H)\left(g^{\prime} H\right)=g g^{\prime} H$.
E. Direct Product: If $\operatorname{gcd}(m, n)=1$, then $\boldsymbol{Z}_{m n} \approx \boldsymbol{Z}_{m} \oplus \boldsymbol{Z}_{n}$ and $U(m n) \approx U(m) \oplus U(n)$.
F. Isomorphism Theorem: If $\alpha: G \rightarrow \bar{G}$ is a group homomorphism, $\operatorname{Ker}(\alpha)=\{x \in G \mid$ $\left.\alpha(x)=e_{\bar{G}}\right\}$, where $e_{\bar{G}}$ is the identity element of $\bar{G}$. Then $G / \operatorname{Ker}(\alpha) \approx \alpha(G)$.
G. Sylow's Theorem: For a finite group $G$ and a prime $p$, let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow $p$-subgroups of $G$. Then $\operatorname{Syl}_{p}(G) \neq \emptyset$. Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Syl}_{p}(G)\right|=|G: N(P)| \equiv 1$ $(\bmod p)$, where $N(P)=\left\{x \in G \mid x P x^{-1}=P\right\}$.

Other Theorems: List other theorems you applied in your solutions.

Please write your message: Comments on group theory. Suggestions for improvements of this course. Write on the back of this sheet is also welcome.

1. Let $H$ and $K$ be subgroups of a group $G$. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.
(b) $H H=H^{-1}=H$.
(c) If $H K \leq G$, then $H K=K H$.
(d) If $H K=K H$, then $H K \leq G$.
2. Let $G$ be a finite group, $\phi: G \rightarrow H$ an onto group homomorphism, $e_{G}$ is the identity element of $G$ and $e_{H}$ the identity element of $H$. Show the following.
(a) $\phi\left(e_{G}\right)=e_{H}$ and for $a \in G, \phi\left(a^{-1}\right)=\phi(a)^{-1}$.
(b) If $K$ is a normal subgroup of $H$, then $\phi^{-1}(K)=\{x \in G \mid \phi(x) \in K\}$ is a normal subgroup of $G$.
(c) $|\phi(x)|||x|$ for all $x \in G$.
(d) If $H$ has an element of order $n$, then $G$ has an element of order $n$.
3. Answer the following questions on Abelian groups of order $16=2^{4}$.
(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 16.
(b) Express $U(32)$ as an external direct product of cyclic groups. Show work.
(c) Express $U(32)$ as an internal direct product of cyclic subgroups.
(d) Is $U(40)$ isomorphic to $U(32)$ ? Show work.
4. Let $G=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \boldsymbol{R}, a d-b c \neq 0\right\}$, and $B=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, d \in \boldsymbol{R}, a d \neq 0\right\}$.

Show the following.
(a) $B$ is not a normal subgroup of $G$.
(b) $\phi: B \rightarrow \boldsymbol{R}^{*} \oplus \boldsymbol{R}^{*}\left(\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \mapsto(a, d)\right)$ is a group homomorphism.
(c) $U=\left\{\left.\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right] \right\rvert\, b \in \boldsymbol{R}\right\}$ is a normal subgroup of $B$.
(d) $B / U \approx R^{*} \oplus R^{*}$.
5. Let $G$ be a group of order $175=5^{2} \cdot 7$. Let $P \in \operatorname{Syl}_{5}(G)$ and $Q \in \operatorname{Syl}_{7}(G)$. Show the following.
(a) $P$ is a normal subgroup of $G$.
(b) $P$ is Abelian.
(c) $Q$ is a normal subgroup of $G$.
(d) $G$ is Abelian.

## Algebra I: Solutions to Final 2017

1. Let $H$ be a subgroup of a group $G$. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.

Soln. Since $H \leq G, H \neq \emptyset$. Let $a \in H$. Then $a^{-1} \in H$ and $e=a a^{-1} \in H$.
Suppose $a H=b H$. Since $e \in H, a H=b H$ implies that $b=b e \in b H=a H$. Hence there exists $h \in H$ such that $b=a h$. Therefore by multiplying $a^{-1}$ to both hand sides from the left, $a^{-1} b=h \in H$.
Conversely let $a^{-1} b=h \in H$. Then $b=a h$ and

$$
b H=a h H \subseteq a H=a e H=a h h^{-1} H=a a^{-1} b h^{-1} H \subseteq b H .
$$

Therefore $a H=b H$.
(b) $H H=H^{-1}=H$.

