Algebra I: Final 2015

ID#:

Name:

Quote the following when necessary.

A. Subgroup H of a group G:

$$H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, xy \in H \text{ and } x^{-1} \in H \text{ for all } x, y \in H.$$

- **B. Order of an Element:** Let g be an element of a group G. Then $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ is a subgroup of G. If there is a positive integer m such that $g^m = e$, where e is the identity element of G, $|g| = \min\{m \mid g^m = e, m \in \mathbb{N}\}$ and $|g| = |\langle g \rangle|$. Moreover, for any integer n, |g| divides n if and only if $g^n = e$.
- **C. Lagrange's Theorem:** If H is a subgroup of a finite group G, then |G| = |G:H||H|.
- **D. Normal Subgroup:** A subgroup H of a group G is normal if $gHg^{-1} = H$ for all $g \in G$. If H is a normal subgroup of G, then G/H becomes a group with respect to the binary operation (gH)(g'H) = gg'H.
- **E. Direct Product:** If gcd(m, n) = 1, then $Z_{mn} \approx Z_m \oplus Z_n$ and $U(mn) \approx U(m) \oplus U(n)$.
- **F. Isomorphism Theorem:** If $\alpha : G \to \overline{G}$ is a group homomorphism, $\operatorname{Ker}(\alpha) = \{x \in G \mid \alpha(x) = e_{\overline{G}}\}$, where $e_{\overline{G}}$ is the identity element of \overline{G} . Then $G/\operatorname{Ker}(\alpha) \approx \alpha(G)$.
- **G. Sylow's Theorem:** For a finite group G and a prime p, let $\operatorname{Syl}_p(G)$ denote the set of Sylow p-subgroups of G. Then $\operatorname{Syl}_p(G) \neq \emptyset$. Let $P \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Syl}_p(G)| = |G : N(P)| \equiv 1 \pmod{p}$, where $N(P) = \{x \in G \mid xPx^{-1} = P\}$.

Other Theorems: List other theorems you applied in your solutions.

Please write your message: Comments on group theory. Suggestions for improvements of this course. Write on the back of this sheet is also welcome.

June 24, 2015

Let H and K be subgroups of a group G. Let a, b ∈ G. Show the following. (20 pts)
 (a) aH = bH if and only if a⁻¹b ∈ H.

(b) $aKa^{-1} \leq G$ and $H \cap aKa^{-1} \leq H$.

(c) For $x, y \in H$, xaK = yaK if and only if $x^{-1}y \in H \cap aKa^{-1}$.

(d) If |H| and |K| are finite, then $|HaK| = |H: H \cap aKa^{-1}||K|$.

- 2. Let $\phi: G \to H$ be an onto group homomorphism, e_G is the identity element of G and e_H the identity element of H. Show the following. (20 pts)
 - (a) $\phi(e_G) = e_H$ and for $a \in G$, $\phi(a^{-1}) = \phi(a)^{-1}$.

(b) Ker $\phi = \{x \in G \mid \phi(x) = e_H\}$ is a normal subgroup of G.

(c) The homomorphism ϕ is an isomorphism if and only if $\text{Ker}\phi = \{e_G\}$.

(d) If G is Abelian, then H is Abelian.

- 3. Answer the following questions on Abelian groups of order $675 = 3^3 \cdot 5^2$. (20 pts)
 - (a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 675.

(b) Explain that every Abelian group of order 675 has at least 8 elements of order 15.

(c) If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic.

(d) Let $G = \mathbb{Z}_9 \oplus \mathbb{Z}_{75}$. Find the number of subgroups of G of order 15.

- 4. Let $G = \langle a \rangle$ be a cyclic group of finite order *n*. Show the following. (20 pts)
 - (a) $\sigma : \mathbf{Z} \to G \ (i \mapsto a^i)$. Then σ is an onto homomorphism and $\mathbf{Z}/n\mathbf{Z} \approx G$, where $n\mathbf{Z}$ is the set of integers divisible by n.

(b) Let H be a subgroup of G of order m, and n = mh. Then $H = \langle a^h \rangle$.

(c) $\langle a^i \rangle = G$ if and only if gcd(i, n) = 1.

