Algebra I: Final 2010

Division: ID\#: Name:
Quote the following when necessary.
Subgroup H of a group G :

$$
H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H .
$$

Order of an Element: Let g be an element of a group G. Then $\langle g\rangle=\left\{g^{n} \mid n \in \boldsymbol{Z}\right\}$ is a subgroup of G. If there is a positive integer m such that $g^{m}=e$, where e is the identity element of $G,|g|=\min \left\{m \mid g^{m}=e, m \in \boldsymbol{N}\right\}$ and $|g|=|\langle g\rangle|$. Moreover, for any integer $n,|g|$ divides n if and only if $g^{n}=e$.
G / H and $|G: H|: \quad$ If $H \leq G, G / H=\{g H \mid g \in G\}$, i.e., the set of left cosets of H in G and $|G / H|$ is denoted by $|G: H|$.

Lagrange's Theorem: If H is a subgroup of a finite group G, then $|G|=|G: H||H|$.
Normal Subgroup: A subgroup H of a group G is normal if $g H^{-1}=H$ for all $g \in G$. If H is a normal subgroup of G, then G / H becomes a group with respect to the binary operation $(g H)\left(g^{\prime} H\right)=g g^{\prime} H$.

Center of a Group: The center $Z(G)$ of a group G is the set $\left\{x \in G \mid g x g^{-1}=x\right.$ for all $\left.g \in G\right\}$.
Direct Product: If $\operatorname{gcd}\{m, n\}=1$, then $\boldsymbol{Z}_{m n} \approx \boldsymbol{Z}_{m} \oplus \boldsymbol{Z}_{n}$ and $U(m n) \approx U(m) \oplus U(n)$.
Kernel: If $\phi: G \rightarrow \bar{G}$ is a group homomorphism, $\operatorname{Ker}(\phi)=\left\{x \in G \mid \phi(x)=e_{\bar{G}}\right\}$, where $e_{\bar{G}}$ is the identity element of \bar{G}.

1. Let H be a subgroup of a group G. Show that for $x, y \in G, x H=y H \Leftrightarrow x^{-1} y \in H$. (10 pts)

Division: ID\#: Name:

2. Let H and K be subgroups of a group G. Show the following.
(a) $H \cap K \leq G$.
(b) $\phi: H /(H \cap K) \mapsto G / K(h(H \cap K) \mapsto h K)$ is a well-defined injection (i.e., one-to-one mapping).
(c) If $|H|$ and $|K|$ are finite, $|H K||H \cap K|=|H||K|$.

Division: ID\#: Name:

3. Let $\phi: G \rightarrow \bar{G}$ is a group homomorphism from G to \bar{G}. Show the following.
(a) $\phi\left(e_{G}\right)=e_{\bar{G}}$ and $\phi\left(x^{-1}\right)=\phi(x)^{-1}$ for all $x \in G$, where e_{G} is the identity element of G and $e_{\bar{G}}$ is that of \bar{G}.
(b) If $H \leq G$, then $\phi(H) \leq \bar{G}$.
(c) If the order of an element g is finite, then $|\phi(g)|||g|$.
(d) Let $K=\operatorname{Ker}(\phi)$. If $S \subset G$, then $\phi^{-1}(\phi(S))=S K$.

Division: ID\#: Name:

4. Answer the following questions on Abelian groups of order $108=2^{2} \cdot 3^{3}$.
(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 108 and give a brief explanation.
(b) List all Abelian groups of order 108 in your list above that have a group homomorphism onto \boldsymbol{Z}_{9}. Give your reason.
(c) Determine whether or not $U(133) \approx U(324)$. Give your reason.

