Algebra I: Final 2006

1. Let H be a nonempty subset of a group G satisfying the following.

$$
x^{-1} y \in H \text { for all } x, y \in H .
$$

(a) Show that $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$. (This proves that $H \leq G$.)
(b) Show that $H H=H=H^{-1}$.

Division: ID\#: Name:

2. Let G and G_{1} be groups and S a subset of G. Let $\alpha: G \rightarrow G_{1}$ be a homomorphism, and $N=\operatorname{Ker}(\alpha)$.
(a) For $x, y \in G$, show that $x N=y N \Leftrightarrow \alpha(x)=\alpha(y)$.
(b) Show that $\alpha^{-1}(\alpha(S))=S N$.

Division: ID\#: Name:

3. Let $\left(\boldsymbol{Z}_{15}^{*}, \cdot\right)$ be a multiplicative group; here \boldsymbol{Z}_{15}^{*} is the set of invertible congruence classes $[a]$ modulo 15 , i.e., such that $\operatorname{gcd}\{a, 15\}=1$.
(a) Show that $[a]^{4}=[1]$ for all $[a] \in \boldsymbol{Z}_{15}^{*}$. Show also that $a^{4} \equiv 1(\bmod 15)$ for all integers a such that $\operatorname{gcd}\{a, 15\}=1$.
(b) Using the fact proved in (a), determine whether or not \boldsymbol{Z}_{15}^{*} is a cyclic group.
(c) Find all subgroups N in \boldsymbol{Z}_{15}^{*} of order 4.

Division: ID\#: Name:

4. Let S_{6} be the symmetric group of degree 6 , and H a subgroup of S_{6} containing an element $\pi=(1,2,3,4,5,6)$ of order 6 .
(a) Let sign : $S_{6} \rightarrow\{ \pm 1\}(\sigma \mapsto \operatorname{sign}(\sigma))$ be the sign function on S_{6}. Show that $\operatorname{sign}(\pi)=-1$.
(b) Let $N=\operatorname{Ker}(\operatorname{sign})$. Then show that $|H: H \cap N|=2$.
(c) Suppose H is a normal subgroup of S_{6}. Then show that $\left|S_{6}: H\right| \leq 3$.

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.
(2) Comments on the educaion at ICU. Suggestions for improvements.

Algebra I: Final 2006 Solutions

1. Let H be a nonempty subset of a group G satisfying the following.

$$
x^{-1} y \in H \text { for all } x, y \in H .
$$

(a) Show that $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$. (This proves that $H \leq G$.) Solution. Since $H \neq \emptyset$, we can take an element $x \in H$. By the condition, $1=$ $x^{-1} x \in H$. Let x be an arbitrary element of H. Since $x, 1 \in H, x^{-1}=x^{-1} 1 \in H$. For $x, y \in H$, since $x^{-1} \in H, x y=\left(x^{-1}\right)^{-1} y \in H$. Therefore $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$.
(b) Show that $H H=H=H^{-1}$.

Solution. Since H is a subgroup of $G, H H \subseteq H$ and $H^{-1} \subseteq H$. Since $1 \in H$, $H=1 H \subseteq H H$. Hence $H H=H$. Since $H=\left(H^{-1}\right)^{-1}, H=\left(H^{-1}\right)^{-1} \subseteq H^{-1}$. Hence $H=H^{-1}$ and $H H=H=H^{-1}$.
2. Let G and G_{1} be groups and S a subset of G. Let $\alpha: G \rightarrow G_{1}$ be a homomorphism, and $N=\operatorname{Ker}(\alpha)$.
(a) For $x, y \in G$, show that $x N=y N \Leftrightarrow \alpha(x)=\alpha(y)$.

Solution. Suppose $x N=y N$. Since $x=x 1 \in x N=y N$, there exists $n \in N$ such that $x=y n$. Since $N=\operatorname{Ker}(\alpha), \alpha(x)=\alpha(y n)=\alpha(y) \alpha(n)=\alpha(y)$.
Next assume that $\alpha(x)=\alpha(y)$. Then $1=\alpha(x)^{-1} \alpha(y)=\alpha\left(x^{-1} y\right)$. Hence $x^{-1} y \in N$. Now using 1 (b),

$$
y N=x x^{-1} y N \subseteq x N N=x N=y y^{-1} x N=y\left(x^{-1} y\right)^{-1} N \subseteq y N^{-1} N=y N N=y N .
$$

Therefore we have $x N=y N$.
(b) Show that $\alpha^{-1}(\alpha(S))=S N$.

