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Division: ID#: Name:

1. Let H be a subgroup of a finite group G, i.e., ∅ ≠ H ⊆ G and

xy ∈ H and x−1 ∈ H for all x, y ∈ H.

(a) Show that gHg−1 ≤ G for every g ∈ G.

(b) Show that |H| = |gHg−1| for all g ∈ G.

(c) Suppose that N ¢ G. Show that HN ≤ G.
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2. Let G be a finite group and X the set of all subgroups of G. Let

α : G × X → X ((g,H) 7→ gHg−1).

(a) Show that α defines a left action of G on the set X.

(b) Let H ≤ G and N = NG(H) = {g ∈ G | gHg−1 = H}. Show that N ≤ G, and
xHx−1 = yHy−1 if and only if xN = yN .
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3. Let H and K be subgroups of a finite group G. Let α : H × K → G ((h, k) 7→ hk).

(a) Show that α is a homomorphism if and only if hk = kh for all h ∈ H, k ∈ K.

(b) Suppose H ¢ G, K ¢ G and gcd(|H|, |K|) = 1, i.e., both H and K are normal
subgroups of G and |H| and |K| are coprime. Show that α is an injective homomor-
phism.
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Sylow’s Theorem¶ ³
Let G be a finite group and let pa denote the largest power of the prime p dividing |G|.
Let Sylp(G) denote the set of all Sylow p-subgroups of G, i.e., subgroups of order pa, and
P ∈ Sylp(G). Then the following hold.

(i) |Sylp(G)| = |G : NG(P )| ≡ 1 (mod p).

(ii) Let Q be a p-subgroup of G and P a Sylow p-subgroup of G, then there is g ∈ G such
that Q ⊆ gPg−1. In particular, any two Sylow p-subgroups are conjugate in G.µ ´

Groups of Order p2¶ ³
Let p be a prime number, and G a group of order p2. Then G is abelian, i.e., commutative.µ ´
4. Let G be a group of order 90 = 2 · 32 · 5. Let P be a Sylow 5-subgroup of G, i.e., a

subgroup of G of order 5.

(a) Show that if P ¢̸G then there is a subgroup of G of order 15.
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(b) Show that G always has a cyclic subgroup H of order 15.

(c) Show that G is not simple, i.e., G has a nontrivial normal subgroup. (Hint: Let R
be a subgroup of order 3 in H, and consider NG(R).)

Please write your message: Comments on group theory. Suggestions for improvements of
this course.
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1. Let H be a subgroup of a finite group G, i.e., ∅ ≠ H ⊆ G and

xy ∈ H and x−1 ∈ H for all x, y ∈ H.

(a) Show that gHg−1 ≤ G for every g ∈ G.

Solution. Since H is a subgroup of G, 1 ∈ H. Hence 1 = g1g−1 ∈ gHg−1. Let
x, y ∈ gHg−1. Then there exist h, h′ ∈ H such that x = ghg−1 and y = gh′g−1.
Since H ≤ G, hh′ ∈ H and h−1 ∈ H. Hence

xy = ghg−1gh′g−1 = ghh′g−1 ∈ gHg−1, and x−1 = (ghg−1)−1 = gh−1g−1 ∈ gHg−1.

Therefore gHg−1 ≤ G.

(b) Show that |H| = |gHg−1| for all g ∈ G.

Solution. Let α : H → gHg−1 (h 7→ ghg−1). We show that α is a bijection. If
α(h) = α(h′) for h, h′ ∈ H, then ghg−1 = α(h) = α(h′) = gh′g−1. By multiplying
g−1 from the left and g from the right we have h = g−1ghg−1g = g−1gh′g−1g = h′.
Hence α is injective. Let x ∈ gHg−1. Then there exists h ∈ H such that x = ghg−1

and α(h) = ghg−1 = x. Hence α is surjective. Therefore α is a bijection from H to
gHg−1 and |H| = |gHg−1|.

(c) Suppose that N ¢ G. Show that HN ≤ G.

