Algebra I: Final 2007

June 21, 2007

Division: ID#: Name:

1. Let H be a subgroup of G, i.e.,

 $xy \in H$ and $x^{-1} \in H$ for all $x, y \in H$.

(a) Show that $HH = H = H^{-1}$.

(b) Suppose that K is also a subgroup of G. Show that HK is a subgroup of G if and only if HK = KH.

Division: ID#: Name:

- 2. Let $G = \langle a \rangle$ be a cyclic group of order 15. Let $\alpha : \mathbb{Z} \to G \ (n \mapsto a^n)$ be a mapping.
 - (a) Show that α is a homomorphism and that $\operatorname{Ker}(\alpha) = 15\mathbf{Z} = \{15m \mid m \in \mathbf{Z}\}.$

(b) Show that G has a subgroup H of order 5, and determine $\alpha^{-1}(H)$.

Division: ID#: Name:

- 3. Suppose $\alpha : G \times X \to X$ $((g, x) \mapsto g \cdot x)$ defines a left action of a group G on a set X. So $1 \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$ for all $g, h \in G$ and $x \in X$. Let $x_0 \in X$ and $H = \{g \in G \mid g \cdot x_0 = x_0\}.$
 - (a) Show that H is a subgroup of G.

(b) Show that $gH = g'H \Leftrightarrow g \cdot x_0 = g' \cdot x_0$ for all $g, g' \in G$.

(c) Show that there is a bijection between G/H and $\{g \cdot x_0 \mid g \in G\}$.

Division: ID#: Name:

- 4. Let S_3 be the symmetric group of degree 3.
 - (a) Let K be a subgroup of order 3. Show that $K = \langle (1,2,3) \rangle$ and $K \triangleleft S_3$.

(b) Let $\alpha : G \to S_3$ be a surjective homomorphism. Show that G has a normal subgroup N such that |G:N| = 2.

(c) Suppose a finite simple group G has a subgroup H of index |G:H| = 3. Show that |G| = 3. Recall that a group $G \neq 1$ is simple if its normal subgroups are G and 1 only.

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.

⁽²⁾ Comments on the education at ICU. Suggestions for improvements.

Algebra I: Final 2007 Solutions

1. Let H be a subgroup of G, i.e.,

$$xy \in H$$
 and $x^{-1} \in H$ for all $x, y \in H$.

(a) Show that $HH = H = H^{-1}$. Solution. Since H is a subgroup of G, $HH \subseteq H$ and $H^{-1} \subseteq H$. Since $1 \in H$, $H = 1H \subseteq HH$. Hence HH = H. Since $H = (H^{-1})^{-1}$, $H = (H^{-1})^{-1} \subseteq H^{-1}$. Hence $H = H^{-1}$ and $HH = H = H^{-1}$.

(b) Suppose that K is also a subgroup of G. Show that HK is a subgroup of G if and only if HK = KH. Solution. Since H ≤ G ⇔ HH ⊆ H and H⁻¹ ⊆ H, (a) implies the following. A

nonempty subset H of a group G is a subgroup if and only if $H = HH = H^{-1}$. Now

$$HK \le G \Leftrightarrow HK = HKHK = (HK)^{-1}.$$

Suppose $HK \leq G$. Then $HK = (HK)^{-1} = K^{-1}H^{-1} = KH$ as H and K are subgroups of G. Suppose HK = KH. Then

$$HKHK = HHKK = HK$$
, and $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$.

Hence $HK \leq G \Leftrightarrow HK = KH$.

- 2. Let $G = \langle a \rangle$ be a cyclic group of order 15. Let $\alpha : \mathbb{Z} \to G(n \mapsto a^n)$ be a mapping.
 - (a) Show that α is a homomorphism and that Ker(α) = 15Z = {15m | m ∈ Z}.
 Solution. Let n ∈ Ker(α). Then 1 = α(n) = aⁿ. Since G is a cyclic group of order 15, 15 | n. Conversely, if n = 15m for some integer m, then α(n) = aⁿ = a^{15m} = (a¹⁵)^m = 1. Hence n = 15m ∈ Ker(α).
 - (b) Show that G has a subgroup H of order 5, and determine $\alpha^{-1}(H)$. Solution. Let $H = \langle a^3 \rangle = \{1, a^3, a^6, a^9, a^{12}\}$. Then |H| = 5 as a^i with $i = 0, 1, 2, \ldots, 14$ are all distinct. We claim that $\alpha^{-1}(H) = 3\mathbf{Z} = \{3m \mid m \in \mathbf{Z}\}$. Clearly if n = 3m for some $m \in \mathbf{Z}$, then $\alpha(n) = a^n = a^{3m} \in H$. If $\alpha(n) \in H$, then there exists $m \in \mathbf{Z}$ such that $\alpha(n) = a^n = a^{3m}$. Hence $\alpha(n - 3m) = 1$ and $n - 3m \in \operatorname{Ker}(\alpha) = 15\mathbf{Z}$. Hence $n \in 3m + 15\mathbf{Z} \subseteq 3\mathbf{Z}$. This proves our claim.
- 3. Suppose $\alpha : G \times X \to X$ $((g, x) \mapsto g \cdot x)$ defines a left action of a group G on a set X. So $1 \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$ for all $g, h \in G$ and $x \in X$. Let $x_0 \in X$ and $H = \{g \in G \mid g \cdot x_0 = x_0\}.$
 - (a) Show that H is a subgroup of G. Solution. We use the criterion in Problem 1. Let $h_1, h_2 \in H$. Then

