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INTRODUCTION.

Since I started studying combinatorics, I have been attracted by
the beautifulness of the Delsarte theory in designs and codings and
the difficulty of the constructions.

When I.was given a previledge of giving a series of lectures on
design theory, I ,decided to present Delsarte theory (Theorem 3.2) by
the original Ray-Chaudhuri and Wilson version. There are two
reasons why I didn't use association schemes. Firstly becau;e of my
limited knowledge it seemed impossible to go through the basics of
association schemes and to develop® it to Delsarte theory in five
lectures. Secondly, I thought it is important to see the results in
each individual association scheme to consider extremal problems
such as the existence problem of tight t-designs. (See Remarks on
DAY 3 and Theorem 4.1.)‘ I believe that we can appreciate Delsarte
theory better, after going through.the original Ray-Chaudhuri and
Wilson version. So‘I wish that this note serves as an introduction
to the paper [ 12 1].

I also attempted to write an 'easy to read' proof of the
existence of t-designs by Teirlinck. This proof was introduced in a
‘bock [ 1 1, written in Japanese. Since the theorem itself is epoéh
making, I thought it is important to write down the translafion of
the prbof in English.

I included the topics from the designs over a finite field, or
equivalently the designs in the Q-polynomial association scheme
called the g-analogue of Johnson. Recently the first nontrivial

examples were constructed. It is a new area and there are a lot of

,.-.‘4.




——
|

——

TN

—

interesting problems to be considered.

I thank the members of the department of mathematics at Osaka
City University, especially Professor Tsushima, Professor Okﬁyama
and Professor Kawata who gave me the opportunity of giving this
lecture. T am much indebted to Professor T. Ito for encouraging me

to write this nbte and giving me valuable comments.



DAY 1.

=<

Let V={1, 2, ..., v } and ( ) be the family of all

k-element subsets of V.

Definition 1.1. $ # B8 ¢ ( X j is a t-(v,k,x) design (or

t-design for short, Sl(t,k,v) in some literature) if 0 <t <k < v

and

ey = |[{ BeB | xcB 1} =2a for all o € ( ¥ ),

i.e., the number x(x) does not depend on the choice of a t-element

subset o of V.

The design is nontrivial if & # ( X ] and 0 < t <k < v.

For finite sets A and B 1let Mat(A,B) denote the set of all

matrices over the real numbers R having A and B as row and

'éolumn labeling sets. "For M € Mat(A,B) ‘and (ct,8) € A X B, M[e,B]
denotes the (o,8) entry of M. Let RA denote the all one column_;f
vector whose rows are indexed by the set A. By abuse of

notation 1, may deriote the characteristic vector of A. Let L

be ﬂ( v ).
i .
J R . \% A%
Let Wik be a matrix in Mat( P ) whose («,B8) entry

W%k[a,B] is 1 if o n B € ( g ] and is 0 otherwise.

For % c ( X ); let N% be a matrix in Mat(( g ),%), whose
(,B) entry NJ[o,B] is 1 if «n B e(‘J’J and is 0 otherwise.
R i i
We write wik for Wik and Ni for Ni‘ Clearly we have
Iy - . - V) R
Wika = Ni and if 3 ( x ) Ni Wik'

N



N

By the definition of t-designs, it is easy to see that
¢ # B C ( X ) is a t-(v,k,») design if and only if Ntﬂ% = kﬂt ( or

we may write Wtkﬂﬁ = al,. ).

Example 1.1. Let V = PG(m-1,q) be the set of projective
points of an m-1 dimensional projective space, i.e., the set of 1
dimensional subspaces of an m dimensional vector space U over a
finite field GF(q). Let 3 be the collection of r-1 dimensional
projective subspaces in PG(m-1,q), i.e., the collection of subsets
of V corresponding to r dimensional vector subspaces of U. Then

. m r m-2 .
® is a 2.(( 1 Jq,( 1 Jq,( r-2 jq) design, where
s-1 n-i
(n) = ng——."l
S/9 4=0 ¢°7*-1
is the number of s dimensional subspaces in an n dimensional vector

space over GF(q).

Let [ X )q deriote the collection of r-1 dimensional
projective subspaces. Then ¢ # 8 c ( X )q is called a t-(m,r,x;q)
design if 0 <t <r <m and .

A(ee) = [{B€ 83| acB} =2x for all ae(zjq.

Note that ( X )q is a t-(m,k,x;q) design for alil poésible t by
this definition. We may discuss the theory of t-(m,r,x;q) design
in a similar way, and in most cases.we"cén obtain the assertions of
classical t-(m,r,x) designs just by takiﬁgvthe limit as g tends to

1. But to avoid confusion we discuss the cléssical t—designs

defined in Definition 1.1 only and discussvt—(m,r,x;q) designs

separately on Day 4. Note that
o (1), (2.
g~1 s /4 S



Example 1.2. Let V = GF(q) with q = 3 (mod 4) and R =

2 | a € GF(q) - {0} } the set of quadratic residues of

oF ()% = { a
GF(q). Let 8= {R + a | a € GF(q) }. Then 2 1is a
2—(q,%(q—1),;(q—3)) design. A 2—(V,%(v—l),%(v—3)) design is called

a Hadamard 2-design. A {1,-1} square matrix H of size v+1 1is
T

called a Badamard matrix if HH = (v+1)I. It is easy to check that,

if ® 1is a Hadamard 2-design, i.e., 2-(v,%(v—1),%(v48)) design and

Nl is the matrix defined above then the matrix
T

1 1
H=(o :’8]
ﬂl 2N1—J
becomes a Hadamard matrix, where J = ﬂlﬂg, the all one matrix of the

suitable size. Moreover if there is a Hadamard matrix we can always
obtain Hadamard 2-designs. - It is easy to see that if 8 1is a

Hadamard 2—(V,%(V-l),%(v—3)) design with v > 3, then v = 3 (mod 4).

1

The convérse is the Hadamard conjecture, i;e., if v = 3 (mod 4) then
there is a Hadamard 2—(V,%(V—l),%(v—3)) design!? If q = 7, the

matrix Nl of the design given above is the following.

2,
1
SRR OROOO
roroCcOoOR
‘Froocorro
SCOoOOoORrRRPOR
corroro
OrRROMOO
o
P I O
‘oo |=o]

With the'suitable,ordering of the columns and the rows we obtain the

same matrix N1 for the design given in Example 1.1 with m = 3,




Exercise. Check the assertions in Example 1.2.
Hint: Let x be the Legendre symbol of GF(q), q odd, i.e., x(a) =
1 if ae€R = GF(Q)X?, x(a) = -1 if a € GF(q)*- R and x(0) = 0.

Then for b # ¢

> x(y*b)x(y+e) = 2 x[sz)x(ym)
yE€GF{(q) Y€GF(q)
y+c#0 ]
(YL—J = - x(z) = 2 x(z) - 1 = -1.
yGGF(q) yeGF(q) Z€GF (q)
y+C#0 Z#1
Use the identity above.
Lemma 1.1. Let 3 c ( Z ). Then
V. N = [ k=1 jN..
18 '8 S—1 1

proof. Wi N [eB] = |( 8 e_( v ] |l wchcBl| = [ k-1 ).

Lemma 1.2, Let 8 be a t-(v,k ) désign. Then 8 is a

i (v, k2 ) design with
(7). (1) (2 o
o= 2 t—1 - 3 k-1 (v i) (u-t+l) _ k-1
i ( k-1 J E [ -t J Xk—1) - (k-t+1) [ V'] g
_ t—1 k-1 k
i =0,1,2,...,%. In particular these numbers are integers.

Proof. Let 0 < i < t. Since ( i:; J # 0,

) v-1 “v-t _ { k-1
Since ( t-1 )( K-t ) = ( t-1
holds. Note that for o € (

o toted = 10 e (V) lecsrl = (T1])




Corollary 1.1, Let 3 be a t—(v,k 1) design. Then

A t-design with x =1 1is called a Steiner system.

Let ® be a t-(v,k,x) design and x € V, Vl =V - {x}. Let

B, = { B n A | x € Be g},

B, ={BnV, | xeV-B, Bes]}, ‘
then it is easy to see that %l is a (t-1)-(v-1,k-1,x) design and %2 —
is a (t—l)—(v—l,k,xt_l—x) design. %l is called a derived design _i7

~and %2 is a residual design. # 1is called an extension of 81. '

v
Let % = U [ X J and G a subgroup of SV = Sv’ the symmetric
i=0 . i

group on V. Then G‘ is a permutation group on 2%, i.e., a
"subgroup of S?. So G can be embedded as a subgroup in Mat(?,?)
as follows; for a € G, P(a) is a matrix in Mat(?,?), whose («,B) »
€ ? x-? entry P(a)[e,8] is 1 if o = 8 and is O otherwise. ;1
Now ?/G denotes the set of orbits of G on 2. Let

Mat (Z,9) = { M &€ Mat(?,?) | P(a)M = MP(a) for all a &€ G }.
We define an algebfa‘homomorbhiémA | |

T Mat(?,2) - Mat(%/G,%/G).