(d) For $x \in U(n)$, let $\sigma_x : G \to G$ $(a^i \mapsto a^{xi})$. Then $\sigma_x \in \operatorname{Aut}(G)$, and $\phi : U(n) \to \operatorname{Aut}(G)$ $(x \mapsto \sigma_x)$ is a group isomorphism.

- 5. Suppose p and q are prime numbers with p > q, and G is a group of order pq. Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$. Show the following. (20 pts)
 - (a) P is a normal subgroup of G.
 - (b) If Q is a normal subgroup, then G is cyclic.

(c) If Q is not a normal subgroup, then $p \equiv 1 \pmod{q}$ and U(p) has a subgroup of order q.

(d) Let p = 11 and q = 5. Find an element $r \in U(11)$ of order 5. Let $N = \langle a \rangle$ be a cyclic group of order 11 and $H = \{1, r, r^2, r^3, r^4\}$. Set $G = N \times H$. Then G is a non-Abelian group of order 55 with respect to the following binary operation:

$$G \times G \to G \ ((a^h, r^i)(a^j, r^k) \mapsto (a^{h+r^i j}, r^{i+k})), \text{ where } 0 \le h, j \le 10, \ 0 \le i, k \le 4.$$

Algebra I: Solutions to Final 2015

- 1. Let *H* be a subgroup of a group *G*. Let $a, b \in G$. Show the following. (20 pts)
 - (a) aH = bH if and only if $a^{-1}b \in H$.

Soln. Since $H \leq G$, $H \neq \emptyset$. Let $a \in H$. Then $a^{-1} \in H$ and $e = aa^{-1} \in H$. Suppose aH = bH. Since $e \in H$, aH = bH implies that $b = be \in bH = aH$. Hence there exists $h \in H$ such that b = ah. Therefore by multiplying a^{-1} to both hand sides from the left, $a^{-1}b = h \in H$.

Conversely let $a^{-1}b = h \in H$. Then b = ah and

$$bH = ahH \subseteq aH = aeH = ahh^{-1}H = aa^{-1}bh^{-1}H \subseteq bH.$$

Therefore aH = bH.

(b) $aKa^{-1} \leq G$ and $H \cap aKa^{-1} \leq H$.

Soln. Clearly, $e = aea^{-1} \in aKa^{-1}$ and $aKa^{-1} \neq \emptyset$. Let $k, k' \in K$. Since $K \leq G$, $kk' \in K$ and $k^{-1} \in K$ by (A). Hence $(aka^{-1})(ak'a^{-1}) = akk'a^{-1} \in aKa^{-1}$ and $(aka^{-1})^{-1} = ak^{-1}a^{-1} \in aKa^{-1}$. Thus by (A), $aKa^{-1} \leq G$. Clearly $e \in H \cap aKa^{-1} \subseteq H$. Since both H and aKa^{-1} are subgroups of $G, x, y \in H \cap aKa^{-1}$ implies $xy \in H \cap aKa^{-1}$ and $x^{-1} \in H \cap aKa^{-1}$. Thus $H \cap aKa^{-1} \leq H$.

(c) For x, y ∈ H, xaK = yaK if and only if x⁻¹y ∈ H ∩ aKa⁻¹ by (A).
Soln. Since aKa⁻¹ ≤ G and xaK = yaK ⇔ x(aKa⁻¹) = y(aKa⁻¹), we can apply (a) to have the following; for x, y ∈ H

$$xaK = yaK \Leftrightarrow x(aKa^{-1}) = y(aKa^{-1}) \Leftrightarrow x^{-1}y \in aKa^{-1}$$

Since $x, y \in H$, this is equivalent to the condition $x^{-1}y \in H \cap aKa^{-1}$.

