Algebra I: Final 2013

Quote the following when necessary.
A. Subgroup H of a group G :

$$
H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H .
$$

B. Order of an Element: Let g be an element of a group G. Then $\langle g\rangle=\left\{g^{n} \mid n \in \boldsymbol{Z}\right\}$ is a subgroup of G. If there is a positive integer m such that $g^{m}=e$, where e is the identity element of $G,|g|=\min \left\{m \mid g^{m}=e, m \in \boldsymbol{N}\right\}$ and $|g|=|\langle g\rangle|$. Moreover, for any integer $n,|g|$ divides n if and only if $g^{n}=e$.
C. Lagrange's Theorem: If H is a subgroup of a finite group G, then $|G|=|G: H||H|$.
D. Normal Subgroup: A subgroup H of a group G is normal if $g \mathrm{Hg}^{-1}=H$ for all $g \in G$. If H is a normal subgroup of G, then G / H becomes a group with respect to the binary operation $(g H)\left(g^{\prime} H\right)=g g^{\prime} H$.
E. Direct Product: If $\operatorname{gcd}\{m, n\}=1$, then $\boldsymbol{Z}_{m n} \approx \boldsymbol{Z}_{m} \oplus \boldsymbol{Z}_{n}$ and $U(m n) \approx U(m) \oplus U(n)$.
F. Isomorphism Theorem: If $\alpha: G \rightarrow \bar{G}$ is a group homomorphism, $\operatorname{Ker}(\alpha)=\{x \in G \mid$ $\left.\alpha(x)=e_{\bar{G}}\right\}$, where $e_{\bar{G}}$ is the identity element of \bar{G}. Then $\alpha(G) \leq \bar{G}, \operatorname{Ker}(\alpha)$ is a normal subgroup of G, and $G / \operatorname{Ker}(\alpha) \approx \alpha(G)$.
G. Sylow's Theorem: For a finite group G and a prime p, let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups of G. Then $\operatorname{Syl}_{p}(G) \neq \emptyset$. Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Syl}_{p}(G)\right|=|G: N(P)| \equiv 1$ $(\bmod p)$, where $N(P)=\left\{x \in G \mid x P x^{-1}=P\right\}$.

Other Theorems: List other theorems you applied in your solutions.

1. Let H be a subgroup of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.
(b) If $a H \cap b H \neq \emptyset$, then $a H=b H$.
2. Let $\alpha: G \rightarrow A$ be an onto group homomorphism, and B a normal subgroup of A. Show the following.
(a) $\alpha^{-1}(B)=\{x \in G \mid \alpha(x) \in B\}$ is a normal subgroup of G.
(b) $G / \alpha^{-1}(B) \approx A / B$.
3. Let H be a normal subgroup of a group G. Show the following.
(a) For $x \in G$, let $\phi_{x}: H \rightarrow H\left(h \mapsto x h x^{-1}\right)$. Then $\phi_{x} \in \operatorname{Aut}(H)$, i.e., ϕ_{x} is a bijective homomorphism from H to H.
(b) Let $\Phi: G \rightarrow \operatorname{Aut}(H)\left(x \mapsto \phi_{x}\right)$. Then Φ is a (group) homomorphism.
(c) Let $C(H)=\{x \in G \mid x h=h x$ for all $h \in H\}$. Then $C(H) \triangleleft G$ and $G / C(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.
(d) If H is cyclic, then $G / C(H)$ is Abelian.
4. Answer the following questions on Abelian groups of order $32=2^{5}$.
(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 32 and give a brief explanation.
(b) List all Abelian groups of order 32 in your list in (a) that have exactly seven elements of order 2. Give your reason.
(c) Express $U(5 \cdot 16)$ as an internal direct product of cyclic subgroups, and identify a group isomorphic to $U(5 \cdot 16)$ in your list in (a).

ID\#:

Name:

5. Let G be a group and H a subgroup of G. Show the following.
(a) For $x \in G, x H x^{-1} \leq G$.
(b) Suppose for some $x \in G, G=H\left(x H x^{-1}\right)$. Then $G=H$. (Hint: Express x^{-1} as an element of $H\left(x H x^{-1}\right)$.)
6. Let p be a prime and P a group of order p^{2}. Show the following.
(a) Let Q be a subgroup of P of order p. Then $Q \triangleleft P$.
(b) P is Abelian.
7. Let p and q are distinct primes. Let G be a group of order $p^{2} q$. Let $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$. Show the following.
(a) If $Q \npreceq G$, then $\left|\operatorname{Syl}_{q}(G)\right|=p$ or p^{2}.
(b) If $\left|\operatorname{Syl}_{q}(G)\right|=p^{2}$, then $P \triangleleft G$.
(c) If $\left|\operatorname{Syl}_{q}(G)\right|=p$, then $p>q$ and $P \triangleleft G$.
(d) Find an example of a group G satisfying $\left|\operatorname{Syl}_{q}(G)\right|=p$.