~~

Let F be a matrix in Mat(?,%/G) whose (o,A) entry Flo,Al is

1 £

- 1,

|Aa| 2 if x €A and is 0 otherwise. Let D be a matrix in

Mat(?/G,#/G), whose (A,I') entry D[A,T'] is [A] if A =T -and is

- 7 -
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0 otherwise. Let (M) =D MFDZ. Then the following hold.

Proposition 1.1. (1) FFT

2y FIF =1 in Mat(?/G.2/0C).

(3) T 1is a surjective algebra homomorphism from Hatc(?,?)

Hat(?/G,2/G) .

Proof. (1) Let M € Mat (?,7) and o, B € 2.
MFF [e,8] = S S Mlo,8]F[8,A]F[8,A]
5€P A€P/G
= 2 GM[a.B]/lBGI = T%T S Mle, 851
5€B geG
- 57 I Mt 8] = 3 iy, 81/l
geG TEX
= 2 S Flo,AIF[v,AIM[Y, B8]
AEP/G YyED
= FF Mlot, 8]

(2) Clear.

(8) "It is clear that t 1is a linear mapping.

M, N € MatG(?,?). Then

. S 1 L 1
c(M'N) = D 2FTMNFD? = D 2FIMNFF FD*
1 1
- p 2pTMpFINFD? = T(M)T(N).

For M € Mat(%?/G,?/G) define N € MatG(?,?) by

(%}

N, 8] = M[«®,8%1/18%].  Then -
1 1
c(N)[A,TT = (D 2PINFD?)[A,T]
. L
- ({E%)z S S Fla,AlN[a, 8IF(8,T]
oEP BEZ
- T%T S 3 N, 8] = MIA,TI.
“ot€A BET

Hence <t 1is surjective.

ig in the center of

Hatc(?,?).

Then

Let



By abuse of notations we view W%k and Ng as matrices in
Mat(?,?), i.e., the matrix such that the ( X J X ( X ] block is W)
(or Ni respectively) and the other blocks are 0 matrices. Let

J j . . v A% .
Atk and Btk be matrices in Mat(( t J/G,( Kk J/G) defined as

follows.
A%k[A,F] = l{ia Er | Bnae ( g J }|, where B8 € A,
B%k[A,F] = |{BeEA] BNnace ( g J }|, where o € TI.
Proposition 1.2. (1) B%kak = DttAgk’ where Dij is the

[ Z )/G x ( g )/c biock of D.
7 I |
(0 woil) = A
J T, _ pdT
3wl b = Bik .
Proof. (1) Btkak[A’r]

- 3 Bl 1aED(ET] - Bjk[A riir

eGQ/G

= rll{sehr|snyelV

j )}[, where vy € T

1{ (5,v) e AXxT | 5nye ( Y ] 1

lA[I{ yer|snyce ( g J }|, where & € A
= |alad k[A rl =D, k[A rl.

(2) r(w?k)[A rl

R J - v
S TaT2, Ier s Gl e eaxT i say «(7) H

= ad
= A k[A,l"].

(3) Similar to (2).

ik

Since 3 1is a G-invariant t-(v,k,x) design, i.e., the members

of 8 are permuted by the elements of G, if and only if

m— .

-~




1, = Al or 3=T,U... U Fu ( Fi € (Z)/G ) is a t-(v,k,x)

Applg %
design if and only if

u
S A, [A,T] = A for all A€ (‘Q/G,
i=1

we can investigate the existence of G-invariant

t-designs using the matrix Atk’ which is possibly much smaller than

W In particular if G 1is transitive on ( X ), i.e.,

tk’

t-homogeneous, A is a 1 X I(XJ/GI matrix. So every collection

tk
of G orbits on ( X ) yields a t-design.

Example 1.3. Let G = M24, Vv=+{1,2,...,24 }. Then G 1is
5-transitive on V. Hence any collection of G orbits on [ X )
other than [ X ) with 5 < k < 24-5 becomes a nontrivial 5-design.

For example we have 5-(24,8,1) design, which is called a Witt design.

Ekample 1.4. Lety G be an abelian group of order v. If
(v,(2r)!) = 1, then

B = Lr(U) | U € ( g ) }, where

r
= * . - i r_i ‘:
Lr(U) = { a; a,. | a, €U } { ab | i=0,1,...,r }
with U = { a,b },
is a 2—(v,r+1,(r;lj) design.
Example 1.5. Let G =< (1,2,...,7) >  Then
rp Ty rg Ty, e
{123} {124} {125} {126} {135}
;2 1 1 1 0 {12}
Mgy = ( 1 1 0 1 2 ) {13}
0 1 2 1 1 {14}

and F2 and F4 both correspond to a 2-(7,3,1) design obtained in

- 10 -



Example 1.2, rl U F3 U FS corresponds to a 2-(7,3,3) design in

Example 1.4 with v =7, r = 2.

Note for DAY 1.

The most of the results discussed here is standard and can be
found in any standard textbooks, see for example [ 1 ], [ 17 1,
[ 20 1, [ 26 ]. The higher incidence matrices Wik are introduced
and discussed in [ 37 ].

The study of t-designs with a group action is an old subject but
is formulated using the homomorphism <t by Kreher in [ 23 ], [ 24 1.

Example 1.4 was taken from [ 31 ], where it is discussed as a

limiting case of the design over GF(q) with gq = 1. See DAY 4.
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DAY 2.

We shall prove the Ray-Chaudhuri Wilson inequality on the number
of blocks of t-designs and the Bruck-Ryser-Chowla's theorem on
symmetric designs. As an introduction we give another definition of

t-designs.

For Vv={1,2,...,v }, let RI[V] = R[Xl,...,xv]Abe the
polynomial ring over R with v indeterminates. Let IR[V]s
denote the set of polynomials in R[V] of degree at most s. We

identify R[V] as the set of polynomial functions on' ? by embedding

@ € ? into RV in such a way that the i-th coordinate o, 1is 1 if

i
i € ¢ and is 0 otherwise, 1i.e, ﬂa. For a‘subset S of’vRv let
s* denote the set of functions from S to R. Then there is a

*

natural homomorphism O from - R[V] to ,-which is defined by

b <t
—

.( v

k

the restriction of the domain from R’ to (
* V Yy* _ V'

@y RIV] » 9 = ( K ) ={ gl ( Kk J -+ R }.

Then the following hold.

Lemma 2.1. (1) - Kerwk 5 < $i2f$i, $f+"‘+$v_k | i=7,...,v >.
(2) c,ok(lR[V]S) = cpk(< cct.j‘nmis I i< <ig >IR) if k = s.
. : k .
(9 ding RV (X)) s k=xs
Proof. (1) Clear.

(2) Let Y be the.right hand side of the equality. By
induction'on s-t we show that for il<...<it, t £ s,

(x, »-+"x, ) € Y. For s = t, there is nothing to prove. Let

t < 8 < k. Let m be different from ii""’it' Then

- 12 -



Qk(Xi Xy Xm)

1 »t
= @k(xil‘~oxit(k—(xl+...+xm_l+xm+1+...+xv))
= (k-t)e@, (x, *++x. ) - > o (X, --*X. X.).
L T J, i m Bt T

Since the last sum is in Y by the induction hypothesis,
cpk(Xi TRy ) Dbelongs to Y as k - t # 0.

1 t

(3) This follows immediately from (2).

For 1< .<iy and o = { LERRIES }, let Xy = Xy tUXy

Then Xa(B) is 1 if o c B, and is 0 otherwise for all B in %.
Hence ¢ # B cC ( X ) is a t-(v,k,x) design if and only if

S X, (B) = x () = 2 for all o in ( z ):

g~

By'Lgi;a 1.2, x/18| = ( X J/( K J. So
lfBlngxa(B) = F)—Bez( X (B) -

Now by Lemma 2.1.(2)

A3 f(a) =-T%T E‘f(B) for all f in R[VI,
Tc o2

v
Let T%T Z f(B)g(B) = < f,g >$ be an inner product‘on 3”
Beg
Then < , >$ is nondegenerate. Hence by the equation above we have
that » |
| |8 = dim 2 > dim Qk(R[V]S), where 2s < t,

we obtained a bound for |[3].

It will be shown later that dim @k(R[V]S) = ( Z ) if k + s £ v.

Rec¢all that ¢ = B c [ . ) is a t-(v,k,1) design if and only if

-18 -
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. 2X(B)=k=|5’8|(§:€)/(§) for all o in (X]

n
2 X )2 and the equality holds if and only if

x. = x,., for all i, in R, we have that

i
I%—QE%XJ(BE%X ()2 (I%TQE%XJ(BE%X (B)))2 I%jlﬁl(i))z,
and the equality holds if and only if 8 1is a t-design.

. ! : v
Let a; = T—Tl{ (B;,B,) € 3 x 3B | B, n B, € [ Kei ) }|, then

( 2 x, (B))? 2 2 E Xa(Bl)X (B,)
2€

2>
( V) Beg V) B €8 B
. xe [t) e [tj

= 3 > x (B.NB,) = |B] 2 a. ( k-1 ).
"1l 2
e XJ (B, ,B,) €83 4

<

).