- (d) If |H| and |K| are finite, then $|HaK| = |H : H \cap aKa^{-1}||K|$. **Soln.** Since HaK is a union of left cosets haK with $h \in H$. Since |haK| = |K|and there are $|H : H \cap aKa^{-1}|$ many distinct left cosets of this type by (c), $|HaK| = |H : H \cap aKa^{-1}||K|$.
- 2. Let $\phi: G \to H$ be an onto group homomorphism, e_G is the identity element of G and e_H the identity element of H. Show the following. (20 pts)
 - (a) $\phi(e_G) = e_H$ and for $a \in G$, $\phi(a^{-1}) = \phi(a)^{-1}$. **Soln.** $\phi(e_G) = \phi(e_G)^{-1}\phi(e_G)\phi(e_G) = \phi(e_G)^{-1}\phi(e_Ge_G) = \phi(e_G)^{-1}\phi(e_G) = e_H$. $\phi(a^{-1}) = \phi(a^{-1})\phi(a)\phi(a)^{-1} = \phi(a^{-1}a)\phi(a)^{-1} = \phi(e_G)\phi(a)^{-1} = e_H\phi(a)^{-1} = \phi(a)^{-1}$.
 - (b) Ker $\phi = \{x \in G \mid \phi(x) = e_H\}$ is a normal subgroup of G. Soln. Let $a, b \in \text{Ker}\phi$. Then $\phi(ab) = \phi(a)\phi(b) = e_He_H = e_H$. Hence $ab \in \text{Ker}\phi$. By (a) $\phi(a^{-1}) = \phi(a)^{-1} = e_H^{-1} = e_H$. Hence $a^{-1} \in \text{Ker}\phi$. Thus Ker ϕ is a subgroup of G. Let $g \in G$, then $\phi(gag^{-1}) = \phi(g)\phi(a)\phi(g^{-1}) = \phi(g)e_H\phi(g)^{-1} = e_H$. Hence $g\text{Ker}\phi g^{-1} \subseteq \text{Ker}\phi$ for all $g \in G$. Since this holds for $g^{-1} \in G$, $g^{-1}\text{Ker}\phi g \subseteq \text{Ker}\phi$, which implies $\text{Ker}\phi \subseteq g\text{Ker}\phi g^{-1}$. Thus $g\text{Ker}\phi g^{-1} = \text{Ker}\phi$ for all $g \in G$ and $\text{Ker}\phi$ is a normal subgroup of G.

June 24, 2015

(c) The homomorphism ϕ is an isomorphism if and only if $\text{Ker}\phi = \{e_G\}$. Since ϕ is onto, it suffices to show that ϕ is one-to-one. Observe that Soln.

$$\phi(x) = \phi(y) \Leftrightarrow \phi(x)^{-1}\phi(y) = \phi(x^{-1}y) = e_H \Leftrightarrow x^{-1}y \in \operatorname{Ker}\phi$$

Hence if $\operatorname{Ker}\phi = \{e_G\}, \ \phi(x) = \phi(y) \text{ implies } x = y, \text{ and } \phi \text{ is one-to-one. Suppose}$ it is one-to-one. Let x = e. Then $y \in \text{Ker}\phi$ implies $\phi(y) = \phi(e_G)$. Hence if ϕ is one-to-one, y = e and $\text{Ker}\phi = \{e_G\}$ by (a).

(d) If G is Abelian, then H is Abelian.

Let $h, k \in H$. Since ϕ is onto, there are $a, b \in G$ such that $h = \phi(a)$ and Soln. $k = \phi(b)$. Now

$$hk = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = kh.$$

Therefore, H is Abelian.

- 3. Answer the following questions on Abelian groups of order $675 = 3^3 \cdot 5^2$. (20 pts)
 - (a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic Abelian groups of order 675.

Let φ be the Euler's phi function, i.e., $\varphi(n) = |U(n)|$. Since $\varphi(3) = 2$ and Soln. $\varphi(5) = 4$, the following holds

$G(3)\oplus G(5)$	Max Cyclic	Order 3	Order 5	Order 15
$oldsymbol{Z}_{27}\oplusoldsymbol{Z}_{25}$	$oldsymbol{Z}_{675}$	2	4	8
$oldsymbol{Z}_{27}\oplusoldsymbol{Z}_5\oplusoldsymbol{Z}_5$	$oldsymbol{Z}_5\oplusoldsymbol{Z}_{135}$	2	24	48
$oldsymbol{Z}_9\oplusoldsymbol{Z}_3\oplusoldsymbol{Z}_{25}$	$oldsymbol{Z}_3 \oplus oldsymbol{Z}_{225}$	8	4	32
$oldsymbol{Z}_9\oplusoldsymbol{Z}_3\oplusoldsymbol{Z}_5\oplusoldsymbol{Z}_5$	$oldsymbol{Z}_{15}\oplusoldsymbol{Z}_{45}$	8	24	192
$oldsymbol{Z}_3\oplusoldsymbol{Z}_3\oplusoldsymbol{Z}_3\oplusoldsymbol{Z}_{25}$	$oldsymbol{Z}_3\oplusoldsymbol{Z}_3\oplusoldsymbol{Z}_{75}$	26	4	104
$ig oldsymbol{Z}_3 \oplus oldsymbol{Z}_3 \oplus oldsymbol{Z}_3 \oplus oldsymbol{Z}_5 \oplus oldsymbol{Z}_5$	$oldsymbol{Z}_3 \oplus oldsymbol{Z}_{15} \oplus oldsymbol{Z}_{15}$	26	24	624

