Algebra I: Final 2010

ID#: Name:

Quote the following when necessary.

Subgroup H of a group G:

Division:

 $H \leq G \Leftrightarrow \emptyset \neq H \subseteq G, xy \in H \text{ and } x^{-1} \in H \text{ for all } x, y \in H.$

- **Order of an Element:** Let g be an element of a group G. Then $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ is a subgroup of G. If there is a positive integer m such that $g^m = e$, where e is the identity element of G, $|g| = \min\{m \mid g^m = e, m \in \mathbb{N}\}$ and $|g| = |\langle g \rangle|$. Moreover, for any integer n, |g| divides n if and only if $g^n = e$.
- G/H and |G:H|: If $H \leq G$, $G/H = \{gH \mid g \in G\}$, i.e., the set of left cosets of H in G and |G/H| is denoted by |G:H|.
- **Lagrange's Theorem:** If H is a subgroup of a finite group G, then |G| = |G:H||H|.
- **Normal Subgroup:** A subgroup H of a group G is normal if $gHg^{-1} = H$ for all $g \in G$. If H is a normal subgroup of G, then G/H becomes a group with respect to the binary operation (gH)(g'H) = gg'H.

Center of a Group: The center Z(G) of a group G is the set $\{x \in G \mid gxg^{-1} = x \text{ for all } g \in G\}$.

Direct Product: If $gcd\{m,n\} = 1$, then $\mathbf{Z}_{mn} \approx \mathbf{Z}_m \oplus \mathbf{Z}_n$ and $U(mn) \approx U(m) \oplus U(n)$.

- **Kernel:** If $\phi : G \to \overline{G}$ is a group homomorphism, $\operatorname{Ker}(\phi) = \{x \in G \mid \phi(x) = e_{\overline{G}}\}$, where $e_{\overline{G}}$ is the identity element of \overline{G} .
 - 1. Let H be a subgroup of a group G. Show that for $x, y \in G$, $xH = yH \Leftrightarrow x^{-1}y \in H$. (10 pts)

June 21, 2010

- 2. Let H and K be subgroups of a group G. Show the following. (25 pts)
 - (a) $H \cap K \leq G$.
 - (b) $\phi: H/(H \cap K) \mapsto G/K(h(H \cap K) \mapsto hK)$ is a well-defined injection (i.e., one-to-one mapping).
 - (c) If |H| and |K| are finite, $|HK||H \cap K| = |H||K|$.

- 3. Let $\phi: G \to \overline{G}$ is a group homomorphism from G to \overline{G} . Show the following. (25 pts)
 - (a) $\phi(e_G) = e_{\overline{G}}$ and $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$, where e_G is the identity element of G and $e_{\overline{G}}$ is that of \overline{G} .
 - (b) If $H \leq G$, then $\phi(H) \leq \overline{G}$.
 - (c) If the order of an element g is finite, then $|\phi(g)| \mid |g|$.
 - (d) Let $K = \text{Ker}(\phi)$. If $S \subset G$, then $\phi^{-1}(\phi(S)) = SK$.

- 4. Answer the following questions on Abelian groups of order $108 = 2^2 \cdot 3^3$. (25 pts)
 - (a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 108 and give a brief explanation.
 - (b) List all Abelian groups of order 108 in your list above that have a group homomorphism onto \mathbb{Z}_9 . Give your reason.
 - (c) Determine whether or not $U(133) \approx U(324)$. Give your reason.

	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	H	V	D	D'
R_0	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	Н	V	D	D'
$R_{\pi/2}$	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	R_0	D'	D	H	V
R_{π}	R_{π}	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	V	H	D'	D
$R_{3\pi/2}$	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	R_{π}	D	D'	V	H
H	H	D	V	D'	R_0	R_{π}	$R_{\pi/2}$	$R_{3\pi/2}$
V	V	D'	H	D	R_{π}	R_0	$R_{3\pi/2}$	$R_{\pi/2}$
D	D	V	D'	H	$R_{3\pi/2}$	$R_{\pi/2}$	R_0	R_{π}
D'	D'	H	D	V	$R_{\pi/2}$	$R_{3\pi/2}$	R_{π}	R_0

5. The following is the Cayley table of D_4 .

As for the following no explanation is required.

- (a) Find $Z(D_4)$.
- (b) Find all normal subgroups different from $\{R_0\}, Z(D_4)$ and D_4 .
- (c) Find all subgroups of D_4 that are not normal.

(15 pts)

Algebra I: Final 2010 Solutions

1. Let H be a subgroup of a group G. Show that for $x, y \in G$, $xH = yH \Leftrightarrow x^{-1}y \in H$. (10 pts)

Solution. Since $H \leq G$, $H \neq \emptyset$. Let $x \in H$. Then $x^{-1} \in H$ and $e = xx^{-1} \in H$.

Suppose xH = yH. Since $e \in H$, xH = yH implies that $y = ye \in yH = xH$. Hence there exists $h \in H$ such that y = xh. Therefore by multiplying x^{-1} to both hand sides from left, $x^{-1}y = h \in H$.