Proposition 2.1, Let ¢ = B c (
k .
k-1 : kY2 v
(S ( )a. > ( ) lzl/( ]
. Zol ot J%E e t
" (2) The equality holds im (1) if and only if % 1is a

\ t—design and

. k
{ k—1 _ k .
\ 2( u )ai—(ujxu,u—O,L..,,t.
i=0
{ Proof. The last equations can be derived usihg Lemma 1.2.
/
N .
Lemma 2,2, For a t—(v,k,x) design 3B, let o € ( g') and

B € ( g J_ with .« nB =¢ and r+ s <1, and

Ai(a,3)={3es]ac3,3n8=¢}.

Let IAi(a,B)I = Ai. Then Ai does not depend'oﬁ the'choices of o,
<‘ 8 and the following hold.

- 14 -



(1) 2S5 = 2871 4,8

r T r+i1’
s = uf{ s V—r-s y—t
(2 an = 2 (D ( u J*r+u - k( k-r J/( k-t ]‘
u=0
Proof. We prove (1) by induction on s. Note that for s =
0, 12 = lr and lr does not depend on the choice of « by Lemma
1.2. Let a € V - (aUB). Then for each B € Ai(a,B), either
s s+1
B e A ,(au{a},B) or B € A "(x,8u{a}) and
s s+1 -
AS,q (@ufa}, 8) n AZTT(«,BU{a)) = 3.

Hence we have (1) and we can show that Ai does not depend on the

choices of ® and B8 by induction.

(2) It is easily proved by induction but we give alternative
proof. Let ui be the corresponding constants for the trivial
. v . 0 _ v-t . x 0
design ( Kk ). Since pg = ( K-t J, Ayo= oMy So by (1),
R
s _ X s
Ar T To Py
R
s vV-r-s
as Hp = ( k-r
Proposition 2.2. . Let B be a t—(v,k, 1) design and Ni be
the matrices defined on Day 7, 1 = 0,71,...,k. Then
ninf{e, f} . ‘
I _ ! i T ,
Proof. For (uo,8) € ( Z'] X ( ¥ J, with o n B € ( y'J,
T . . B o
NN . [e¢,8] = [{B€3|BoausB} = Xosfoi
we have
min{e,f} :
T i .
N N = i X W,
e f iZo e+f-ief

- 15 -
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On- the other hand, since
T _ v

T ) min{e,f} u u
Wi Wip = 2 ( i )wef'

j=1 j=1i
u_lt u-1i u u u-1i
- 3 i D) - ( ) (-1
j=0 ’ ’
min{e,f} . .
. u ’ _ayi-uf i T
Claim 2 Wef = .g (-1) ( U )Wie Wif'
i=u
min{e,f} . o min{e,f}
i-uf i W W
mory MU e (1) (1),
i=u w=1i
min{e,f} w
a _yi-uf i W W
g e (1) (1)
g
= Wee
Therefore
min{e,f} .
T i
N N = > X LW
e T 150 e+f-i"ef
min{e,f} ~ min{e,f} . '
- 2 rerf-i 2 (-n" l( ? )wueTwuf
i=0 u=1i
min{e,f} u . .
- aydfu T
) ugo (jgo( H) ( J ]le+f-u+J)Wue ug
min{e,f} -
_ u T
N ? Xerf-uTue Muf
u=0
Theorem 2.,1. .Let B be a t—-(v,k,x) design.

and k + s < v, |8 > ( g ).

- 16 -
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Proof. Let e =f = s in Proﬁosition 2.2. Then

: i ] A . N
For each i, Aog g = 0 and Wis Wis is positive semidefinite.

. s _ .S _ v-2s v-t _
Moreover for 1 = s, 1, =25 = k( K-s ]/( k-t ) # 0, as k s

< v-2s and Wss = I. Consequently, NstT is positive definite and

N, is of full row rank, which implies [8] > ( Z J.

Theorem 2.2, Let 3 be a t—(v,k,2) design such that 3° = 8
Ffor all o in G<S'. If s <t k+s<u

13761 = 1( Y )sel.

In particutar, if G 1is transitive on B then G 1is transitive on

(%)
S ' - E—— e e e
Proof. Let <t be the mapping defined on Day 1. Then

s
T _ 1 T
AsﬁBsﬁ a iz“o)‘ZS—iBis Ais'

Since BsﬁDﬁﬁ - DssAsﬁ and Bists = DiiAis’

s .
T _ T _ i
BsﬁDﬁﬁBsﬂ B DssAs%Bsﬁ - g l2s-iDssBis Aig

i T
O*Zs—iAis DiiAis'

1]
N0

i
Hence we can argue similarly as in the proof of Theorem 2.1! We
have that BszDﬁﬁBsg is positive defln;te, whlch implies the
inequality in the theorem.

Definition 2.1. A 2s-(v,k,1) design is called tight if

|38|= [Zj and k+SSvV. . “

_17_
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A tight 2-(v,k,x) design is called a symmetric (v,k,x) design.

A symmetric (v,k,l) design is called a projective plane.

Remark. If 3 is'a G-invariant tight 2s-design, then NS is
a nonsingular square matrix inducing a G-isomorphism from ( Z }* to
g*.  |8/G| = l( v )/G] in this case.

The equation

‘ S 4
T _ T
Nst = 2 lZs lWlS wis
i=0

indicates that if ® is a tight 2s-design the quadratic form

X 2, X 2, + x(v 2

1 9 .. (s)

is ratiohally equivalent to the form defined by the symmetric matrix

T
E AZs 1 is Wis'
This is the basic observation which leads to the Bruck-Ryser-Chowla's

theorem on symmetric designs.

Theorem 2.3, Let B be a symmetric (v,k,x) design. Then
the following hold.
(1) (DX = k(k-D, a5 =0 and X, = k.
(2) (Schutzenberger) If v +is even, then k-1 1is a square.
(3) (Bruck—-Ryser-Chouwla) If v 1is odd then the equation
axZ + =) V22 o g2
nmust have a solution in integers X, ?, Z mnot all zero, where
= k-x and is‘éalled.thé'ofder of the design.
Proof. (1) By Lemma 1.2, |8] = av(v-1)/k(k-1).  Since the

design is symmetric, |8|] = v and we have the assertion.

- 18 -



(2) Let N1 = N. Then the equation in Proposition 2.2 yields

T _ T 1, T
NNT = AW, TWoy o Agy g Wy

A2J + (k-a)I = aJ + nI,

where J 1is the all 1 matrix of size v. Since the eigenvalues of

J are v with multiplicity 1 and O with multiplicity v-1,

det(N)2 = det(NNT) = (,1v+n)nv_1 = kznvhl,

as AV + n = k2 by (1). Since N 1is an integer matrix kznv—l is
a square. Thus n 1is a square if v-1 1is odd.
(3) Let
N ﬂl Iv 0
B = T ’ '1& = ’
Aﬂﬁ k 0 -X
where Iv is the identity matrix of size v and 0 is the 0 matrix
of suitable size. . Since NNT = nIV +.2J and v - kz = -n, letting’
1 = ﬂl = 13, we have o A
T N1 . 0 NT a1
. v
By~ = ( T J( )( v )
Al kK7 0 - 1 k
NNT-aJ  aNI-aki ) ( nI, 0 )
AHTNT—kxﬂT xzv—k‘zx 0 -nx
= ny.
Hence the quadratic forms
2 2 2
Ql = yl f el yv - lyv+l and
_ 2 2 2
QZ = nxl + ... F an : nlxv+l
are rationally equivalent. In other words Q1 =,Q2, where each Xi'
is a rational linear comb}natlon'of -yl""'yv¥1'
Sublemma (Lagrange). For any positive integer ¢,
2 2 2 2 . 2 2 2 2
+ + +
tmj tmz tx3 tm4 ecan be uritten as Yy + Y, + Yq + Yy
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N

P

L




——

m—

et

25

where each vy, is an integral linear combination of T, T, g and
Ty

Proof. By a theorem of Lagrange any positive integer t can
be written as a sum of 4 squares. (See Hardy and Wright "An

Introduction to the Theory of Numbers", Oxford University Press,

302-303) . So let t = a + a + a ta,s. Then

Y = 23Xy 7 89Xy 7 83Kg 7 8%,

Yo = 81%g * 8pXq * AgXK, T 84X5,
Vg = a3Xg * agXy * 8,Xy ~ axX,
Vg T 8Kyt 8%y T 8p%3 T 8g%a:

Hence ﬁsing the Witt's cancellation theorem or the specialization we

can cancel terms, four at a time.

Case 1 v

1 (mod 4).

. . 2 2 2
After cancellation we find Yy T lyv+l and nx. -anv+l

are equivalent quadratic forms. Henpe they represent the same
numbers. The latter represents n at the point (1,0), so there
' 2 2

exists a rational point (z,y) such that 2z~ - Ay = n. We have

(8) 1in this case as _(—:L)(V"l)-/2 = 1.

Case 2 v 3 (mod 4).

1t

Adding the quadratic form u2 + nw2 to each of the quadratic
. 2 2 2 2 .
forms, we find that nw lyv+1 and u anv+1 are equivalent.

So as before, nw2 - 1yv+12 represents 1 and we have the assertion.

- 20 -



Remark. If G s'SV stabilizes B, we can obfain the

following matrix equation by applying <.

