Algebra I: Final 2007

1. Let H be a subgroup of G, i.e.,

$$
x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H .
$$

(a) Show that $H H=H=H^{-1}$.
(b) Suppose that K is also a subgroup of G. Show that $H K$ is a subgroup of G if and only if $H K=K H$.

Division: ID\#: Name:

2. Let $G=\langle a\rangle$ be a cyclic group of order 15 . Let $\alpha: \boldsymbol{Z} \rightarrow G\left(n \mapsto a^{n}\right)$ be a mapping.
(a) Show that α is a homomorphism and that $\operatorname{Ker}(\alpha)=15 \boldsymbol{Z}=\{15 m \mid m \in \boldsymbol{Z}\}$.
(b) Show that G has a subgroup H of order 5, and determine $\alpha^{-1}(H)$.

Division: ID\#: Name:

3. Suppose $\alpha: G \times X \rightarrow X((g, x) \mapsto g \cdot x)$ defines a left action of a group G on a set X. So $1 \cdot x=x$ and $g \cdot(h \cdot x)=(g h) \cdot x$ for all $g, h \in G$ and $x \in X$. Let $x_{0} \in X$ and $H=\left\{g \in G \mid g \cdot x_{0}=x_{0}\right\}$.
(a) Show that H is a subgroup of G.
(b) Show that $g H=g^{\prime} H \Leftrightarrow g \cdot x_{0}=g^{\prime} \cdot x_{0}$ for all $g, g^{\prime} \in G$.
(c) Show that there is a bijection between G / H and $\left\{g \cdot x_{0} \mid g \in G\right\}$.

Division: ID\#: Name:

4. Let S_{3} be the symmetric group of degree 3 .
(a) Let K be a subgroup of order 3. Show that $K=\langle(1,2,3)\rangle$ and $K \triangleleft S_{3}$.
(b) Let $\alpha: G \rightarrow S_{3}$ be a surjective homomorphsm. Show that G has a normal subgroup N such that $|G: N|=2$.
(c) Suppose a finite simple group G has a subgroup H of index $|G: H|=3$. Show that $|G|=3$. Recall that a group $G \neq 1$ is simple if its normal subgroups are G and 1 only.

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.
(2) Comments on the educaion at ICU. Suggestions for improvements.

Algebra I: Final 2007 Solutions

1. Let H be a subgroup of G, i.e.,

$$
x y \in H \text { and } x^{-1} \in H \text { for all } x, y \in H .
$$

(a) Show that $H H=H=H^{-1}$.

Solution. Since H is a subgroup of $G, H H \subseteq H$ and $H^{-1} \subseteq H$. Since $1 \in H$, $H=1 H \subseteq H H$. Hence $H H=H$. Since $H=\left(H^{-1}\right)^{-1}, H=\left(H^{-1}\right)^{-1} \subseteq H^{-1}$. Hence $H=H^{-1}$ and $H H=H=H^{-1}$.
(b) Suppose that K is also a subgroup of G. Show that $H K$ is a subgroup of G if and only if $H K=K H$.
Solution. Since $H \leq G \Leftrightarrow H H \subseteq H$ and $H^{-1} \subseteq H$, (a) implies the following. A nonempty subset H of a group G is a subgroup if and only if $H=H H=H^{-1}$. Now

$$
H K \leq G \Leftrightarrow H K=H K H K=(H K)^{-1}
$$

Suppose $H K \leq G$. Then $H K=(H K)^{-1}=K^{-1} H^{-1}=K H$ as H and K are subgroups of G. Suppose $H K=K H$. Then

$$
H K H K=H H K K=H K, \text { and }(H K)^{-1}=K^{-1} H^{-1}=K H=H K .
$$

Hence $H K \leq G \Leftrightarrow H K=K H$.
2. Let $G=\langle a\rangle$ be a cyclic group of order 15 . Let $\alpha: \boldsymbol{Z} \rightarrow G\left(n \mapsto a^{n}\right)$ be a mapping.
(a) Show that α is a homomorphism and that $\operatorname{Ker}(\alpha)=15 \boldsymbol{Z}=\{15 m \mid m \in \boldsymbol{Z}\}$.

Solution. Let $n \in \operatorname{Ker}(\alpha)$. Then $1=\alpha(n)=a^{n}$. Since G is a cyclic group of order $15,15 \mid n$. Conversely, if $n=15 m$ for some integer m, then $\alpha(n)=a^{n}=a^{15 m}=$ $\left(a^{15}\right)^{m}=1$. Hence $n=15 m \in \operatorname{Ker}(\alpha)$.
(b) Show that G has a subgroup H of order 5 , and determine $\alpha^{-1}(H)$.

Solution. Let $H=\left\langle a^{3}\right\rangle=\left\{1, a^{3}, a^{6}, a^{9}, a^{12}\right\}$. Then $|H|=5$ as a^{i} with $i=$ $0,1,2, \ldots, 14$ are all distinct. We claim that $\alpha^{-1}(H)=3 \boldsymbol{Z}=\{3 m \mid m \in \boldsymbol{Z}\}$. Clearly if $n=3 m$ for some $m \in \boldsymbol{Z}$, then $\alpha(n)=a^{n}=a^{3 m} \in H$. If $\alpha(n) \in H$, then there exists $m \in \boldsymbol{Z}$ such that $\alpha(n)=a^{n}=a^{3 m}$. Hence $\alpha(n-3 m)=1$ and $n-3 m \in \operatorname{Ker}(\alpha)=15 \boldsymbol{Z}$. Hence $n \in 3 m+15 \boldsymbol{Z} \subseteq 3 \boldsymbol{Z}$. This proves our claim.
3. Suppose $\alpha: G \times X \rightarrow X((g, x) \mapsto g \cdot x)$ defines a left action of a group G on a set X. So $1 \cdot x=x$ and $g \cdot(h \cdot x)=(g h) \cdot x$ for all $g, h \in G$ and $x \in X$. Let $x_{0} \in X$ and $H=\left\{g \in G \mid g \cdot x_{0}=x_{0}\right\}$.
(a) Show that H is a subgroup of G.