Solution. Let $s \in S$ and $n \in N$. Then $\alpha(s n)=\alpha(s) \alpha(n)=\alpha(s) \in \alpha(S)$. Hence $S N \subseteq \alpha^{-1}(\alpha(S))$. Let $x \in \alpha^{-1}(\alpha(S))$. Then $\alpha(x) \in \alpha(S)$. Hence there exists $s \in S$ such that $\alpha(x)=\alpha(s)$. Now by (a), $x N=s N$. Hence $x=x 1 \in x N=s N \subseteq S N$. Thus $\alpha^{-1}(\alpha(S)) \subseteq S N$ and $\alpha^{-1}(\alpha(S))=S N$.
3. Let $\left(\boldsymbol{Z}_{15}^{*}, \cdot\right)$ be a multiplicative group; here \boldsymbol{Z}_{15}^{*} is the set of invertible congruence classes $[a]$ modulo 15 , i.e., such that $\operatorname{gcd}\{a, 15\}=1$.
(a) Show that $[a]^{4}=[1]$ for all $[a] \in \boldsymbol{Z}_{15}^{*}$. Show also that $a^{4} \equiv 1(\bmod 15)$ for all integers a such that $\operatorname{gcd}\{a, 15\}=1$.
Solution. Since $\boldsymbol{Z}_{15}^{*}=\{[1],[2],[4],[7],[-7],[-4],[-2],[-1]\},[2]^{2}=[-2]^{2}=[7]^{2}=$ $[-7]^{2}=[4]$ and $[4]^{2}=[1]$. Hence $\left[a^{4}\right]=[a]^{4}=[1]$ for all $[a] \in \boldsymbol{Z}_{15}^{*}$. This implies that $a^{4}-1$ is divisible by 15 for all integers a such that $\operatorname{gcd}\{a, 15\}=1$.
(b) Using the fact proved in (a), determine whether or not \boldsymbol{Z}_{15}^{*} is a cyclic group.

Solution. If \boldsymbol{Z}_{15}^{*} is a cyclic group, there is an element of order $\left|\boldsymbol{Z}_{15}^{*}\right|=8$. But by (a) every element of \boldsymbol{Z}_{15}^{*} is of order at most 4 . Hence \boldsymbol{Z}_{15}^{*} is not a cyclic group.
(c) Find all subgroups N in \boldsymbol{Z}_{15}^{*} of order 4.

Solution. Every element of order 4 generates a cyclic subgroup of order 4. So $\langle[2]\rangle=\{[1],[2],[4],[-7]\}=\langle[-7]\rangle$, and $\langle[-2]\rangle=\{[1],[-2],[4],[7]\}=\langle[7]\rangle$ are such subgroups. Suppose N is not cyclic. Then every non-identity element of N is of order 2 as its order must divide the order of N. There are 3 elements of order 2 and those together with the identity element form a subgroup $\{[1],[4],[-4],[-1]\}$ of order 4 . Hence these three subgroups are those of order 4 in \boldsymbol{Z}_{15}^{*}.
4. Let S_{6} be the symmetric group of degree 6 , and H a subgroup of S_{6} containing an element $\pi=(1,2,3,4,5,6)$ of order 6 .
(a) Let sign : $S_{6} \rightarrow\{ \pm 1\}(\sigma \mapsto \operatorname{sign}(\sigma))$ be the sign function on S_{6}. Show that $\operatorname{sign}(\pi)=-1$.
Solution. Since $\pi=(1,2,3,4,5,6)=(1,6)(1,5)(1,4)(1,3)(1,2), \operatorname{sign}(\pi)=-1$. Note that $\ell(\pi)=5$.
(b) Let $N=\operatorname{Ker}($ sign $)$. Then show that $|H: H \cap N|=2$.

Solution. The mapping $\operatorname{sign}_{\mid H}: H \rightarrow\{ \pm 1\}(\sigma \mapsto \operatorname{sign}(\sigma))$ is a group homomorphism. Since $i d, \pi \in H, \operatorname{sign}_{\mid H}$ is a surjective homomorphism. Hence by the isomorphism theorem, $H / K \simeq\{ \pm 1\}$ where $K=\operatorname{Ker}\left(\operatorname{sign}_{\mid H}\right)=H \cap N$. Hence $|H: H \cap N|=|\{ \pm 1\}|=2$.
(c) Suppose H is a normal subgroup of S_{6}. Then show that $\left|S_{6}: H\right| \leq 3$.

Solution. Let $\sigma \in S_{n}$. Since H is a normal subgroup of S_{n} and $\pi \in H, H \ni$ $\sigma \pi \sigma^{-1}=\sigma(1,2,3,4,5,6) \sigma^{-1}=(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5), \sigma(6))$. Since σ is arbitrary, H contains all 6 cycles. Moreover $\pi^{3}=(1,3)(2,4)(3,6) \in H \backslash N$. Since there are 5! 6-cycles and all 6-cycles are in $\pi(H \cap N),|H \cap N|>5$!. Thus $|H|>2 \cdot 5$!. Since $|H|$ must divide $\left|S_{6}\right|,\left|S_{6}: H\right| \leq 3$.
We can show in this case that $S_{6}=H$.