Soln. Since $H$ is a subgroup of $G$, the identity element $e \in H$, for all $x, y \in H$, $x y \in H$ and $x^{-1} \in H$. Moreover, $x=\left(x^{-1}\right)^{-1} \in H^{-1}$. Thus, $H \subseteq H^{-1}$ and

$$
H=e H \subseteq H H \subseteq H \subseteq H^{-1} \subseteq H
$$

Therefore, $H H=H^{-1}=H$.
(c) If $H K \leq G$, then $H K=K H$.

Soln. Since both $H$ and $K$ are subgroups of $G$, by (b)

$$
H K=(H K)^{-1}=K^{-1} H^{-1}=K H .
$$

(d) If $H K=K H$, then $H K \leq G$.

Soln. We use the two step subgroup test.

$$
H K H K=H H K K=H K, \quad(H K)^{-1}=K^{-1} H^{-1}=K H=H K .
$$

Hence, $H K \leq G$.
2. Let $G$ be a finite group, $\phi: G \rightarrow H$ an onto group homomorphism, $e_{G}$ is the identity element of $G$ and $e_{H}$ the identity element of $H$. Show the following.
(20 pts)
(a) $\phi\left(e_{G}\right)=e_{H}$ and for $a \in G, \phi\left(a^{-1}\right)=\phi(a)^{-1}$.

Soln. $\quad \phi\left(e_{G}\right)=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G}\right) \phi\left(e_{G}\right)=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G} e_{G}\right)=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G}\right)=e_{H}$. $\phi\left(a^{-1}\right)=\phi\left(a^{-1}\right) \phi(a) \phi(a)^{-1}=\phi\left(a^{-1} a\right) \phi(a)^{-1}=\phi\left(e_{G}\right) \phi(a)^{-1}=e_{H} \phi(a)^{-1}=\phi(a)^{-1}$.
(b) If $K$ is a normal subgroup of $H$, then $\phi^{-1}(K)=\{x \in G \mid \phi(x) \in K\}$ is a normal subgroup of $G$.
Soln. Let $a, b \in \phi^{-1}(K)$. Then $\phi(a b)=\phi(a) \phi(b) \in K K=K$. Hence $a b \in \phi^{-1}(K)$. By (a) $\phi\left(a^{-1}\right)=\phi(a)^{-1} \in K^{-1}=K$. Hence $a^{-1} \in \phi^{-1}(K)$. Thus $\phi^{-1}(K)$ is a subgroup of $G$. Let $g \in G$, then $\phi\left(g a g^{-1}\right)=\phi(g) \phi(a) \phi\left(g^{-1}\right) \in \phi(g) K \phi(g)^{-1}=K$. Hence $g K g^{-1} \subseteq \phi^{-1}(K)$ for all $g \in G$. Since this holds for $g^{-1} \in G, g^{-1} \phi^{-1}(K) g \subseteq$ $\phi^{-1}(K)$, which implies $\phi^{-1}(K) \subseteq g \phi^{-1}(K) g^{-1}$. Thus $g \phi^{-1}(K) g^{-1}=\phi^{-1}(K)$ for all $g \in G$ and $\phi^{-1}(K)$ is a normal subgroup of $G$.
(c) $|\phi(x)|||x|$ for all $x \in G$.

Soln. Let $n=|x|$. Since $|G|$ is finite, $n$ is finite. Then $x^{n}=e$ and $\phi(x)^{n}=\phi\left(x^{n}\right)=$ $\phi\left(e_{G}\right)=e_{H}$. Thus by B, $|\phi(x)|||x|$.
(d) If $H$ has an element of order $n$, then $G$ has an element of order $n$.

Soln. Let $y$ be an element of order $n$ in $H$, Since $\phi$ is onto, there is $x \in G$ such that $\phi(x)=y$. By (c) above, $n||x|$. Let $m=|x|$. Since $G$ is finite, $m$ is finite. Let $h=m / n$. Then $\left|x^{h}\right|=n$ as $\left(x^{h}\right)^{n}=x^{h n}=x^{m}=e_{G}$ and $e, x, x^{2}, \ldots, x^{n-1}$ are all distinct.
3. Answer the following questions on Abelian groups of order $16=2^{4}$.
(20 pts)
(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 16.
Soln.

$$
\boldsymbol{Z}_{16}, \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8}, \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{4}, \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}, \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} .
$$

(b) Express $U(32)$ as an external direct product of cyclic groups. Show work.