T T T
( Big Am)(Dfm OJ(Blﬁ "Bo:’a]

~\\\\\~ﬁfﬁ~;§3%% k 0 -a Ag k
)

i ( AllI‘AO j( nD11 0 J( All 0 J_

0 1 0 -nx 0 1
_ . _ v .
Let { Ty ,TS_} = B/G and. { Apyeen By } o= [ 1 )/G, with
vy = ]Fll and 5j = IAJI. Then the quadratic forms
- 2 2 _ 2
Ql = Y XD o e # YoXg AXg and
Q2 = nélyl + ...+ nasys nAyS+l
are rationally equivalent. So we can discuss similarly if we know
Y 8. explicitly.

i’ 7))

Note for DAY 2.

Proposition 2.2 is‘pfoved in [ 37 ] vand is used toAshow
Theopem 2.1. The original proof of it is in [ 28 1.

Theorem 2.2 is taken from [ 23 ]7

Theorem 2.3.(3) was first proved for the case 2 = 1 in [ 71,
and generalized for all 2 in [ 11 ]. Thé proof here is‘taken
from [ 25 1], Which has deeper discussions on symmetric designs with

a group action.
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DAY 3.

We shall discuss the duality theorem of Ray-Chaudhuri and Wilson.
As an introduction we give a definition of s-distance set and the
bound of it using the polynomial function ring introduced in the

begining of Day 2.

Definition 3.1, A family 8 of subsets of V, i.e., 83 c 2,
is an s-distance set if s = |{ lBlnB2| | B,, B, € 8, B, # B, .

Proposition 3.1. Let B8 be an s—-distance set of V.

v ' )
+ +

sl < (V). (8]

(2) If & c [ 4 ), then 18] < ( v ]

Proof. We identify elements of ? with {0,l}-vectors in RY
as before. Let ¢ be the restriction homomorphism from R[V] to

* . .

?. Let # = { By,...,B } with IBll < ... < ]Bm] and

{ lBlnle | B,. B, € 8, By #B, } = { kyoookg 1y
with k, < ... < Kk _. Let

1 s
f.(x) = m (B.-x - k.),
1 k.<|B.| * J
3 i
where B.-x denotes the dot product, i.e., if B, = (b,,,...,b._),
i i il iv
X = (Xl,...,Xv), Bi?% = bilxl L.+ bivaﬂ Then
o, . if 1< j <i<mn,
fi(Bj) = { o . '
b nonzero, if 1 = j.

So | @(fl),...,w(fm)k} is linearly independent subset of Q(R[V]s).
Since Ker¢g o < xiz—xi f1i=1,...,v.>,

cp(IR[V]S)/= p(< Xil’.'Xir | 0<r < s >R)‘

- 22 -



Hence

2] = m < dim @(RIV]) < [ZJ o
If 3 c ( X J, we have
|2] = m < din ¢ (R[V]) < (‘S’]

by Lemma 2.1.

‘Proposition 3.2. (1)
+ f <t and u < f, then
- U . .
u, I _ -1 f-u i
Ne(Nf) = 3 ( -1 Jle+ﬂ—iwef'

i=0

(2) Let 3 be an s-distance set in
{ lBjnBZI | B, # B, €3 b= fllj'---»ﬂ
then
Tu_ $ (‘U‘{.J(k_“iJ My
Ne N9~_'i§0 u )\ eu L
. N .
i _ i, .
where N = Nk Wkka'
Proof. (1) Let (a,8) € ( Z ) X [

Thén by Lemma 2.2,
N (N [, 8] = [{Bes | «cB, 6nB

f-u

= 2 A (au(B-v),v) |
TG PSR A
e (u—ik_:j) e Britl®)
_ o £-1 Y. f-u £-c &-C)
B ( u-i )le+f—i' L§~u)=(u~c
(2) Firstly note that

. A
1, if BlﬁBZG( uij,

Hi
N “[B;.B,] = {
0, otherwise.

- 23 -

Let 3 be a t—(v,k, ) design.

B 2ot
Netu-i

(

o<
p

If e

(%)
s b g =

H <

) with anse(‘i/].
(1)

w

e <




o~

Let Bl’ B2 € 3 with B1 n B

T, u
N TN, B,) = [ ae |
k-
e-

2nd Proof bf Theoren 2.1.

Let e = f = s .< [t/2] in Proposition 3.2.(1). Then
OV T _ S0
Ns(Ns) = AgWser

u-1 . R
u,T s-1 s-u i S-U, 0
Ns(Ns) - igo( u-i )ls+u—iwss * g wss’
s\T _ i i,s
Ns(Ns) - z l2s -1 SS * lswss'
.Since k; # 0, 0£<i < s, by the condition k + s £V, and Wzs = I,
‘ 0,T s\T _ _ _ 0 s
< NS(NS) "“’Ns(Ns) > = < Wss""’wss >,

v ),8) such that

In particular there is a matrix M in Mat([ s

I = NSMT. So ( Z ) < |8], as desired.

Remark. By the same argument we can verify a slightly more

general theorem.

RESULT Let. X and Y be finite sets, I cX x Y. and s 2
Suppose f cY satisfy'the following- | '

(1) {{ B e 3 | oy X {B} c I }] does not depend on the choice
? ), for 1 = s,...,2s.

of ai € (
(ii) For some o, B € ( § J, ¢« npB =¢, there is B € B such

_24_



that o X {B} ¢ I and 8 X {B} nI = ¢.

Then |8] > ( I};l J

Proposition 3.3. Let % be a 2s+! design. If v-1 > k+s,
(s ) o (57 |
2s8+1 2s v—1 v—7 v
l%l = X P ) P-3 l( x—71 ] + ( s ) = 2( s ) > ( s ).
2s+1 2s
Horeover if |8| = 2( v;f ), the residual design is a tight

Z2s—desegn.
Proof. The first equality is from Corollary 1.1. Let. x € V,

_ A0 _ a1 .
%l = Al({x},¢) and %2 = AO(¢.{X}). By Lemma 2.2, ﬂl defines a

2s~(v-1,k-1,1) design and £2 defines a 2s~(v—1,k,xés) design.

Now the assertion easily follows.

2nd Proof of Proposition 5.1.(2).

Let e = s in Proposition 3.2.(2): Then we have s+1
equations.
s i k-u, i '
T NG [Gach MR
i=0
. : : Hy k"ui
Suppose the matrix P, whose (i,j) entry is ( j )( s-j ) is
singular. Then there afe Core--rCqs not ‘all -zero such that the
polynomial

0 oo 3)(5) e T) e (2 (55

has s+1 roots, po,..;,u 'Since the degree of Vp(x) is at most

s

s, we have a contradiction. Hence the matrix P is nonsingular and
. T..0 T.s . _ By Hg
< NS Ns,...,NS NS >=<N 7,...,N >,
) Ro k . v
Since N = N" = I, there is a matrix M' in Mat(( s J,%) such

- 25 -
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that NSTM' - 1. So ,( v J > |3].

Lemma 3.1. For 0 < i £ 8 <k the follouwing hold.
- 7 . .
J _ k~u v—k—u‘u) U

(1 Wil uzo[ i-u ]( s—g—itu )i

In particular
wist - [

L0
wist - (

T, _ S(uj(s—u]u
) W, W E P | g T

S .
_ i
(3) N_ = z (=1) Vis N..

S .
(4) K. = 3 (-1,

s .

_ PR 7,0
0 is Wig = igo( 1) Wis Wis®
. Proof. (1) Let (o,B) € ( ¥ ) X 8, o N B € ( X ]. » Then

v )Al @ c b, B nB e ( v ) }

J
( k-u )(.V—k—i+u ]
j-u s-j-i+u }°

Similarly we have (2).

i
—
h==]
m
TN

%)

- j
. Wist[a’B]

u s s
Since > (-1)9 l( J )( u J = 5. (see Claim 1 in Proposition
;%0 i j iu

_26_



2.2),
S S
S (—1)lwiSTNi = 3 (-1t
i=0 i=0 u
S . S .
S (—1)1WiSTNg = 3 (-1t
i=0 i=0 u
s _
NS = W

(5) follows from (4) by setting k

Corollary 3.1. (f)

_ v —
rank Wg, = ( ), and rank Agy = !(

S

(2) If s+ k >2v and

If

s £ k,

s+ k<vw

0 <<

)zel.

then

. 1%
rand W, = ( Z J, and rank Agp = I( X )/GI.

(1) ](»z )/Gl = rank A_

V-

Proof. Let 2s SAV. Then by Lemma 3.1.(5),
e e . L V=8 .
_ wV—S _ IPRY! T
1= wV—s v-s . (-1) wi v-s Wi v-s’
: i=0
Since WO =0 1if 1 > s
i v-s '
s .
- _1y1y0 T
1= .z (-1) Wi V-8 Wi V-5
i=0
S ; i
_ (-1)",0 T, -
) (igo (v—k—i)wi V—s_wis)ws v-s®
k-1
'Hence _Ws v=s is a nonsingular matrix and
L. s i .
- wS _ (-1) 0 T
Mg = Wy v—s(igO (v—k—i)wi v-s Wis)'
. k-1
Applying <t on the equations above, we have that AS N is
nonsingular.

g = rank Ag 1By v-g < rank A_

- 27 -

s and 3 = [ K ).

and 8 < k, then

i( 3 )Ng ugo(igo(—l)i( ? ])Ng
Séz( Siu )Ng ) ugo(igo(_l)i( Sgu ))N

k

o

TN

.