Solution. Since H and N are subgroups of G, 1 = 1 · 1 ∈ HN . Let x, y ∈ HN .
Then there exist h, h′ ∈ H and n, n′ ∈ N such that x = hn and y = h′n′. Hence

xy = hnh′n′ = hh′h′−1nh′n′ ∈ HHh′−1Nh′N ⊆ HNN ⊆ HN,

and
x−1 = (hn)−1 = n−1h−1 = h−1hn−1h−1 ∈ HhNh−1 = HN.

Therefore HN ≤ G.

2. Let G be a finite group and X the set of all subgroups of G. Let

α : G × X → X ((g,H) 7→ gHg−1).

(a) Show that α defines a left action of G on the set X.

Solution. Let g·H := gHg−1. For any subgroup H of G, gHg−1 ≤ G by 1(a). Hence
g·H ∈ X for all g ∈ G and H ∈ X. We show that for g1, g2 ∈ G, g1·(g2·H) = (g1g2)·H
and 1 · H = H. Let g1, g2 ∈ G. Then

g1 · (g2 · H) = g1 · (g2Hg−1
2 ) = g1(g2Hg−1

2 )g−1
1 = (g1g2)H(g1g2)

−1 = (g1g2) · H,

and 1 · H = 1H1−1 = H. Therefore α defines a left action of G on the set X.
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(b) Let H ≤ G and N = NG(H) = {g ∈ G | gHg−1 = H}. Show that N ≤ G, and
xHx−1 = yHy−1 if and only if xN = yN .

Solution. Since 1H1−1 = H, 1 ∈ N by definition. Let g1, g2 ∈ N . Then g1Hg−1
1 =

H and g2Hg−1
2 = H by definition. Hence g1g2H(g1g2)

−1 = g1(g2Hg−1
2 )g−1

1 =
g1Hg−1

1 = H, and g−1
1 H(g−1

1 )−1 = g−1
1 Hg = g−1

1 g1Hg−1
1 g = H. Therefore g1g2 ∈ N ,

g−1
1 ∈ N , and hence N ≤ G.

Since N ≤ G, note that xN = yN if and only if x−1y ∈ N . (If xN = yN , then
x−1y = x−1y1 ∈ x−1yN = x−1xN = N . If x−1y ∈ N , then xN = xx−1y(x−1y)−1N ⊆
yNN ⊆ yN = yy−1xx−1yN ⊆ xNN ⊆ xN . Hence xN = yN .)

Suppose xHx−1 = yHy−1. Then H = x−1yHy−1x = x−1yH(x−1y)−1. Hence x−1y ∈
N . Thus by our note above, xN = yN .

Conversely suppose xN = yN . Then again by our note, x−1y ∈ N . Therefore
H = x−1yH(x−1y)−1 = x−1yHy−1x. By multiplying x from the left and x−1 from
the right, we have xHx−1 = yHy−1.

3. Let H and K be subgroups of a finite group G. Let α : H × K → G ((h, k) 7→ hk).

(a) Show that α is a homomorphism if and only if hk = kh for all h ∈ H, k ∈ K.

Solution. Suppose hk = kh for all h ∈ H and k ∈ K. Let h1, h2 ∈ H and
k1, k2 ∈ K. Then by our assumption, h2k1 = k1h2. Hence

α((h1, k1)(h2, k2)) = α(h1h2, k1k2) = h1h2k1k2 = h1k1h2k2 = α(h1, k1)α(h2, k2).

Conversely assume that α is a homomorphism and let h ∈ H and k ∈ K. Then

hk = α(h, k) = α((1, k)(h, 1)) = α(1, k)α(h, 1) = kh.

This proves the assertions.

(b) Suppose H ¢ G, K ¢ G and gcd(|H|, |K|) = 1, i.e., both H and K are normal
subgroups of G and |H| and |K| are coprime. Show that α is an injective homomor-
phism.

Solution. Since both H and K are subgroups of G, so is H ∩ K. By a theorem of
Lagrange, |H ∩ K| divides both |H| and |K|. Since gcd(|H|, |K|) = 1, |H ∩ K| = 1
and H∩K = {1}. Let h ∈ H and k ∈ K. Since both H and K are normal subgroups
of G,

K ⊇ KK = hKh−1K ∋ hkh−1k−1 ∈ HkHk−1 = HH ⊆ H.

