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Algebra I: Final 2011 June 24, 2011

ID#: Name:

Quote the following when necessary.

Subgroup H of a group G:

H ≤ G⇔ ∅ 6= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

Direct Product: If gcd{m,n} = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

Kernel: If φ : G → G is a group homomorphism, Ker(φ) = {x ∈ G | φ(x) = eG}, where eG

is the identity element of G.

Sylow’s Theorem: For a finite group G and a prime p, let Sylp(G) denote the set of Sylow
p-subgroups of G. Then Sylp(G) 6= ∅. Let P ∈ Sylp(G). Then |Sylp(G)| = |G : N(P )| ≡ 1
(mod p), where N(P ) = {x ∈ G | xPx−1 = P}.

1. Let a be an element of order n. If k is an integer such that gcd{k, n} = 1, then C(a) =
C(ak). Here for x ∈ G, C(x) = {g ∈ G | gxg−1 = x}. You may use the fact that there
exist s, t ∈ Z such that ks+ nt = 1. (10 pts)
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2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) For x ∈ G, xH = H if and only if x ∈ H.

(b) H = HH = H−1.

(c) HK is a subgroup of G if and only if HK = KH.

(d) If xhx−1 ∈ H for all x ∈ G and h ∈ H, then H is a normal subgroup of G.
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3. Let R∗ denote the multiplicative group of nonzero real numbers and let

G =

{[
a c
0 b

] ∣∣∣∣∣ a, b, c ∈ R and ab 6= 0

}
, H = R∗ ⊕ R∗ = {(x, y) | x, y ∈ R − {0}}.

Let

φ : G→ H

([
a c
0 b

]
7→ (a, b)

)
.

Show the following. (25 pts)

(a) G is a subgroup of GL(2,R), the multiplicative group consisting of invertible 2 × 2
real matrices. You may assume that GL(2,R) is a group.

(b) φ is an onto group homomorphism.

(c) Ker(φ) ≈ R, where R denote the additive group of real numbers.

(d) Suppose N is a subgroup of G containing Ker(φ). Then N is a normal subgroup of
G and G/N is Abelian.
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4. Answer the following questions on Abelian groups of order 72 = 23 · 32. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 72 and give a brief explanation.

(b) List all Abelian groups of order 72 in your list above that have exactly three elements
of order 2. Give your reason.

(c) Determine whether or not U(91) ≈ U(152). Give your reason.
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5. Let G be a non-Abelian group of order 21, P a Sylow 7-subgroup and Q a Sylow 3-
subgroup of G. (20
pts)

(a) Show that P and Q are cyclic.

(b) Show that P is a normal subgroup of G.

(c) Show that Q is not a normal subgroup of G.

(d) Let P = 〈x〉 and Q = 〈y〉. Show that yxy−1 ∈ {x2, x4}.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let a be an element of order n. If k is an integer such that gcd{k, n} = 1, then C(a) =
C(ak). Here for x ∈ G, C(x) = {g ∈ G | gxg−1 = x}. You may use the fact that there
exist s, t ∈ Z such that ks+ nt = 1. (10 pts)

Solution. First we prove the following claim.

Claim: For every integer i, C(x) ⊂ C(xi).

Proof. Let g ∈ C(x). Then gxg−1 = x. Hence xi = (gxg−1)i = gxig−1. Thus g ∈ C(xi).

Let s, t ∈ Z be as above. By the claim above, C(a) ⊂ C(ak). On the other hand,
a = aks+nt = aksant = (ak)s. Therefor C(ak) ⊂ C((ak)s) = C(a). Therefore C(a) = C(ak)
whenever gcd{k, n} = 1.

2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) For x ∈ G, xH = H if and only if x ∈ H.

(b) H = HH = H−1.

(c) HK is a subgroup of G if and only if HK = KH.

(d) If xhx−1 ∈ H for all x ∈ G and h ∈ H, then H is a normal subgroup of G.