N TN RS ——

.

SN

N

P
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(7 )sel.

<
V - —_—
(2) ]( X )/G] = rank A, = rank A, Al < rank Ag
v
< |[kj/ey
Lemma 3.2, Let Ui denote the row space of Ni' i.e., the
veetor space in Rlz] spanned by the rows of Ni‘ Let U£’ denote

the row space of Ng. Then the following hold.

(1) UO < Uj c ... C Uk'

(2) Ui = Ui"

(3) If 8 4is a 2s—design and k + s < v, then

dim U. = ( v ) for all i < s.
i i

Proof. Lemma 3.1.(1) implies that every row of Ni is
written as a linear combination of the rows of Ng if 1< s. So
we have (1). Similarly we have

U0 c Ul c ... C Uk .

Now by Lemma 3.1.(3), US' c < UO,...,US > = Us’ and by Lemma
3.1.(4), U. ¢ <U.',...,U' >=U_". Sowehave U_' =U_,. If %
S 0 S S S s
is a 2s-design and k + s £ v, NS is of full row rank ( Z ) (see

the proof of Theorem 2.1). Hence we have (3).
Theorem 3.1. Let 8 be a t-(v,k,x) design. Let U = R‘ﬁl

dnd Us denote the row space of NS in U and Ps the orthogonal

projection onio Us‘ If vk + s and 2s < t, then
s [kt
P, = t"go(—z)’“ i;t Wy
s

- 28 -



s s i _ i
= 3 (3 (-ntEE (k “J])N J
JF=0 i=0 ls i
v—T o’
- k;t 3 pg(uN I
J=0
with
g i
p{x) = 3 (~1)
s .
=0
Here | lBjnBZI .,us,} and
k = B |
Proof. It suffices to prove that NSPs = NS and if x € USL
then xPS = 0.
Let x € U c UiJ‘ - Ui.'L, i <s. Then xN(i)T = 0. So
xPS =0
s !%_i! s
‘ i\s-1i 0 i(k-i},,0 T
N.P_ = 3 (-1)"2=MN NN, = 3 (-1) [ _.)w. N
s' s 1o l; siti 120 s-i) 'is i
s
_ 31,0 T _
- iEO( 1) wis is's Ns’
For the second equality we used NSNgT = A;WQST. Since
S" 4 TN
e - 3 et
j=0" i
we have the assertion.
Corollary 3.2, . Let 8 be a t—(v,k, 1) design with t =z 23,
: + g ' = '
v > k+s and BJ,‘..,Bm } c 3. Let Bij lsi n le. | Then the
[v—t] ' .
-m X m matriz I - ¢ k;t ps(“ij)) 18 positive semidefinite and is
singular if =» > |8]| - ( Z )-
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Proof. Let QS = I - Ps' Then QS is the orthogonal

L
projection onto US of rank |[|8] - [ Z ). Hence its principal
submatrix is positive semidefinite.
3rd proof of Theorem 2.1.
(5] () (2]
_ . _ s k-t _ s
Let m = 1. Since ps(k) = ( - J. Y ps(k) = T8
k-s

Applying Theorem 3.1, we have

(z)
1 S L >0, or |8 2 [ Z ).

K]

Corollary 3.3. Let -3 be a t—(v, k, 1) design with v > k +

s, 26 <t. Let B, B

1" 72
is tight IBI n BZI = u is a root of the polynomial ps(m).

In particular s in this case.

< 8
Proof. Let c¢ = ( K:E J/x. By Lemma 3.1 with m = 2,

1-c-p (k) -copg(n) ‘ e
—cep (p)  l-cop (k) | 7
or
lep (W] €1 - cpg (k) = 0.
Since.the degree of ps(x) is s, the number of roots does not

exceed s.

Theorem 3.2. Let 8 be a nontrivial t—(b,k{x) design and

an s—distance set. Then k — [t/2] < v and %he'fdl@buing hold.

(2] =m0 = (1,)-

(2)  If 13l = [[t?z])' t is even and s = t/2.

- 30 -
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(3 If 8] = ( v j, then t = 2s.

Proof. Let s' = [t/2]. Suppose k + s' > v. Then
t =2 28" 2 2(v-k). So 3B 1is a 2{v-k) design. - By Theorem 2.1,
v v _ v
(k)12 (0 )= (1)
A contradiction.

(1) We have proved the inequalities in Theorem 2.1 and Theorem

3.1
(2) By Proposition 3.3 t 1is even. Since
" = { V-B | B € 2} is a nontrivial t-design and s-distance
set we may assume that 2k £ v. Then s > s' by (1). On the
other hand we have s < s' by Corollary 3.3. Hence we have 2s = t.
(3) Suppose |8 = ( Z J. Then by the second proof of
Proposition 3.2.(2), there are constants Core 1 Cq such that
T 0 Sy _ Ho _
Ns (CONS + ...+ CSNS) = N =TI,
Since Né is a square matrix, NST is nonsingular. So
0 s T _
(cONS + ...+ cSNS)NS = I,
Since Lemma 3.1 implies
w, N0 e <N, ..., NI >
is’'s S S
W, = (ciN? oL, + ciN%)N T with somé constants Ci c
is 0 i i'i"s? : 0" Ui
. 0, T i, T B 0 i
Claim < NiNs ""’NiNs > = < wis""’wis >,
(For) We prove the claim above by induction. For i = 0,
0.0, T '
Wos = CoNoNg - |
Suppose the claim holds for i, then
W Ty 151(11) [i+1—u]wu
1141 Tis = 20U 01 JMien s
- 31 —
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Suppose

Ty d -
JE aJ i i+l “is * 0ci+lwi+l s 0
Then
it 1 i+l-u
uzO(JEOQJ(J)( i-J ))W1+1 s ¥ %W s 70
Since W§+1 S's are linearly independent {0,1} matrices, the
polynomial
0 = 5B+ ea )
520 Jj\J i-J i+1\i+1/°
of degree at most i+1 has 1i+2 roots. Hence f(x) = 0, and
. . Towd o«
0 follows easily. Moreover since Wi i+l Ni is in
< Ng+1"' Ni+1 >, we have
0 i+1 ~ T,,0 . T,,1i
< Wi+l s’ ’w1+1 s~ =< wi i+l wis" wl i+l W1+1 s
- T.0. T ... CTadly T o e -
=< Wi i+l Nle ’ i 1+1 Nle ’Wi+lvs >
T i+l T
c < N1+1Ns ""’Ni+le >.

o

Since the dimension of the last space is at most 1 + 2, we have thé

claim.
Hence there are con;tants ao,...,as such that
s .
NNT = Saw .
i"ss

i=0 :
In particular -AZS(QUB) = a, for all «, 8 1in ( Z ) with

xnNnBg = ¢, which shows that 8 1s a 2s—design.
Remark (1) N. Ito and others showed that the only tight
4-designs are the unique 4-(23,7.1) design and its complement.

(61, [ 151, [ 211, [ 22 1. 4-(23,7,1) design is a derived

- 382 -
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design of 5-(24,8,1) design in Example 3 on Day 1.

In [ 27 ], C. Peterson showed that there are no tight 6-designs
using the fact that the polynomial p3(x) in Corollary 3.3 must
have integral roots only. E; Bannai developed this argumeﬁt and
showed that there are only finitely many tight 2s designs for each
fixed s = 5. See [ 5 1.

(2) The polynomial used by C. Peterson and E. Bannai has a
little different form ws(x). As a closing remark we show it is

essentially the same as pS(X)‘

Let

pS(X) =
and

\?s(x') =
Then

(2 (755 ps ) = w0

(For) Since

g Covwd g £ r-jfr T
Po= 3 (W, = Spo(h 3 07w Tw
s j=0 s kk 3=0 s =0 Jj/ rk "rk
it suffices to show the following.
(V—ZS] (v;s) K ’ r=j(r
- 3 pg () (-7 ()
kos JAs JySos 0 T A
equals O ifflf'> s and if r < s,

07 (72 (6 () ()

(27 (57) Fpet e )
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S
0 i=0 [V];_" )

(-1)i*T (Kzis) (V;s) (}s{:i) ]g (_l)jA (kjj) (r) )

v-i-s & i J
0 ( k-s ) =0

Since it is easy to see by induction on r - that

S 6 - 63

s oo iGN

J

i

N ®

(%) yields

Shal e

ST & ;) (K is)( ; ]]Eo( -1tE (vslls

- (D) s) : (- 1)1”@ e

v i- s)'
k s

Lo ()

In particular, if r > s, then this is 0. Since

s () e ()

1=0 ) 2] (%) Y e (5]

(##) yields

(k—r)[v—Zs)(v—s (_l)s+r(k—1—ﬁl

s-r) \k-s s S-r
v-2s) [v-s-T

' - k-s S- '

e D20
B
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s-distance sets is in [ 14 7.

[ 28 1.

Il

e (D) () () ()
(iJ(VY;frJ(V;fgr)
(-1)S7F (V;s) &fiij k;&;r) .

)

Note for DAY 3.