Division: ID\#: Name:

5. The following is the Cayley table of D_{4}.

	R_{0}	$R_{\pi / 2}$	R_{π}	$R_{3 \pi / 2}$	H	V	D	D^{\prime}
R_{0}	R_{0}	$R_{\pi / 2}$	R_{π}	$R_{3 \pi / 2}$	H	V	D	D^{\prime}
$R_{\pi / 2}$	$R_{\pi / 2}$	R_{π}	$R_{3 \pi / 2}$	R_{0}	D^{\prime}	D	H	V
R_{π}	R_{π}	$R_{3 \pi / 2}$	R_{0}	$R_{\pi / 2}$	V	H	D^{\prime}	D
$R_{3 \pi / 2}$	$R_{3 \pi / 2}$	R_{0}	$R_{\pi / 2}$	R_{π}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	R_{0}	R_{π}	$R_{\pi / 2}$	$R_{3 \pi / 2}$
V	V	D^{\prime}	H	D	R_{π}	R_{0}	$R_{3 \pi / 2}$	$R_{\pi / 2}$
D	D	V	D^{\prime}	H	$R_{3 \pi / 2}$	$R_{\pi / 2}$	R_{0}	R_{π}
D^{\prime}	D^{\prime}	H	D	V	$R_{\pi / 2}$	$R_{3 \pi / 2}$	R_{π}	R_{0}

As for the following no explanation is required.
(a) Find $Z\left(D_{4}\right)$.
(b) Find all normal subgroups different from $\left\{R_{0}\right\}, Z\left(D_{4}\right)$ and D_{4}.
(c) Find all subgroups of D_{4} that are not normal.

Please write your message: Comments on group theory. Suggestions for improvements of this course. Write on the back of this sheet is also welcome.

Algebra I: Final 2010 Solutions

1. Let H be a subgroup of a group G. Show that for $x, y \in G, x H=y H \Leftrightarrow x^{-1} y \in H$. (10 pts)
Solution. Since $H \leq G, H \neq \emptyset$. Let $x \in H$. Then $x^{-1} \in H$ and $e=x x^{-1} \in H$.
Suppose $x H=y H$. Since $e \in H, x H=y H$ implies that $y=y e \in y H=x H$. Hence there exists $h \in H$ such that $y=x h$. Therefore by multiplying x^{-1} to both hand sides from left, $x^{-1} y=h \in H$.
Conversely let $x^{-1} y=h \in H$. Then $y=x h$ and

$$
y H=x h H \subset x H=x e H=x x^{-1} y h^{-1} H \subset y H .
$$

Therefore $x H=y H$.
2. Let H and K be subgroups of a group G. Show the following.
(a) $H \cap K \leq G$.
(b) $\phi: H /(H \cap K) \mapsto G / K(h(H \cap K) \mapsto h K)$ is a well-defined injection (i.e., one-to-one mapping).
(c) If $|H|$ and $|K|$ are finite, $|H K||H \cap K|=|H||K|$.

Solution.

(a) By $1, e \in H$ and $e \in K$. Hence $H \cap K \neq \emptyset$. Suppose $x, y \in H \cap K$. Since $x, y \in H$ and H is a subgroup of $G, x y \in H$ and $x^{-1} \in H$. Similarly since K is a subgroup of $G, x y \in K$ and $x^{-1} \in K$. Therefore $x y \in H \cap K$ and $x^{-1} \in H \cap K$. Thus $H \cap K$ satisfies the condition of a subgroup of G.
(b) Note that by the definition of subgroups, $H \cap K \leq H$. Hence we can apply 1 and for all $h, h^{\prime} \in H$ we have

$$
h(H \cap K)=h^{\prime}(H \cap K) \Leftrightarrow h^{-1} h^{\prime} \in H \cap K \Leftrightarrow h K=h^{\prime} K .
$$

Since $h(H \cap K)=h^{\prime}(H \cap K)$ implies $h K=h^{\prime} K, \phi$ is well-defined mapping from $H /(H \cap K)$ to G / K. Moreover since $h K=h^{\prime} K$ implies $h(H \cap K)=h^{\prime}(H \cap K)$, $h K=\phi(h(H \cap K))=\phi\left(h^{\prime}(H \cap K)\right)=h^{\prime} K$ implies $h(H \cap K)=h^{\prime}(H \cap K)$ and ϕ is an injection.
(c) For each $h \in H$, we claim that $\psi: K \rightarrow h K(k \mapsto h k)$ is a bijection. This is an injection because $h k=\psi(k)=\phi\left(k^{\prime}\right)=h k^{\prime}$ implies $k=k^{\prime}$ for all $k, k^{\prime} \in K$ by multiplying h^{-1} to both hand sides from the left. This is a surjection because for $k \in K, \psi(k)=h k$. This proves our claim and $|h K|=|K|$ for all $h \in H$.
Since ϕ is an injection, there are $|H: H \cap K|$ cosets of K in G in the image of ϕ, that is $H K$ contains $|H: H \cap K|$ cosets of K in G. By our claim above, each coset $h K$ contains $|K|$ elements. Therefore by Lagrange's Theorem,

$$
|H K|=|H: H \cap K||K|=\frac{|H|}{|H \cap K|}|K| \text {, and hence }|H K||H \cap K|=|H||K| \text {. }
$$