Solution. (a) Suppose xH = H. Since H is a subgroup, e ∈ H. Hence x = xe ∈ xH =
H. Conversely, if x ∈ H, then since H is a subgroup,

xH ⊂ HH ⊂ H = eH = xx−1H ⊂ xHH ⊂ xH.

Therefore xH = H.

(b) Since H is a subgroup,

H = eH ⊂ HH ⊂ H, H−1 ⊂ H = (H−1)−1 ⊂ H−1.

Therefore H = HH = H−1.

(c) Suppose H is a subgroup of G. Then by (b)

HK = (HK)−1 = K−1H−1 = KH.

Conversely suppose HK = KH. Then

HKHK = HHKK = HK, and (HK)−1 = K−1H−1 = KH = HK.

Therefore HK is a subgroup of G.

(d) By assumption, xHx−1 ⊂ H for every x ∈ G. Since x−1 ∈ G, x−1Hx = x−1H(x−1)−1 ⊂
H. Therefore

xHx−1 ⊂ H = x(x−1Hx)x−1 ⊂ xHx−1.

Thus xHx−1 = H for evert x ∈ G and H is a normal subgroup of G.
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3. Let R∗ denote the multiplicative group of nonzero real numbers and let

G =

{[
a c
0 b

] ∣∣∣∣∣ a, b, c ∈ R and ab 6= 0

}
, H = R∗ ⊕ R∗ = {(x, y) | x, y ∈ R − {0}}.

Let

φ : G→ H

([
a c
0 b

]
7→ (a, b)

)
.

Show the following. (25 pts)

(a) G is a subgroup of GL(2,R), the multiplicative group consisting of invertible 2 × 2
real matrices. You may assume that GL(2,R) is a group.

(b) φ is an onto group homomorphism.

(c) Ker(φ) ≈ R, where R denote the additive group of real numbers.

(d) Suppose N is a subgroup of G containing Ker(φ). Then N is a normal subgroup of
G and G/N is Abelian.

Solution. (a) We show G is a subgroup of GL(2,R). Since

M−1 =

[
a c
0 b

]−1

=
1

ab

[
b −c
0 a

]
, and MM ′ =

[
a c
0 b

] [
a′ c′

0 b′

]
=

[
aa′ ac′ + cb′

0 bb′

]
,

For M,M ′ ∈ G, M−1 ∈ G and MM ′ ∈ G. Therefore G is a subgroup of GL(2,R).

(b) Using the computation above,

φ(M)φ(M ′) = (a, b)(a′, b′) = (aa′, bb′), and φ(MM ′) = (aa′, bb′).

Therefore φ(MM ′) = φ(M)φ(M ′) and φ is a group homomorphism from G to H. For
(a, b) ∈ H,

M =

[
a 0
0 b

]
∈ G and φ(M) = (a, b).

Hence φ is onto.

(c) First we determine Ker(φ). Since eH = (1, 1),

Ker(φ) =

{[
1 c
0 1

] ∣∣∣∣∣ c ∈ R

}
.

Let

ψ : Ker(φ) → R

([
1 c
0 1

]
7→ c

)
.

Since

ψ

([
1 c
0 1

] [
1 c′

0 1

])
= ψ

([
1 c+ c′

0 1

])
= c+ c′ = ψ

([
1 c
0 1

])
+ ψ

([
1 c′

0 1

])
,

ψ is a group homomorphism. It is clearly a bijection by definition. Therefore ψ is an
isomorphism and Ker(ψ) ≈ R.
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(d) Since H is Abelian and φ(N) is a subgroup of H, φ(N) is a normal subgroup of H.
Since φ is onto and N contains the kernel of φ, φ−1(φ(N)) = N . (Clearly φ−1(φ(N)) ⊃ N .
For M ∈ φ−1(φ(N)), there exists M ′ ∈ N such that φ(M) = φ(M ′) as φ(M) ∈ φ(N).
Therefore MM ′−1 ∈ Ker(φ) and M ∈ Ker(φ)M ′ ∈ N . Thus φ−1(φ(N)) ⊂ N .) Let

Φ : G→ H/φ(N) (M 7→ φ(M)φ(N)).