Soln. Since $|U(32)|=16$, the order of an element is $1,2,4,8$ or 16 .

$$
3^{2}=9,3^{4}=17,3^{8}=1,31^{2}=1
$$

Hence $U(32) \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8}$.
(c) Express $U(32)$ as an internal direct product of cyclic subgroups.

## Soln.

$$
U(32)=\langle 3\rangle \times\langle 31\rangle .
$$

(d) Is $U(40)$ isomorphic to $U(32)$ ? Show work.

Soln.

$$
U(40) \approx U(5) \oplus U(8) \approx \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} .
$$

Hence $U(40) \not \approx U(32)$.
4. Let $G=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \boldsymbol{R}, a d-b c \neq 0\right\}$, and $B=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, d \in \boldsymbol{R}, a d \neq 0\right\}$. Show the following.
(a) $B$ is not a normal subgroup of $G$.

Soln.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \notin B .
$$

(b) $\phi: B \rightarrow \boldsymbol{R}^{*} \oplus \boldsymbol{R}^{*}\left(\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \mapsto(a, d)\right)$ is a group homomorphism.

## Soln.

$$
\begin{aligned}
\phi\left(\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right]\right) & =\phi\left(\left[\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b d^{\prime} \\
0 & d d^{\prime}
\end{array}\right]\right)=\left(a a^{\prime}, d d^{\prime}\right)=(a, b)\left(a^{\prime}, d^{\prime}\right) \\
& =\phi\left(\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right]\right) \phi\left(\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right]\right) .
\end{aligned}
$$

(c) $U=\left\{\left.\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right] \right\rvert\, b \in \boldsymbol{R}\right\}$ is a normal subgroup of $B$.

Soln. $\quad U=\operatorname{Ker} \phi \triangleleft G$. Note that $\langle(1,1)\rangle \triangleleft \boldsymbol{R}^{*} \oplus \boldsymbol{R}^{*}$ and the normality is a consequence of $2(\mathrm{~b})$.
(d) $B / U \approx R^{*} \oplus R^{*}$.

Soln. Since $\phi$ is onto and the kernel is $U$, the assertion follows from the first isomorphism theorem.
5. Let $G$ be a group of order $175=5^{2} \cdot 7$. Let $P \in \operatorname{Syl}_{5}(G)$ and $Q \in \operatorname{Syl}_{7}(G)$. Show the following.
(20 pts)
(a) $P$ is a normal subgroup of $G$.

Soln. Since $|G: N(P)|=\left|\operatorname{Syl}_{5}(G)\right| \equiv 1(\bmod 5)$ and $|G: N(P)|$ is a divisor of 7 , the only possibility is 1 . Hence $\operatorname{Syl}_{5}(G)=\{P\}$. Hence $x P x^{-1}=P$ for all $x \in G$ and $P \triangleleft G$.
(b) $P$ is Abelian.

Soln. Since 5 is prime and $G$ is of prime square order, $G$ is Abelian.
(c) $Q$ is a normal subgroup of $G$.

Soln. Since $|G: N(Q)|=\left|\operatorname{Syl}_{7}(G)\right| \equiv 1(\bmod 7)$ and $|G: N(Q)|$ is a divisor of $5^{2}$, i.e., 1,5 or $5^{2}$, the only possibility is 1 . $\operatorname{Hence} \operatorname{Syl}_{7}(G)=\{Q\}$. As in (a), $Q \triangleleft G$.
(d) $G$ is Abelian.

Soln. Since $P \triangleleft G, P Q=Q P$ and $P Q \leq G$. We have $P \triangleleft P Q$ and $Q \triangleleft P Q$ by (a) and (c). Since $P \cap Q$ is a subgroup of $P$ and $Q$ of order 25 and 7 respectively, $P \cap Q=\{e\}$ by Lagrange's Theorem. Hence $P Q=P \times Q$, In particular, $|P Q|=175$ and $G=P Q=P \times Q$. Since both $P$ and $Q$ are Abelian, $G$ is Abelian.

