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Algebra I: Final 2010 June 21, 2010

Division: ID#: Name:

Quote the following when necessary.

Subgroup H of a group G:

H ≤ G ⇔ ∅ ̸= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

G/H and |G : H|: If H ≤ G, G/H = {gH | g ∈ G}, i.e., the set of left cosets of H in G and
|G/H| is denoted by |G : H|.

Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

Center of a Group: The center Z(G) of a group G is the set {x ∈ G | gxg−1 = x for all g ∈ G}.

Direct Product: If gcd{m,n} = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

Kernel: If φ : G → G is a group homomorphism, Ker(φ) = {x ∈ G | φ(x) = eG}, where eG

is the identity element of G.

1. Let H be a subgroup of a group G. Show that for x, y ∈ G, xH = yH ⇔ x−1y ∈ H. (10
pts)
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2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) H ∩ K ≤ G.

(b) φ : H/(H∩K) 7→ G/K (h(H∩K) 7→ hK) is a well-defined injection (i.e., one-to-one
mapping).

(c) If |H| and |K| are finite, |HK||H ∩ K| = |H||K|.
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3. Let φ : G → G is a group homomorphism from G to G. Show the following. (25 pts)

(a) φ(eG) = eG and φ(x−1) = φ(x)−1 for all x ∈ G, where eG is the identity element of
G and eG is that of G.

(b) If H ≤ G, then φ(H) ≤ G.

(c) If the order of an element g is finite, then |φ(g)| | |g|.
(d) Let K = Ker(φ). If S ⊂ G, then φ−1(φ(S)) = SK.
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4. Answer the following questions on Abelian groups of order 108 = 22 · 33. (25 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 108 and give a brief explanation.

(b) List all Abelian groups of order 108 in your list above that have a group homomor-
phism onto Z9. Give your reason.

(c) Determine whether or not U(133) ≈ U(324). Give your reason.
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5. The following is the Cayley table of D4. (15 pts)

R0 Rπ/2 Rπ R3π/2 H V D D′

R0 R0 Rπ/2 Rπ R3π/2 H V D D′

Rπ/2 Rπ/2 Rπ R3π/2 R0 D′ D H V
Rπ Rπ R3π/2 R0 Rπ/2 V H D′ D

R3π/2 R3π/2 R0 Rπ/2 Rπ D D′ V H
H H D V D′ R0 Rπ Rπ/2 R3π/2

V V D′ H D Rπ R0 R3π/2 Rπ/2

D D V D′ H R3π/2 Rπ/2 R0 Rπ

D′ D′ H D V Rπ/2 R3π/2 Rπ R0

As for the following no explanation is required.

(a) Find Z(D4).

(b) Find all normal subgroups different from {R0}, Z(D4) and D4.

(c) Find all subgroups of D4 that are not normal.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let H be a subgroup of a group G. Show that for x, y ∈ G, xH = yH ⇔ x−1y ∈ H. (10
pts)

Solution. Since H ≤ G, H ̸= ∅. Let x ∈ H. Then x−1 ∈ H and e = xx−1 ∈ H.

Suppose xH = yH. Since e ∈ H, xH = yH implies that y = ye ∈ yH = xH. Hence
there exists h ∈ H such that y = xh. Therefore by multiplying x−1 to both hand sides
from left, x−1y = h ∈ H.

Conversely let x−1y = h ∈ H. Then y = xh and

yH = xhH ⊂ xH = xeH = xx−1yh−1H ⊂ yH.

Therefore xH = yH.

2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) H ∩ K ≤ G.

(b) φ : H/(H∩K) 7→ G/K (h(H∩K) 7→ hK) is a well-defined injection (i.e., one-to-one
mapping).

(c) If |H| and |K| are finite, |HK||H ∩ K| = |H||K|.

Solution.

(a) By 1, e ∈ H and e ∈ K. Hence H ∩ K ̸= ∅. Suppose x, y ∈ H ∩ K. Since x, y ∈ H
and H is a subgroup of G, xy ∈ H and x−1 ∈ H. Similarly since K is a subgroup
of G, xy ∈ K and x−1 ∈ K. Therefore xy ∈ H ∩ K and x−1 ∈ H ∩ K. Thus H ∩ K
satisfies the condition of a subgroup of G.

(b) Note that by the definition of subgroups, H ∩ K ≤ H. Hence we can apply 1 and
for all h, h′ ∈ H we have

h(H ∩ K) = h′(H ∩ K) ⇔ h−1h′ ∈ H ∩ K ⇔ hK = h′K.

Since h(H ∩ K) = h′(H ∩ K) implies hK = h′K, φ is well-defined mapping from
H/(H ∩ K) to G/K. Moreover since hK = h′K implies h(H ∩ K) = h′(H ∩ K),
hK = φ(h(H ∩K)) = φ(h′(H ∩K)) = h′K implies h(H ∩K) = h′(H ∩K) and φ is
an injection.

(c) For each h ∈ H, we claim that ψ : K → hK (k 7→ hk) is a bijection. This is an
injection because hk = ψ(k) = φ(k′) = hk′ implies k = k′ for all k, k′ ∈ K by
multiplying h−1 to both hand sides from the left. This is a surjection because for
k ∈ K, ψ(k) = hk. This proves our claim and |hK| = |K| for all h ∈ H.

Since φ is an injection, there are |H : H ∩ K| cosets of K in G in the image of φ,
that is HK contains |H : H ∩ K| cosets of K in G. By our claim above, each coset
hK contains |K| elements. Therefore by Lagrange’s Theorem,

|HK| = |H : H ∩ K||K| =
|H|

|H ∩ K|
|K|, and hence |HK||H ∩ K| = |H||K|.
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3. Let φ : G → G is a group homomorphism from G to G. Show the following. (25 pts)

(a) φ(eG) = eG and φ(x−1) = φ(x)−1 for all x ∈ G, where eG is the identity element of
G and eG is that of G.