3. Let $\phi: G \rightarrow \bar{G}$ is a group homomorphism from G to \bar{G}. Show the following.
(a) $\phi\left(e_{G}\right)=e_{\bar{G}}$ and $\phi\left(x^{-1}\right)=\phi(x)^{-1}$ for all $x \in G$, where e_{G} is the identity element of G and $e_{\bar{G}}$ is that of \bar{G}.
(b) If $H \leq G$, then $\phi(H) \leq \bar{G}$.
(c) If the order of an element g is finite, then $|\phi(g)|||g|$.
(d) Let $K=\operatorname{Ker}(\phi)$. If $S \subset G$, then $\phi^{-1}(\phi(S))=S K$.

Solution.

(a) $e_{\bar{G}}=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G}\right)=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G} e_{G}\right)=\phi\left(e_{G}\right)^{-1} \phi\left(e_{G}\right) \phi\left(e_{G}\right)=\phi\left(e_{G}\right)$. Moreover $\phi\left(x^{-1}\right)=\phi\left(x^{-1}\right) \phi(x) \phi(x)^{-1}=\phi\left(x^{-1} x\right) \phi(x)^{-1}=\phi\left(e_{G}\right) \phi(x)^{-1}=e_{\bar{G}} \phi(x)^{-1}=\phi(x)^{-1}$.
This proves both assertions.
(b) Since $e_{G} \in H$ by the solution of $1, e_{\bar{G}}=\phi\left(e_{G}\right) \in \phi(H)$ and $\phi(H) \neq \emptyset$. Let $x, y \in \phi(H)$. Then there exist $x^{\prime}, y^{\prime} \in H$ such that $x=\phi\left(x^{\prime}\right)$ and $y=\phi\left(y^{\prime}\right)$. Since ϕ is a group homomorphism $x y=\phi\left(x^{\prime}\right) \phi\left(y^{\prime}\right)=\phi\left(x^{\prime} y^{\prime}\right) \in \phi(H)$ as H is a subgroup of G. By (a) $x^{-1}=\phi\left(x^{\prime}\right)^{-1}=\phi\left(x^{\prime-1}\right) \in \phi(H)$ as H is a subgroup of G. Therefore $\phi(H)$ satisfies the condition of a subgroup of \bar{G} and $\phi(H) \leq \bar{G}$.
(c) Let $n=|g|$. Then $n=|\langle g\rangle| . g^{n}=e_{G}$. Hence by (a) $e_{\bar{G}}=\phi\left(e_{G}\right)=\phi\left(g^{n}\right)=\phi(g)^{n}$. Therefore $|\phi(g)|$ divides $n=|g|$.
(d) Let $s \in S$ and $k \in K=\operatorname{Ker}(\phi)$. Then $\phi(s k)=\phi(s) \phi(k)=\phi(s) e_{\bar{G}}=\phi(s) \in \phi(S)$. Hence $s k \in \phi^{-1}(\phi(S))$ and $S K \subset \phi^{-1}(\phi(S))$. Conversely if $x \in \phi^{-1}(\phi(S)), \phi(x) \in$ $\phi(S)$. Hence there exists $s \in S$ such that $\phi(x)=\phi(s)$. Therefore $e_{\bar{G}}=\phi(s)^{-1} \phi(x)=$ $\phi\left(s^{-1} x\right)$ and $s^{-1} x \in K$. Let $s^{-1} x=k$ for some $k \in K$. Then $x=s k \in S K$. This proves $\phi^{-1}(\phi(S)) \subset S K$ and $\phi^{-1}(\phi(S))=S K$.
4. Answer the following questions on Abelian groups of order $108=2^{2} \cdot 3^{3}$.
(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 108 and give a brief explanation.
(b) List all Abelian groups of order 108 in your list above that have a group homomorphism onto \boldsymbol{Z}_{9}. Give your reason.
(c) Determine whether or not $U(133) \approx U(324)$. Give your reason.