Conversely let $x^{-1}y = h \in H$. Then y = xh and

$$yH = xhH \subset xH = xeH = xx^{-1}yh^{-1}H \subset yH.$$

Therefore xH = yH.

- 2. Let H and K be subgroups of a group G. Show the following.
 - (a) $H \cap K \leq G$.
 - (b) $\phi: H/(H \cap K) \mapsto G/K(h(H \cap K) \mapsto hK)$ is a well-defined injection (i.e., one-to-one mapping).
 - (c) If |H| and |K| are finite, $|HK||H \cap K| = |H||K|$.

Solution.

- (a) By 1, $e \in H$ and $e \in K$. Hence $H \cap K \neq \emptyset$. Suppose $x, y \in H \cap K$. Since $x, y \in H$ and H is a subgroup of G, $xy \in H$ and $x^{-1} \in H$. Similarly since K is a subgroup of G, $xy \in K$ and $x^{-1} \in K$. Therefore $xy \in H \cap K$ and $x^{-1} \in H \cap K$. Thus $H \cap K$ satisfies the condition of a subgroup of G.
- (b) Note that by the definition of subgroups, $H \cap K \leq H$. Hence we can apply 1 and for all $h, h' \in H$ we have

$$h(H \cap K) = h'(H \cap K) \Leftrightarrow h^{-1}h' \in H \cap K \Leftrightarrow hK = h'K.$$

Since $h(H \cap K) = h'(H \cap K)$ implies hK = h'K, ϕ is well-defined mapping from $H/(H \cap K)$ to G/K. Moreover since hK = h'K implies $h(H \cap K) = h'(H \cap K)$, $hK = \phi(h(H \cap K)) = \phi(h'(H \cap K)) = h'K$ implies $h(H \cap K) = h'(H \cap K)$ and ϕ is an injection.

(c) For each $h \in H$, we claim that $\psi : K \to hK$ $(k \mapsto hk)$ is a bijection. This is an injection because $hk = \psi(k) = \phi(k') = hk'$ implies k = k' for all $k, k' \in K$ by multiplying h^{-1} to both hand sides from the left. This is a surjection because for $k \in K$, $\psi(k) = hk$. This proves our claim and |hK| = |K| for all $h \in H$. Since ϕ is an injection, there are $|H : H \cap K|$ cosets of K in G in the image of ϕ , that is HK contains $|H : H \cap K|$ cosets of K in G. By our claim above, each coset hK contains |K| elements. Therefore by Lagrange's Theorem,

$$|HK| = |H: H \cap K||K| = \frac{|H|}{|H \cap K|}|K|$$
, and hence $|HK||H \cap K| = |H||K|$.

June 21, 2010

(25 pts)

- 3. Let $\phi: G \to \overline{G}$ is a group homomorphism from G to \overline{G} . Show the following. (25 pts)
 - (a) $\phi(e_G) = e_{\overline{G}}$ and $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$, where e_G is the identity element of G and $e_{\overline{G}}$ is that of \overline{G} .
 - (b) If $H \leq G$, then $\phi(H) \leq \overline{G}$.
 - (c) If the order of an element g is finite, then $|\phi(g)| | |g|$.
 - (d) Let $K = \text{Ker}(\phi)$. If $S \subset G$, then $\phi^{-1}(\phi(S)) = SK$.

Solution.

- (a) $e_{\overline{G}} = \phi(e_G)^{-1}\phi(e_G) = \phi(e_G)^{-1}\phi(e_G e_G) = \phi(e_G)^{-1}\phi(e_G)\phi(e_G) = \phi(e_G)$. Moreover $\phi(x^{-1}) = \phi(x^{-1})\phi(x)\phi(x)^{-1} = \phi(x^{-1}x)\phi(x)^{-1} = \phi(e_G)\phi(x)^{-1} = e_{\overline{G}}\phi(x)^{-1} = \phi(x)^{-1}$. This proves both assertions.
- (b) Since $e_G \in H$ by the solution of 1, $e_{\overline{G}} = \phi(e_G) \in \phi(H)$ and $\phi(H) \neq \emptyset$. Let $x, y \in \phi(H)$. Then there exist $x', y' \in H$ such that $x = \phi(x')$ and $y = \phi(y')$. Since ϕ is a group homomorphism $xy = \phi(x')\phi(y') = \phi(x'y') \in \phi(H)$ as H is a subgroup of G. By (a) $x^{-1} = \phi(x')^{-1} = \phi(x'^{-1}) \in \phi(H)$ as H is a subgroup of G. Therefore $\phi(H)$ satisfies the condition of a subgroup of \overline{G} and $\phi(H) < \overline{G}$.
- (c) Let n = |g|. Then $n = |\langle g \rangle|$. $g^n = e_G$. Hence by (a) $e_{\overline{G}} = \phi(e_G) = \phi(g^n) = \phi(g)^n$. Therefore $|\phi(g)|$ divides n = |g|.
- (d) Let $s \in S$ and $k \in K = \text{Ker}(\phi)$. Then $\phi(sk) = \phi(s)\phi(k) = \phi(s)e_{\overline{G}} = \phi(s) \in \phi(S)$. Hence $sk \in \phi^{-1}(\phi(S))$ and $SK \subset \phi^{-1}(\phi(S))$. Conversely if $x \in \phi^{-1}(\phi(S)), \phi(x) \in \phi(S)$. Hence there exists $s \in S$ such that $\phi(x) = \phi(s)$. Therefore $e_{\overline{G}} = \phi(s)^{-1}\phi(x) = \phi(s^{-1}x)$ and $s^{-1}x \in K$. Let $s^{-1}x = k$ for some $k \in K$. Then $x = sk \in SK$. This proves $\phi^{-1}(\phi(S)) \subset SK$ and $\phi^{-1}(\phi(S)) = SK$.
- 4. Answer the following questions on Abelian groups of order $108 = 2^2 \cdot 3^3$. (25 pts)
 - (a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic Abelian groups of order 108 and give a brief explanation.
 - (b) List all Abelian groups of order 108 in your list above that have a group homomorphism onto \mathbb{Z}_9 . Give your reason.
 - (c) Determine whether or not $U(133) \approx U(324)$. Give your reason.