(b) If H ≤ G, then φ(H) ≤ G.

(c) If the order of an element g is finite, then |φ(g)| | |g|.
(d) Let K = Ker(φ). If S ⊂ G, then φ−1(φ(S)) = SK.

Solution.

(a) eG = φ(eG)−1φ(eG) = φ(eG)−1φ(eGeG) = φ(eG)−1φ(eG)φ(eG) = φ(eG). Moreover

φ(x−1) = φ(x−1)φ(x)φ(x)−1 = φ(x−1x)φ(x)−1 = φ(eG)φ(x)−1 = eGφ(x)−1 = φ(x)−1.

This proves both assertions.

(b) Since eG ∈ H by the solution of 1, eG = φ(eG) ∈ φ(H) and φ(H) ̸= ∅. Let
x, y ∈ φ(H). Then there exist x′, y′ ∈ H such that x = φ(x′) and y = φ(y′). Since
φ is a group homomorphism xy = φ(x′)φ(y′) = φ(x′y′) ∈ φ(H) as H is a subgroup
of G. By (a) x−1 = φ(x′)−1 = φ(x′−1) ∈ φ(H) as H is a subgroup of G. Therefore
φ(H) satisfies the condition of a subgroup of G and φ(H) ≤ G.

(c) Let n = |g|. Then n = |〈g〉|. gn = eG. Hence by (a) eG = φ(eG) = φ(gn) = φ(g)n.
Therefore |φ(g)| divides n = |g|.

(d) Let s ∈ S and k ∈ K = Ker(φ). Then φ(sk) = φ(s)φ(k) = φ(s)eG = φ(s) ∈ φ(S).
Hence sk ∈ φ−1(φ(S)) and SK ⊂ φ−1(φ(S)). Conversely if x ∈ φ−1(φ(S)), φ(x) ∈
φ(S). Hence there exists s ∈ S such that φ(x) = φ(s). Therefore eG = φ(s)−1φ(x) =
φ(s−1x) and s−1x ∈ K. Let s−1x = k for some k ∈ K. Then x = sk ∈ SK. This
proves φ−1(φ(S)) ⊂ SK and φ−1(φ(S)) = SK.

4. Answer the following questions on Abelian groups of order 108 = 22 · 33. (25 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 108 and give a brief explanation.

(b) List all Abelian groups of order 108 in your list above that have a group homomor-
phism onto Z9. Give your reason.

(c) Determine whether or not U(133) ≈ U(324). Give your reason.

Solution.

(a) Each group of order 108 is an internal direct sum of groups of order 22 and 33 and
each group of order 22 and 33 are isomorphic to an external direct product of cyclic
groups of decreasing order and if the sequence of orders of such cyclic groups are
distinct then they are non-isomorphic. Hence they are

Z4 ⊕ Z27 ≈ Z108

Z2 ⊕ Z2 ⊕ Z27 ≈ Z2 ⊕ Z54

Z4 ⊕ Z9 ⊕ Z3 ≈ Z3 ⊕ Z36

Z2 ⊕ Z2 ⊕ Z9 ⊕ Z3 ≈ Z6 ⊕ Z18

Z4 ⊕ Z3 ⊕ Z3 ⊕ Z3 ≈ Z3 ⊕ Z3 ⊕ Z12

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ≈ Z3 ⊕ Z6 ⊕ Z6
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(b) By 3(c), the group must have an element of order 9. Hence they are

Z108, Z2 ⊕ Z54, Z3 ⊕ Z36, and Z6 ⊕ Z18.

(c) U(133) = U(7 · 19) ≈ U(7) ⊕ U(19) ≈ Z6 ⊕ Z18, while U(324) = U(4 · 81) ≈
U(4) ⊕ U(81) ≈ Z2 ⊕ Z54. Hence these groups of order 108 are not isomorphic.
(Since it is easy to see that the first does not have an element of order 9 by the first
direct sum decomposition, the only thing to show is that U(81) has an element of
order at least 7 and 2 is such an element.

5. The following is the Cayley table of D4. (15 pts)

R0 Rπ/2 Rπ R3π/2 H V D D′

R0 R0 Rπ/2 Rπ R3π/2 H V D D′

Rπ/2 Rπ/2 Rπ R3π/ R0 D′ D H V
Rπ Rπ R3π/2 R0 Rπ/2 V H D′ D

R3π/2 R3π/2 R0 Rπ/2 Rπ D D′ V H
H H D V D′ R0 Rπ Rπ/2 R3π/2

V V D′ H D Rπ R0 R3π/2 Rπ/2

D D V D′ H R3π/2 Rπ/2 R0 Rπ

D′ D′ H D V Rπ/2 R3π/2 Rπ R0

As for the following no explanation is required.

(a) Find Z(D4).

(b) Find all normal subgroups different from {R0}, Z(D4) and D4.

(c) Find all subgroups of D4 that are not normal.

Solution.

(a) Z(D4) = {R0, Rπ}.
(b) If its order is 2, it is in the center. Hence the only possibility is of order 4. Since

D4/Z(D4) ≈ Z2 ⊕ Z2, there are three such groups. They are

{R0, Rπ/2, Rπ, R3π/2}, {R0, Rπ, H, V }, {R0, Rπ, D,D′}.

(c) Since all subgroups of order 1, 4, 8 are normal. The only possibility is the one of
order 2 which is not in the center. Hence

{R0, H}, {R0, V }, {R0, D}, {R0, D
′}.