Please write your message: Comments on group theory. Suggestions for improvements of this course. Write on the back of this sheet is also welcome.

Algebra I: Solutions to Final 2013

1. Let H be a subgroup of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.

Soln. Since $H \leq G, H \neq \emptyset$. Let $a \in H$. Then $a^{-1} \in H$ and $e=a a^{-1} \in H$.
Suppose $a H=b H$. Since $e \in H, a H=b H$ implies that $b=b e \in b H=a H$. Hence there exists $h \in H$ such that $b=a h$. Therefore by multiplying b^{-1} to both hand sides from the left, $b^{-1} a=h \in H$.
Conversely let $a^{-1} b=h \in H$. Then $b=a h$ and

$$
b H=a h H \subset a H=a e H=a h h^{-1} H=a a^{-1} b h^{-1} H \subset b H .
$$

Therefore $a H=b H$.
(b) If $a H \cap b H \neq \emptyset$, then $a H=b H$.

Soln. Let $c \in a H \cap b H$. Then $c=a h=b h^{\prime}$ for some $h, h^{\prime} \in H$. So $a^{-1} c=h \in H$ and $b^{-1} c=h^{\prime} \in H$. Hence by (a), $a H=c H=b H$.
2. Let $\alpha: G \rightarrow A$ be an onto group homomorphism, and B a normal subgroup of A. Show the following.
(a) $\alpha^{-1}(B)=\{x \in G \mid \alpha(x) \in B\}$ is a normal subgroup of G.

Soln. Let $H=\alpha^{-1}(B)$. We show $H \leq G$ by one step subgroup test. For $x, y \in H$, $\alpha(x), \alpha(y) \in B$. Hence $\alpha\left(x^{-1} y\right)=\alpha(x)^{-1} \alpha(y) \in B$ and $x^{-1} y \in H$. Therefore $H \leq G$.
Let $h \in H$ and $x \in G$. Since B is a normal subgroup of A,

$$
\alpha\left(x h x^{-1}\right)=\alpha(x) \alpha(h) \alpha(x)^{-1} \in \alpha(x) B \alpha(x)^{-1} \subset B .
$$

Therefore $x h x^{-1} \in H$ amd $x H x^{-1} \subset H$. Since x is arbitrary, $x^{-1} H x=x^{-1} H\left(x^{-1}\right)^{-1} \subset$ H. So by multiplying x from the left and x^{-1} from the right, we have $H \subset x H x^{-1}$. Therefore $x H x^{-1}=H$ for all $x \in G$ and $H \triangleleft G$.
(b) $G / \alpha^{-1}(B) \approx A / B$.

Soln. Since α is an onto homomorphism, $\beta: G \rightarrow A / B(x \mapsto x B)$ is an onto homomorphism as well. Since the kernel is $\alpha^{-1}(B)$, we have $G / \alpha^{-1}(B) \approx A / B$ by Isomorphism Theorem.
3. Let H be a normal subgroup of a group G. Show the following.
(a) For $x \in G$, let $\phi_{x}: H \rightarrow H\left(h \mapsto x h x^{-1}\right)$. Then $\phi_{x} \in \operatorname{Aut}(H)$, i.e., ϕ_{x} is a bijective homomorphism from H to H.
Soln. Since $H \triangleleft G, x h x^{-1} \in x H x^{-1}=H . \phi_{x}$ is onto as $x^{-1} h x \in H$ for $h \in H$, and $\phi_{x}\left(x^{-1} h x\right)=x x^{-1} h x x^{-1}=h . \quad \phi_{x}$ is one to one as $\phi_{x}(h)=\phi_{x}\left(h^{\prime}\right)$ implies, $x h x^{-1}=x h^{\prime} x^{-1}$ and $h=h^{\prime} . \phi_{x}$ is a homomorphism as $\phi_{x}\left(h h^{\prime}\right)=x h h x^{-1}=$ $x h x^{-1} x h x^{-1}=\phi_{x}(h) \phi_{x}\left(h^{\prime}\right)$. Therefore $\phi_{x} \in \operatorname{Aut}(H)$.
(b) Let $\Phi: G \rightarrow \operatorname{Aut}(H)\left(x \mapsto \phi_{x}\right)$. Then Φ is a (group) homomorphism.