2

Solution.

(a) Each group of order 108 is an internal direct sum of groups of order 2² and 3³ and each group of order 2² and 3³ are isomorphic to an external direct product of cyclic groups of decreasing order and if the sequence of orders of such cyclic groups are distinct then they are non-isomorphic. Hence they are

$$egin{array}{rcl} oldsymbol{Z}_4 \oplus oldsymbol{Z}_{27} &pprox oldsymbol{Z}_2 \oplus oldsymbol{Z}_2 \oplus oldsymbol{Z}_2 \oplus oldsymbol{Z}_{20} \oplus oldsymbol{Z}_{20} \oplus oldsymbol{Z}_{20} \oplus oldsymbol{Z}_{20} \oplus oldsymbol{Z}_{20} \oplus oldsymbol{Z}_3 &pprox oldsymbol{Z}_3 \oplus oldsymbol{Z}_3 &pprox oldsymbol{Z}_3 \oplus oldsymbol$$

(b) By 3(c), the group must have an element of order 9. Hence they are

 $\boldsymbol{Z}_{108}, \ \boldsymbol{Z}_2 \oplus \boldsymbol{Z}_{54}, \ \boldsymbol{Z}_3 \oplus \boldsymbol{Z}_{36}, \ \text{and} \ \boldsymbol{Z}_6 \oplus \boldsymbol{Z}_{18}.$

- (c) $U(133) = U(7 \cdot 19) \approx U(7) \oplus U(19) \approx \mathbb{Z}_6 \oplus \mathbb{Z}_{18}$, while $U(324) = U(4 \cdot 81) \approx U(4) \oplus U(81) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_{54}$. Hence these groups of order 108 are not isomorphic. (Since it is easy to see that the first does not have an element of order 9 by the first direct sum decomposition, the only thing to show is that U(81) has an element of order at least 7 and 2 is such an element.
- 5. The following is the Cayley table of D_4 .

	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	H	V	D	D'
R_0	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	H	V	D	D'
$R_{\pi/2}$	$R_{\pi/2}$	R_{π}	$R_{3\pi/}$	R_0	D'	D	H	V
R_{π}	R_{π}	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	V	H	D'	D
$R_{3\pi/2}$	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	R_{π}	D	D'	V	H
$H^{'}$	$H^{'}$	D	\dot{V}	D'	R_0	R_{π}	$R_{\pi/2}$	$R_{3\pi/2}$
V	V	D'	H	D	R_{π}	R_0	$R_{3\pi/2}$	$R_{\pi/2}$
D	D	V	D'	H	$R_{3\pi/2}$	$R_{\pi/2}$	R_0	$R_{\pi}^{'}$
D'	D'	H	D	V	$R_{\pi/2}$	$R_{3\pi/2}$	R_{π}	R_0

As for the following no explanation is required.

- (a) Find $Z(D_4)$.
- (b) Find all normal subgroups different from $\{R_0\}, Z(D_4)$ and D_4 .
- (c) Find all subgroups of D_4 that are not normal.

Solution.

- (a) $Z(D_4) = \{R_0, R_\pi\}.$
- (b) If its order is 2, it is in the center. Hence the only possibility is of order 4. Since $D_4/Z(D_4) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_2$, there are three such groups. They are

 $\{R_0, R_{\pi/2}, R_{\pi}, R_{3\pi/2}\}, \{R_0, R_{\pi}, H, V\}, \{R_0, R_{\pi}, D, D'\}.$

(c) Since all subgroups of order 1,4,8 are normal. The only possibility is the one of order 2 which is not in the center. Hence

$$\{R_0, H\}, \{R_0, V\}, \{R_0, D\}, \{R_0, D'\}.$$

(15 pts)