- (b) Explain that every Abelian group of order 675 has at least 8 elements of order 15. Soln. Since G is Abelian, for each divisor m of its order, there is a subgroup of order m. Since the only Abelian group of order 15 is cyclic, there is an element of order 15. Since $\varphi(15) = \varphi(3)\varphi(5) = 2 \cdot 4 = 8$, there are 8 elements of order 8 in a cyclic group of order 15. Therefore, there are at least 8 elements of order 15. See the above table.
- (c) If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic. If it is not cyclic, then there are at least two subgroups of order 3 or there Soln. are at least two subgroups of order 5. Hence there are more than one subgroup of order 15. Since each subgroup of order 15 contains at least 8 elements of order 8, there are more than 8 elements of order 15 in this case. Therefore the assertion holds. See the above table.
- (d) Let $G = \mathbb{Z}_9 \oplus \mathbb{Z}_{75}$. Find the number of subgroups of G of order 15. **Soln.** Since $Z_9 \oplus Z_{75} \approx Z_9 \oplus Z_3 \oplus Z_{25}$ contains $3^2 - 1 = 8$ elements of order 3 and $5^1 - 1 = 4$ elements of order 5. Therefore it contains 32 elements of order 15. Each subgroup of order 15 contains $\varphi(15) = 8$ elements of order 15, and each element of order 15 is contained in exactly one subgroup of order 15, there are 32/8 = 4subgroups of order 15.

- 4. Let $G = \langle a \rangle$ be a cyclic group of finite order n. Show the following.
 - (a) σ : Z → G (i ↦ aⁱ). Then σ is an onto homomorphism and Z/nZ ≈ G, where nZ is the set of integers divisible by n.
 Soln. Since G = ⟨a⟩ = {aⁱ | i ∈ Z}, σ is onto. σ(i + j) = a^{i+j} = aⁱa^j = σ(i)σ(j), σ is a group homomorphism. Kerσ = nZ because by (B)

$$m \in \operatorname{Ker}\sigma \Leftrightarrow a^m = e \Leftrightarrow n \mid m \Leftrightarrow m \in n\mathbf{Z}.$$

Thus by (F), $\mathbf{Z}/n\mathbf{Z} \approx G$.

