Algebra I: Final 2006

June 21, 2006

Division: ID#:

Name:

1. Let H be a nonempty subset of a group G satisfying the following.

 $x^{-1}y \in H$ for all $x, y \in H$.

(a) Show that $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$. (This proves that $H \leq G$.)

(b) Show that $HH = H = H^{-1}$.

Division: ID#: Name:

- 2. Let G and G_1 be groups and S a subset of G. Let $\alpha : G \to G_1$ be a homomorphism, and $N = \text{Ker}(\alpha)$.
 - (a) For $x, y \in G$, show that $xN = yN \Leftrightarrow \alpha(x) = \alpha(y)$.

(b) Show that $\alpha^{-1}(\alpha(S)) = SN$.

- 3. Let $(\mathbf{Z}_{15}^*, \cdot)$ be a multiplicative group; here \mathbf{Z}_{15}^* is the set of invertible congruence classes [a] modulo 15, i.e., such that $gcd\{a, 15\} = 1$.
 - (a) Show that $[a]^4 = [1]$ for all $[a] \in \mathbb{Z}_{15}^*$. Show also that $a^4 \equiv 1 \pmod{15}$ for all integers a such that $gcd\{a, 15\} = 1$.

(b) Using the fact proved in (a), determine whether or not Z_{15}^* is a cyclic group.

(c) Find all subgroups N in \mathbf{Z}_{15}^* of order 4.

- 4. Let S_6 be the symmetric group of degree 6, and H a subgroup of S_6 containing an element $\pi = (1, 2, 3, 4, 5, 6)$ of order 6.
 - (a) Let sign : $S_6 \to \{\pm 1\}$ ($\sigma \mapsto \text{sign}(\sigma)$) be the sign function on S_6 . Show that $\text{sign}(\pi) = -1$.

(b) Let N = Ker(sign). Then show that $|H : H \cap N| = 2$.

(c) Suppose H is a normal subgroup of S_6 . Then show that $|S_6: H| \leq 3$.

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.

(2) Comments on the education at ICU. Suggestions for improvements.

Algebra I: Final 2006 Solutions

- June 21, 2006
- 1. Let H be a nonempty subset of a group G satisfying the following.

$$x^{-1}y \in H$$
 for all $x, y \in H$.

- (a) Show that $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$. (This proves that $H \leq G$.) Solution. Since $H \neq \emptyset$, we can take an element $x \in H$. By the condition, $1 = x^{-1}x \in H$. Let x be an arbitrary element of H. Since $x, 1 \in H$, $x^{-1} = x^{-1}1 \in H$. For $x, y \in H$, since $x^{-1} \in H$, $xy = (x^{-1})^{-1}y \in H$. Therefore $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$.
- (b) Show that $HH = H = H^{-1}$. Solution. Since H is a subgroup of G, $HH \subseteq H$ and $H^{-1} \subseteq H$. Since $1 \in H$, $H = 1H \subseteq HH$. Hence HH = H. Since $H = (H^{-1})^{-1}$, $H = (H^{-1})^{-1} \subseteq H^{-1}$. Hence $H = H^{-1}$ and $HH = H = H^{-1}$.
- 2. Let G and G_1 be groups and S a subset of G. Let $\alpha : G \to G_1$ be a homomorphism, and $N = \text{Ker}(\alpha)$.
 - (a) For x, y ∈ G, show that xN = yN ⇔ α(x) = α(y).
 Solution. Suppose xN = yN. Since x = x1 ∈ xN = yN, there exists n ∈ N such that x = yn. Since N = Ker(α), α(x) = α(yn) = α(y)α(n) = α(y).
 Next assume that α(x) = α(y). Then 1 = α(x)⁻¹α(y) = α(x⁻¹y). Hence x⁻¹y ∈ N. Now using 1 (b),

$$yN = xx^{-1}yN \subseteq xNN = xN = yy^{-1}xN = y(x^{-1}y)^{-1}N \subseteq yN^{-1}N = yNN = yN.$$

Therefore we have xN = yN.