Solution. We use the criterion in Problem 1. Let $h_{1}, h_{2} \in H$. Then
$\left(h_{1} h_{2}\right) \cdot x_{0}=h_{1} \cdot\left(h_{2} \cdot x_{0}\right)=h_{1} \cdot x_{0}=x_{0}, h_{1}^{-1} \cdot x_{0}=h_{1}^{-1} \cdot\left(h_{1} \cdot x_{0}\right)=\left(h_{1}^{-1} h_{1}\right) \cdot x_{0}=1 \cdot x_{0}=x_{0}$.
Hence $h_{1} h_{2} \in H$ and $h_{1}^{-1} \in H$.
(b) Show that $g H=g^{\prime} H \Leftrightarrow g \cdot x_{0}=g^{\prime} \cdot x_{0}$ for all $g, g^{\prime} \in G$.

Solution. Suppose $g H=g^{\prime} H$. Since $1 \in H, g \in g H=g^{\prime} H$ and there exists $h \in H$ such that $g=g^{\prime} h$. Now $g \cdot x_{0}=\left(g^{\prime} h\right) \cdot x_{0}=g^{\prime} \cdot\left(h \cdot x_{0}\right)=g^{\prime} \cdot x_{0}$. Conversely assume $g \cdot x_{0}=g^{\prime} \cdot x_{0}$. Then

$$
\left(g^{-1} g^{\prime}\right) \cdot x_{0}=g^{-1} \cdot\left(g^{\prime} \cdot x_{0}\right)=g^{-1}\left(g \cdot x_{0}\right)=\left(g^{-1} g\right) \cdot x_{0}=x_{0}
$$

Thus $g^{-1} g^{\prime} \in H$. Therefore $g^{\prime} \in g H$ and $g^{\prime} H=g H$. This is because

$$
g^{\prime} H \subseteq g H H \subseteq g H=g^{\prime} g^{\prime-1} g H=g^{\prime}\left(g^{-1} g^{\prime}\right)^{-1} H \subseteq g^{\prime} H^{-1} H \subseteq g^{\prime} H .
$$

(c) Show that there is a bijection between G / H and $\left\{g \cdot x_{0} \mid g \in G\right\}$.

Solution. Let $\beta: G / H \rightarrow\left\{g \cdot x_{0} \mid g \in G\right\}\left(g H \mapsto g \cdot x_{0}\right)$. The equivalence in (b) implies that the mapping β is well-defined and injective. Moreover, by definition, the mapping is surjective. Hence β is a bijection.
4. Let S_{3} be the symmetric group of degree 3 .
(a) Let K be a subgroup of order 3 . Show that $K=\langle(1,2,3)\rangle$ and $K \triangleleft S_{3}$.

Solution. $\quad S_{3}=\{1,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\}$. Let K be a subgroup of order 3. Let $1 \neq x \in K$. Then $\langle x\rangle$ is a subgroup of K. Hence the order of x must divide the order of K, which is 3 . Hence x is of order 3 . So $x=(1,2,3)$ or $(1,3,2)=(1,2,3)^{2}$. Hence $K=\langle(1,2,3)\rangle=\langle(1,3,2)\rangle$. Let $g \in S_{3}$ and $x \in K$. Then $\left(g x g^{-1}\right)^{3}=g x^{3} g^{-1}=1$ and hence $g x g^{-1} \in K$. Hence $K \triangleleft S_{3}$.
(b) Let $\alpha: G \rightarrow S_{3}$ be a surjective homomorphsm. Show that G has a normal subgroup N such that $|G: N|=2$.
Solution. Let K be a normal subgroup of S_{3} in (a). Let $N=\alpha^{-1}(K)$. Let γ : $G \rightarrow S_{3} / K(x \mapsto \alpha(x) K)$. (This is a composition of two surjective homomorphisms, i.e., α with a canonical homomorphism $\pi: S_{3} \rightarrow S_{3} / K(x \mapsto x K)$.) Then this is a surjective homomorphism and the kernel of γ is $\alpha^{-1}(K)=N$. Hence N is normal in G and $G / N \simeq S_{3} / K$. Since $\left|S_{3} / K\right|=\left|S_{3}\right| /|K|=2,2=G / N=|G: N|$.
(c) Suppose a finite simple group G has a subgroup H of index $|G: H|=3$. Show that $|G|=3$. Recall that a group $G \neq 1$ is simple if its normal subgroups are G and 1 only.
Solution. Let $\alpha: G \times G / H \rightarrow G / H((g, x H) \mapsto g x H)$. Then α defines a left action of G on the set G / H of cardinality three. Hence there is a group homomorphism $\hat{\alpha}: G \rightarrow S_{3}$. Since the kernel of this homomorphism is contained in $H, \operatorname{Ker}(\hat{\alpha}) \neq G$. Since G is simple, $\operatorname{Ker}(\hat{\alpha})=1$ and G is isomorphic to a group of S_{3} of order divisible by three. Hence $\operatorname{Im}(\hat{\alpha})=K$ or S_{3}. If $\operatorname{Im}(\hat{\alpha})=S_{3}, G$ has a normal subgroup of index 2 by (b). This is impossible as G is simple. Hence $G \simeq \operatorname{Im}(\hat{\alpha})$ and $\operatorname{Im}(\hat{\alpha})$ is of order three. Hence it is K and is cyclic or order three.