Proposition 3.1.(1) is in [ 16 ]

and further discussion on

The concept of s-distance sets is
introduced and the duality theorem 3.2 except (3) 1is proved in
Today's material is mainly an introduction of [ 28 ].
The duality theorem 3.2 was clarified by the work of Delsarte

[ 12 J, [ 13 1, which uses the duality theorem in linear programing.

For‘the result quoted in Remark following the 2nd proof of

" theorem 2.1, see [ 8 1, [ 291, [ 32 1.

_35_
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DAY 4.

We descuss the g-analogue of t-designs. It is easy to‘see that
mbst of the results obtained for classical t-designs can be
translated into the terms of its g-analogue by changing the usual
binomial coefficients ( ; J to ( ; )q and putting the appropriate
power of (q. In stead of stating the corresponding‘results we show
that the Ray-Chaudhuri Wilson type inequality does not give an
efficient bound and we present some attempt to construct the
g-analogue of t-designs.

We begin with the definition.

Let V be a v-dimensional vector space over a finite field

GF(q) with g-elements. Let ( X ]q denote the family of all

r-dimensional subspaces of V and ( X Jq be its number.. Then it

is easy to see that
" r n-i
(%) =
= T .
FJ9 420 ¢F ™1
Definition 4.1. ¢ # B8 C [ X )q is a t-(v,k,x;q) design (or
thesign over GF(q)), if 0 <t <k < v and ‘
a(e) = |{B€e€B| acB} =x forall o in ( X )q’
i.e., the number a(a) does not depend on -the choice'of the

t-dimensional subspace o of V.

o<

The design is nontrivial if 3 # ( )q and 'C <t < k.<v.

Just for the technical advantage we adopt a nonsingular bilinear

form. So if o« 1is in ( ¥ )q, o:'L = {ae€eV] (a,b) =0 for alld

- 38 -



: A ‘ A L L
in o} € (v—r)q' For @ c ( r )q’ E ={ o | xeB}.

The following lemma corresponds to Lemma 1.2 and 2.2.

Lemma 4.2. Let 8 be a t-(v,k, 1;q9) design. For s and r
with s + r < t, let o € ( Z Jq, B € [ g Jq and ¥y € [vfs)q such
that o n 8 =0 and o cy. Then we have

Ai = Ai(a,ﬁ) =|{Be8| acB BnB=20}]|

QS(k_r)[U;f;S)q
= X~ (U—t) v and
k-t)q
ui = u?(u,y) =|{Bes ] acBcry}
[v—r—s!
e (i:i\) v
k-t)q
—and they do not depend on the choices of o, B and v¥. They .
satisfy )

SRR Tapygi o = “iﬁ # a7,

Moreover lg = “g and B 1is an'r—(v,k,lg;q) design for all r with
0<xr<t.

Proof.  Firstly jﬁst as in the proof of Lemma 1.2 we obtain that

|{ (8,B) € ( X )q X8| acdscB }

o *g'@:?)q -2 (15)q
AS ; @).q(ﬁ)q - @)q(ﬁ:i)q’

r~ *‘(k-r) = *‘(v-tj ‘
t-rjq k-t/q

Then we have the assertion by a little modification of the proof of

b
]

=
[

- 37 -
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Lemma 2.2

Proposition 4.1. Let 3 be a t—(v,k{x;q) design.

(1)

(2)

v
18] = -yt .
T, ),

|B] = (v)q' if 28 <t and s + k £ ».

Proof.

(2)

u,T S
Ng(NgY™ = 2

where the matrices Ns, Ns

(1) et r =s =0 in Lemma 4.2. Then we have (1).

It is easy to see that we have the equation

s-1i s-u i
(u—i)qAZS—iwss’

u

i=0

and W;S are those défined on Day 1 just

by replacing ( X ) by ( v )q. So we have .the assertion by simply

m

following the prppﬁhpf Theorem 2.1 given on Day 2.

Remark, -Using the matrix equation similar to Lemma 3.1.(5)
S . . i+1
we can show the g-analogue of Corollary 3.1 easily. Note that
S i —ir+(i+l) r
E (-1)"q 2 (i)q = b o

i=0 | '
1Y _ (i1 'j.(i~l) - (1—1) i—j.(iflj
(J)q (J'~l)q. R IV L B U IV U R CES VLo

Lemma 4.3.. - Let 2 be a t—(v,k, x;q) design. \ Tﬁen %L is a

t—(v.v—k,ug;q) design.

Proof.

x(o)

R v
Le? o be in ( £ )q. Then
[{B e | «dcB }

l{Besd | « 5B}
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= |[{BeB]|Bc o o= ug.
Lemma 4.4, If 0<t<kx<xwvw?2 and 2s < t, then
(%)q |
t v
[ k ) ” ( s JQ’
tJq
Proof. We may assume that s = [t/2].
V —
(t)q _(@¥-1) (g7
k k L k-t
), @ 1)

- () L7810y - gV ) (g%-1) - - (g-1)
s/4 (a-1) (K7 t-1) - - (T

a7 7%-1) (0%-1)(q7 57 1) (¢57 1) - (g 25* 1) (g1

v
> |7 P
(S)q (a-1) (F71-1) (72-1) (a8 73-1) - (257200 (K 2SH L

- - - - 2k -
> (9) P51y (0%1) (@) (87 | (@254 (-1
$/9 (¥o1) (alo1) (@721 (o701 (a8 2 1) (K728,
vote1_, : e ,
as = 1.
qk—t+l_l. ,
It is enough to show
2k-s-1 s-1i
(q - -1)(q - -1) 1, for all i with 0 < i < s-1,
k-21 k-2i-1
(q -1)(q -1)
or .
q2k—21 _ q2k—s—1 S T N q2k—41—1 _ qk—21—1 B qk—21 .1,
or :
k-2i-1_ 2k-4i- -2i- -s-i, k-=2i- -2 -1
(qz i-1_, k-41 l)+((q—1)q2k i 1_q2k s 1)+qk i 1+qk 1571
>0 + (q2kf21~l_q2k—s-1) +.(qkal—l_qs—l) L2

The last statement is valid as
2k-2i-1 > 2k-i-(s-1)-1 = 2k-i-s, and

k-21-1 > 2s-2i-1 > (s-i)+s-(s-1)-1 = s-1i.
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Theorem 4.1. There is no t—(v,k, x;q) design which aitain the
bound in Proposition 4.1.(2) if 2s <t and s + k < v.
Proof. =~ By Lemma 4.3, we may assume that k < v/2. Then by

Lemma 4.4 and Proposition 4.1.(1)
v

t v
I:’Blz(k >(qu.
t Ja
Thus for'the g-analogue there are no designs corresponding to
symmetric designs or tight t-designs. Theorem 4.1 was first proved
by L. Chihara by the investigation of the roots of polynomials

corresponding to ps(x) in Corollary 3.2.

We now turn to the attempt to construct t-designs over GF(q).
In the history of the construction of classical t-designs, most of

the designs were constructed by the following observation.

Let G < SX, x={1,2...,v }. Suyppose G 1is transitive on
( § J but not on ( i ), then the union of b%bits of G on ( Z J
becomes a t—-design. (See the remark preceeding Example 1.3.)

So it is natural to ask the following question: .
Is there a subgroup G of PIL(V) Which acts transitivély on
A% v .
: 2
( t.)q but not on ( Kk ]q’ w1?h 1 < t < k,'

' The answer is given by the‘folloWing déep result of W. Kantor.

Result (W. Kantor [ 9 1).
[f a subgroup G- of PIL(V) is transitibe on ( z )q for some
r with 2 < v < v-2, then G 1is transitive on ( z )q for all k

with 1 £ k < v—1.
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Thus 1t is impossible to use the observation above, if t = 2.
We note here that there are many examples of 1-design over GF(q),
especially a 1—(V}k,l;q) design is called a spread.

Though the direct application of the observation above failed,
it may still be a good idea to use a group G in PrL(V) which has

small number of orbits on ( z )q‘

Example 4.1. Let v = 2m, G = Sp(2m,2), and t = 2. - There

are two orbits Ag and Aé of G on ( g )2, and [k/2]+1 orbits

of G on ( X )2, where the superfix is given by the Witt index.
Then
k- u 1 R
2u(m k+u) (22m 21_1)
e i=0 L
[al] =
k u- 1 k-2u
' (2 k 2u-21 -1) ( k 2u-j -1)
i=0 . J=0
p2k-2u-2 _ ,2k-2 .k _ o K-1
B(A k) = 5
27 - 1
2k 2u-2
B(A Ak) = 7 (2 1)
27 - 1
.A(A k) = |al ]B(AZ,A )/IA I
: -1 Tu v ' '
Let ¢ # A = Ak’ U ... U Ak .; ( Kk )2. Suppose -A ig a nontrivial
2—(2m,k,l;2)‘design. We may assume that 0 < 1l < ... < iu’
replacing by the complement if necessary.’. Then we have
u 1 i,
'2 A(A Ay Iy« 5 Alag.a.7).
J=1 j=1
So '
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1 i
(1o 1B (A, 8"

‘ i,
AT) + o+ 1By [B(A Ak ))|A |

i i
- et Bl ¢ e 18 istah. e ) 183,

Since the power of 2 dividing IAEIB(AZ,Aﬁ)lAEI is 2w(m-k+w)+2m-2,

and the power of 2 dividing lAﬁIB(Aé,AE)IAgI is 2% (m-K+W)+2k-2w-2
2w (m-k+u)+2k-2u-1

= 2(W2+(m—k—l)+k—l). So considering modulo 2 with
: 1 1 il 0
w = 1,, the only nonzero term is !Ak IB(AZ,Ak )|A2|. A

contradiction. Hence we conclude that there is no nontrivial

t-(2m,k,1;2) design such that 2% = 2 for all ¢ in Sp(2m,2).