- (b) Let H be a subgroup of G of order m, and n = mh. Then H = ⟨a^h⟩. Since G is cyclic, there is only one subgroup of order m. Hence H = ⟨a^h⟩.
 Soln. By (B), |a^h| = m. Hence ⟨a^h⟩ is a subgroup of order m.
- (c) $\langle a^i \rangle = G$ if and only if gcd(i, n) = 1. **Soln.** Clearly $\langle a^i \rangle \subseteq G$. If gcd(i, n) = 1, there are $s, t \in \mathbb{Z}$ such that is + nt = 1. Hence $a = a^1 = a^{is+nt} = (a^i)^s (a^n)^t = (a^i)^s \in \langle a^i \rangle$. Therefore $\langle a \rangle \subseteq \langle a^i \rangle$ and $\langle a^i \rangle = G$. If $\langle a^i \rangle = G$, $a = (a^i)^s$ for some $s \in \mathbb{Z}$. Then by (B), $n \mid is - 1$. Therefore, there is $t \in \mathbb{Z}$ such that is - 1 = nt, and is - nt = 1. Let d = gcd(i, n). Since $d \mid i$ and $d \mid n, d \mid is - nt = 1$. Therefore, d = 1.
- (d) For $x \in U(n)$, let $\sigma_x : G \to G$ $(a^i \mapsto a^{xi})$. Then $\sigma_x \in \operatorname{Aut}(G)$, and $\phi : U(n) \to \operatorname{Aut}(G)$ $(x \mapsto \sigma_x)$ is a group isomorphism.
- 5. Suppose p and q are prime numbers with p > q, and G is a group of order pq. Let $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_q(G)$. Show the following. (20 pts)
 - (a) P is a normal subgroup of G. **Soln.** By (G), $|Syl_p(G)| = |G : N(P)| \equiv 1 \pmod{p}$. By (C), |G : N(P)| is a divisor of pq and 1 modulo p. Hence it is either 1 or q. Since q < p, $p \nmid q - 1$ and $q \not\equiv 1 \pmod{p}$. Therefore |G : N(P)| = 1 and $G = N(P) = \{x \in G \mid xPx^{-1} = P\}$. Hence $P \lhd G$.
 - (b) If Q is a normal subgroup, then G is cyclic.
 - **Soln.** By 1(d) with H = P, a = e and K = Q, $|PQ| = |P : P \cap Q| |Q| = |P| |Q| = pq$ as $|P \cap Q| ||P|$ and |Q| by (C) implies $|P \cap Q| = 1$. Since |G| = pq and $PQ \subseteq G$, G = PQ. Since G = PQ, $P \triangleleft G$, $Q \triangleleft G$, $P \cap Q = \{e\}$, $G = P \times Q$. Since both P and Q are of prime order, they are cyclic. Thus $G = P \times Q \approx \mathbb{Z}_p \oplus \mathbb{Z}_q \approx \mathbb{Z}_{pq}$, by (E). Hence G is cyclic.
 - (c) If Q is not a normal subgroup, then p ≡ 1 (mod q) and U(p) has a subgroup of order q.
 Soln. If Q is not normal, 1 < |G : N(Q)| ≡ 1 (mod q). By (C), |G : N(Q)| is a divisor of pq. Hence |G : N(Q)| = p and q | p − 1. Since p is a prime, |U(p)| = φ(p) = p − 1 and U(p) has a subgroup of order q by (E).
 - (d) Let p = 11 and q = 5. Find an element $r \in U(11)$ of order 5. Let $N = \langle a \rangle$ be a cyclic group of order 11 and $H = \{1, r, r^2, r^3, r^4\}$. Set $G = N \times H$. Then G is a non-Abelian group of order 55 with respect to the following binary operation:

$$G \times G \to G ((a^h, r^i)(a^j, r^k) \mapsto (a^{h+r^i j}, r^{i+k})), \text{ where } 0 \le h, j \le 10, \ 0 \le i, k \le 4.$$

(20 pts)

Soln. $|U(11)| = 10. 2^2, 2^5 \not\equiv 1 \pmod{11}, |2| = 10 \text{ in } U(11).$ Thus $r \in \{3, 4, 5, 9\}$ and $H = \{1, 4, 5, 9, 3\}$. Since

$$((a^{h}, r^{i})(a^{j}, r^{k}))(a^{\ell}, r^{m}) = (a^{h+r^{i}j}, r^{i+k})(a^{\ell}, r^{m}) = (a^{h+r^{i}j+r^{i+k}\ell}, r^{i+k+m}) \text{ and } (a^{h}, r^{i})((a^{j}, r^{k})(a^{\ell}, r^{m})) = (a^{h}, r^{i})(a^{j+r^{k}\ell}, r^{k+m}) = (a^{h+r^{i}(j+r^{k}\ell)}, r^{i+k+m}),$$

the operation is associative. (e, 1) is the identity element and $(a^h, r^i)^{-1} = (a^{-r^{-i}h}, r^{-i})$.

Let N be a group and $H \leq \operatorname{Aut}(N)$. Then $G = N \times H$ becomes a group with respect to the following binary operation.

$$G \times G \to G ((x, \sigma) \cdot (y, \tau) \mapsto (x\sigma(y), \sigma\tau)).$$

In 5 (d), we apply 4 (d) and $H = \langle r \rangle \leq U(p) = \operatorname{Aut}(P)$. Moreover, when $y = a^j$ and $\sigma = r^i$, $\sigma(y) = \sigma(a^j) = a^{r^i j}$. Therefore when $x = a^h$, $x\sigma(y) = a^h a^{r^i j} = a^{h+r^i j}$. This is called a semi-direct product of N and H.