Solution.

(a) Each group of order 108 is an internal direct sum of groups of order 2^{2} and 3^{3} and each group of order 2^{2} and 3^{3} are isomorphic to an external direct product of cyclic groups of decreasing order and if the sequence of orders of such cyclic groups are distinct then they are non-isomorphic. Hence they are

$$
\begin{array}{ccc}
\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{27} & \approx & \boldsymbol{Z}_{108} \\
\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{27} & \approx & \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{54} \\
\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{3} & \approx & \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{36} \\
\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{3} & \approx & \boldsymbol{Z}_{6} \oplus \boldsymbol{Z}_{18} \\
\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{3} & \approx & \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{12} \\
\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{3} & \approx & \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{6} \oplus \boldsymbol{Z}_{6}
\end{array}
$$

(b) By 3(c), the group must have an element of order 9. Hence they are

$$
\boldsymbol{Z}_{108}, \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{54}, \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{36}, \text { and } \boldsymbol{Z}_{6} \oplus \boldsymbol{Z}_{18}
$$

(c) $U(133)=U(7 \cdot 19) \approx U(7) \oplus U(19) \approx \boldsymbol{Z}_{6} \oplus \boldsymbol{Z}_{18}$, while $U(324)=U(4 \cdot 81) \approx$ $U(4) \oplus U(81) \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{54}$. Hence these groups of order 108 are not isomorphic. (Since it is easy to see that the first does not have an element of order 9 by the first direct sum decomposition, the only thing to show is that $U(81)$ has an element of order at least 7 and 2 is such an element.
5. The following is the Cayley table of D_{4}.

	R_{0}	$R_{\pi / 2}$	R_{π}	$R_{3 \pi / 2}$	H	V	D	D^{\prime}
R_{0}	R_{0}	$R_{\pi / 2}$	R_{π}	$R_{3 \pi / 2}$	H	V	D	D^{\prime}
$R_{\pi / 2}$	$R_{\pi / 2}$	R_{π}	$R_{3 \pi /}$	R_{0}	D^{\prime}	D	H	V
R_{π}	R_{π}	$R_{3 \pi / 2}$	R_{0}	$R_{\pi / 2}$	V	H	D^{\prime}	D
$R_{3 \pi / 2}$	$R_{3 \pi / 2}$	R_{0}	$R_{\pi / 2}$	R_{π}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	R_{0}	R_{π}	$R_{\pi / 2}$	$R_{3 \pi / 2}$
V	V	D^{\prime}	H	D	R_{π}	R_{0}	$R_{3 \pi / 2}$	$R_{\pi / 2}$
D	D	V	D^{\prime}	H	$R_{3 \pi / 2}$	$R_{\pi / 2}$	R_{0}	R_{π}
D^{\prime}	D^{\prime}	H	D	V	$R_{\pi / 2}$	$R_{3 \pi / 2}$	R_{π}	R_{0}

As for the following no explanation is required.
(a) Find $Z\left(D_{4}\right)$.
(b) Find all normal subgroups different from $\left\{R_{0}\right\}, Z\left(D_{4}\right)$ and D_{4}.
(c) Find all subgroups of D_{4} that are not normal.

Solution.

(a) $Z\left(D_{4}\right)=\left\{R_{0}, R_{\pi}\right\}$.
(b) If its order is 2 , it is in the center. Hence the only possibility is of order 4. Since $D_{4} / Z\left(D_{4}\right) \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$, there are three such groups. They are

$$
\left\{R_{0}, R_{\pi / 2}, R_{\pi}, R_{3 \pi / 2}\right\},\left\{R_{0}, R_{\pi}, H, V\right\},\left\{R_{0}, R_{\pi}, D, D^{\prime}\right\}
$$

(c) Since all subgroups of order $1,4,8$ are normal. The only possibility is the one of order 2 which is not in the center. Hence

$$
\left\{R_{0}, H\right\},\left\{R_{0}, V\right\},\left\{R_{0}, D\right\},\left\{R_{0}, D^{\prime}\right\}
$$