The first nontrivial 2-designs over GF(q) were constrﬁcted by

S. Thomas for gq = 2 and extended to all gq by E. Schram and the

author.

~Let K = GF(gv), F = GF(q) and view K as a v-dimensional

vector space over F.

D X

For each U in ( )q -and a natural number r, let

sa,cca a, € U, i=1,...,vr >,
1 72 r l i !

i.e., the subspace of K spanned by the products of r-elements in

Lr(U) = < a

U. Let
_ K
8. = { L.(0) | U € [ 9 )q‘}.
Question. Suppose (v, (2r)!) = 1. When does %r become a -

_ fr+1) . L
2 (v,r+l,( 9 )q,q) design 7

We do not have the complete answer. We give a partial answer

to it in the following. For the case q = 1, see Example 1.4.
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Lemma 4.5, If (v, r!) = 1, then din Lr(U) = pr+{.

Proof. Let U = <a,b>. Then L _(U) =< ar,ar_lb,...,br >,
Suppose { ar,ar_lb,...,br } is linearly dependent over F. Then
a/b 1is a root of a nonzero polynomial of degree at most r. So

[ F(a/B),F ] < r. By the assumption we have F(a/b) = F and

Fa = Fb. A contradiction.
Lemma 4.6, Suppose (v, (2r)!) = 1. Let U and W be in
K - =
[2 )q. If LU =L (W), then U =W.
Proof. We may assume that 1 1is in U. Let U = <l1,a> and
W = <x,y>. Since Lr(U) = <1,a,...,ér_l,ar>, there are polynomials
fy,---,f. in F[t] of degree at most r satisfying f;(a) = xF iyt

ar—l r _.r-1

-Since <l,a,..., > N <X ,X y> # 0, we may assume that either

deg fo £ r-1 or deg fl < r-1 by a suitable change of the basis of

W. Moreover fi(t)°f}'2(t) = f (t)2 in F[t], where

i+ i+1

. ~ . _ 2
i=0,1,...,r-2. Suppose not. Then fi(t)fi+2(t) fi+2(t) is a
nonzero polynomial of degree at most 2r and a is its root. So
[F(a):F] < 2r. A contradiction.

Let deg fi =r;. Then ry ¥ ri+.2 = 2ri+l or
ri_ri+l=ri+l_ri+2' Suppose r = ro. "Then

.r f r‘o > r-1 > rl;> el > rr. | 7 |
Herice we have fi = r-i. Similarly if r > r,, we have rs = j.

So by replacing x and y if necessary, we may assume that
Xr_lyl € < l,a,...,al >,

In particular x' is in F. So X 1is in F by our condition.
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Since x' ~y is in <1,a>, y belongs to U.

Therefore U = W.

. _ 1) . oL _ . .
Corollary 4.1. |£rl = ( 5 )q and if B, isa 2-design 4t
is a 2-{(v, r+{, (T?j q;q) design.
The design is montrivial if 2 < r < r—4.
Proof. Since the correspondence U to Lr(U) defines a

monomorphism by Lemma 4.8, we have the cardinality of ﬁr. Now the

latter half is immediate.

In the following we show that it is a design if r = 2. Let
_ _ \Y%
2 = %2 and L(U) = LZ(U)' Let W € ( 5 Jq and
_ X
AWy = [{ue |5 ] | L@ oW H

We need to show that x(W) = (2Il)q = q2+q+l.

Let U = <x,y>, L(U) = { sx2+ty2+uxy | s;t,u e F} and f =

st—uz. Then GL(U) 1is embedded as a subgroup in Of(L(U)), the
orthogonal group defined by f. So we have the following.
( L0 J/GL(U) ~ ( L{0) )/GL(U)

{ <X2>,<XY>,<X2—8y2> } if q is odd, and

= | <x2>,<xy>,<x(x+y)> } if aq. is even.

Hence we have three types.

. W= <x2,y2> ='<Xy>L
II. W = <X2,xy> = <x2>L.
IXI. W = <xy,x2+gy2> = <x2—8y2>L, with q odd. Here g 1is a

fixed element in F - FZ.
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IIr'. w ='<X2,y(x+y)> = <X(x+y)>L, q even.
Let x[T] = [{ L(U) € 8| Wec L(U), W is of type T }]|.

Then it is easy to get the following.

q{qg+1l)/2, q odd,
A[I] = {
1, q even.

X[II] = q+1.

Let W = <Xy,x2+8y2>. Then
(Xz—ayz)2 = (X2+8Y2)2 - 48(XY)2-
2 2
So a[III] = |{ <a®-eb”> | <a,b> = W }| = q(q-1)/2.
Suppose W = <X2,y(x+y)> with q even. Then considering the

solution of the following equation applying Hilbert's Theorem 90, we
have A[III'] = (gq-1)(g+l).

2 -1

z“ + z + ¢ = 0, where ¢ = ba or bat

+1.
Taking the sum of three numbers in each case, we have the

assertion.

Note for DAY 4.

The Ray-Chaudhuri and Wilson type inequalitj for t-designs over
GF(qg) 1is discussed in [ 8 ]. See.also [ 18 1, [ 32 ].v

Theorem 4.1 is a special case of the results of‘Chihara in

[ 10 ]. = She showed the nonexistence of tight t-designs for every

known Q-polynomial schemes with q > 1. - Here we followed [ 32_]._:

The first construction of t-designs over'GF(q) is'in [ 35 ] for
qa =2, q = ol case is in [ 30 ] and q odd case is in [ 31 1.
E. Schram at the Ohio State University seems to obtain the similar

results.
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The table following this note is the matrix Ayg where V 1is a

7 dimensional vector space over GF(2) and G 1s the so-called

Singer group, a cyclic gorup of order 127. It was computéd‘by
Kawamoto and Yoshikura. It is easy to check that there are no
2-(7,3,1;2) designs with G as an automorphism group. See [ 35 ].

The first 21 columns corresponds to a 2-(7,3,7;2) design constructed

by Thomas [ 35 1.
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DAY 5.

The today's goal is to prove the following theorem of L;

Teirlinck. It gives a constructive proof of the existence of

(classical) nontrivial t-designs for all t. For t = 7 the only

nontrivial t-designs known are those constructed in the theorem below

within the author's knowledge.

Theorem 5.1. (L. Teirlinck) Let v, k be positive integers
such that m = (v-k+1)/ kP71 is an integer, and V = {1,2,...,9]}.
Then there exist m disjoint families ?1,...,?m in ( X )> such
‘that ( Z ) = ?1 Uu... UV ?m and that each ?i is a (k—=1)—(v, k, X)

design with A = (k!)Zk*j.

Remark 5.1, ~ Since the union of disjoint families of

t-designs with same Xk is a t-design, Theorem 5.1 implies.the

following:

Suppose (k!)2k_l divides A and A divides v-k+1. Then
there exist m = (v-k+1)/x disjoint families 71,...,?m in ( X )
such that ( v J =F U ... U¥F and that each %, 1is a

k 1 m i
(k-1)-(v,k,x) design.
= + tg =
Lemma 5.1. Let E_ { (ej,...,es) | e, € N, e, ... teg x }.
’ _ k-1
Then |Es| = ( N ).
Proof. IESI is the number of ways of dividing k 1's into s
- k-1
nonempty parts. So IESI = ( o 1 ).

- 48 -



In the following
(a,b) = { x € Z | a<x<b},

[a,b) = { x € Z | a<x<b}, and

' _ . . . . s
I(s,p) = { (11,...,13) | 0 < 1 <0 <ig < p}clZ”.
For a € [0O,m), i € I(s,(k!)m) = I, and e € E_, let
s
B (i) = { e € Eg | jglejlj € [k!a,k!(a+1)) (mod k!m) }.
We write 1 = (i;,...,10) < = (Jy,....dg,q)
if {ilv-'-vis} c {Jl’- --yjsl+l}-
Lemma .2, Let m, k and s be positive integers and a
be in [(0,m). For each i = (ij,...,is) in I{(s,k!-m),
S B ¢i)| + (k-s)|B (i)] = (k“’ )-k./.
) . a s
1<)
- Proof. Let p = k!'m and
s={ (x| feE,, xe€[0,p),
s
jglfjlj + fs+lx € [k!-a,k!-(a+1)) (mod p) }.
Since fs+1 divides k!, fs+1~x+b € [k!+a,k!+(a+1)) (mod p) has k!
: s
solutions for each a with b = 3 f,-i.,
T : . j=1 9
- - = k—l .
sl = 1By Ikt = (K01 )k,
On the other hand let
Sy = L (f.x) ¢ S_I X 1s not in {11,.i;,1s} }, and
s. = { (f.x) es | X\= i ‘}.
Then - S Vis a disjoint union of SO’Sl""’Ss' Moreover
I1syl = 2 IB (i) 1.
0 i<j a
s
Let ¢ be a mapping from U §. to B, (i) defined as follows.
. ro1
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Fof each (f,x) € Sr’ let

o(f,x) = (£,,...,T f +f f

1 *Tr-1""r Ts+l’ r+l""’fs)'

Then ¢ 1is surjective and for each e € Ba(i)
-1

le""(e) ns.|'=e. -1
_.l S
Hence J|o ~(e)| = 2 (e, - 1) =k - s. Therefore we have the
r=1
assertion.