Then Ker(Φ) = φ−1(φ(N)) = N , and G/N ≈ H/φ(N). Since H is Abelian, H/φ(N) is
Abelian. Therefore G/N is Abelian.

4. Answer the following questions on Abelian groups of order 72 = 23 · 32. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 72 and give a brief explanation.

(b) List all Abelian groups of order 72 in your list above that have exactly three elements
of order 2. Give your reason.

(c) Determine whether or not U(91) ≈ U(152). Give your reason.

Solution. (a) By the Fundamental Theorem of Finite Abelian Group, every Abelian
group of order 72 is isomorphic to an external direct product of cyclic groups Ze1 ,Ze2 , . . . ,Zer

such that ei | ei+1 for i = 1, 2, . . . , r− 1, and (e1, e2, . . . , er) is uniquely determined. Since
72 = e1e2 · · · er, the only possibilities of the sequences are (72), (2, 36), (2, 2, 18), (3, 24),
(6, 12), and (2, 6, 6). Therefore every finite Abelian group of order 72 is isomorphic one
of the following groups.

Z72, Z2 ⊕ Z36, Z2 ⊕ Z2 ⊕ Z18, Z3 ⊕ Z24, Z6 ⊕ Z12, or Z2 ⊕ Z6 ⊕ Z6

(b) The order of element (a1, a2, . . . , ar) ∈ Ze1 ⊕Ze2 ⊕· · ·⊕Zer is lcm(|a1|, |a2|, . . . , |ar|).
Therefore the groups in the list have the following number of elements of order 2 respec-
tively, 1, 3, 7, 1, 3, 7. Therefore groups satisfying the condition are

Z2 ⊕ Z36, and Z6 ⊕ Z12.

(c) 91 = 7 · 13 and 152 = 8 · 19. Therefore

U(91) ≈ U(7) ⊕ U(13) and U(152) ≈ U(8) × U(19).

Since U(7), U(13), U(19) has exactly one element of order 2 and U(8) has three elements
of order 2, U(19) has three elements of order 2 and U(152) has seven elements of order
2. Thus these groups are not isomorphic.
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5. Let G be a non-Abelian group of order 21, P a Sylow 7-subgroup and Q a Sylow 3-
subgroup of G. (20
pts)

(a) Show that P and Q are cyclic.

(b) Show that P is a normal subgroup of G.

(c) Show that Q is not a normal subgroup of G.

(d) Let P = 〈x〉 and Q = 〈y〉. Show that yxy−1 ∈ {x2, x4}.

Solution. (a) Every groups of prime order are cyclic. (Let |G| = p, where p is a prime.
Let e 6= x ∈ G. Then H = 〈x〉 is a subgroup of G of order at least 2. By Lagrange’s Theorem,
|H| = |G| and H = G. Hence G is cyclic.) Since |P | = 7 and |Q| = 3, both P and Q are cyclic
as 7 and 3 are prime.

(b) By Sylow’s Theorem, |G : N(P )| = |Syl7(G)| ≡ 1 (mod 7). Since |G : N(P )| is
a divisor of |G| by Lagrange’s Theorem, we have |G : N(P )| = 1 and G = N(P ). By the
definition of N(P ), G = N(P ) means P is a normal subgroup.

(c) By way of contradiction, assume that Q is a normal subgroup. Then |P ∩Q| is a divisor
of |P | and |Q| and P ∩ Q = {e}. Now PQ is a subgroup of G of order divisible by 7 and 3,
we have G = PQ and G = P ×Q. By (a), both P and Q are cyclic, so Abelian, G is Abelian.
This contradicts our assumption. Thus Q is not normal in G.

(d) Since P is normal in G, yxy−1 ∈ P = 〈x〉. Suppose yxy−1 = xi. Then

x = yyyxy−1y−1y−1 = yyxiy−1y−1 = yxi2y−1 = xi3 .

Therefore i3 − 1 ≡ 0 (mod 7). Thus yxy−1 ∈ {x, x2, x4}. However yxy−1 = x does not occur,
as x and y are not commutative.