Soln. $\quad \Phi(x y)=\phi_{x y}$ and $\Phi(x) \Phi(y)=\phi_{x} \phi_{y}$. Hence it suffices to show that $\phi_{x y}=$ $\phi_{x} \phi_{y} \operatorname{in} \operatorname{Aut}(H)$. For $h \in H$,

$$
\phi_{x y}(h)=x y h(x y)^{-1}=x\left(y h y^{-1}\right) x^{-1}=\phi_{x}\left(y h y^{-1}\right)=\phi_{x}\left(\phi_{y}(h)\right)=\left(\phi_{x} \phi_{y}\right)(h),
$$

as desired.
(c) Let $C(H)=\{x \in G \mid x h=h x$ for all $h \in H\}$. Then $C(H) \triangleleft G$ and $G / C(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.
Soln. $\operatorname{Ker}(\Phi)=\left\{x \in G \mid \phi_{x}=i d_{H}\right\}$, and $\phi_{x}=i d_{H}$ if and only if $x h x^{-1}=h$ for all $h \in H$. Thus $\operatorname{Ker}(\Phi)=C(H)$. Since $\operatorname{Ker} \Phi$ is a normal subgroup in G by Problem $2(\mathrm{a}), C(H) \triangleleft G$.
(d) If H is cyclic, then $G / C(H)$ is Abelian.

Soln. Since $G / C(H)$ is isormophic to a subgroup of $\operatorname{Aut}(H)$ by Isomoprhism Theorem, it suffices to show that $\operatorname{Aut}(H)$ is Abelian when H is cyclic. Let $H=\langle x\rangle$, and $\sigma \in \operatorname{Aut}(H)$. Then $\sigma\left(x^{n}\right)=\sigma(x)^{n}$ for all $n \in \boldsymbol{Z}$. Hence σ is determined by $\sigma(x)$. Suppose $\sigma, \tau \in \operatorname{Aut}(H)$ with $\sigma(x)=x^{i}$ and $\tau(x)=x^{j}$. Then

$$
(\sigma \tau)(x)=\sigma(\tau(x))=\sigma\left(x^{j}\right)=\sigma(x)^{j}=x^{i j}=\tau(x)^{i}=\tau\left(x^{i}\right)=\tau(\sigma(x))=(\tau \sigma)(x)
$$

Therefore $\sigma \tau=\tau \sigma$.
4. Answer the following questions on Abelian groups of order $32=2^{5}$.
(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 32 and give a brief explanation.
Soln. Since every finite Abelian group is isomorphic to an external direct product of cyclic groups, and it can be written uniquely as $\boldsymbol{Z}_{e_{1}} \oplus \boldsymbol{Z}_{e_{2}} \oplus \cdots \oplus \boldsymbol{Z}_{e_{r}}$ with $e_{1}\left|e_{2}, e_{2}\right| e_{3}, \ldots, e_{r-1} \mid e_{r}$, which is called of type $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$. Therefore we have
(32): Z_{32}
$(2,16): \quad Z_{2} \oplus Z_{16}$
(4,8): $\quad \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8}$
$(\mathbf{2 , 2 , 8}): \quad \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8}$
(2,4,4): $\quad \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{4}$
$(\mathbf{2 , 2 , 2 , 4}): \quad \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}$
(2,2,2,2,2): $\quad \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$
(b) List all Abelian groups of order 32 in your list in (a) that have exactly seven elements of order 2. Give your reason.
Soln. Seven elements of order 2 form a group isormopic to $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$, they are $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8}$ or $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{4}$.
(c) Express $U(5 \cdot 16)$ as an internal direct product of cyclic subgroups, and identify a group isomorphic to $U(5 \cdot 16)$ in your list in (a).
Soln. $U(5 \cdot 16) \approx U_{16}(5 \cdot 16) \oplus U_{5}(5 \cdot 16)$, and $\langle 17\rangle=U_{16}(5 \cdot 16) \approx U(5) \approx \boldsymbol{Z}_{4}$, $U_{5}(5 \cdot 16) \approx U(16) \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}$.