Proof of Theorem 5.1.

We proceed by induction on XK. If k=1, m = v and we may
take ?i_= {Xi}. Assume k > 1 and Theorem 5.1 is valid for all
k' < k. Let p = k!-m and

V=TUU,U ... 0T,
be a partition of V such that T = { 1,2,...,k-1 } and [Url =
k1)2K"2 1 Zo,... p-1. Note that v = (k-1) + (k)2 l.xr.m.

For each e 1in ES let Tl(e) = (O,el) and Tr(e) =

(el+...+er_l,el+...+er). Then lTr(e)I = e -1, Tr(e) c T and

s

U Tr(e)‘ =k - s. For each e in ES and 1 = (11,...,18) in
r=1
I = I(s,p), let

Vr(e,l) = Ui U Tr(e), and

r
S Vr(e,i)
R(e,i) = W ( e ]
r=1 r
(0,e,)UU, (e,,e,+e,)UU, (e, +...+e ,k)uu.,
- ( T1 1l)x[ 1771 72 12jx.._x( 1 s-1 ’ 13)
e e e
1 2 S

I

{ F ¢ ( X ) | IFv (e, i) | = e, 11 <s)
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Sublemma 1, ( Z ) = U U U R{e,i), (disfoint) .
8=] e€FE_ i€l
s s
Proof. Since R{e,i) c [ X ], it suffices to show that each
F € [ X J uniquely determines s € { 1,...,k }, e 1in ES and i

IS and that F € R(e,i). Let

(i, .1 = {1 | Fn Uj # ¢ ).
Claim 1. Let G € R(e,i) with i = (il,...,is), then
{ Lyseeenig b= {0 | 6 n Uj = ¢ }.
(For) By the definition of R(e,i), it is clear that if
G N Uj = ¢, J & { il""’is }. On the other hand
e n Uirl = 16 nv.(e,i)] - |6 n T (e) |
x e, —-ITr(e)I =e. - (e. - 1) =1.

Hence we have the claim.
So F .determines s and i in IS uniquely. Note that

IT| = k-1 implies s x 1.

Claim 2. Let G € R(e,i) with i = (il,...,is),
e = (el,...,es) and lUi NGl + ... + IUi neG | = g
1 r
Then the grth member not in G 1is el+...+er.
(For) Since [(O,el+...+er) n G| + g. = e;+...+e , we have. the

assertion.

Hence F determines e wuniquely and we have Sublemma 1.

Let s> 2 .and. e € Es;'i € I,. Then

Wele D= T ()l Uy | -ep -1 s a2 e <k
Since (er!)zer-l divides pu = (k!)Zk_S_ and p divides
(er -1 + (k!)2k“2) - €. * 1, there exist k! disjoint families 9r
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. Vr(e,i)
(0 £ ¢ £ k!) of ( e

) such that
r

V (e, i)
r ., (0) (k!-1)
(Y o
and that each Qia) is a (er—l)—(er—l+(k!)2k_2,er,u) design.

Since Ba(i) (0 £ a <m) gives a partition of Es, there is a

partition
[0,k!) = By UB, U ... UB A
B . . k-1 T _ (k-1
such that [B,| = k! |Ba(1>1/(s_lj, as [B| = (s—l)'
This partition is also possible for s =1 in which case
Ba = ¢ except one a satisfying k-i € [k!-a,k!-(a+l)) (mod p).
Now let .
sy L (o) ()
Ra(e,l) = U 91 1 x‘..xg’S s’.

(al,...,as)
) ~ al+...+as€Ba:(m9g”k!)
For s = 1 1let
_ T U Ui
R (G0, (1) = [ 1)

for a satisfying k-+i € [k!-a,k!-(a+l)) and ¢ otherwise.

Sublemma 2. Let R € [kfj) such that R c T’ for some
T’ € R(e, ). Then
| . (k) #74B ci) |
[{ s € R, (e i) | Res } = ( P )
_ ' s-1-
Proof. Suppose s = 1. Then
Vo), (1) = T UG, (0] = kD ana
Vl((k),(i)) :
| (. )i By = 1,
Ra((k),(i)) = { :
$ , otherwise.
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So if lBa(i)I = 1, the left hand side is

2k-2
(k-1) + (k!) - (k-1) \ _ 2k-2
[ k ~ (k-1) ) = (kb

and is equal to the right hand side.
Suppose s x> 2. Then we have R # T, as otherwise we have
s = 1. Since |T' n Vr(e,i)l =e. and k-1 = IRl = |T'| - 1, there

is a unique 1r such that

r

IR n Vr(e,l)l s e.-1l<e,
So R n Vj(e,i)] = ey if 'j # r, and so there is a unique
(aj)
aj = aj(R) such that R n Vj € gj Hence R 1is contained in
- () (o)
no= (k!)2k 3 members of 91 1 X .. X ys S , where uj = aj(R) if
j #r and dr is arbitrary. In order to have that member in
Ra(e,l), o, must satisfy
o, + (2 o«,(R)) € B. (mod k!).
r J#r J a
Hence there are .
k!+|B_(i)]
B | = —a
a ( k-1 J
s-1
o among { O0,...,k!-1 } satisfying the gondition. Hence R is

contained in
x)72q8_(i) |
nelByl = [ k-1 J

s-1

members of k-subsets in Ré(e,i) as desired.

Let

k .
F = U ] U R (e,i).
& g=1 e€E_ i€l a
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By sublemma 1,

v m-1
( ) = U ?a (disjoint).

k a=0
Hence we need to show that for each a, ?a is a (k-1)-(v,k,A) design

with a1 = (x1)2¥°1.

v . . .
Let R € (k—l)’ and i = (11,...,13) with
I={1i,...,10g }={1i | RN U, # ¢ b, 01y < ... < i <P
: S
Let r = IR n Ui [. Then |T - R| = 2 T, Let
: u u=1
S S B N S ARTRRIE L LLPRPIC AL
1 2 S
with =1 < &P < x1) 52 o< x(s)
1 2 r r
1 s
Claim 3. l{eef, | RcQ QnUy =4 if i is not in I }|

s- (k1) 728 (1) |

)

(For) Let {x} = Q - R. Then either x € Ui - R for some
..

u with 1 €£u<s or X = xgu) for some u with 1 £ u < s and

. (1) (u-1)
1< j<r.. Let e, =X yeee,€ te FLL e L = X ,
u 1 rq 1 72 u-1 ri-1
_ (u+l) . - (s) o
e teg*. .. ¥ey = Xy ,...,el+e2+...:es~l = X, eqtegr...te = kf

See Claim 2 in the proof of Sublemma 1. Then Q € R(e,i) as
{i] Ui nNae#=2¢73}r =1 Since thefe are s choices of u, the

assertion of Claim 3 "follows from Sublemma 2.

Claim 4." For some Jj mnot in I, let {jl,...,js+1} = I u {j},
i = (jl""fjs+1) € I ,q- Then
w2 ()|
[{aed, [RcQ QnU; =¢ 1= ( = )
s
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(For) For each x € Uj’ R U {x} is in R(e,i) for some e

and e 1is determined by j uniquely, i.e., if iu—l < j < iu’

_ (1) - L (u-1) - Lu-1)
= X seees EqtlLatel 40T X » €qt...Fe, =X +1

1 rl ’ u-1 ru—l

s

e

oo (w) -
el+...+eu+l = Xru +1,..., el+...+eS+l = k.

Hence by Sublemma 2, the left hand side is equal to

2k-2

(k)2 0B, (i) |

()

Therefore

[{Qe? | RcaQqll

2k-2 )2k—2

st (k) “|B, (i) ] 5 (k! 1B, (i) |
TED A )

2kh2°(k!) - (k!)Zk—l = 1

= (k!)

by Lemma 5.2 as desired.

Note for DAY 5.

The theorem is téken from [‘33 ].. In [ 34 1, Teirlinck
discusses_the‘géneral construction of t-designs using arrays. The
original construction was introduced by T. Itévat a seminar in Tokyo
and the proof was written by P. Frankl and others and included in the
book [.1 1. The prdof;demqnstrated here‘follows [ 11.

There are a lot of;pépers dealing with the constructions of
t-designs, for example [ 2 j, [ 3 ],:t 4 1, [ 18 ]L'[ 19 1 and
[ 36 1. [ 4~] gives an infihite series of 3—(v18,1) designs and
[ 181, [ 19 1, [ 3868 ] also give examples of Steiner systems.

We do not have any nontrivial Steiner systems for t > 6, nor
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infinite series of Steiner systems for t > 4, within the author’s
knowledge.
The determination of the existence or nonexistence of Steiner

systems for all t seems to be one of the most interesting problems

in design theory.
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