Hence hkh−1k−1 ∈ H ∩ K = {1}. Therefore hkh−1k−1 = 1 and hk = kh. By (a),
the mapping α is a homomorphism.

Suppose α(h, k) = 1. Then hk = 1 and h = k−1 ∈ H ∩ K = {1}. Hence (h, k) =
(1, 1) = 1H×K and Ker(α) = {1}. Therefore α is injective.
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Sylow’s Theorem¶ ³
Let G be a finite group and let pa denote the largest power of the prime p dividing |G|.
Let Sylp(G) denote the set of all Sylow p-subgroups of G, i.e., subgroups of order pa, and
P ∈ Sylp(G). Then the following hold.

(i) |Sylp(G)| = |G : NG(P )| ≡ 1 (mod p).

(ii) Let Q be a p-subgroup of G and P a Sylow p-subgroup of G, then there is g ∈ G such
that Q ⊆ gPg−1. In particular, any two Sylow p-subgroups are conjugate in G.µ ´

Groups of Order p2¶ ³
Let p be a prime number, and G a group of order p2. Then G is abelian, i.e., commutative.µ ´
4. Let G be a group of order 90 = 2 · 32 · 5. Let P be a Sylow 5-subgroup of G, i.e., a

subgroup of G of order 5.

(a) Show that if P ¢̸G then there is a subgroup of G of order 15.

Solution. Suppose P is not normal in G. Then there is a conjugate gPg−1 of P
different from P and gPg−1 ∈ Syl5(G) by 1(a) and (b). Therefore |Syl5(G)| ̸= 1.
Since |Syl5(G)| = |G : NG(P )| divides |G| and |Syl5(G)| ≡ 1 (mod 5), the only
possible value of |G : NG(P )| is 6, and |NG(P )| = |G|/|G : NG(P )| = 15. Thus G
has a subgroup of order 15.

(b) Show that G always has a cyclic subgroup H of order 15.

Solution. First we show that G always has a subgroup of order 15. By (a), we may
assume that P ¢ G. Let Q ∈ Syl3(G). Then |Q| = 32. Let 1 ̸= x ∈ Q. Then |x| = 3
or |x| = 9. If |x| = 9, then |x3| = 3. Hence there is always an element x of order
3. Let R = 〈x〉. Since P ¢ G, PR ≤ G by 1 (c) and |PR| = 15, as |PR| is at most
3 · 5 = 15 and divisible by |P | = 5 and |R| = 3.

Let H be a subgroup of order 15, and P a Sylow 5-subgroup of H and R a Sylow
3-subgroup of H. By (i), |Syl3(H)| = |H : NH(R)| ≡ 1 (mod 3) and |Syl5(H)| =
|H : NH(P )| ≡ 1 (mod 5). Since both of them are divisors of 15, the only possibility
is 1. Therefore P ¢ H and R ¢ H. Now by 3(b), H = PR ≅ P × R. Since both
P and R are prime order, they are cyclic. Let P = 〈x〉 and R = 〈y〉. Then x and
y commute and |(x, y)|, the order of (x, y) ∈ P × R, is divisible by both 3 and 5,
hence H is cyclic.

(c) Show that G is not simple, i.e., G has a nontrivial normal subgroup. (Hint: Let R
be a subgroup of order 3 in H, and consider NG(R).)

Solution. Let H be a cyclic subgroup of order 15. By (a) and (b) we may assume
that H contains P . Let R be its Sylow 3-subgroup. Let Q be a Sylow 3-subgroup
of G containing R. Since every group of order p2 is abelian for every prime p, Q is
abelian. Hence Q ⊆ NG(R) ⊇ P , and |NG(R)| is divisible by |Q| = 9 and |P | = 5.
Therefore |NG(R)| = 32 · 5 or NG(R) = G. In the latter case R ¢ G and as for the
first case NG(R) ¢ G as every subgroup of index 2 is normal.