$$
U_{16}(5 \cdot 16)=\{1,17,33,49\}=\langle 17\rangle=\langle 33\rangle \approx \boldsymbol{Z}_{4} .
$$

$$
U_{5}(5 \cdot 16)=\{1,11,21,31,41,51,61,71\}=\langle 31\rangle \times\langle 11\rangle \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}
$$

Therefore,

$$
U(5 \cdot 16)=\langle 31\rangle \times\langle 11\rangle \times\langle 33\rangle \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{4}
$$

5. Let G be a group and H a subgroup of G. Show the following.
(a) For $x \in G, x H x^{-1} \leq G$.

Soln. For $h, h^{\prime} \in H, x h x^{-1} x h^{\prime} x^{-1}=x h h^{\prime} x^{-1} \in x H x^{-1}$ and $\left(x h x^{-1}\right)^{-1}=x h^{-1} x^{-1} \in$ $x H x^{-1}$. Therefore $x H x^{-1} \leq G$.
(b) Suppose for some $x \in G, G=H\left(x H x^{-1}\right)$. Then $G=H$. (Hint: Express x^{-1} as an element of $H\left(x H x^{-1}\right)$.)
Soln. Suppose $x^{-1}=h x h^{\prime} x^{-1}$ for some $h, h^{\prime} \in H$. Then $h x h^{\prime}=e$ and $x=$ $h^{-1} h^{-1} \in H$. Therefore $x H x^{-1}=H$, and $G=H$.
6. Let p be a prime and P a group of order p^{2}. Show the following.
(a) Let Q be a subgroup of P of order p. Then $Q \triangleleft P$.

Soln. Suppose Q is not normal in P. Then there exists $x \in G$ such that $Q \neq$ $x Q x^{-1}$. Since $Q \cap x Q x^{-1}=\{e\}, Q x Q x^{-1}=P$. This contradicts Problem 5 (b). So Q is normal. Note that $Q x Q x^{-1}=P$ is because if $Q=\langle y\rangle, y^{i} x Q x^{-1} \neq y^{j} x Q x^{-1}$ unless $y^{i-j}=e$, i.e., $y^{i}=y^{j}$ by Problem 1 (a) and Problem 5 (a).
(b) P is Abelian.

Soln. We may assume that P is not cyclic. Hence every nonidentity element of P generates a cyclic subgroup of order p by (C). Let Q be a subgoup of order p, and $x \notin Q$. Then x is of order p again, as P is not cyclic. Let $R=\langle x\rangle$. Then both Q and R are normal and $Q \cap R=\{e\}$ as $x \notin Q$. Threfore $Q R=Q \times R \leq P$. By comparing their orders, we have $P=Q \times R$ and P is Abelian.
7. Let p and q are distinct primes. Let G be a group of order $p^{2} q$. Let $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$. Show the following.
(a) If $Q \nexists G$, then $\left|\operatorname{Syl}_{q}(G)\right|=p$ or p^{2}.

Soln. Since $p=\left|\operatorname{Syl}_{q}(G)\right|=|G: N(Q)|$ and $Q \leq N(Q)$. By (C), $|G: N(Q)| \mid p^{2}$. Moreover $|G: N(Q)|=1$ if and only if $N(Q)=G$ and $Q \triangleleft G$. Hence by our assumption, we have the conclusion.
(b) If $\left|\operatorname{Syl}_{q}(G)\right|=p^{2}$, then $P \triangleleft G$.

Soln. Since there are $q-1$ elements of order q in a Sylow q-subgroup of G, there are $p^{2}(q-1)$ elements of order q in G in this case. There are only p^{2} remaining elements. There are no elements of order q in a Sylow p subgroup of G, which is of order p^{2}, P is the unique Sylow p-subgroup and $P \triangleleft G$.
(c) If $\left|\operatorname{Syl}_{q}(G)\right|=p$, then $p>q$ and $P \triangleleft G$.

Soln. Since $\left|\operatorname{Syl}_{q}(G)\right| \equiv 1 \quad(\bmod q), q \mid p-1$. Thus $q<p$. Since $\left|\operatorname{Syl}_{p}(G)\right| \equiv 1$ $(\bmod p)$ and this number divides $q,\left|\operatorname{Syl}_{p}(G)\right|=1$ as $p>q$ and p does not divide $q-1$. Therefore, $P \triangleleft G$.
(d) Find an example of a group G satisfying $\left|\operatorname{Syl}_{q}(G)\right|=p$.

Soln. $G=\boldsymbol{Z}_{3} \oplus S_{3}, p=3, q=2$.