$$(h_1h_2)\cdot x_0 = h_1 \cdot (h_2 \cdot x_0) = h_1 \cdot x_0 = x_0, \ h_1^{-1} \cdot x_0 = h_1^{-1} \cdot (h_1 \cdot x_0) = (h_1^{-1}h_1) \cdot x_0 = 1 \cdot x_0 = x_0.$$

Hence $h_1h_2 \in H$ and $h_1^{-1} \in H.$

June 21, 2007

(b) Show that $gH = g'H \Leftrightarrow g \cdot x_0 = g' \cdot x_0$ for all $g, g' \in G$. Solution. Suppose gH = g'H. Since $1 \in H$, $g \in gH = g'H$ and there exists $h \in H$ such that g = g'h. Now $g \cdot x_0 = (g'h) \cdot x_0 = g' \cdot (h \cdot x_0) = g' \cdot x_0$. Conversely assume $g \cdot x_0 = g' \cdot x_0$. Then

$$(g^{-1}g') \cdot x_0 = g^{-1} \cdot (g' \cdot x_0) = g^{-1}(g \cdot x_0) = (g^{-1}g) \cdot x_0 = x_0$$

Thus $g^{-1}g' \in H$. Therefore $g' \in gH$ and g'H = gH. This is because

$$g'H \subseteq gHH \subseteq gH = g'g'^{-1}gH = g'(g^{-1}g')^{-1}H \subseteq g'H^{-1}H \subseteq g'H. \quad \blacksquare$$

- (c) Show that there is a bijection between G/H and $\{g \cdot x_0 \mid g \in G\}$. Solution. Let $\beta : G/H \to \{g \cdot x_0 \mid g \in G\}$ $(gH \mapsto g \cdot x_0)$. The equivalence in (b) implies that the mapping β is well-defined and injective. Moreover, by definition, the mapping is surjective. Hence β is a bijection.
- 4. Let S_3 be the symmetric group of degree 3.
 - (a) Let K be a subgroup of order 3. Show that $K = \langle (1,2,3) \rangle$ and $K \triangleleft S_3$. Solution. $S_3 = \{1, (1,2), (1,3), (2,3), (1,2,3), (1,3,2)\}$. Let K be a subgroup of order 3. Let $1 \neq x \in K$. Then $\langle x \rangle$ is a subgroup of K. Hence the order of x must divide the order of K, which is 3. Hence x is of order 3. So x = (1,2,3) or $(1,3,2) = (1,2,3)^2$. Hence $K = \langle (1,2,3) \rangle = \langle (1,3,2) \rangle$. Let $g \in S_3$ and $x \in K$. Then $(gxg^{-1})^3 = gx^3g^{-1} = 1$ and hence $gxg^{-1} \in K$. Hence $K \triangleleft S_3$.
 - (b) Let $\alpha : G \to S_3$ be a surjective homomorphism. Show that G has a normal subgroup N such that |G : N| = 2. Solution. Let K be a normal subgroup of S_3 in (a). Let $N = \alpha^{-1}(K)$. Let $\gamma : G \to S_3/K$ $(x \mapsto \alpha(x)K)$. (This is a composition of two surjective homomorphisms, i.e., α with a canonical homomorphism $\pi : S_3 \to S_3/K$ $(x \mapsto xK)$.) Then this is a surjective homomorphism and the kernel of γ is $\alpha^{-1}(K) = N$. Hence N is normal in G and $G/N \simeq S_3/K$. Since $|S_3/K| = |S_3|/|K| = 2$, 2 = G/N = |G : N|.
 - (c) Suppose a finite simple group G has a subgroup H of index |G:H| = 3. Show that |G| = 3. Recall that a group $G \neq 1$ is simple if its normal subgroups are G and 1 only.

Solution. Let $\alpha : G \times G/H \to G/H$ ($(g, xH) \mapsto gxH$). Then α defines a left action of G on the set G/H of cardinality three. Hence there is a group homomorphism $\hat{\alpha} : G \to S_3$. Since the kernel of this homomorphism is contained in H, $\operatorname{Ker}(\hat{\alpha}) \neq G$. Since G is simple, $\operatorname{Ker}(\hat{\alpha}) = 1$ and G is isomorphic to a group of S_3 of order divisible by three. Hence $\operatorname{Im}(\hat{\alpha}) = K$ or S_3 . If $\operatorname{Im}(\hat{\alpha}) = S_3$, G has a normal subgroup of index 2 by (b). This is impossible as G is simple. Hence $G \simeq \operatorname{Im}(\hat{\alpha})$ and $\operatorname{Im}(\hat{\alpha})$ is of order three. Hence it is K and is cyclic or order three.