- (b) Show that $\alpha^{-1}(\alpha(S)) = SN$. Solution. Let $s \in S$ and $n \in N$. Then $\alpha(sn) = \alpha(s)\alpha(n) = \alpha(s) \in \alpha(S)$. Hence $SN \subseteq \alpha^{-1}(\alpha(S))$. Let $x \in \alpha^{-1}(\alpha(S))$. Then $\alpha(x) \in \alpha(S)$. Hence there exists $s \in S$ such that $\alpha(x) = \alpha(s)$. Now by (a), xN = sN. Hence $x = x1 \in xN = sN \subseteq SN$. Thus $\alpha^{-1}(\alpha(S)) \subseteq SN$ and $\alpha^{-1}(\alpha(S)) = SN$.
- 3. Let $(\mathbf{Z}_{15}^*, \cdot)$ be a multiplicative group; here \mathbf{Z}_{15}^* is the set of invertible congruence classes [a] modulo 15, i.e., such that $gcd\{a, 15\} = 1$.
 - (a) Show that $[a]^4 = [1]$ for all $[a] \in \mathbb{Z}_{15}^*$. Show also that $a^4 \equiv 1 \pmod{15}$ for all integers *a* such that $gcd\{a, 15\} = 1$. Solution. Since $\mathbb{Z}_{15}^* = \{[1], [2], [4], [7], [-7], [-4], [-2], [-1]\}, [2]^2 = [-2]^2 = [7]^2 = [-7]^2 = [4]$ and $[4]^2 = [1]$. Hence $[a^4] = [a]^4 = [1]$ for all $[a] \in \mathbb{Z}_{15}^*$. This implies that $a^4 - 1$ is divisible by 15 for all integers *a* such that $gcd\{a, 15\} = 1$.
 - (b) Using the fact proved in (a), determine whether or not \mathbf{Z}_{15}^* is a cyclic group. Solution. If \mathbf{Z}_{15}^* is a cyclic group, there is an element of order $|\mathbf{Z}_{15}^*| = 8$. But by (a) every element of \mathbf{Z}_{15}^* is of order at most 4. Hence \mathbf{Z}_{15}^* is not a cyclic group.

- (c) Find all subgroups N in \mathbf{Z}_{15}^* of order 4.
 - Solution. Every element of order 4 generates a cyclic subgroup of order 4. So $\langle [2] \rangle = \{ [1], [2], [4], [-7] \} = \langle [-7] \rangle$, and $\langle [-2] \rangle = \{ [1], [-2], [4], [7] \} = \langle [7] \rangle$ are such subgroups. Suppose N is not cyclic. Then every non-identity element of N is of order 2 as its order must divide the order of N. There are 3 elements of order 2 and those together with the identity element form a subgroup $\{ [1], [4], [-4], [-1] \}$ of order 4. Hence these three subgroups are those of order 4 in \mathbb{Z}_{15}^* .
- 4. Let S_6 be the symmetric group of degree 6, and H a subgroup of S_6 containing an element $\pi = (1, 2, 3, 4, 5, 6)$ of order 6.
 - (a) Let sign : $S_6 \rightarrow \{\pm 1\}$ ($\sigma \mapsto \operatorname{sign}(\sigma)$) be the sign function on S_6 . Show that $\operatorname{sign}(\pi) = -1$. Solution. Since $\pi = (1, 2, 3, 4, 5, 6) = (1, 6)(1, 5)(1, 4)(1, 3)(1, 2)$, $\operatorname{sign}(\pi) = -1$. Note that $\ell(\pi) = 5$.
 - (b) Let N = Ker(sign). Then show that $|H : H \cap N| = 2$.
 - Solution. The mapping $\operatorname{sign}_{|H} : H \to \{\pm 1\}$ ($\sigma \mapsto \operatorname{sign}(\sigma)$) is a group homomorphism. Since $id, \pi \in H$, $\operatorname{sign}_{|H}$ is a surjective homomorphism. Hence by the isomorphism theorem, $H/K \simeq \{\pm 1\}$ where $K = \operatorname{Ker}(\operatorname{sign}_{|H}) = H \cap N$. Hence $|H: H \cap N| = |\{\pm 1\}| = 2$.
 - (c) Suppose H is a normal subgroup of S_6 . Then show that $|S_6: H| \leq 3$. Solution. Let $\sigma \in S_n$. Since H is a normal subgroup of S_n and $\pi \in H$, $H \ni \sigma \pi \sigma^{-1} = \sigma(1, 2, 3, 4, 5, 6)\sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5), \sigma(6))$. Since σ is arbitrary, H contains all 6 cycles. Moreover $\pi^3 = (1, 3)(2, 4)(3, 6) \in H \setminus N$. Since there are 5! 6-cycles and all 6-cycles are in $\pi(H \cap N)$, $|H \cap N| > 5!$. Thus $|H| > 2 \cdot 5!$. Since |H| must divide $|S_6|, |S_6: H| \leq 3$. We can show in this case that $S_6 = H$.